973cec5b06f3dcbcaa4cc27c96f991cb3aaf82a6
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 var mclassdef_hierarchy = new POSet[MClassDef]
54
55 # Class-type hierarchy restricted to the introduction.
56 #
57 # The idea is that what is true on introduction is always true whatever
58 # the module considered.
59 # Therefore, this hierarchy is used for a fast positive subtype check.
60 #
61 # This poset will evolve in a monotonous way:
62 # * Two non connected nodes will remain unconnected
63 # * New nodes can appear with new edges
64 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Global overlapped class-type hierarchy.
67 # The hierarchy when all modules are combined.
68 # Therefore, this hierarchy is used for a fast negative subtype check.
69 #
70 # This poset will evolve in an anarchic way. Loops can even be created.
71 #
72 # FIXME decide what to do on loops
73 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
74
75 # Collections of classes grouped by their short name
76 private var mclasses_by_name = new MultiHashMap[String, MClass]
77
78 # Return all classes named `name`.
79 #
80 # If such a class does not exist, null is returned
81 # (instead of an empty array)
82 #
83 # Visibility or modules are not considered
84 fun get_mclasses_by_name(name: String): nullable Array[MClass]
85 do
86 return mclasses_by_name.get_or_null(name)
87 end
88
89 # Collections of properties grouped by their short name
90 private var mproperties_by_name = new MultiHashMap[String, MProperty]
91
92 # Return all properties named `name`.
93 #
94 # If such a property does not exist, null is returned
95 # (instead of an empty array)
96 #
97 # Visibility or modules are not considered
98 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
99 do
100 return mproperties_by_name.get_or_null(name)
101 end
102
103 # The only null type
104 var null_type = new MNullType(self)
105
106 # Build an ordered tree with from `concerns`
107 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
108 var seen = new HashSet[MConcern]
109 var res = new ConcernsTree
110
111 var todo = new Array[MConcern]
112 todo.add_all mconcerns
113
114 while not todo.is_empty do
115 var c = todo.pop
116 if seen.has(c) then continue
117 var pc = c.parent_concern
118 if pc == null then
119 res.add(null, c)
120 else
121 res.add(pc, c)
122 todo.add(pc)
123 end
124 seen.add(c)
125 end
126
127 return res
128 end
129 end
130
131 # An OrderedTree bound to MEntity.
132 #
133 # We introduce a new class so it can be easily refined by tools working
134 # with a Model.
135 class MEntityTree
136 super OrderedTree[MEntity]
137 end
138
139 # A MEntityTree borned to MConcern.
140 #
141 # TODO remove when nitdoc is fully merged with model_collect
142 class ConcernsTree
143 super OrderedTree[MConcern]
144 end
145
146 redef class MModule
147 # All the classes introduced in the module
148 var intro_mclasses = new Array[MClass]
149
150 # All the class definitions of the module
151 # (introduction and refinement)
152 var mclassdefs = new Array[MClassDef]
153
154 # Does the current module has a given class `mclass`?
155 # Return true if the mmodule introduces, refines or imports a class.
156 # Visibility is not considered.
157 fun has_mclass(mclass: MClass): Bool
158 do
159 return self.in_importation <= mclass.intro_mmodule
160 end
161
162 # Full hierarchy of introduced and imported classes.
163 #
164 # Create a new hierarchy got by flattening the classes for the module
165 # and its imported modules.
166 # Visibility is not considered.
167 #
168 # Note: this function is expensive and is usually used for the main
169 # module of a program only. Do not use it to do you own subtype
170 # functions.
171 fun flatten_mclass_hierarchy: POSet[MClass]
172 do
173 var res = self.flatten_mclass_hierarchy_cache
174 if res != null then return res
175 res = new POSet[MClass]
176 for m in self.in_importation.greaters do
177 for cd in m.mclassdefs do
178 var c = cd.mclass
179 res.add_node(c)
180 for s in cd.supertypes do
181 res.add_edge(c, s.mclass)
182 end
183 end
184 end
185 self.flatten_mclass_hierarchy_cache = res
186 return res
187 end
188
189 # Sort a given array of classes using the linearization order of the module
190 # The most general is first, the most specific is last
191 fun linearize_mclasses(mclasses: Array[MClass])
192 do
193 self.flatten_mclass_hierarchy.sort(mclasses)
194 end
195
196 # Sort a given array of class definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
200 do
201 var sorter = new MClassDefSorter(self)
202 sorter.sort(mclassdefs)
203 end
204
205 # Sort a given array of property definitions using the linearization order of the module
206 # the refinement link is stronger than the specialisation link
207 # The most general is first, the most specific is last
208 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
209 do
210 var sorter = new MPropDefSorter(self)
211 sorter.sort(mpropdefs)
212 end
213
214 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
215
216 # The primitive type `Object`, the root of the class hierarchy
217 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
218
219 # The type `Pointer`, super class to all extern classes
220 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
221
222 # The primitive type `Bool`
223 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
224
225 # The primitive type `Int`
226 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
227
228 # The primitive type `Byte`
229 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
230
231 # The primitive type `Int8`
232 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
233
234 # The primitive type `Int16`
235 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
236
237 # The primitive type `UInt16`
238 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
239
240 # The primitive type `Int32`
241 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
242
243 # The primitive type `UInt32`
244 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
245
246 # The primitive type `Char`
247 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
248
249 # The primitive type `Float`
250 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
251
252 # The primitive type `String`
253 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
254
255 # The primitive type `NativeString`
256 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
257
258 # A primitive type of `Array`
259 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
260
261 # The primitive class `Array`
262 var array_class: MClass = self.get_primitive_class("Array") is lazy
263
264 # A primitive type of `NativeArray`
265 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
266
267 # The primitive class `NativeArray`
268 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
269
270 # The primitive type `Sys`, the main type of the program, if any
271 fun sys_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Sys")
274 if clas == null then return null
275 return get_primitive_class("Sys").mclass_type
276 end
277
278 # The primitive type `Finalizable`
279 # Used to tag classes that need to be finalized.
280 fun finalizable_type: nullable MClassType
281 do
282 var clas = self.model.get_mclasses_by_name("Finalizable")
283 if clas == null then return null
284 return get_primitive_class("Finalizable").mclass_type
285 end
286
287 # Force to get the primitive class named `name` or abort
288 fun get_primitive_class(name: String): MClass
289 do
290 var cla = self.model.get_mclasses_by_name(name)
291 # Filter classes by introducing module
292 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
293 if cla == null or cla.is_empty then
294 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
295 # Bool is injected because it is needed by engine to code the result
296 # of the implicit casts.
297 var loc = model.no_location
298 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
299 var cladef = new MClassDef(self, c.mclass_type, loc)
300 cladef.set_supertypes([object_type])
301 cladef.add_in_hierarchy
302 return c
303 end
304 print_error("Fatal Error: no primitive class {name} in {self}")
305 exit(1)
306 abort
307 end
308 if cla.length != 1 then
309 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
310 for c in cla do msg += " {c.full_name}"
311 print_error msg
312 #exit(1)
313 end
314 return cla.first
315 end
316
317 # Try to get the primitive method named `name` on the type `recv`
318 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
319 do
320 var props = self.model.get_mproperties_by_name(name)
321 if props == null then return null
322 var res: nullable MMethod = null
323 var recvtype = recv.intro.bound_mtype
324 for mprop in props do
325 assert mprop isa MMethod
326 if not recvtype.has_mproperty(self, mprop) then continue
327 if res == null then
328 res = mprop
329 else if res != mprop then
330 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
331 abort
332 end
333 end
334 return res
335 end
336 end
337
338 private class MClassDefSorter
339 super Comparator
340 redef type COMPARED: MClassDef
341 var mmodule: MModule
342 redef fun compare(a, b)
343 do
344 var ca = a.mclass
345 var cb = b.mclass
346 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
347 return mmodule.model.mclassdef_hierarchy.compare(a, b)
348 end
349 end
350
351 private class MPropDefSorter
352 super Comparator
353 redef type COMPARED: MPropDef
354 var mmodule: MModule
355 redef fun compare(pa, pb)
356 do
357 var a = pa.mclassdef
358 var b = pb.mclassdef
359 var ca = a.mclass
360 var cb = b.mclass
361 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
362 return mmodule.model.mclassdef_hierarchy.compare(a, b)
363 end
364 end
365
366 # A named class
367 #
368 # `MClass` are global to the model; it means that a `MClass` is not bound to a
369 # specific `MModule`.
370 #
371 # This characteristic helps the reasoning about classes in a program since a
372 # single `MClass` object always denote the same class.
373 #
374 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
375 # These do not really have properties nor belong to a hierarchy since the property and the
376 # hierarchy of a class depends of the refinement in the modules.
377 #
378 # Most services on classes require the precision of a module, and no one can asks what are
379 # the super-classes of a class nor what are properties of a class without precising what is
380 # the module considered.
381 #
382 # For instance, during the typing of a source-file, the module considered is the module of the file.
383 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
384 # *is the method `foo` exists in the class `Bar` in the current module?*
385 #
386 # During some global analysis, the module considered may be the main module of the program.
387 class MClass
388 super MEntity
389
390 # The module that introduce the class
391 #
392 # While classes are not bound to a specific module,
393 # the introducing module is used for naming and visibility.
394 var intro_mmodule: MModule
395
396 # The short name of the class
397 # In Nit, the name of a class cannot evolve in refinements
398 redef var name
399
400 redef var location
401
402 # The canonical name of the class
403 #
404 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
405 # Example: `"owner::module::MyClass"`
406 redef var full_name is lazy do
407 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
408 end
409
410 redef var c_name is lazy do
411 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
412 end
413
414 # The number of generic formal parameters
415 # 0 if the class is not generic
416 var arity: Int is noinit
417
418 # Each generic formal parameters in order.
419 # is empty if the class is not generic
420 var mparameters = new Array[MParameterType]
421
422 # A string version of the signature a generic class.
423 #
424 # eg. `Map[K: nullable Object, V: nullable Object]`
425 #
426 # If the class in non generic the name is just given.
427 #
428 # eg. `Object`
429 fun signature_to_s: String
430 do
431 if arity == 0 then return name
432 var res = new FlatBuffer
433 res.append name
434 res.append "["
435 for i in [0..arity[ do
436 if i > 0 then res.append ", "
437 res.append mparameters[i].name
438 res.append ": "
439 res.append intro.bound_mtype.arguments[i].to_s
440 end
441 res.append "]"
442 return res.to_s
443 end
444
445 # Initialize `mparameters` from their names.
446 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
447 autoinit
448 do
449 if parameter_names == null then
450 self.arity = 0
451 else
452 self.arity = parameter_names.length
453 end
454
455 # Create the formal parameter types
456 if arity > 0 then
457 assert parameter_names != null
458 var mparametertypes = new Array[MParameterType]
459 for i in [0..arity[ do
460 var mparametertype = new MParameterType(self, i, parameter_names[i])
461 mparametertypes.add(mparametertype)
462 end
463 self.mparameters = mparametertypes
464 var mclass_type = new MGenericType(self, mparametertypes)
465 self.mclass_type = mclass_type
466 self.get_mtype_cache[mparametertypes] = mclass_type
467 else
468 self.mclass_type = new MClassType(self)
469 end
470 end
471
472 # The kind of the class (interface, abstract class, etc.)
473 # In Nit, the kind of a class cannot evolve in refinements
474 var kind: MClassKind
475
476 # The visibility of the class
477 # In Nit, the visibility of a class cannot evolve in refinements
478 redef var visibility
479
480 init
481 do
482 intro_mmodule.intro_mclasses.add(self)
483 var model = intro_mmodule.model
484 model.mclasses_by_name.add_one(name, self)
485 model.mclasses.add(self)
486 end
487
488 redef fun model do return intro_mmodule.model
489
490 # All class definitions (introduction and refinements)
491 var mclassdefs = new Array[MClassDef]
492
493 # Alias for `name`
494 redef fun to_s do return self.name
495
496 # The definition that introduces the class.
497 #
498 # Warning: such a definition may not exist in the early life of the object.
499 # In this case, the method will abort.
500 #
501 # Use `try_intro` instead
502 var intro: MClassDef is noinit
503
504 # The definition that introduces the class or null if not yet known.
505 #
506 # See `intro`
507 fun try_intro: nullable MClassDef do
508 if isset _intro then return _intro else return null
509 end
510
511 # Return the class `self` in the class hierarchy of the module `mmodule`.
512 #
513 # SEE: `MModule::flatten_mclass_hierarchy`
514 # REQUIRE: `mmodule.has_mclass(self)`
515 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
516 do
517 return mmodule.flatten_mclass_hierarchy[self]
518 end
519
520 # The principal static type of the class.
521 #
522 # For non-generic class, `mclass_type` is the only `MClassType` based
523 # on self.
524 #
525 # For a generic class, the arguments are the formal parameters.
526 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
527 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
528 #
529 # For generic classes, the mclass_type is also the way to get a formal
530 # generic parameter type.
531 #
532 # To get other types based on a generic class, see `get_mtype`.
533 #
534 # ENSURE: `mclass_type.mclass == self`
535 var mclass_type: MClassType is noinit
536
537 # Return a generic type based on the class
538 # Is the class is not generic, then the result is `mclass_type`
539 #
540 # REQUIRE: `mtype_arguments.length == self.arity`
541 fun get_mtype(mtype_arguments: Array[MType]): MClassType
542 do
543 assert mtype_arguments.length == self.arity
544 if self.arity == 0 then return self.mclass_type
545 var res = get_mtype_cache.get_or_null(mtype_arguments)
546 if res != null then return res
547 res = new MGenericType(self, mtype_arguments)
548 self.get_mtype_cache[mtype_arguments.to_a] = res
549 return res
550 end
551
552 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
553
554 # Is there a `new` factory to allow the pseudo instantiation?
555 var has_new_factory = false is writable
556
557 # Is `self` a standard or abstract class kind?
558 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
559
560 # Is `self` an interface kind?
561 var is_interface: Bool is lazy do return kind == interface_kind
562
563 # Is `self` an enum kind?
564 var is_enum: Bool is lazy do return kind == enum_kind
565
566 # Is `self` and abstract class?
567 var is_abstract: Bool is lazy do return kind == abstract_kind
568
569 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
570 end
571
572
573 # A definition (an introduction or a refinement) of a class in a module
574 #
575 # A `MClassDef` is associated with an explicit (or almost) definition of a
576 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
577 # a specific class and a specific module, and contains declarations like super-classes
578 # or properties.
579 #
580 # It is the class definitions that are the backbone of most things in the model:
581 # ClassDefs are defined with regard with other classdefs.
582 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
583 #
584 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
585 class MClassDef
586 super MEntity
587
588 # The module where the definition is
589 var mmodule: MModule
590
591 # The associated `MClass`
592 var mclass: MClass is noinit
593
594 # The bounded type associated to the mclassdef
595 #
596 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
597 # are the same type.
598 #
599 # Example:
600 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
601 # If you want Array[E], then see `mclass.mclass_type`
602 #
603 # ENSURE: `bound_mtype.mclass == self.mclass`
604 var bound_mtype: MClassType
605
606 redef var location: Location
607
608 redef fun visibility do return mclass.visibility
609
610 # Internal name combining the module and the class
611 # Example: "mymodule$MyClass"
612 redef var to_s is noinit
613
614 init
615 do
616 self.mclass = bound_mtype.mclass
617 mmodule.mclassdefs.add(self)
618 mclass.mclassdefs.add(self)
619 if mclass.intro_mmodule == mmodule then
620 assert not isset mclass._intro
621 mclass.intro = self
622 end
623 self.to_s = "{mmodule}${mclass}"
624 end
625
626 # Actually the name of the `mclass`
627 redef fun name do return mclass.name
628
629 # The module and class name separated by a '$'.
630 #
631 # The short-name of the class is used for introduction.
632 # Example: "my_module$MyClass"
633 #
634 # The full-name of the class is used for refinement.
635 # Example: "my_module$intro_module::MyClass"
636 redef var full_name is lazy do
637 if is_intro then
638 # public gives 'p$A'
639 # private gives 'p::m$A'
640 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
641 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
642 # public gives 'q::n$p::A'
643 # private gives 'q::n$p::m::A'
644 return "{mmodule.full_name}${mclass.full_name}"
645 else if mclass.visibility > private_visibility then
646 # public gives 'p::n$A'
647 return "{mmodule.full_name}${mclass.name}"
648 else
649 # private gives 'p::n$::m::A' (redundant p is omitted)
650 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
651 end
652 end
653
654 redef var c_name is lazy do
655 if is_intro then
656 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
657 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
658 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
659 else
660 return "{mmodule.c_name}___{mclass.c_name}"
661 end
662 end
663
664 redef fun model do return mmodule.model
665
666 # All declared super-types
667 # FIXME: quite ugly but not better idea yet
668 var supertypes = new Array[MClassType]
669
670 # Register some super-types for the class (ie "super SomeType")
671 #
672 # The hierarchy must not already be set
673 # REQUIRE: `self.in_hierarchy == null`
674 fun set_supertypes(supertypes: Array[MClassType])
675 do
676 assert unique_invocation: self.in_hierarchy == null
677 var mmodule = self.mmodule
678 var model = mmodule.model
679 var mtype = self.bound_mtype
680
681 for supertype in supertypes do
682 self.supertypes.add(supertype)
683
684 # Register in full_type_specialization_hierarchy
685 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
686 # Register in intro_type_specialization_hierarchy
687 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
688 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
689 end
690 end
691
692 end
693
694 # Collect the super-types (set by set_supertypes) to build the hierarchy
695 #
696 # This function can only invoked once by class
697 # REQUIRE: `self.in_hierarchy == null`
698 # ENSURE: `self.in_hierarchy != null`
699 fun add_in_hierarchy
700 do
701 assert unique_invocation: self.in_hierarchy == null
702 var model = mmodule.model
703 var res = model.mclassdef_hierarchy.add_node(self)
704 self.in_hierarchy = res
705 var mtype = self.bound_mtype
706
707 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
708 # The simpliest way is to attach it to collect_mclassdefs
709 for mclassdef in mtype.collect_mclassdefs(mmodule) do
710 res.poset.add_edge(self, mclassdef)
711 end
712 end
713
714 # The view of the class definition in `mclassdef_hierarchy`
715 var in_hierarchy: nullable POSetElement[MClassDef] = null
716
717 # Is the definition the one that introduced `mclass`?
718 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
719
720 # All properties introduced by the classdef
721 var intro_mproperties = new Array[MProperty]
722
723 # All property introductions and redefinitions in `self` (not inheritance).
724 var mpropdefs = new Array[MPropDef]
725
726 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
727 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
728 end
729
730 # A global static type
731 #
732 # MType are global to the model; it means that a `MType` is not bound to a
733 # specific `MModule`.
734 # This characteristic helps the reasoning about static types in a program
735 # since a single `MType` object always denote the same type.
736 #
737 # However, because a `MType` is global, it does not really have properties
738 # nor have subtypes to a hierarchy since the property and the class hierarchy
739 # depends of a module.
740 # Moreover, virtual types an formal generic parameter types also depends on
741 # a receiver to have sense.
742 #
743 # Therefore, most method of the types require a module and an anchor.
744 # The module is used to know what are the classes and the specialization
745 # links.
746 # The anchor is used to know what is the bound of the virtual types and formal
747 # generic parameter types.
748 #
749 # MType are not directly usable to get properties. See the `anchor_to` method
750 # and the `MClassType` class.
751 #
752 # FIXME: the order of the parameters is not the best. We mus pick on from:
753 # * foo(mmodule, anchor, othertype)
754 # * foo(othertype, anchor, mmodule)
755 # * foo(anchor, mmodule, othertype)
756 # * foo(othertype, mmodule, anchor)
757 abstract class MType
758 super MEntity
759
760 redef fun name do return to_s
761
762 # Return true if `self` is an subtype of `sup`.
763 # The typing is done using the standard typing policy of Nit.
764 #
765 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
766 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
767 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
768 do
769 var sub = self
770 if sub == sup then return true
771
772 #print "1.is {sub} a {sup}? ===="
773
774 if anchor == null then
775 assert not sub.need_anchor
776 assert not sup.need_anchor
777 else
778 # First, resolve the formal types to the simplest equivalent forms in the receiver
779 assert sub.can_resolve_for(anchor, null, mmodule)
780 sub = sub.lookup_fixed(mmodule, anchor)
781 assert sup.can_resolve_for(anchor, null, mmodule)
782 sup = sup.lookup_fixed(mmodule, anchor)
783 end
784
785 # Does `sup` accept null or not?
786 # Discard the nullable marker if it exists
787 var sup_accept_null = false
788 if sup isa MNullableType then
789 sup_accept_null = true
790 sup = sup.mtype
791 else if sup isa MNotNullType then
792 sup = sup.mtype
793 else if sup isa MNullType then
794 sup_accept_null = true
795 end
796
797 # Can `sub` provide null or not?
798 # Thus we can match with `sup_accept_null`
799 # Also discard the nullable marker if it exists
800 var sub_reject_null = false
801 if sub isa MNullableType then
802 if not sup_accept_null then return false
803 sub = sub.mtype
804 else if sub isa MNotNullType then
805 sub_reject_null = true
806 sub = sub.mtype
807 else if sub isa MNullType then
808 return sup_accept_null
809 end
810 # Now the case of direct null and nullable is over.
811
812 # If `sub` is a formal type, then it is accepted if its bound is accepted
813 while sub isa MFormalType do
814 #print "3.is {sub} a {sup}?"
815
816 # A unfixed formal type can only accept itself
817 if sub == sup then return true
818
819 assert anchor != null
820 sub = sub.lookup_bound(mmodule, anchor)
821 if sub_reject_null then sub = sub.as_notnull
822
823 #print "3.is {sub} a {sup}?"
824
825 # Manage the second layer of null/nullable
826 if sub isa MNullableType then
827 if not sup_accept_null and not sub_reject_null then return false
828 sub = sub.mtype
829 else if sub isa MNotNullType then
830 sub_reject_null = true
831 sub = sub.mtype
832 else if sub isa MNullType then
833 return sup_accept_null
834 end
835 end
836 #print "4.is {sub} a {sup}? <- no more resolution"
837
838 if sub isa MBottomType or sub isa MErrorType then
839 return true
840 end
841
842 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
843
844 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
845 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
846 # These types are not super-types of Class-based types.
847 return false
848 end
849
850 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
851
852 # Now both are MClassType, we need to dig
853
854 if sub == sup then return true
855
856 if anchor == null then anchor = sub # UGLY: any anchor will work
857 var resolved_sub = sub.anchor_to(mmodule, anchor)
858 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
859 if res == false then return false
860 if not sup isa MGenericType then return true
861 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
862 assert sub2.mclass == sup.mclass
863 for i in [0..sup.mclass.arity[ do
864 var sub_arg = sub2.arguments[i]
865 var sup_arg = sup.arguments[i]
866 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
867 if res == false then return false
868 end
869 return true
870 end
871
872 # The base class type on which self is based
873 #
874 # This base type is used to get property (an internally to perform
875 # unsafe type comparison).
876 #
877 # Beware: some types (like null) are not based on a class thus this
878 # method will crash
879 #
880 # Basically, this function transform the virtual types and parameter
881 # types to their bounds.
882 #
883 # Example
884 #
885 # class A end
886 # class B super A end
887 # class X end
888 # class Y super X end
889 # class G[T: A]
890 # type U: X
891 # end
892 # class H
893 # super G[B]
894 # redef type U: Y
895 # end
896 #
897 # Map[T,U] anchor_to H #-> Map[B,Y]
898 #
899 # Explanation of the example:
900 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
901 # because "redef type U: Y". Therefore, Map[T, U] is bound to
902 # Map[B, Y]
903 #
904 # ENSURE: `not self.need_anchor implies result == self`
905 # ENSURE: `not result.need_anchor`
906 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
907 do
908 if not need_anchor then return self
909 assert not anchor.need_anchor
910 # Just resolve to the anchor and clear all the virtual types
911 var res = self.resolve_for(anchor, null, mmodule, true)
912 assert not res.need_anchor
913 return res
914 end
915
916 # Does `self` contain a virtual type or a formal generic parameter type?
917 # In order to remove those types, you usually want to use `anchor_to`.
918 fun need_anchor: Bool do return true
919
920 # Return the supertype when adapted to a class.
921 #
922 # In Nit, for each super-class of a type, there is a equivalent super-type.
923 #
924 # Example:
925 #
926 # ~~~nitish
927 # class G[T, U] end
928 # class H[V] super G[V, Bool] end
929 #
930 # H[Int] supertype_to G #-> G[Int, Bool]
931 # ~~~
932 #
933 # REQUIRE: `super_mclass` is a super-class of `self`
934 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
935 # ENSURE: `result.mclass = super_mclass`
936 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
937 do
938 if super_mclass.arity == 0 then return super_mclass.mclass_type
939 if self isa MClassType and self.mclass == super_mclass then return self
940 var resolved_self
941 if self.need_anchor then
942 assert anchor != null
943 resolved_self = self.anchor_to(mmodule, anchor)
944 else
945 resolved_self = self
946 end
947 var supertypes = resolved_self.collect_mtypes(mmodule)
948 for supertype in supertypes do
949 if supertype.mclass == super_mclass then
950 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
951 return supertype.resolve_for(self, anchor, mmodule, false)
952 end
953 end
954 abort
955 end
956
957 # Replace formals generic types in self with resolved values in `mtype`
958 # If `cleanup_virtual` is true, then virtual types are also replaced
959 # with their bounds.
960 #
961 # This function returns self if `need_anchor` is false.
962 #
963 # ## Example 1
964 #
965 # ~~~
966 # class G[E] end
967 # class H[F] super G[F] end
968 # class X[Z] end
969 # ~~~
970 #
971 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
972 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
973 #
974 # Explanation of the example:
975 # * Array[E].need_anchor is true because there is a formal generic parameter type E
976 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
977 # * Since "H[F] super G[F]", E is in fact F for H
978 # * More specifically, in H[Int], E is Int
979 # * So, in H[Int], Array[E] is Array[Int]
980 #
981 # This function is mainly used to inherit a signature.
982 # Because, unlike `anchor_to`, we do not want a full resolution of
983 # a type but only an adapted version of it.
984 #
985 # ## Example 2
986 #
987 # ~~~
988 # class A[E]
989 # fun foo(e:E):E is abstract
990 # end
991 # class B super A[Int] end
992 # ~~~
993 #
994 # The signature on foo is (e: E): E
995 # If we resolve the signature for B, we get (e:Int):Int
996 #
997 # ## Example 3
998 #
999 # ~~~nitish
1000 # class A[E]
1001 # fun foo(e:E):E is abstract
1002 # end
1003 # class C[F]
1004 # var a: A[Array[F]]
1005 # fun bar do a.foo(x) # <- x is here
1006 # end
1007 # ~~~
1008 #
1009 # The first question is: is foo available on `a`?
1010 #
1011 # The static type of a is `A[Array[F]]`, that is an open type.
1012 # in order to find a method `foo`, whe must look at a resolved type.
1013 #
1014 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1015 #
1016 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1017 #
1018 # The next question is: what is the accepted types for `x`?
1019 #
1020 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1021 #
1022 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1023 #
1024 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1025 #
1026 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1027 # two function instead of one seems also to be a bad idea.
1028 #
1029 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1030 # ENSURE: `not self.need_anchor implies result == self`
1031 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1032
1033 # Resolve formal type to its verbatim bound.
1034 # If the type is not formal, just return self
1035 #
1036 # The result is returned exactly as declared in the "type" property (verbatim).
1037 # So it could be another formal type.
1038 #
1039 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1040 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1041
1042 # Resolve the formal type to its simplest equivalent form.
1043 #
1044 # Formal types are either free or fixed.
1045 # When it is fixed, it means that it is equivalent with a simpler type.
1046 # When a formal type is free, it means that it is only equivalent with itself.
1047 # This method return the most simple equivalent type of `self`.
1048 #
1049 # This method is mainly used for subtype test in order to sanely compare fixed.
1050 #
1051 # By default, return self.
1052 # See the redefinitions for specific behavior in each kind of type.
1053 #
1054 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1055 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1056
1057 # Is the type a `MErrorType` or contains an `MErrorType`?
1058 #
1059 # `MErrorType` are used in result with conflict or inconsistencies.
1060 #
1061 fun is_ok: Bool do return true
1062
1063 # Can the type be resolved?
1064 #
1065 # In order to resolve open types, the formal types must make sence.
1066 #
1067 # ## Example
1068 #
1069 # class A[E]
1070 # end
1071 # class B[F]
1072 # end
1073 #
1074 # ~~~nitish
1075 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1076 #
1077 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1078 #
1079 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1080 # # B[E] is a red hearing only the E is important,
1081 # # E make sense in A
1082 # ~~~
1083 #
1084 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1085 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1086 # ENSURE: `not self.need_anchor implies result == true`
1087 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1088
1089 # Return the nullable version of the type
1090 # If the type is already nullable then self is returned
1091 fun as_nullable: MType
1092 do
1093 var res = self.as_nullable_cache
1094 if res != null then return res
1095 res = new MNullableType(self)
1096 self.as_nullable_cache = res
1097 return res
1098 end
1099
1100 # Remove the base type of a decorated (proxy) type.
1101 # Is the type is not decorated, then self is returned.
1102 #
1103 # Most of the time it is used to return the not nullable version of a nullable type.
1104 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1105 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1106 # If you really want to exclude the `null` value, then use `as_notnull`
1107 fun undecorate: MType
1108 do
1109 return self
1110 end
1111
1112 # Returns the not null version of the type.
1113 # That is `self` minus the `null` value.
1114 #
1115 # For most types, this return `self`.
1116 # For formal types, this returns a special `MNotNullType`
1117 fun as_notnull: MType do return self
1118
1119 private var as_nullable_cache: nullable MType = null
1120
1121
1122 # The depth of the type seen as a tree.
1123 #
1124 # * A -> 1
1125 # * G[A] -> 2
1126 # * H[A, B] -> 2
1127 # * H[G[A], B] -> 3
1128 #
1129 # Formal types have a depth of 1.
1130 fun depth: Int
1131 do
1132 return 1
1133 end
1134
1135 # The length of the type seen as a tree.
1136 #
1137 # * A -> 1
1138 # * G[A] -> 2
1139 # * H[A, B] -> 3
1140 # * H[G[A], B] -> 4
1141 #
1142 # Formal types have a length of 1.
1143 fun length: Int
1144 do
1145 return 1
1146 end
1147
1148 # Compute all the classdefs inherited/imported.
1149 # The returned set contains:
1150 # * the class definitions from `mmodule` and its imported modules
1151 # * the class definitions of this type and its super-types
1152 #
1153 # This function is used mainly internally.
1154 #
1155 # REQUIRE: `not self.need_anchor`
1156 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1157
1158 # Compute all the super-classes.
1159 # This function is used mainly internally.
1160 #
1161 # REQUIRE: `not self.need_anchor`
1162 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1163
1164 # Compute all the declared super-types.
1165 # Super-types are returned as declared in the classdefs (verbatim).
1166 # This function is used mainly internally.
1167 #
1168 # REQUIRE: `not self.need_anchor`
1169 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1170
1171 # Is the property in self for a given module
1172 # This method does not filter visibility or whatever
1173 #
1174 # REQUIRE: `not self.need_anchor`
1175 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1176 do
1177 assert not self.need_anchor
1178 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1179 end
1180 end
1181
1182 # A type based on a class.
1183 #
1184 # `MClassType` have properties (see `has_mproperty`).
1185 class MClassType
1186 super MType
1187
1188 # The associated class
1189 var mclass: MClass
1190
1191 redef fun model do return self.mclass.intro_mmodule.model
1192
1193 redef fun location do return mclass.location
1194
1195 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1196
1197 # The formal arguments of the type
1198 # ENSURE: `result.length == self.mclass.arity`
1199 var arguments = new Array[MType]
1200
1201 redef fun to_s do return mclass.to_s
1202
1203 redef fun full_name do return mclass.full_name
1204
1205 redef fun c_name do return mclass.c_name
1206
1207 redef fun need_anchor do return false
1208
1209 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1210 do
1211 return super.as(MClassType)
1212 end
1213
1214 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1215
1216 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1217
1218 redef fun collect_mclassdefs(mmodule)
1219 do
1220 assert not self.need_anchor
1221 var cache = self.collect_mclassdefs_cache
1222 if not cache.has_key(mmodule) then
1223 self.collect_things(mmodule)
1224 end
1225 return cache[mmodule]
1226 end
1227
1228 redef fun collect_mclasses(mmodule)
1229 do
1230 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1231 assert not self.need_anchor
1232 var cache = self.collect_mclasses_cache
1233 if not cache.has_key(mmodule) then
1234 self.collect_things(mmodule)
1235 end
1236 var res = cache[mmodule]
1237 collect_mclasses_last_module = mmodule
1238 collect_mclasses_last_module_cache = res
1239 return res
1240 end
1241
1242 private var collect_mclasses_last_module: nullable MModule = null
1243 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1244
1245 redef fun collect_mtypes(mmodule)
1246 do
1247 assert not self.need_anchor
1248 var cache = self.collect_mtypes_cache
1249 if not cache.has_key(mmodule) then
1250 self.collect_things(mmodule)
1251 end
1252 return cache[mmodule]
1253 end
1254
1255 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1256 private fun collect_things(mmodule: MModule)
1257 do
1258 var res = new HashSet[MClassDef]
1259 var seen = new HashSet[MClass]
1260 var types = new HashSet[MClassType]
1261 seen.add(self.mclass)
1262 var todo = [self.mclass]
1263 while not todo.is_empty do
1264 var mclass = todo.pop
1265 #print "process {mclass}"
1266 for mclassdef in mclass.mclassdefs do
1267 if not mmodule.in_importation <= mclassdef.mmodule then continue
1268 #print " process {mclassdef}"
1269 res.add(mclassdef)
1270 for supertype in mclassdef.supertypes do
1271 types.add(supertype)
1272 var superclass = supertype.mclass
1273 if seen.has(superclass) then continue
1274 #print " add {superclass}"
1275 seen.add(superclass)
1276 todo.add(superclass)
1277 end
1278 end
1279 end
1280 collect_mclassdefs_cache[mmodule] = res
1281 collect_mclasses_cache[mmodule] = seen
1282 collect_mtypes_cache[mmodule] = types
1283 end
1284
1285 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1286 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1287 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1288
1289 end
1290
1291 # A type based on a generic class.
1292 # A generic type a just a class with additional formal generic arguments.
1293 class MGenericType
1294 super MClassType
1295
1296 redef var arguments
1297
1298 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1299
1300 init
1301 do
1302 assert self.mclass.arity == arguments.length
1303
1304 self.need_anchor = false
1305 for t in arguments do
1306 if t.need_anchor then
1307 self.need_anchor = true
1308 break
1309 end
1310 end
1311
1312 self.to_s = "{mclass}[{arguments.join(", ")}]"
1313 end
1314
1315 # The short-name of the class, then the full-name of each type arguments within brackets.
1316 # Example: `"Map[String, List[Int]]"`
1317 redef var to_s is noinit
1318
1319 # The full-name of the class, then the full-name of each type arguments within brackets.
1320 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1321 redef var full_name is lazy do
1322 var args = new Array[String]
1323 for t in arguments do
1324 args.add t.full_name
1325 end
1326 return "{mclass.full_name}[{args.join(", ")}]"
1327 end
1328
1329 redef var c_name is lazy do
1330 var res = mclass.c_name
1331 # Note: because the arity is known, a prefix notation is enough
1332 for t in arguments do
1333 res += "__"
1334 res += t.c_name
1335 end
1336 return res.to_s
1337 end
1338
1339 redef var need_anchor is noinit
1340
1341 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1342 do
1343 if not need_anchor then return self
1344 assert can_resolve_for(mtype, anchor, mmodule)
1345 var types = new Array[MType]
1346 for t in arguments do
1347 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1348 end
1349 return mclass.get_mtype(types)
1350 end
1351
1352 redef fun can_resolve_for(mtype, anchor, mmodule)
1353 do
1354 if not need_anchor then return true
1355 for t in arguments do
1356 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1357 end
1358 return true
1359 end
1360
1361 redef fun is_ok
1362 do
1363 for t in arguments do if not t.is_ok then return false
1364 return super
1365 end
1366
1367
1368 redef fun depth
1369 do
1370 var dmax = 0
1371 for a in self.arguments do
1372 var d = a.depth
1373 if d > dmax then dmax = d
1374 end
1375 return dmax + 1
1376 end
1377
1378 redef fun length
1379 do
1380 var res = 1
1381 for a in self.arguments do
1382 res += a.length
1383 end
1384 return res
1385 end
1386 end
1387
1388 # A formal type (either virtual of parametric).
1389 #
1390 # The main issue with formal types is that they offer very little information on their own
1391 # and need a context (anchor and mmodule) to be useful.
1392 abstract class MFormalType
1393 super MType
1394
1395 redef var as_notnull = new MNotNullType(self) is lazy
1396 end
1397
1398 # A virtual formal type.
1399 class MVirtualType
1400 super MFormalType
1401
1402 # The property associated with the type.
1403 # Its the definitions of this property that determine the bound or the virtual type.
1404 var mproperty: MVirtualTypeProp
1405
1406 redef fun location do return mproperty.location
1407
1408 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1409
1410 redef fun lookup_bound(mmodule, resolved_receiver)
1411 do
1412 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1413 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1414 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1415 end
1416
1417 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1418 do
1419 assert not resolved_receiver.need_anchor
1420 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1421 if props.is_empty then
1422 abort
1423 else if props.length == 1 then
1424 return props.first
1425 end
1426 var types = new ArraySet[MType]
1427 var res = props.first
1428 for p in props do
1429 types.add(p.bound.as(not null))
1430 if not res.is_fixed then res = p
1431 end
1432 if types.length == 1 then
1433 return res
1434 end
1435 abort
1436 end
1437
1438 # A VT is fixed when:
1439 # * the VT is (re-)defined with the annotation `is fixed`
1440 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1441 # * the receiver is an enum class since there is no subtype possible
1442 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1443 do
1444 assert not resolved_receiver.need_anchor
1445 resolved_receiver = resolved_receiver.undecorate
1446 assert resolved_receiver isa MClassType # It is the only remaining type
1447
1448 var prop = lookup_single_definition(mmodule, resolved_receiver)
1449 var res = prop.bound
1450 if res == null then return new MErrorType(model)
1451
1452 # Recursively lookup the fixed result
1453 res = res.lookup_fixed(mmodule, resolved_receiver)
1454
1455 # 1. For a fixed VT, return the resolved bound
1456 if prop.is_fixed then return res
1457
1458 # 2. For a enum boud, return the bound
1459 if res isa MClassType and res.mclass.kind == enum_kind then return res
1460
1461 # 3. for a enum receiver return the bound
1462 if resolved_receiver.mclass.kind == enum_kind then return res
1463
1464 return self
1465 end
1466
1467 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1468 do
1469 if not cleanup_virtual then return self
1470 assert can_resolve_for(mtype, anchor, mmodule)
1471
1472 if mproperty.is_selftype then return mtype
1473
1474 # self is a virtual type declared (or inherited) in mtype
1475 # The point of the function it to get the bound of the virtual type that make sense for mtype
1476 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1477 #print "{class_name}: {self}/{mtype}/{anchor}?"
1478 var resolved_receiver
1479 if mtype.need_anchor then
1480 assert anchor != null
1481 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1482 else
1483 resolved_receiver = mtype
1484 end
1485 # Now, we can get the bound
1486 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1487 # The bound is exactly as declared in the "type" property, so we must resolve it again
1488 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1489
1490 return res
1491 end
1492
1493 redef fun can_resolve_for(mtype, anchor, mmodule)
1494 do
1495 if mtype.need_anchor then
1496 assert anchor != null
1497 mtype = mtype.anchor_to(mmodule, anchor)
1498 end
1499 return mtype.has_mproperty(mmodule, mproperty)
1500 end
1501
1502 redef fun to_s do return self.mproperty.to_s
1503
1504 redef fun full_name do return self.mproperty.full_name
1505
1506 redef fun c_name do return self.mproperty.c_name
1507 end
1508
1509 # The type associated to a formal parameter generic type of a class
1510 #
1511 # Each parameter type is associated to a specific class.
1512 # It means that all refinements of a same class "share" the parameter type,
1513 # but that a generic subclass has its own parameter types.
1514 #
1515 # However, in the sense of the meta-model, a parameter type of a class is
1516 # a valid type in a subclass. The "in the sense of the meta-model" is
1517 # important because, in the Nit language, the programmer cannot refers
1518 # directly to the parameter types of the super-classes.
1519 #
1520 # Example:
1521 #
1522 # class A[E]
1523 # fun e: E is abstract
1524 # end
1525 # class B[F]
1526 # super A[Array[F]]
1527 # end
1528 #
1529 # In the class definition B[F], `F` is a valid type but `E` is not.
1530 # However, `self.e` is a valid method call, and the signature of `e` is
1531 # declared `e: E`.
1532 #
1533 # Note that parameter types are shared among class refinements.
1534 # Therefore parameter only have an internal name (see `to_s` for details).
1535 class MParameterType
1536 super MFormalType
1537
1538 # The generic class where the parameter belong
1539 var mclass: MClass
1540
1541 redef fun model do return self.mclass.intro_mmodule.model
1542
1543 redef fun location do return mclass.location
1544
1545 # The position of the parameter (0 for the first parameter)
1546 # FIXME: is `position` a better name?
1547 var rank: Int
1548
1549 redef var name
1550
1551 redef fun to_s do return name
1552
1553 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1554
1555 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1556
1557 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1558 do
1559 assert not resolved_receiver.need_anchor
1560 resolved_receiver = resolved_receiver.undecorate
1561 assert resolved_receiver isa MClassType # It is the only remaining type
1562 var goalclass = self.mclass
1563 if resolved_receiver.mclass == goalclass then
1564 return resolved_receiver.arguments[self.rank]
1565 end
1566 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1567 for t in supertypes do
1568 if t.mclass == goalclass then
1569 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1570 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1571 var res = t.arguments[self.rank]
1572 return res
1573 end
1574 end
1575 # Cannot found `self` in `resolved_receiver`
1576 return new MErrorType(model)
1577 end
1578
1579 # A PT is fixed when:
1580 # * Its bound is a enum class (see `enum_kind`).
1581 # The PT is just useless, but it is still a case.
1582 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1583 # so it is necessarily fixed in a `super` clause, either with a normal type
1584 # or with another PT.
1585 # See `resolve_for` for examples about related issues.
1586 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1587 do
1588 assert not resolved_receiver.need_anchor
1589 resolved_receiver = resolved_receiver.undecorate
1590 assert resolved_receiver isa MClassType # It is the only remaining type
1591 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1592 return res
1593 end
1594
1595 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1596 do
1597 assert can_resolve_for(mtype, anchor, mmodule)
1598 #print "{class_name}: {self}/{mtype}/{anchor}?"
1599
1600 if mtype isa MGenericType and mtype.mclass == self.mclass then
1601 var res = mtype.arguments[self.rank]
1602 if anchor != null and res.need_anchor then
1603 # Maybe the result can be resolved more if are bound to a final class
1604 var r2 = res.anchor_to(mmodule, anchor)
1605 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1606 end
1607 return res
1608 end
1609
1610 # self is a parameter type of mtype (or of a super-class of mtype)
1611 # The point of the function it to get the bound of the virtual type that make sense for mtype
1612 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1613 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1614 var resolved_receiver
1615 if mtype.need_anchor then
1616 assert anchor != null
1617 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1618 else
1619 resolved_receiver = mtype
1620 end
1621 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1622 if resolved_receiver isa MParameterType then
1623 assert anchor != null
1624 assert resolved_receiver.mclass == anchor.mclass
1625 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1626 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1627 end
1628 assert resolved_receiver isa MClassType # It is the only remaining type
1629
1630 # Eh! The parameter is in the current class.
1631 # So we return the corresponding argument, no mater what!
1632 if resolved_receiver.mclass == self.mclass then
1633 var res = resolved_receiver.arguments[self.rank]
1634 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1635 return res
1636 end
1637
1638 if resolved_receiver.need_anchor then
1639 assert anchor != null
1640 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1641 end
1642 # Now, we can get the bound
1643 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1644 # The bound is exactly as declared in the "type" property, so we must resolve it again
1645 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1646
1647 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1648
1649 return res
1650 end
1651
1652 redef fun can_resolve_for(mtype, anchor, mmodule)
1653 do
1654 if mtype.need_anchor then
1655 assert anchor != null
1656 mtype = mtype.anchor_to(mmodule, anchor)
1657 end
1658 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1659 end
1660 end
1661
1662 # A type that decorates another type.
1663 #
1664 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1665 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1666 abstract class MProxyType
1667 super MType
1668 # The base type
1669 var mtype: MType
1670
1671 redef fun location do return mtype.location
1672
1673 redef fun model do return self.mtype.model
1674 redef fun need_anchor do return mtype.need_anchor
1675 redef fun as_nullable do return mtype.as_nullable
1676 redef fun as_notnull do return mtype.as_notnull
1677 redef fun undecorate do return mtype.undecorate
1678 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1679 do
1680 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1681 return res
1682 end
1683
1684 redef fun can_resolve_for(mtype, anchor, mmodule)
1685 do
1686 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1687 end
1688
1689 redef fun is_ok do return mtype.is_ok
1690
1691 redef fun lookup_fixed(mmodule, resolved_receiver)
1692 do
1693 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1694 return t
1695 end
1696
1697 redef fun depth do return self.mtype.depth
1698
1699 redef fun length do return self.mtype.length
1700
1701 redef fun collect_mclassdefs(mmodule)
1702 do
1703 assert not self.need_anchor
1704 return self.mtype.collect_mclassdefs(mmodule)
1705 end
1706
1707 redef fun collect_mclasses(mmodule)
1708 do
1709 assert not self.need_anchor
1710 return self.mtype.collect_mclasses(mmodule)
1711 end
1712
1713 redef fun collect_mtypes(mmodule)
1714 do
1715 assert not self.need_anchor
1716 return self.mtype.collect_mtypes(mmodule)
1717 end
1718 end
1719
1720 # A type prefixed with "nullable"
1721 class MNullableType
1722 super MProxyType
1723
1724 init
1725 do
1726 self.to_s = "nullable {mtype}"
1727 end
1728
1729 redef var to_s is noinit
1730
1731 redef var full_name is lazy do return "nullable {mtype.full_name}"
1732
1733 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1734
1735 redef fun as_nullable do return self
1736 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1737 do
1738 var res = super
1739 return res.as_nullable
1740 end
1741
1742 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1743 redef fun lookup_fixed(mmodule, resolved_receiver)
1744 do
1745 var t = super
1746 if t == mtype then return self
1747 return t.as_nullable
1748 end
1749 end
1750
1751 # A non-null version of a formal type.
1752 #
1753 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1754 class MNotNullType
1755 super MProxyType
1756
1757 redef fun to_s do return "not null {mtype}"
1758 redef var full_name is lazy do return "not null {mtype.full_name}"
1759 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1760
1761 redef fun as_notnull do return self
1762
1763 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1764 do
1765 var res = super
1766 return res.as_notnull
1767 end
1768
1769 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1770 redef fun lookup_fixed(mmodule, resolved_receiver)
1771 do
1772 var t = super
1773 if t == mtype then return self
1774 return t.as_notnull
1775 end
1776 end
1777
1778 # The type of the only value null
1779 #
1780 # The is only one null type per model, see `MModel::null_type`.
1781 class MNullType
1782 super MType
1783 redef var model
1784 redef fun to_s do return "null"
1785 redef fun full_name do return "null"
1786 redef fun c_name do return "null"
1787 redef fun as_nullable do return self
1788
1789 redef var as_notnull = new MBottomType(model) is lazy
1790 redef fun need_anchor do return false
1791 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1792 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1793
1794 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1795
1796 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1797
1798 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1799 end
1800
1801 # The special universal most specific type.
1802 #
1803 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1804 # The bottom type can de used to denote things that are dead (no instance).
1805 #
1806 # Semantically it is the singleton `null.as_notnull`.
1807 # Is also means that `self.as_nullable == null`.
1808 class MBottomType
1809 super MType
1810 redef var model
1811 redef fun to_s do return "bottom"
1812 redef fun full_name do return "bottom"
1813 redef fun c_name do return "bottom"
1814 redef fun as_nullable do return model.null_type
1815 redef fun as_notnull do return self
1816 redef fun need_anchor do return false
1817 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1818 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1819
1820 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1821
1822 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1823
1824 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1825 end
1826
1827 # A special type used as a silent error marker when building types.
1828 #
1829 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1830 # The error type can de used to denote things that are conflicting or inconsistent.
1831 #
1832 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1833 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1834 class MErrorType
1835 super MType
1836 redef var model
1837 redef fun to_s do return "error"
1838 redef fun full_name do return "error"
1839 redef fun c_name do return "error"
1840 redef fun need_anchor do return false
1841 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1842 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1843 redef fun is_ok do return false
1844
1845 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1846
1847 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1848
1849 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1850 end
1851
1852 # A signature of a method
1853 class MSignature
1854 super MType
1855
1856 # The each parameter (in order)
1857 var mparameters: Array[MParameter]
1858
1859 # Returns a parameter named `name`, if any.
1860 fun mparameter_by_name(name: String): nullable MParameter
1861 do
1862 for p in mparameters do
1863 if p.name == name then return p
1864 end
1865 return null
1866 end
1867
1868 # The return type (null for a procedure)
1869 var return_mtype: nullable MType
1870
1871 redef fun depth
1872 do
1873 var dmax = 0
1874 var t = self.return_mtype
1875 if t != null then dmax = t.depth
1876 for p in mparameters do
1877 var d = p.mtype.depth
1878 if d > dmax then dmax = d
1879 end
1880 return dmax + 1
1881 end
1882
1883 redef fun length
1884 do
1885 var res = 1
1886 var t = self.return_mtype
1887 if t != null then res += t.length
1888 for p in mparameters do
1889 res += p.mtype.length
1890 end
1891 return res
1892 end
1893
1894 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1895 init
1896 do
1897 var vararg_rank = -1
1898 for i in [0..mparameters.length[ do
1899 var parameter = mparameters[i]
1900 if parameter.is_vararg then
1901 if vararg_rank >= 0 then
1902 # If there is more than one vararg,
1903 # consider that additional arguments cannot be mapped.
1904 vararg_rank = -1
1905 break
1906 end
1907 vararg_rank = i
1908 end
1909 end
1910 self.vararg_rank = vararg_rank
1911 end
1912
1913 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1914 # value is -1 if there is no vararg.
1915 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1916 #
1917 # From a model POV, a signature can contain more than one vararg parameter,
1918 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1919 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1920 # and additional arguments will be refused.
1921 var vararg_rank: Int is noinit
1922
1923 # The number of parameters
1924 fun arity: Int do return mparameters.length
1925
1926 redef fun to_s
1927 do
1928 var b = new FlatBuffer
1929 if not mparameters.is_empty then
1930 b.append("(")
1931 for i in [0..mparameters.length[ do
1932 var mparameter = mparameters[i]
1933 if i > 0 then b.append(", ")
1934 b.append(mparameter.name)
1935 b.append(": ")
1936 b.append(mparameter.mtype.to_s)
1937 if mparameter.is_vararg then
1938 b.append("...")
1939 end
1940 end
1941 b.append(")")
1942 end
1943 var ret = self.return_mtype
1944 if ret != null then
1945 b.append(": ")
1946 b.append(ret.to_s)
1947 end
1948 return b.to_s
1949 end
1950
1951 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1952 do
1953 var params = new Array[MParameter]
1954 for p in self.mparameters do
1955 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1956 end
1957 var ret = self.return_mtype
1958 if ret != null then
1959 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1960 end
1961 var res = new MSignature(params, ret)
1962 return res
1963 end
1964 end
1965
1966 # A parameter in a signature
1967 class MParameter
1968 super MEntity
1969
1970 # The name of the parameter
1971 redef var name
1972
1973 # The static type of the parameter
1974 var mtype: MType
1975
1976 # Is the parameter a vararg?
1977 var is_vararg: Bool
1978
1979 redef fun to_s
1980 do
1981 if is_vararg then
1982 return "{name}: {mtype}..."
1983 else
1984 return "{name}: {mtype}"
1985 end
1986 end
1987
1988 # Returns a new parameter with the `mtype` resolved.
1989 # See `MType::resolve_for` for details.
1990 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1991 do
1992 if not self.mtype.need_anchor then return self
1993 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1994 var res = new MParameter(self.name, newtype, self.is_vararg)
1995 return res
1996 end
1997
1998 redef fun model do return mtype.model
1999 end
2000
2001 # A service (global property) that generalize method, attribute, etc.
2002 #
2003 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2004 # to a specific `MModule` nor a specific `MClass`.
2005 #
2006 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2007 # and the other in subclasses and in refinements.
2008 #
2009 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2010 # of any dynamic type).
2011 # For instance, a call site "x.foo" is associated to a `MProperty`.
2012 abstract class MProperty
2013 super MEntity
2014
2015 # The associated MPropDef subclass.
2016 # The two specialization hierarchy are symmetric.
2017 type MPROPDEF: MPropDef
2018
2019 # The classdef that introduce the property
2020 # While a property is not bound to a specific module, or class,
2021 # the introducing mclassdef is used for naming and visibility
2022 var intro_mclassdef: MClassDef
2023
2024 # The (short) name of the property
2025 redef var name
2026
2027 redef var location
2028
2029 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
2030
2031 # The canonical name of the property.
2032 #
2033 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2034 # Example: "my_package::my_module::MyClass::my_method"
2035 #
2036 # The full-name of the module is needed because two distinct modules of the same package can
2037 # still refine the same class and introduce homonym properties.
2038 #
2039 # For public properties not introduced by refinement, the module name is not used.
2040 #
2041 # Example: `my_package::MyClass::My_method`
2042 redef var full_name is lazy do
2043 if intro_mclassdef.is_intro then
2044 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2045 else
2046 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2047 end
2048 end
2049
2050 redef var c_name is lazy do
2051 # FIXME use `namespace_for`
2052 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2053 end
2054
2055 # The visibility of the property
2056 redef var visibility
2057
2058 # Is the property usable as an initializer?
2059 var is_autoinit = false is writable
2060
2061 init
2062 do
2063 intro_mclassdef.intro_mproperties.add(self)
2064 var model = intro_mclassdef.mmodule.model
2065 model.mproperties_by_name.add_one(name, self)
2066 model.mproperties.add(self)
2067 end
2068
2069 # All definitions of the property.
2070 # The first is the introduction,
2071 # The other are redefinitions (in refinements and in subclasses)
2072 var mpropdefs = new Array[MPROPDEF]
2073
2074 # The definition that introduces the property.
2075 #
2076 # Warning: such a definition may not exist in the early life of the object.
2077 # In this case, the method will abort.
2078 var intro: MPROPDEF is noinit
2079
2080 redef fun model do return intro.model
2081
2082 # Alias for `name`
2083 redef fun to_s do return name
2084
2085 # Return the most specific property definitions defined or inherited by a type.
2086 # The selection knows that refinement is stronger than specialization;
2087 # however, in case of conflict more than one property are returned.
2088 # If mtype does not know mproperty then an empty array is returned.
2089 #
2090 # If you want the really most specific property, then look at `lookup_first_definition`
2091 #
2092 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2093 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2094 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2095 do
2096 assert not mtype.need_anchor
2097 mtype = mtype.undecorate
2098
2099 var cache = self.lookup_definitions_cache[mmodule, mtype]
2100 if cache != null then return cache
2101
2102 #print "select prop {mproperty} for {mtype} in {self}"
2103 # First, select all candidates
2104 var candidates = new Array[MPROPDEF]
2105
2106 # Here we have two strategies: iterate propdefs or iterate classdefs.
2107 var mpropdefs = self.mpropdefs
2108 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2109 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2110 for mpropdef in mpropdefs do
2111 # If the definition is not imported by the module, then skip
2112 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2113 # If the definition is not inherited by the type, then skip
2114 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2115 # Else, we keep it
2116 candidates.add(mpropdef)
2117 end
2118 else
2119 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2120 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2121 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2122 if p != null then candidates.add p
2123 end
2124 end
2125
2126 # Fast track for only one candidate
2127 if candidates.length <= 1 then
2128 self.lookup_definitions_cache[mmodule, mtype] = candidates
2129 return candidates
2130 end
2131
2132 # Second, filter the most specific ones
2133 return select_most_specific(mmodule, candidates)
2134 end
2135
2136 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2137
2138 # Return the most specific property definitions inherited by a type.
2139 # The selection knows that refinement is stronger than specialization;
2140 # however, in case of conflict more than one property are returned.
2141 # If mtype does not know mproperty then an empty array is returned.
2142 #
2143 # If you want the really most specific property, then look at `lookup_next_definition`
2144 #
2145 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2146 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2147 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2148 do
2149 assert not mtype.need_anchor
2150 mtype = mtype.undecorate
2151
2152 # First, select all candidates
2153 var candidates = new Array[MPROPDEF]
2154 for mpropdef in self.mpropdefs do
2155 # If the definition is not imported by the module, then skip
2156 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2157 # If the definition is not inherited by the type, then skip
2158 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2159 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2160 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2161 # Else, we keep it
2162 candidates.add(mpropdef)
2163 end
2164 # Fast track for only one candidate
2165 if candidates.length <= 1 then return candidates
2166
2167 # Second, filter the most specific ones
2168 return select_most_specific(mmodule, candidates)
2169 end
2170
2171 # Return an array containing olny the most specific property definitions
2172 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2173 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2174 do
2175 var res = new Array[MPROPDEF]
2176 for pd1 in candidates do
2177 var cd1 = pd1.mclassdef
2178 var c1 = cd1.mclass
2179 var keep = true
2180 for pd2 in candidates do
2181 if pd2 == pd1 then continue # do not compare with self!
2182 var cd2 = pd2.mclassdef
2183 var c2 = cd2.mclass
2184 if c2.mclass_type == c1.mclass_type then
2185 if cd2.mmodule.in_importation < cd1.mmodule then
2186 # cd2 refines cd1; therefore we skip pd1
2187 keep = false
2188 break
2189 end
2190 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2191 # cd2 < cd1; therefore we skip pd1
2192 keep = false
2193 break
2194 end
2195 end
2196 if keep then
2197 res.add(pd1)
2198 end
2199 end
2200 if res.is_empty then
2201 print_error "All lost! {candidates.join(", ")}"
2202 # FIXME: should be abort!
2203 end
2204 return res
2205 end
2206
2207 # Return the most specific definition in the linearization of `mtype`.
2208 #
2209 # If you want to know the next properties in the linearization,
2210 # look at `MPropDef::lookup_next_definition`.
2211 #
2212 # FIXME: the linearization is still unspecified
2213 #
2214 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2215 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2216 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2217 do
2218 return lookup_all_definitions(mmodule, mtype).first
2219 end
2220
2221 # Return all definitions in a linearization order
2222 # Most specific first, most general last
2223 #
2224 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2225 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2226 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2227 do
2228 mtype = mtype.undecorate
2229
2230 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2231 if cache != null then return cache
2232
2233 assert not mtype.need_anchor
2234 assert mtype.has_mproperty(mmodule, self)
2235
2236 #print "select prop {mproperty} for {mtype} in {self}"
2237 # First, select all candidates
2238 var candidates = new Array[MPROPDEF]
2239 for mpropdef in self.mpropdefs do
2240 # If the definition is not imported by the module, then skip
2241 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2242 # If the definition is not inherited by the type, then skip
2243 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2244 # Else, we keep it
2245 candidates.add(mpropdef)
2246 end
2247 # Fast track for only one candidate
2248 if candidates.length <= 1 then
2249 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2250 return candidates
2251 end
2252
2253 mmodule.linearize_mpropdefs(candidates)
2254 candidates = candidates.reversed
2255 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2256 return candidates
2257 end
2258
2259 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2260 end
2261
2262 # A global method
2263 class MMethod
2264 super MProperty
2265
2266 redef type MPROPDEF: MMethodDef
2267
2268 # Is the property defined at the top_level of the module?
2269 # Currently such a property are stored in `Object`
2270 var is_toplevel: Bool = false is writable
2271
2272 # Is the property a constructor?
2273 # Warning, this property can be inherited by subclasses with or without being a constructor
2274 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2275 var is_init: Bool = false is writable
2276
2277 # The constructor is a (the) root init with empty signature but a set of initializers
2278 var is_root_init: Bool = false is writable
2279
2280 # Is the property a 'new' constructor?
2281 var is_new: Bool = false is writable
2282
2283 # Is the property a legal constructor for a given class?
2284 # As usual, visibility is not considered.
2285 # FIXME not implemented
2286 fun is_init_for(mclass: MClass): Bool
2287 do
2288 return self.is_init
2289 end
2290
2291 # A specific method that is safe to call on null.
2292 # Currently, only `==`, `!=` and `is_same_instance` are safe
2293 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2294 end
2295
2296 # A global attribute
2297 class MAttribute
2298 super MProperty
2299
2300 redef type MPROPDEF: MAttributeDef
2301
2302 end
2303
2304 # A global virtual type
2305 class MVirtualTypeProp
2306 super MProperty
2307
2308 redef type MPROPDEF: MVirtualTypeDef
2309
2310 # The formal type associated to the virtual type property
2311 var mvirtualtype = new MVirtualType(self)
2312
2313 # Is `self` the special virtual type `SELF`?
2314 var is_selftype: Bool is lazy do return name == "SELF"
2315 end
2316
2317 # A definition of a property (local property)
2318 #
2319 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2320 # specific class definition (which belong to a specific module)
2321 abstract class MPropDef
2322 super MEntity
2323
2324 # The associated `MProperty` subclass.
2325 # the two specialization hierarchy are symmetric
2326 type MPROPERTY: MProperty
2327
2328 # Self class
2329 type MPROPDEF: MPropDef
2330
2331 # The class definition where the property definition is
2332 var mclassdef: MClassDef
2333
2334 # The associated global property
2335 var mproperty: MPROPERTY
2336
2337 redef var location: Location
2338
2339 redef fun visibility do return mproperty.visibility
2340
2341 init
2342 do
2343 mclassdef.mpropdefs.add(self)
2344 mproperty.mpropdefs.add(self)
2345 mclassdef.mpropdefs_by_property[mproperty] = self
2346 if mproperty.intro_mclassdef == mclassdef then
2347 assert not isset mproperty._intro
2348 mproperty.intro = self
2349 end
2350 self.to_s = "{mclassdef}${mproperty}"
2351 end
2352
2353 # Actually the name of the `mproperty`
2354 redef fun name do return mproperty.name
2355
2356 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2357 #
2358 # Therefore the combination of identifiers is awful,
2359 # the worst case being
2360 #
2361 # * a property "p::m::A::x"
2362 # * redefined in a refinement of a class "q::n::B"
2363 # * in a module "r::o"
2364 # * so "r::o$q::n::B$p::m::A::x"
2365 #
2366 # Fortunately, the full-name is simplified when entities are repeated.
2367 # For the previous case, the simplest form is "p$A$x".
2368 redef var full_name is lazy do
2369 var res = new FlatBuffer
2370
2371 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2372 res.append mclassdef.full_name
2373
2374 res.append "$"
2375
2376 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2377 # intro are unambiguous in a class
2378 res.append name
2379 else
2380 # Just try to simplify each part
2381 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2382 # precise "p::m" only if "p" != "r"
2383 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2384 res.append "::"
2385 else if mproperty.visibility <= private_visibility then
2386 # Same package ("p"=="q"), but private visibility,
2387 # does the module part ("::m") need to be displayed
2388 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2389 res.append "::"
2390 res.append mproperty.intro_mclassdef.mmodule.name
2391 res.append "::"
2392 end
2393 end
2394 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2395 # precise "B" only if not the same class than "A"
2396 res.append mproperty.intro_mclassdef.name
2397 res.append "::"
2398 end
2399 # Always use the property name "x"
2400 res.append mproperty.name
2401 end
2402 return res.to_s
2403 end
2404
2405 redef var c_name is lazy do
2406 var res = new FlatBuffer
2407 res.append mclassdef.c_name
2408 res.append "___"
2409 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2410 res.append name.to_cmangle
2411 else
2412 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2413 res.append mproperty.intro_mclassdef.mmodule.c_name
2414 res.append "__"
2415 end
2416 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2417 res.append mproperty.intro_mclassdef.name.to_cmangle
2418 res.append "__"
2419 end
2420 res.append mproperty.name.to_cmangle
2421 end
2422 return res.to_s
2423 end
2424
2425 redef fun model do return mclassdef.model
2426
2427 # Internal name combining the module, the class and the property
2428 # Example: "mymodule$MyClass$mymethod"
2429 redef var to_s is noinit
2430
2431 # Is self the definition that introduce the property?
2432 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2433
2434 # Return the next definition in linearization of `mtype`.
2435 #
2436 # This method is used to determine what method is called by a super.
2437 #
2438 # REQUIRE: `not mtype.need_anchor`
2439 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2440 do
2441 assert not mtype.need_anchor
2442
2443 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2444 var i = mpropdefs.iterator
2445 while i.is_ok and i.item != self do i.next
2446 assert has_property: i.is_ok
2447 i.next
2448 assert has_next_property: i.is_ok
2449 return i.item
2450 end
2451 end
2452
2453 # A local definition of a method
2454 class MMethodDef
2455 super MPropDef
2456
2457 redef type MPROPERTY: MMethod
2458 redef type MPROPDEF: MMethodDef
2459
2460 # The signature attached to the property definition
2461 var msignature: nullable MSignature = null is writable
2462
2463 # The signature attached to the `new` call on a root-init
2464 # This is a concatenation of the signatures of the initializers
2465 #
2466 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2467 var new_msignature: nullable MSignature = null is writable
2468
2469 # List of initialisers to call in root-inits
2470 #
2471 # They could be setters or attributes
2472 #
2473 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2474 var initializers = new Array[MProperty]
2475
2476 # Is the method definition abstract?
2477 var is_abstract: Bool = false is writable
2478
2479 # Is the method definition intern?
2480 var is_intern = false is writable
2481
2482 # Is the method definition extern?
2483 var is_extern = false is writable
2484
2485 # An optional constant value returned in functions.
2486 #
2487 # Only some specific primitife value are accepted by engines.
2488 # Is used when there is no better implementation available.
2489 #
2490 # Currently used only for the implementation of the `--define`
2491 # command-line option.
2492 # SEE: module `mixin`.
2493 var constant_value: nullable Object = null is writable
2494 end
2495
2496 # A local definition of an attribute
2497 class MAttributeDef
2498 super MPropDef
2499
2500 redef type MPROPERTY: MAttribute
2501 redef type MPROPDEF: MAttributeDef
2502
2503 # The static type of the attribute
2504 var static_mtype: nullable MType = null is writable
2505 end
2506
2507 # A local definition of a virtual type
2508 class MVirtualTypeDef
2509 super MPropDef
2510
2511 redef type MPROPERTY: MVirtualTypeProp
2512 redef type MPROPDEF: MVirtualTypeDef
2513
2514 # The bound of the virtual type
2515 var bound: nullable MType = null is writable
2516
2517 # Is the bound fixed?
2518 var is_fixed = false is writable
2519 end
2520
2521 # A kind of class.
2522 #
2523 # * `abstract_kind`
2524 # * `concrete_kind`
2525 # * `interface_kind`
2526 # * `enum_kind`
2527 # * `extern_kind`
2528 #
2529 # Note this class is basically an enum.
2530 # FIXME: use a real enum once user-defined enums are available
2531 class MClassKind
2532 redef var to_s
2533
2534 # Is a constructor required?
2535 var need_init: Bool
2536
2537 # TODO: private init because enumeration.
2538
2539 # Can a class of kind `self` specializes a class of kine `other`?
2540 fun can_specialize(other: MClassKind): Bool
2541 do
2542 if other == interface_kind then return true # everybody can specialize interfaces
2543 if self == interface_kind or self == enum_kind then
2544 # no other case for interfaces
2545 return false
2546 else if self == extern_kind then
2547 # only compatible with themselves
2548 return self == other
2549 else if other == enum_kind or other == extern_kind then
2550 # abstract_kind and concrete_kind are incompatible
2551 return false
2552 end
2553 # remain only abstract_kind and concrete_kind
2554 return true
2555 end
2556 end
2557
2558 # The class kind `abstract`
2559 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2560 # The class kind `concrete`
2561 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2562 # The class kind `interface`
2563 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2564 # The class kind `enum`
2565 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2566 # The class kind `extern`
2567 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)