ccb7522a3fef0a5da661524fca33c4a2ea62e509
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
199
200 # The type `Pointer`, super class to all extern classes
201 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
202
203 # The primitive type `Bool`
204 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
205
206 # The primitive type `Int`
207 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
208
209 # The primitive type `Byte`
210 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
211
212 # The primitive type `Int8`
213 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
214
215 # The primitive type `Int16`
216 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
217
218 # The primitive type `UInt16`
219 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
220
221 # The primitive type `Int32`
222 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
223
224 # The primitive type `UInt32`
225 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
226
227 # The primitive type `Char`
228 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
229
230 # The primitive type `Float`
231 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
232
233 # The primitive type `String`
234 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
235
236 # The primitive type `NativeString`
237 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
238
239 # A primitive type of `Array`
240 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
241
242 # The primitive class `Array`
243 var array_class: MClass = self.get_primitive_class("Array") is lazy
244
245 # A primitive type of `NativeArray`
246 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
247
248 # The primitive class `NativeArray`
249 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
250
251 # The primitive type `Sys`, the main type of the program, if any
252 fun sys_type: nullable MClassType
253 do
254 var clas = self.model.get_mclasses_by_name("Sys")
255 if clas == null then return null
256 return get_primitive_class("Sys").mclass_type
257 end
258
259 # The primitive type `Finalizable`
260 # Used to tag classes that need to be finalized.
261 fun finalizable_type: nullable MClassType
262 do
263 var clas = self.model.get_mclasses_by_name("Finalizable")
264 if clas == null then return null
265 return get_primitive_class("Finalizable").mclass_type
266 end
267
268 # Force to get the primitive class named `name` or abort
269 fun get_primitive_class(name: String): MClass
270 do
271 var cla = self.model.get_mclasses_by_name(name)
272 # Filter classes by introducing module
273 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
274 if cla == null or cla.is_empty then
275 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
276 # Bool is injected because it is needed by engine to code the result
277 # of the implicit casts.
278 var c = new MClass(self, name, null, enum_kind, public_visibility)
279 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
280 cladef.set_supertypes([object_type])
281 cladef.add_in_hierarchy
282 return c
283 end
284 print("Fatal Error: no primitive class {name} in {self}")
285 exit(1)
286 abort
287 end
288 if cla.length != 1 then
289 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
290 for c in cla do msg += " {c.full_name}"
291 print msg
292 #exit(1)
293 end
294 return cla.first
295 end
296
297 # Try to get the primitive method named `name` on the type `recv`
298 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
299 do
300 var props = self.model.get_mproperties_by_name(name)
301 if props == null then return null
302 var res: nullable MMethod = null
303 for mprop in props do
304 assert mprop isa MMethod
305 var intro = mprop.intro_mclassdef
306 for mclassdef in recv.mclassdefs do
307 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
308 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
309 if res == null then
310 res = mprop
311 else if res != mprop then
312 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
313 abort
314 end
315 end
316 end
317 return res
318 end
319 end
320
321 private class MClassDefSorter
322 super Comparator
323 redef type COMPARED: MClassDef
324 var mmodule: MModule
325 redef fun compare(a, b)
326 do
327 var ca = a.mclass
328 var cb = b.mclass
329 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
330 return mmodule.model.mclassdef_hierarchy.compare(a, b)
331 end
332 end
333
334 private class MPropDefSorter
335 super Comparator
336 redef type COMPARED: MPropDef
337 var mmodule: MModule
338 redef fun compare(pa, pb)
339 do
340 var a = pa.mclassdef
341 var b = pb.mclassdef
342 var ca = a.mclass
343 var cb = b.mclass
344 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
345 return mmodule.model.mclassdef_hierarchy.compare(a, b)
346 end
347 end
348
349 # A named class
350 #
351 # `MClass` are global to the model; it means that a `MClass` is not bound to a
352 # specific `MModule`.
353 #
354 # This characteristic helps the reasoning about classes in a program since a
355 # single `MClass` object always denote the same class.
356 #
357 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
358 # These do not really have properties nor belong to a hierarchy since the property and the
359 # hierarchy of a class depends of the refinement in the modules.
360 #
361 # Most services on classes require the precision of a module, and no one can asks what are
362 # the super-classes of a class nor what are properties of a class without precising what is
363 # the module considered.
364 #
365 # For instance, during the typing of a source-file, the module considered is the module of the file.
366 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
367 # *is the method `foo` exists in the class `Bar` in the current module?*
368 #
369 # During some global analysis, the module considered may be the main module of the program.
370 class MClass
371 super MEntity
372
373 # The module that introduce the class
374 # While classes are not bound to a specific module,
375 # the introducing module is used for naming an visibility
376 var intro_mmodule: MModule
377
378 # The short name of the class
379 # In Nit, the name of a class cannot evolve in refinements
380 redef var name: String
381
382 # The canonical name of the class
383 #
384 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
385 # Example: `"owner::module::MyClass"`
386 redef var full_name is lazy do
387 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
388 end
389
390 redef var c_name is lazy do
391 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
392 end
393
394 # The number of generic formal parameters
395 # 0 if the class is not generic
396 var arity: Int is noinit
397
398 # Each generic formal parameters in order.
399 # is empty if the class is not generic
400 var mparameters = new Array[MParameterType]
401
402 # A string version of the signature a generic class.
403 #
404 # eg. `Map[K: nullable Object, V: nullable Object]`
405 #
406 # If the class in non generic the name is just given.
407 #
408 # eg. `Object`
409 fun signature_to_s: String
410 do
411 if arity == 0 then return name
412 var res = new FlatBuffer
413 res.append name
414 res.append "["
415 for i in [0..arity[ do
416 if i > 0 then res.append ", "
417 res.append mparameters[i].name
418 res.append ": "
419 res.append intro.bound_mtype.arguments[i].to_s
420 end
421 res.append "]"
422 return res.to_s
423 end
424
425 # Initialize `mparameters` from their names.
426 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
427 autoinit
428 do
429 if parameter_names == null then
430 self.arity = 0
431 else
432 self.arity = parameter_names.length
433 end
434
435 # Create the formal parameter types
436 if arity > 0 then
437 assert parameter_names != null
438 var mparametertypes = new Array[MParameterType]
439 for i in [0..arity[ do
440 var mparametertype = new MParameterType(self, i, parameter_names[i])
441 mparametertypes.add(mparametertype)
442 end
443 self.mparameters = mparametertypes
444 var mclass_type = new MGenericType(self, mparametertypes)
445 self.mclass_type = mclass_type
446 self.get_mtype_cache[mparametertypes] = mclass_type
447 else
448 self.mclass_type = new MClassType(self)
449 end
450 end
451
452 # The kind of the class (interface, abstract class, etc.)
453 # In Nit, the kind of a class cannot evolve in refinements
454 var kind: MClassKind
455
456 # The visibility of the class
457 # In Nit, the visibility of a class cannot evolve in refinements
458 var visibility: MVisibility
459
460 init
461 do
462 intro_mmodule.intro_mclasses.add(self)
463 var model = intro_mmodule.model
464 model.mclasses_by_name.add_one(name, self)
465 model.mclasses.add(self)
466 end
467
468 redef fun model do return intro_mmodule.model
469
470 # All class definitions (introduction and refinements)
471 var mclassdefs = new Array[MClassDef]
472
473 # Alias for `name`
474 redef fun to_s do return self.name
475
476 # The definition that introduces the class.
477 #
478 # Warning: such a definition may not exist in the early life of the object.
479 # In this case, the method will abort.
480 #
481 # Use `try_intro` instead
482 var intro: MClassDef is noinit
483
484 # The definition that introduces the class or null if not yet known.
485 #
486 # See `intro`
487 fun try_intro: nullable MClassDef do
488 if isset _intro then return _intro else return null
489 end
490
491 # Return the class `self` in the class hierarchy of the module `mmodule`.
492 #
493 # SEE: `MModule::flatten_mclass_hierarchy`
494 # REQUIRE: `mmodule.has_mclass(self)`
495 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
496 do
497 return mmodule.flatten_mclass_hierarchy[self]
498 end
499
500 # The principal static type of the class.
501 #
502 # For non-generic class, mclass_type is the only `MClassType` based
503 # on self.
504 #
505 # For a generic class, the arguments are the formal parameters.
506 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
507 # If you want Array[Object] the see `MClassDef::bound_mtype`
508 #
509 # For generic classes, the mclass_type is also the way to get a formal
510 # generic parameter type.
511 #
512 # To get other types based on a generic class, see `get_mtype`.
513 #
514 # ENSURE: `mclass_type.mclass == self`
515 var mclass_type: MClassType is noinit
516
517 # Return a generic type based on the class
518 # Is the class is not generic, then the result is `mclass_type`
519 #
520 # REQUIRE: `mtype_arguments.length == self.arity`
521 fun get_mtype(mtype_arguments: Array[MType]): MClassType
522 do
523 assert mtype_arguments.length == self.arity
524 if self.arity == 0 then return self.mclass_type
525 var res = get_mtype_cache.get_or_null(mtype_arguments)
526 if res != null then return res
527 res = new MGenericType(self, mtype_arguments)
528 self.get_mtype_cache[mtype_arguments.to_a] = res
529 return res
530 end
531
532 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
533
534 # Is there a `new` factory to allow the pseudo instantiation?
535 var has_new_factory = false is writable
536
537 # Is `self` a standard or abstract class kind?
538 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
539
540 # Is `self` an interface kind?
541 var is_interface: Bool is lazy do return kind == interface_kind
542
543 # Is `self` an enum kind?
544 var is_enum: Bool is lazy do return kind == enum_kind
545
546 # Is `self` and abstract class?
547 var is_abstract: Bool is lazy do return kind == abstract_kind
548 end
549
550
551 # A definition (an introduction or a refinement) of a class in a module
552 #
553 # A `MClassDef` is associated with an explicit (or almost) definition of a
554 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
555 # a specific class and a specific module, and contains declarations like super-classes
556 # or properties.
557 #
558 # It is the class definitions that are the backbone of most things in the model:
559 # ClassDefs are defined with regard with other classdefs.
560 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
561 #
562 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
563 class MClassDef
564 super MEntity
565
566 # The module where the definition is
567 var mmodule: MModule
568
569 # The associated `MClass`
570 var mclass: MClass is noinit
571
572 # The bounded type associated to the mclassdef
573 #
574 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
575 # are the same type.
576 #
577 # Example:
578 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
579 # If you want Array[E], then see `mclass.mclass_type`
580 #
581 # ENSURE: `bound_mtype.mclass == self.mclass`
582 var bound_mtype: MClassType
583
584 # The origin of the definition
585 var location: Location
586
587 # Internal name combining the module and the class
588 # Example: "mymodule#MyClass"
589 redef var to_s: String is noinit
590
591 init
592 do
593 self.mclass = bound_mtype.mclass
594 mmodule.mclassdefs.add(self)
595 mclass.mclassdefs.add(self)
596 if mclass.intro_mmodule == mmodule then
597 assert not isset mclass._intro
598 mclass.intro = self
599 end
600 self.to_s = "{mmodule}#{mclass}"
601 end
602
603 # Actually the name of the `mclass`
604 redef fun name do return mclass.name
605
606 # The module and class name separated by a '#'.
607 #
608 # The short-name of the class is used for introduction.
609 # Example: "my_module#MyClass"
610 #
611 # The full-name of the class is used for refinement.
612 # Example: "my_module#intro_module::MyClass"
613 redef var full_name is lazy do
614 if is_intro then
615 # public gives 'p#A'
616 # private gives 'p::m#A'
617 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
618 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
619 # public gives 'q::n#p::A'
620 # private gives 'q::n#p::m::A'
621 return "{mmodule.full_name}#{mclass.full_name}"
622 else if mclass.visibility > private_visibility then
623 # public gives 'p::n#A'
624 return "{mmodule.full_name}#{mclass.name}"
625 else
626 # private gives 'p::n#::m::A' (redundant p is omitted)
627 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
628 end
629 end
630
631 redef var c_name is lazy do
632 if is_intro then
633 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
634 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
635 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
636 else
637 return "{mmodule.c_name}___{mclass.c_name}"
638 end
639 end
640
641 redef fun model do return mmodule.model
642
643 # All declared super-types
644 # FIXME: quite ugly but not better idea yet
645 var supertypes = new Array[MClassType]
646
647 # Register some super-types for the class (ie "super SomeType")
648 #
649 # The hierarchy must not already be set
650 # REQUIRE: `self.in_hierarchy == null`
651 fun set_supertypes(supertypes: Array[MClassType])
652 do
653 assert unique_invocation: self.in_hierarchy == null
654 var mmodule = self.mmodule
655 var model = mmodule.model
656 var mtype = self.bound_mtype
657
658 for supertype in supertypes do
659 self.supertypes.add(supertype)
660
661 # Register in full_type_specialization_hierarchy
662 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
663 # Register in intro_type_specialization_hierarchy
664 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
665 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
666 end
667 end
668
669 end
670
671 # Collect the super-types (set by set_supertypes) to build the hierarchy
672 #
673 # This function can only invoked once by class
674 # REQUIRE: `self.in_hierarchy == null`
675 # ENSURE: `self.in_hierarchy != null`
676 fun add_in_hierarchy
677 do
678 assert unique_invocation: self.in_hierarchy == null
679 var model = mmodule.model
680 var res = model.mclassdef_hierarchy.add_node(self)
681 self.in_hierarchy = res
682 var mtype = self.bound_mtype
683
684 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
685 # The simpliest way is to attach it to collect_mclassdefs
686 for mclassdef in mtype.collect_mclassdefs(mmodule) do
687 res.poset.add_edge(self, mclassdef)
688 end
689 end
690
691 # The view of the class definition in `mclassdef_hierarchy`
692 var in_hierarchy: nullable POSetElement[MClassDef] = null
693
694 # Is the definition the one that introduced `mclass`?
695 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
696
697 # All properties introduced by the classdef
698 var intro_mproperties = new Array[MProperty]
699
700 # All property definitions in the class (introductions and redefinitions)
701 var mpropdefs = new Array[MPropDef]
702 end
703
704 # A global static type
705 #
706 # MType are global to the model; it means that a `MType` is not bound to a
707 # specific `MModule`.
708 # This characteristic helps the reasoning about static types in a program
709 # since a single `MType` object always denote the same type.
710 #
711 # However, because a `MType` is global, it does not really have properties
712 # nor have subtypes to a hierarchy since the property and the class hierarchy
713 # depends of a module.
714 # Moreover, virtual types an formal generic parameter types also depends on
715 # a receiver to have sense.
716 #
717 # Therefore, most method of the types require a module and an anchor.
718 # The module is used to know what are the classes and the specialization
719 # links.
720 # The anchor is used to know what is the bound of the virtual types and formal
721 # generic parameter types.
722 #
723 # MType are not directly usable to get properties. See the `anchor_to` method
724 # and the `MClassType` class.
725 #
726 # FIXME: the order of the parameters is not the best. We mus pick on from:
727 # * foo(mmodule, anchor, othertype)
728 # * foo(othertype, anchor, mmodule)
729 # * foo(anchor, mmodule, othertype)
730 # * foo(othertype, mmodule, anchor)
731 abstract class MType
732 super MEntity
733
734 redef fun name do return to_s
735
736 # Return true if `self` is an subtype of `sup`.
737 # The typing is done using the standard typing policy of Nit.
738 #
739 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
740 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
741 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
742 do
743 var sub = self
744 if sub == sup then return true
745
746 #print "1.is {sub} a {sup}? ===="
747
748 if anchor == null then
749 assert not sub.need_anchor
750 assert not sup.need_anchor
751 else
752 # First, resolve the formal types to the simplest equivalent forms in the receiver
753 assert sub.can_resolve_for(anchor, null, mmodule)
754 sub = sub.lookup_fixed(mmodule, anchor)
755 assert sup.can_resolve_for(anchor, null, mmodule)
756 sup = sup.lookup_fixed(mmodule, anchor)
757 end
758
759 # Does `sup` accept null or not?
760 # Discard the nullable marker if it exists
761 var sup_accept_null = false
762 if sup isa MNullableType then
763 sup_accept_null = true
764 sup = sup.mtype
765 else if sup isa MNotNullType then
766 sup = sup.mtype
767 else if sup isa MNullType then
768 sup_accept_null = true
769 end
770
771 # Can `sub` provide null or not?
772 # Thus we can match with `sup_accept_null`
773 # Also discard the nullable marker if it exists
774 var sub_reject_null = false
775 if sub isa MNullableType then
776 if not sup_accept_null then return false
777 sub = sub.mtype
778 else if sub isa MNotNullType then
779 sub_reject_null = true
780 sub = sub.mtype
781 else if sub isa MNullType then
782 return sup_accept_null
783 end
784 # Now the case of direct null and nullable is over.
785
786 # If `sub` is a formal type, then it is accepted if its bound is accepted
787 while sub isa MFormalType do
788 #print "3.is {sub} a {sup}?"
789
790 # A unfixed formal type can only accept itself
791 if sub == sup then return true
792
793 assert anchor != null
794 sub = sub.lookup_bound(mmodule, anchor)
795 if sub_reject_null then sub = sub.as_notnull
796
797 #print "3.is {sub} a {sup}?"
798
799 # Manage the second layer of null/nullable
800 if sub isa MNullableType then
801 if not sup_accept_null and not sub_reject_null then return false
802 sub = sub.mtype
803 else if sub isa MNotNullType then
804 sub_reject_null = true
805 sub = sub.mtype
806 else if sub isa MNullType then
807 return sup_accept_null
808 end
809 end
810 #print "4.is {sub} a {sup}? <- no more resolution"
811
812 if sub isa MBottomType then
813 return true
814 end
815
816 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
817
818 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
819 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType then
820 # These types are not super-types of Class-based types.
821 return false
822 end
823
824 assert sup isa MClassType else print "got {sup} {sub.inspect}" # It is the only remaining type
825
826 # Now both are MClassType, we need to dig
827
828 if sub == sup then return true
829
830 if anchor == null then anchor = sub # UGLY: any anchor will work
831 var resolved_sub = sub.anchor_to(mmodule, anchor)
832 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
833 if res == false then return false
834 if not sup isa MGenericType then return true
835 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
836 assert sub2.mclass == sup.mclass
837 for i in [0..sup.mclass.arity[ do
838 var sub_arg = sub2.arguments[i]
839 var sup_arg = sup.arguments[i]
840 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
841 if res == false then return false
842 end
843 return true
844 end
845
846 # The base class type on which self is based
847 #
848 # This base type is used to get property (an internally to perform
849 # unsafe type comparison).
850 #
851 # Beware: some types (like null) are not based on a class thus this
852 # method will crash
853 #
854 # Basically, this function transform the virtual types and parameter
855 # types to their bounds.
856 #
857 # Example
858 #
859 # class A end
860 # class B super A end
861 # class X end
862 # class Y super X end
863 # class G[T: A]
864 # type U: X
865 # end
866 # class H
867 # super G[B]
868 # redef type U: Y
869 # end
870 #
871 # Map[T,U] anchor_to H #-> Map[B,Y]
872 #
873 # Explanation of the example:
874 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
875 # because "redef type U: Y". Therefore, Map[T, U] is bound to
876 # Map[B, Y]
877 #
878 # ENSURE: `not self.need_anchor implies result == self`
879 # ENSURE: `not result.need_anchor`
880 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
881 do
882 if not need_anchor then return self
883 assert not anchor.need_anchor
884 # Just resolve to the anchor and clear all the virtual types
885 var res = self.resolve_for(anchor, null, mmodule, true)
886 assert not res.need_anchor
887 return res
888 end
889
890 # Does `self` contain a virtual type or a formal generic parameter type?
891 # In order to remove those types, you usually want to use `anchor_to`.
892 fun need_anchor: Bool do return true
893
894 # Return the supertype when adapted to a class.
895 #
896 # In Nit, for each super-class of a type, there is a equivalent super-type.
897 #
898 # Example:
899 #
900 # ~~~nitish
901 # class G[T, U] end
902 # class H[V] super G[V, Bool] end
903 #
904 # H[Int] supertype_to G #-> G[Int, Bool]
905 # ~~~
906 #
907 # REQUIRE: `super_mclass` is a super-class of `self`
908 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
909 # ENSURE: `result.mclass = super_mclass`
910 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
911 do
912 if super_mclass.arity == 0 then return super_mclass.mclass_type
913 if self isa MClassType and self.mclass == super_mclass then return self
914 var resolved_self
915 if self.need_anchor then
916 assert anchor != null
917 resolved_self = self.anchor_to(mmodule, anchor)
918 else
919 resolved_self = self
920 end
921 var supertypes = resolved_self.collect_mtypes(mmodule)
922 for supertype in supertypes do
923 if supertype.mclass == super_mclass then
924 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
925 return supertype.resolve_for(self, anchor, mmodule, false)
926 end
927 end
928 abort
929 end
930
931 # Replace formals generic types in self with resolved values in `mtype`
932 # If `cleanup_virtual` is true, then virtual types are also replaced
933 # with their bounds.
934 #
935 # This function returns self if `need_anchor` is false.
936 #
937 # ## Example 1
938 #
939 # ~~~
940 # class G[E] end
941 # class H[F] super G[F] end
942 # class X[Z] end
943 # ~~~
944 #
945 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
946 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
947 #
948 # Explanation of the example:
949 # * Array[E].need_anchor is true because there is a formal generic parameter type E
950 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
951 # * Since "H[F] super G[F]", E is in fact F for H
952 # * More specifically, in H[Int], E is Int
953 # * So, in H[Int], Array[E] is Array[Int]
954 #
955 # This function is mainly used to inherit a signature.
956 # Because, unlike `anchor_to`, we do not want a full resolution of
957 # a type but only an adapted version of it.
958 #
959 # ## Example 2
960 #
961 # ~~~
962 # class A[E]
963 # fun foo(e:E):E is abstract
964 # end
965 # class B super A[Int] end
966 # ~~~
967 #
968 # The signature on foo is (e: E): E
969 # If we resolve the signature for B, we get (e:Int):Int
970 #
971 # ## Example 3
972 #
973 # ~~~nitish
974 # class A[E]
975 # fun foo(e:E):E is abstract
976 # end
977 # class C[F]
978 # var a: A[Array[F]]
979 # fun bar do a.foo(x) # <- x is here
980 # end
981 # ~~~
982 #
983 # The first question is: is foo available on `a`?
984 #
985 # The static type of a is `A[Array[F]]`, that is an open type.
986 # in order to find a method `foo`, whe must look at a resolved type.
987 #
988 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
989 #
990 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
991 #
992 # The next question is: what is the accepted types for `x`?
993 #
994 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
995 #
996 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
997 #
998 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
999 #
1000 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1001 # two function instead of one seems also to be a bad idea.
1002 #
1003 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1004 # ENSURE: `not self.need_anchor implies result == self`
1005 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1006
1007 # Resolve formal type to its verbatim bound.
1008 # If the type is not formal, just return self
1009 #
1010 # The result is returned exactly as declared in the "type" property (verbatim).
1011 # So it could be another formal type.
1012 #
1013 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1014 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1015
1016 # Resolve the formal type to its simplest equivalent form.
1017 #
1018 # Formal types are either free or fixed.
1019 # When it is fixed, it means that it is equivalent with a simpler type.
1020 # When a formal type is free, it means that it is only equivalent with itself.
1021 # This method return the most simple equivalent type of `self`.
1022 #
1023 # This method is mainly used for subtype test in order to sanely compare fixed.
1024 #
1025 # By default, return self.
1026 # See the redefinitions for specific behavior in each kind of type.
1027 #
1028 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1029 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1030
1031 # Can the type be resolved?
1032 #
1033 # In order to resolve open types, the formal types must make sence.
1034 #
1035 # ## Example
1036 #
1037 # class A[E]
1038 # end
1039 # class B[F]
1040 # end
1041 #
1042 # ~~~nitish
1043 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1044 #
1045 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1046 #
1047 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1048 # # B[E] is a red hearing only the E is important,
1049 # # E make sense in A
1050 # ~~~
1051 #
1052 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1053 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1054 # ENSURE: `not self.need_anchor implies result == true`
1055 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1056
1057 # Return the nullable version of the type
1058 # If the type is already nullable then self is returned
1059 fun as_nullable: MType
1060 do
1061 var res = self.as_nullable_cache
1062 if res != null then return res
1063 res = new MNullableType(self)
1064 self.as_nullable_cache = res
1065 return res
1066 end
1067
1068 # Remove the base type of a decorated (proxy) type.
1069 # Is the type is not decorated, then self is returned.
1070 #
1071 # Most of the time it is used to return the not nullable version of a nullable type.
1072 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1073 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1074 # If you really want to exclude the `null` value, then use `as_notnull`
1075 fun undecorate: MType
1076 do
1077 return self
1078 end
1079
1080 # Returns the not null version of the type.
1081 # That is `self` minus the `null` value.
1082 #
1083 # For most types, this return `self`.
1084 # For formal types, this returns a special `MNotNullType`
1085 fun as_notnull: MType do return self
1086
1087 private var as_nullable_cache: nullable MType = null
1088
1089
1090 # The depth of the type seen as a tree.
1091 #
1092 # * A -> 1
1093 # * G[A] -> 2
1094 # * H[A, B] -> 2
1095 # * H[G[A], B] -> 3
1096 #
1097 # Formal types have a depth of 1.
1098 fun depth: Int
1099 do
1100 return 1
1101 end
1102
1103 # The length of the type seen as a tree.
1104 #
1105 # * A -> 1
1106 # * G[A] -> 2
1107 # * H[A, B] -> 3
1108 # * H[G[A], B] -> 4
1109 #
1110 # Formal types have a length of 1.
1111 fun length: Int
1112 do
1113 return 1
1114 end
1115
1116 # Compute all the classdefs inherited/imported.
1117 # The returned set contains:
1118 # * the class definitions from `mmodule` and its imported modules
1119 # * the class definitions of this type and its super-types
1120 #
1121 # This function is used mainly internally.
1122 #
1123 # REQUIRE: `not self.need_anchor`
1124 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1125
1126 # Compute all the super-classes.
1127 # This function is used mainly internally.
1128 #
1129 # REQUIRE: `not self.need_anchor`
1130 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1131
1132 # Compute all the declared super-types.
1133 # Super-types are returned as declared in the classdefs (verbatim).
1134 # This function is used mainly internally.
1135 #
1136 # REQUIRE: `not self.need_anchor`
1137 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1138
1139 # Is the property in self for a given module
1140 # This method does not filter visibility or whatever
1141 #
1142 # REQUIRE: `not self.need_anchor`
1143 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1144 do
1145 assert not self.need_anchor
1146 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1147 end
1148 end
1149
1150 # A type based on a class.
1151 #
1152 # `MClassType` have properties (see `has_mproperty`).
1153 class MClassType
1154 super MType
1155
1156 # The associated class
1157 var mclass: MClass
1158
1159 redef fun model do return self.mclass.intro_mmodule.model
1160
1161 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1162
1163 # The formal arguments of the type
1164 # ENSURE: `result.length == self.mclass.arity`
1165 var arguments = new Array[MType]
1166
1167 redef fun to_s do return mclass.to_s
1168
1169 redef fun full_name do return mclass.full_name
1170
1171 redef fun c_name do return mclass.c_name
1172
1173 redef fun need_anchor do return false
1174
1175 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1176 do
1177 return super.as(MClassType)
1178 end
1179
1180 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1181
1182 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1183
1184 redef fun collect_mclassdefs(mmodule)
1185 do
1186 assert not self.need_anchor
1187 var cache = self.collect_mclassdefs_cache
1188 if not cache.has_key(mmodule) then
1189 self.collect_things(mmodule)
1190 end
1191 return cache[mmodule]
1192 end
1193
1194 redef fun collect_mclasses(mmodule)
1195 do
1196 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1197 assert not self.need_anchor
1198 var cache = self.collect_mclasses_cache
1199 if not cache.has_key(mmodule) then
1200 self.collect_things(mmodule)
1201 end
1202 var res = cache[mmodule]
1203 collect_mclasses_last_module = mmodule
1204 collect_mclasses_last_module_cache = res
1205 return res
1206 end
1207
1208 private var collect_mclasses_last_module: nullable MModule = null
1209 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1210
1211 redef fun collect_mtypes(mmodule)
1212 do
1213 assert not self.need_anchor
1214 var cache = self.collect_mtypes_cache
1215 if not cache.has_key(mmodule) then
1216 self.collect_things(mmodule)
1217 end
1218 return cache[mmodule]
1219 end
1220
1221 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1222 private fun collect_things(mmodule: MModule)
1223 do
1224 var res = new HashSet[MClassDef]
1225 var seen = new HashSet[MClass]
1226 var types = new HashSet[MClassType]
1227 seen.add(self.mclass)
1228 var todo = [self.mclass]
1229 while not todo.is_empty do
1230 var mclass = todo.pop
1231 #print "process {mclass}"
1232 for mclassdef in mclass.mclassdefs do
1233 if not mmodule.in_importation <= mclassdef.mmodule then continue
1234 #print " process {mclassdef}"
1235 res.add(mclassdef)
1236 for supertype in mclassdef.supertypes do
1237 types.add(supertype)
1238 var superclass = supertype.mclass
1239 if seen.has(superclass) then continue
1240 #print " add {superclass}"
1241 seen.add(superclass)
1242 todo.add(superclass)
1243 end
1244 end
1245 end
1246 collect_mclassdefs_cache[mmodule] = res
1247 collect_mclasses_cache[mmodule] = seen
1248 collect_mtypes_cache[mmodule] = types
1249 end
1250
1251 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1252 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1253 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1254
1255 end
1256
1257 # A type based on a generic class.
1258 # A generic type a just a class with additional formal generic arguments.
1259 class MGenericType
1260 super MClassType
1261
1262 redef var arguments
1263
1264 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1265
1266 init
1267 do
1268 assert self.mclass.arity == arguments.length
1269
1270 self.need_anchor = false
1271 for t in arguments do
1272 if t.need_anchor then
1273 self.need_anchor = true
1274 break
1275 end
1276 end
1277
1278 self.to_s = "{mclass}[{arguments.join(", ")}]"
1279 end
1280
1281 # The short-name of the class, then the full-name of each type arguments within brackets.
1282 # Example: `"Map[String, List[Int]]"`
1283 redef var to_s: String is noinit
1284
1285 # The full-name of the class, then the full-name of each type arguments within brackets.
1286 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1287 redef var full_name is lazy do
1288 var args = new Array[String]
1289 for t in arguments do
1290 args.add t.full_name
1291 end
1292 return "{mclass.full_name}[{args.join(", ")}]"
1293 end
1294
1295 redef var c_name is lazy do
1296 var res = mclass.c_name
1297 # Note: because the arity is known, a prefix notation is enough
1298 for t in arguments do
1299 res += "__"
1300 res += t.c_name
1301 end
1302 return res.to_s
1303 end
1304
1305 redef var need_anchor: Bool is noinit
1306
1307 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1308 do
1309 if not need_anchor then return self
1310 assert can_resolve_for(mtype, anchor, mmodule)
1311 var types = new Array[MType]
1312 for t in arguments do
1313 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1314 end
1315 return mclass.get_mtype(types)
1316 end
1317
1318 redef fun can_resolve_for(mtype, anchor, mmodule)
1319 do
1320 if not need_anchor then return true
1321 for t in arguments do
1322 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1323 end
1324 return true
1325 end
1326
1327
1328 redef fun depth
1329 do
1330 var dmax = 0
1331 for a in self.arguments do
1332 var d = a.depth
1333 if d > dmax then dmax = d
1334 end
1335 return dmax + 1
1336 end
1337
1338 redef fun length
1339 do
1340 var res = 1
1341 for a in self.arguments do
1342 res += a.length
1343 end
1344 return res
1345 end
1346 end
1347
1348 # A formal type (either virtual of parametric).
1349 #
1350 # The main issue with formal types is that they offer very little information on their own
1351 # and need a context (anchor and mmodule) to be useful.
1352 abstract class MFormalType
1353 super MType
1354
1355 redef var as_notnull = new MNotNullType(self) is lazy
1356 end
1357
1358 # A virtual formal type.
1359 class MVirtualType
1360 super MFormalType
1361
1362 # The property associated with the type.
1363 # Its the definitions of this property that determine the bound or the virtual type.
1364 var mproperty: MVirtualTypeProp
1365
1366 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1367
1368 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1369 do
1370 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MBottomType(model)
1371 end
1372
1373 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1374 do
1375 assert not resolved_receiver.need_anchor
1376 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1377 if props.is_empty then
1378 abort
1379 else if props.length == 1 then
1380 return props.first
1381 end
1382 var types = new ArraySet[MType]
1383 var res = props.first
1384 for p in props do
1385 types.add(p.bound.as(not null))
1386 if not res.is_fixed then res = p
1387 end
1388 if types.length == 1 then
1389 return res
1390 end
1391 abort
1392 end
1393
1394 # A VT is fixed when:
1395 # * the VT is (re-)defined with the annotation `is fixed`
1396 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1397 # * the receiver is an enum class since there is no subtype possible
1398 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1399 do
1400 assert not resolved_receiver.need_anchor
1401 resolved_receiver = resolved_receiver.undecorate
1402 assert resolved_receiver isa MClassType # It is the only remaining type
1403
1404 var prop = lookup_single_definition(mmodule, resolved_receiver)
1405 var res = prop.bound
1406 if res == null then return new MBottomType(model)
1407
1408 # Recursively lookup the fixed result
1409 res = res.lookup_fixed(mmodule, resolved_receiver)
1410
1411 # 1. For a fixed VT, return the resolved bound
1412 if prop.is_fixed then return res
1413
1414 # 2. For a enum boud, return the bound
1415 if res isa MClassType and res.mclass.kind == enum_kind then return res
1416
1417 # 3. for a enum receiver return the bound
1418 if resolved_receiver.mclass.kind == enum_kind then return res
1419
1420 return self
1421 end
1422
1423 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1424 do
1425 if not cleanup_virtual then return self
1426 assert can_resolve_for(mtype, anchor, mmodule)
1427 # self is a virtual type declared (or inherited) in mtype
1428 # The point of the function it to get the bound of the virtual type that make sense for mtype
1429 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1430 #print "{class_name}: {self}/{mtype}/{anchor}?"
1431 var resolved_receiver
1432 if mtype.need_anchor then
1433 assert anchor != null
1434 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1435 else
1436 resolved_receiver = mtype
1437 end
1438 # Now, we can get the bound
1439 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1440 # The bound is exactly as declared in the "type" property, so we must resolve it again
1441 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1442
1443 return res
1444 end
1445
1446 redef fun can_resolve_for(mtype, anchor, mmodule)
1447 do
1448 if mtype.need_anchor then
1449 assert anchor != null
1450 mtype = mtype.anchor_to(mmodule, anchor)
1451 end
1452 return mtype.has_mproperty(mmodule, mproperty)
1453 end
1454
1455 redef fun to_s do return self.mproperty.to_s
1456
1457 redef fun full_name do return self.mproperty.full_name
1458
1459 redef fun c_name do return self.mproperty.c_name
1460 end
1461
1462 # The type associated to a formal parameter generic type of a class
1463 #
1464 # Each parameter type is associated to a specific class.
1465 # It means that all refinements of a same class "share" the parameter type,
1466 # but that a generic subclass has its own parameter types.
1467 #
1468 # However, in the sense of the meta-model, a parameter type of a class is
1469 # a valid type in a subclass. The "in the sense of the meta-model" is
1470 # important because, in the Nit language, the programmer cannot refers
1471 # directly to the parameter types of the super-classes.
1472 #
1473 # Example:
1474 #
1475 # class A[E]
1476 # fun e: E is abstract
1477 # end
1478 # class B[F]
1479 # super A[Array[F]]
1480 # end
1481 #
1482 # In the class definition B[F], `F` is a valid type but `E` is not.
1483 # However, `self.e` is a valid method call, and the signature of `e` is
1484 # declared `e: E`.
1485 #
1486 # Note that parameter types are shared among class refinements.
1487 # Therefore parameter only have an internal name (see `to_s` for details).
1488 class MParameterType
1489 super MFormalType
1490
1491 # The generic class where the parameter belong
1492 var mclass: MClass
1493
1494 redef fun model do return self.mclass.intro_mmodule.model
1495
1496 # The position of the parameter (0 for the first parameter)
1497 # FIXME: is `position` a better name?
1498 var rank: Int
1499
1500 redef var name
1501
1502 redef fun to_s do return name
1503
1504 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1505
1506 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1507
1508 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1509 do
1510 assert not resolved_receiver.need_anchor
1511 resolved_receiver = resolved_receiver.undecorate
1512 assert resolved_receiver isa MClassType # It is the only remaining type
1513 var goalclass = self.mclass
1514 if resolved_receiver.mclass == goalclass then
1515 return resolved_receiver.arguments[self.rank]
1516 end
1517 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1518 for t in supertypes do
1519 if t.mclass == goalclass then
1520 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1521 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1522 var res = t.arguments[self.rank]
1523 return res
1524 end
1525 end
1526 abort
1527 end
1528
1529 # A PT is fixed when:
1530 # * Its bound is a enum class (see `enum_kind`).
1531 # The PT is just useless, but it is still a case.
1532 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1533 # so it is necessarily fixed in a `super` clause, either with a normal type
1534 # or with another PT.
1535 # See `resolve_for` for examples about related issues.
1536 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1537 do
1538 assert not resolved_receiver.need_anchor
1539 resolved_receiver = resolved_receiver.undecorate
1540 assert resolved_receiver isa MClassType # It is the only remaining type
1541 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1542 return res
1543 end
1544
1545 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1546 do
1547 assert can_resolve_for(mtype, anchor, mmodule)
1548 #print "{class_name}: {self}/{mtype}/{anchor}?"
1549
1550 if mtype isa MGenericType and mtype.mclass == self.mclass then
1551 var res = mtype.arguments[self.rank]
1552 if anchor != null and res.need_anchor then
1553 # Maybe the result can be resolved more if are bound to a final class
1554 var r2 = res.anchor_to(mmodule, anchor)
1555 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1556 end
1557 return res
1558 end
1559
1560 # self is a parameter type of mtype (or of a super-class of mtype)
1561 # The point of the function it to get the bound of the virtual type that make sense for mtype
1562 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1563 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1564 var resolved_receiver
1565 if mtype.need_anchor then
1566 assert anchor != null
1567 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1568 else
1569 resolved_receiver = mtype
1570 end
1571 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1572 if resolved_receiver isa MParameterType then
1573 assert anchor != null
1574 assert resolved_receiver.mclass == anchor.mclass
1575 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1576 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1577 end
1578 assert resolved_receiver isa MClassType # It is the only remaining type
1579
1580 # Eh! The parameter is in the current class.
1581 # So we return the corresponding argument, no mater what!
1582 if resolved_receiver.mclass == self.mclass then
1583 var res = resolved_receiver.arguments[self.rank]
1584 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1585 return res
1586 end
1587
1588 if resolved_receiver.need_anchor then
1589 assert anchor != null
1590 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1591 end
1592 # Now, we can get the bound
1593 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1594 # The bound is exactly as declared in the "type" property, so we must resolve it again
1595 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1596
1597 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1598
1599 return res
1600 end
1601
1602 redef fun can_resolve_for(mtype, anchor, mmodule)
1603 do
1604 if mtype.need_anchor then
1605 assert anchor != null
1606 mtype = mtype.anchor_to(mmodule, anchor)
1607 end
1608 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1609 end
1610 end
1611
1612 # A type that decorates another type.
1613 #
1614 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1615 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1616 abstract class MProxyType
1617 super MType
1618 # The base type
1619 var mtype: MType
1620
1621 redef fun model do return self.mtype.model
1622 redef fun need_anchor do return mtype.need_anchor
1623 redef fun as_nullable do return mtype.as_nullable
1624 redef fun as_notnull do return mtype.as_notnull
1625 redef fun undecorate do return mtype.undecorate
1626 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1627 do
1628 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1629 return res
1630 end
1631
1632 redef fun can_resolve_for(mtype, anchor, mmodule)
1633 do
1634 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1635 end
1636
1637 redef fun lookup_fixed(mmodule, resolved_receiver)
1638 do
1639 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1640 return t
1641 end
1642
1643 redef fun depth do return self.mtype.depth
1644
1645 redef fun length do return self.mtype.length
1646
1647 redef fun collect_mclassdefs(mmodule)
1648 do
1649 assert not self.need_anchor
1650 return self.mtype.collect_mclassdefs(mmodule)
1651 end
1652
1653 redef fun collect_mclasses(mmodule)
1654 do
1655 assert not self.need_anchor
1656 return self.mtype.collect_mclasses(mmodule)
1657 end
1658
1659 redef fun collect_mtypes(mmodule)
1660 do
1661 assert not self.need_anchor
1662 return self.mtype.collect_mtypes(mmodule)
1663 end
1664 end
1665
1666 # A type prefixed with "nullable"
1667 class MNullableType
1668 super MProxyType
1669
1670 init
1671 do
1672 self.to_s = "nullable {mtype}"
1673 end
1674
1675 redef var to_s: String is noinit
1676
1677 redef var full_name is lazy do return "nullable {mtype.full_name}"
1678
1679 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1680
1681 redef fun as_nullable do return self
1682 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1683 do
1684 var res = super
1685 return res.as_nullable
1686 end
1687
1688 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1689 redef fun lookup_fixed(mmodule, resolved_receiver)
1690 do
1691 var t = super
1692 if t == mtype then return self
1693 return t.as_nullable
1694 end
1695 end
1696
1697 # A non-null version of a formal type.
1698 #
1699 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1700 class MNotNullType
1701 super MProxyType
1702
1703 redef fun to_s do return "not null {mtype}"
1704 redef var full_name is lazy do return "not null {mtype.full_name}"
1705 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1706
1707 redef fun as_notnull do return self
1708
1709 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1710 do
1711 var res = super
1712 return res.as_notnull
1713 end
1714
1715 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1716 redef fun lookup_fixed(mmodule, resolved_receiver)
1717 do
1718 var t = super
1719 if t == mtype then return self
1720 return t.as_notnull
1721 end
1722 end
1723
1724 # The type of the only value null
1725 #
1726 # The is only one null type per model, see `MModel::null_type`.
1727 class MNullType
1728 super MType
1729 redef var model: Model
1730 redef fun to_s do return "null"
1731 redef fun full_name do return "null"
1732 redef fun c_name do return "null"
1733 redef fun as_nullable do return self
1734
1735 redef var as_notnull = new MBottomType(model) is lazy
1736 redef fun need_anchor do return false
1737 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1738 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1739
1740 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1741
1742 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1743
1744 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1745 end
1746
1747 # The special universal most specific type.
1748 #
1749 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1750 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1751 #
1752 # Semantically it is the singleton `null.as_notnull`.
1753 class MBottomType
1754 super MType
1755 redef var model: Model
1756 redef fun to_s do return "bottom"
1757 redef fun full_name do return "bottom"
1758 redef fun c_name do return "bottom"
1759 redef fun as_nullable do return model.null_type
1760 redef fun as_notnull do return self
1761 redef fun need_anchor do return false
1762 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1763 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1764
1765 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1766
1767 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1768
1769 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1770 end
1771
1772 # A signature of a method
1773 class MSignature
1774 super MType
1775
1776 # The each parameter (in order)
1777 var mparameters: Array[MParameter]
1778
1779 # Returns a parameter named `name`, if any.
1780 fun mparameter_by_name(name: String): nullable MParameter
1781 do
1782 for p in mparameters do
1783 if p.name == name then return p
1784 end
1785 return null
1786 end
1787
1788 # The return type (null for a procedure)
1789 var return_mtype: nullable MType
1790
1791 redef fun depth
1792 do
1793 var dmax = 0
1794 var t = self.return_mtype
1795 if t != null then dmax = t.depth
1796 for p in mparameters do
1797 var d = p.mtype.depth
1798 if d > dmax then dmax = d
1799 end
1800 return dmax + 1
1801 end
1802
1803 redef fun length
1804 do
1805 var res = 1
1806 var t = self.return_mtype
1807 if t != null then res += t.length
1808 for p in mparameters do
1809 res += p.mtype.length
1810 end
1811 return res
1812 end
1813
1814 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1815 init
1816 do
1817 var vararg_rank = -1
1818 for i in [0..mparameters.length[ do
1819 var parameter = mparameters[i]
1820 if parameter.is_vararg then
1821 assert vararg_rank == -1
1822 vararg_rank = i
1823 end
1824 end
1825 self.vararg_rank = vararg_rank
1826 end
1827
1828 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1829 # value is -1 if there is no vararg.
1830 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1831 var vararg_rank: Int is noinit
1832
1833 # The number of parameters
1834 fun arity: Int do return mparameters.length
1835
1836 redef fun to_s
1837 do
1838 var b = new FlatBuffer
1839 if not mparameters.is_empty then
1840 b.append("(")
1841 for i in [0..mparameters.length[ do
1842 var mparameter = mparameters[i]
1843 if i > 0 then b.append(", ")
1844 b.append(mparameter.name)
1845 b.append(": ")
1846 b.append(mparameter.mtype.to_s)
1847 if mparameter.is_vararg then
1848 b.append("...")
1849 end
1850 end
1851 b.append(")")
1852 end
1853 var ret = self.return_mtype
1854 if ret != null then
1855 b.append(": ")
1856 b.append(ret.to_s)
1857 end
1858 return b.to_s
1859 end
1860
1861 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1862 do
1863 var params = new Array[MParameter]
1864 for p in self.mparameters do
1865 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1866 end
1867 var ret = self.return_mtype
1868 if ret != null then
1869 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1870 end
1871 var res = new MSignature(params, ret)
1872 return res
1873 end
1874 end
1875
1876 # A parameter in a signature
1877 class MParameter
1878 super MEntity
1879
1880 # The name of the parameter
1881 redef var name: String
1882
1883 # The static type of the parameter
1884 var mtype: MType
1885
1886 # Is the parameter a vararg?
1887 var is_vararg: Bool
1888
1889 redef fun to_s
1890 do
1891 if is_vararg then
1892 return "{name}: {mtype}..."
1893 else
1894 return "{name}: {mtype}"
1895 end
1896 end
1897
1898 # Returns a new parameter with the `mtype` resolved.
1899 # See `MType::resolve_for` for details.
1900 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1901 do
1902 if not self.mtype.need_anchor then return self
1903 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1904 var res = new MParameter(self.name, newtype, self.is_vararg)
1905 return res
1906 end
1907
1908 redef fun model do return mtype.model
1909 end
1910
1911 # A service (global property) that generalize method, attribute, etc.
1912 #
1913 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1914 # to a specific `MModule` nor a specific `MClass`.
1915 #
1916 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1917 # and the other in subclasses and in refinements.
1918 #
1919 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1920 # of any dynamic type).
1921 # For instance, a call site "x.foo" is associated to a `MProperty`.
1922 abstract class MProperty
1923 super MEntity
1924
1925 # The associated MPropDef subclass.
1926 # The two specialization hierarchy are symmetric.
1927 type MPROPDEF: MPropDef
1928
1929 # The classdef that introduce the property
1930 # While a property is not bound to a specific module, or class,
1931 # the introducing mclassdef is used for naming and visibility
1932 var intro_mclassdef: MClassDef
1933
1934 # The (short) name of the property
1935 redef var name: String
1936
1937 # The canonical name of the property.
1938 #
1939 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1940 # Example: "my_package::my_module::MyClass::my_method"
1941 redef var full_name is lazy do
1942 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1943 end
1944
1945 redef var c_name is lazy do
1946 # FIXME use `namespace_for`
1947 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1948 end
1949
1950 # The visibility of the property
1951 var visibility: MVisibility
1952
1953 # Is the property usable as an initializer?
1954 var is_autoinit = false is writable
1955
1956 init
1957 do
1958 intro_mclassdef.intro_mproperties.add(self)
1959 var model = intro_mclassdef.mmodule.model
1960 model.mproperties_by_name.add_one(name, self)
1961 model.mproperties.add(self)
1962 end
1963
1964 # All definitions of the property.
1965 # The first is the introduction,
1966 # The other are redefinitions (in refinements and in subclasses)
1967 var mpropdefs = new Array[MPROPDEF]
1968
1969 # The definition that introduces the property.
1970 #
1971 # Warning: such a definition may not exist in the early life of the object.
1972 # In this case, the method will abort.
1973 var intro: MPROPDEF is noinit
1974
1975 redef fun model do return intro.model
1976
1977 # Alias for `name`
1978 redef fun to_s do return name
1979
1980 # Return the most specific property definitions defined or inherited by a type.
1981 # The selection knows that refinement is stronger than specialization;
1982 # however, in case of conflict more than one property are returned.
1983 # If mtype does not know mproperty then an empty array is returned.
1984 #
1985 # If you want the really most specific property, then look at `lookup_first_definition`
1986 #
1987 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1988 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1989 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1990 do
1991 assert not mtype.need_anchor
1992 mtype = mtype.undecorate
1993
1994 var cache = self.lookup_definitions_cache[mmodule, mtype]
1995 if cache != null then return cache
1996
1997 #print "select prop {mproperty} for {mtype} in {self}"
1998 # First, select all candidates
1999 var candidates = new Array[MPROPDEF]
2000 for mpropdef in self.mpropdefs do
2001 # If the definition is not imported by the module, then skip
2002 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2003 # If the definition is not inherited by the type, then skip
2004 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2005 # Else, we keep it
2006 candidates.add(mpropdef)
2007 end
2008 # Fast track for only one candidate
2009 if candidates.length <= 1 then
2010 self.lookup_definitions_cache[mmodule, mtype] = candidates
2011 return candidates
2012 end
2013
2014 # Second, filter the most specific ones
2015 return select_most_specific(mmodule, candidates)
2016 end
2017
2018 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2019
2020 # Return the most specific property definitions inherited by a type.
2021 # The selection knows that refinement is stronger than specialization;
2022 # however, in case of conflict more than one property are returned.
2023 # If mtype does not know mproperty then an empty array is returned.
2024 #
2025 # If you want the really most specific property, then look at `lookup_next_definition`
2026 #
2027 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2028 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2029 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2030 do
2031 assert not mtype.need_anchor
2032 mtype = mtype.undecorate
2033
2034 # First, select all candidates
2035 var candidates = new Array[MPROPDEF]
2036 for mpropdef in self.mpropdefs do
2037 # If the definition is not imported by the module, then skip
2038 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2039 # If the definition is not inherited by the type, then skip
2040 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2041 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2042 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2043 # Else, we keep it
2044 candidates.add(mpropdef)
2045 end
2046 # Fast track for only one candidate
2047 if candidates.length <= 1 then return candidates
2048
2049 # Second, filter the most specific ones
2050 return select_most_specific(mmodule, candidates)
2051 end
2052
2053 # Return an array containing olny the most specific property definitions
2054 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2055 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2056 do
2057 var res = new Array[MPROPDEF]
2058 for pd1 in candidates do
2059 var cd1 = pd1.mclassdef
2060 var c1 = cd1.mclass
2061 var keep = true
2062 for pd2 in candidates do
2063 if pd2 == pd1 then continue # do not compare with self!
2064 var cd2 = pd2.mclassdef
2065 var c2 = cd2.mclass
2066 if c2.mclass_type == c1.mclass_type then
2067 if cd2.mmodule.in_importation < cd1.mmodule then
2068 # cd2 refines cd1; therefore we skip pd1
2069 keep = false
2070 break
2071 end
2072 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2073 # cd2 < cd1; therefore we skip pd1
2074 keep = false
2075 break
2076 end
2077 end
2078 if keep then
2079 res.add(pd1)
2080 end
2081 end
2082 if res.is_empty then
2083 print "All lost! {candidates.join(", ")}"
2084 # FIXME: should be abort!
2085 end
2086 return res
2087 end
2088
2089 # Return the most specific definition in the linearization of `mtype`.
2090 #
2091 # If you want to know the next properties in the linearization,
2092 # look at `MPropDef::lookup_next_definition`.
2093 #
2094 # FIXME: the linearization is still unspecified
2095 #
2096 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2097 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2098 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2099 do
2100 return lookup_all_definitions(mmodule, mtype).first
2101 end
2102
2103 # Return all definitions in a linearization order
2104 # Most specific first, most general last
2105 #
2106 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2107 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2108 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2109 do
2110 mtype = mtype.undecorate
2111
2112 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2113 if cache != null then return cache
2114
2115 assert not mtype.need_anchor
2116 assert mtype.has_mproperty(mmodule, self)
2117
2118 #print "select prop {mproperty} for {mtype} in {self}"
2119 # First, select all candidates
2120 var candidates = new Array[MPROPDEF]
2121 for mpropdef in self.mpropdefs do
2122 # If the definition is not imported by the module, then skip
2123 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2124 # If the definition is not inherited by the type, then skip
2125 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2126 # Else, we keep it
2127 candidates.add(mpropdef)
2128 end
2129 # Fast track for only one candidate
2130 if candidates.length <= 1 then
2131 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2132 return candidates
2133 end
2134
2135 mmodule.linearize_mpropdefs(candidates)
2136 candidates = candidates.reversed
2137 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2138 return candidates
2139 end
2140
2141 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2142 end
2143
2144 # A global method
2145 class MMethod
2146 super MProperty
2147
2148 redef type MPROPDEF: MMethodDef
2149
2150 # Is the property defined at the top_level of the module?
2151 # Currently such a property are stored in `Object`
2152 var is_toplevel: Bool = false is writable
2153
2154 # Is the property a constructor?
2155 # Warning, this property can be inherited by subclasses with or without being a constructor
2156 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2157 var is_init: Bool = false is writable
2158
2159 # The constructor is a (the) root init with empty signature but a set of initializers
2160 var is_root_init: Bool = false is writable
2161
2162 # Is the property a 'new' constructor?
2163 var is_new: Bool = false is writable
2164
2165 # Is the property a legal constructor for a given class?
2166 # As usual, visibility is not considered.
2167 # FIXME not implemented
2168 fun is_init_for(mclass: MClass): Bool
2169 do
2170 return self.is_init
2171 end
2172
2173 # A specific method that is safe to call on null.
2174 # Currently, only `==`, `!=` and `is_same_instance` are safe
2175 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2176 end
2177
2178 # A global attribute
2179 class MAttribute
2180 super MProperty
2181
2182 redef type MPROPDEF: MAttributeDef
2183
2184 end
2185
2186 # A global virtual type
2187 class MVirtualTypeProp
2188 super MProperty
2189
2190 redef type MPROPDEF: MVirtualTypeDef
2191
2192 # The formal type associated to the virtual type property
2193 var mvirtualtype = new MVirtualType(self)
2194 end
2195
2196 # A definition of a property (local property)
2197 #
2198 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2199 # specific class definition (which belong to a specific module)
2200 abstract class MPropDef
2201 super MEntity
2202
2203 # The associated `MProperty` subclass.
2204 # the two specialization hierarchy are symmetric
2205 type MPROPERTY: MProperty
2206
2207 # Self class
2208 type MPROPDEF: MPropDef
2209
2210 # The class definition where the property definition is
2211 var mclassdef: MClassDef
2212
2213 # The associated global property
2214 var mproperty: MPROPERTY
2215
2216 # The origin of the definition
2217 var location: Location
2218
2219 init
2220 do
2221 mclassdef.mpropdefs.add(self)
2222 mproperty.mpropdefs.add(self)
2223 if mproperty.intro_mclassdef == mclassdef then
2224 assert not isset mproperty._intro
2225 mproperty.intro = self
2226 end
2227 self.to_s = "{mclassdef}#{mproperty}"
2228 end
2229
2230 # Actually the name of the `mproperty`
2231 redef fun name do return mproperty.name
2232
2233 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2234 #
2235 # Therefore the combination of identifiers is awful,
2236 # the worst case being
2237 #
2238 # * a property "p::m::A::x"
2239 # * redefined in a refinement of a class "q::n::B"
2240 # * in a module "r::o"
2241 # * so "r::o#q::n::B#p::m::A::x"
2242 #
2243 # Fortunately, the full-name is simplified when entities are repeated.
2244 # For the previous case, the simplest form is "p#A#x".
2245 redef var full_name is lazy do
2246 var res = new FlatBuffer
2247
2248 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2249 res.append mclassdef.full_name
2250
2251 res.append "#"
2252
2253 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2254 # intro are unambiguous in a class
2255 res.append name
2256 else
2257 # Just try to simplify each part
2258 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2259 # precise "p::m" only if "p" != "r"
2260 res.append mproperty.intro_mclassdef.mmodule.full_name
2261 res.append "::"
2262 else if mproperty.visibility <= private_visibility then
2263 # Same package ("p"=="q"), but private visibility,
2264 # does the module part ("::m") need to be displayed
2265 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2266 res.append "::"
2267 res.append mproperty.intro_mclassdef.mmodule.name
2268 res.append "::"
2269 end
2270 end
2271 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2272 # precise "B" only if not the same class than "A"
2273 res.append mproperty.intro_mclassdef.name
2274 res.append "::"
2275 end
2276 # Always use the property name "x"
2277 res.append mproperty.name
2278 end
2279 return res.to_s
2280 end
2281
2282 redef var c_name is lazy do
2283 var res = new FlatBuffer
2284 res.append mclassdef.c_name
2285 res.append "___"
2286 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2287 res.append name.to_cmangle
2288 else
2289 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2290 res.append mproperty.intro_mclassdef.mmodule.c_name
2291 res.append "__"
2292 end
2293 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2294 res.append mproperty.intro_mclassdef.name.to_cmangle
2295 res.append "__"
2296 end
2297 res.append mproperty.name.to_cmangle
2298 end
2299 return res.to_s
2300 end
2301
2302 redef fun model do return mclassdef.model
2303
2304 # Internal name combining the module, the class and the property
2305 # Example: "mymodule#MyClass#mymethod"
2306 redef var to_s: String is noinit
2307
2308 # Is self the definition that introduce the property?
2309 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2310
2311 # Return the next definition in linearization of `mtype`.
2312 #
2313 # This method is used to determine what method is called by a super.
2314 #
2315 # REQUIRE: `not mtype.need_anchor`
2316 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2317 do
2318 assert not mtype.need_anchor
2319
2320 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2321 var i = mpropdefs.iterator
2322 while i.is_ok and i.item != self do i.next
2323 assert has_property: i.is_ok
2324 i.next
2325 assert has_next_property: i.is_ok
2326 return i.item
2327 end
2328 end
2329
2330 # A local definition of a method
2331 class MMethodDef
2332 super MPropDef
2333
2334 redef type MPROPERTY: MMethod
2335 redef type MPROPDEF: MMethodDef
2336
2337 # The signature attached to the property definition
2338 var msignature: nullable MSignature = null is writable
2339
2340 # The signature attached to the `new` call on a root-init
2341 # This is a concatenation of the signatures of the initializers
2342 #
2343 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2344 var new_msignature: nullable MSignature = null is writable
2345
2346 # List of initialisers to call in root-inits
2347 #
2348 # They could be setters or attributes
2349 #
2350 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2351 var initializers = new Array[MProperty]
2352
2353 # Is the method definition abstract?
2354 var is_abstract: Bool = false is writable
2355
2356 # Is the method definition intern?
2357 var is_intern = false is writable
2358
2359 # Is the method definition extern?
2360 var is_extern = false is writable
2361
2362 # An optional constant value returned in functions.
2363 #
2364 # Only some specific primitife value are accepted by engines.
2365 # Is used when there is no better implementation available.
2366 #
2367 # Currently used only for the implementation of the `--define`
2368 # command-line option.
2369 # SEE: module `mixin`.
2370 var constant_value: nullable Object = null is writable
2371 end
2372
2373 # A local definition of an attribute
2374 class MAttributeDef
2375 super MPropDef
2376
2377 redef type MPROPERTY: MAttribute
2378 redef type MPROPDEF: MAttributeDef
2379
2380 # The static type of the attribute
2381 var static_mtype: nullable MType = null is writable
2382 end
2383
2384 # A local definition of a virtual type
2385 class MVirtualTypeDef
2386 super MPropDef
2387
2388 redef type MPROPERTY: MVirtualTypeProp
2389 redef type MPROPDEF: MVirtualTypeDef
2390
2391 # The bound of the virtual type
2392 var bound: nullable MType = null is writable
2393
2394 # Is the bound fixed?
2395 var is_fixed = false is writable
2396 end
2397
2398 # A kind of class.
2399 #
2400 # * `abstract_kind`
2401 # * `concrete_kind`
2402 # * `interface_kind`
2403 # * `enum_kind`
2404 # * `extern_kind`
2405 #
2406 # Note this class is basically an enum.
2407 # FIXME: use a real enum once user-defined enums are available
2408 class MClassKind
2409 redef var to_s: String
2410
2411 # Is a constructor required?
2412 var need_init: Bool
2413
2414 # TODO: private init because enumeration.
2415
2416 # Can a class of kind `self` specializes a class of kine `other`?
2417 fun can_specialize(other: MClassKind): Bool
2418 do
2419 if other == interface_kind then return true # everybody can specialize interfaces
2420 if self == interface_kind or self == enum_kind then
2421 # no other case for interfaces
2422 return false
2423 else if self == extern_kind then
2424 # only compatible with themselves
2425 return self == other
2426 else if other == enum_kind or other == extern_kind then
2427 # abstract_kind and concrete_kind are incompatible
2428 return false
2429 end
2430 # remain only abstract_kind and concrete_kind
2431 return true
2432 end
2433 end
2434
2435 # The class kind `abstract`
2436 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2437 # The class kind `concrete`
2438 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2439 # The class kind `interface`
2440 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2441 # The class kind `enum`
2442 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2443 # The class kind `extern`
2444 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)