# This file is part of NIT ( http://www.nitlanguage.org ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Separate compilation of a Nit program module separate_compiler import abstract_compiler import coloring import rapid_type_analysis # Add separate compiler specific options redef class ToolContext # --separate var opt_separate = new OptionBool("Use separate compilation", "--separate") # --no-inline-intern var opt_no_inline_intern = new OptionBool("Do not inline call to intern methods", "--no-inline-intern") # --no-union-attribute var opt_no_union_attribute = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute") # --no-shortcut-equate var opt_no_shortcut_equate = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal") # --colors-are-symbols var opt_colors_are_symbols = new OptionBool("Store colors as symbols (faster)", "--colors-are-symbols") # --trampoline-call var opt_trampoline_call = new OptionBool("Use an indirection when calling", "--trampoline-call") # --substitute-monomorph var opt_substitute_monomorph = new OptionBool("Replace monomorph trampoline with direct call", "--substitute-monomorph") # --inline-coloring-numbers var opt_inline_coloring_numbers = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers") # --inline-some-methods var opt_inline_some_methods = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods") # --direct-call-monomorph var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph") # --skip-dead-methods var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods") # --semi-global var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global") # --no-colo-dead-methods var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods") # --tables-metrics var opt_tables_metrics = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics") redef init do super self.option_context.add_option(self.opt_separate) self.option_context.add_option(self.opt_no_inline_intern) self.option_context.add_option(self.opt_no_union_attribute) self.option_context.add_option(self.opt_no_shortcut_equate, opt_colors_are_symbols, opt_trampoline_call, opt_substitute_monomorph) self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global) self.option_context.add_option(self.opt_colo_dead_methods) self.option_context.add_option(self.opt_tables_metrics) end redef fun process_options(args) do super var tc = self if tc.opt_semi_global.value then tc.opt_inline_coloring_numbers.value = true tc.opt_inline_some_methods.value = true tc.opt_direct_call_monomorph.value = true tc.opt_skip_dead_methods.value = true end end var separate_compiler_phase = new SeparateCompilerPhase(self, null) end class SeparateCompilerPhase super Phase redef fun process_mainmodule(mainmodule, given_mmodules) do if not toolcontext.opt_separate.value then return var modelbuilder = toolcontext.modelbuilder var analysis = modelbuilder.do_rapid_type_analysis(mainmodule) modelbuilder.run_separate_compiler(mainmodule, analysis) end end redef class ModelBuilder fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis) do var time0 = get_time self.toolcontext.info("*** GENERATING C ***", 1) var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis) compiler.do_compilation compiler.display_stats var time1 = get_time self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2) write_and_make(compiler) end # Count number of invocations by VFT private var nb_invok_by_tables = 0 # Count number of invocations by direct call private var nb_invok_by_direct = 0 # Count number of invocations by inlining private var nb_invok_by_inline = 0 end # Singleton that store the knowledge about the separate compilation process class SeparateCompiler super AbstractCompiler redef type VISITOR: SeparateCompilerVisitor # The result of the RTA (used to know live types and methods) var runtime_type_analysis: nullable RapidTypeAnalysis private var undead_types: Set[MType] = new HashSet[MType] private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]] private var type_ids: Map[MType, Int] is noinit private var type_colors: Map[MType, Int] is noinit private var opentype_colors: Map[MType, Int] is noinit protected var method_colors: Map[PropertyLayoutElement, Int] is noinit protected var attr_colors: Map[MAttribute, Int] is noinit init do var file = new_file("nit.common") self.header = new CodeWriter(file) self.compile_box_kinds end redef fun do_compilation do var compiler = self compiler.compile_header var c_name = mainmodule.c_name # compile class structures modelbuilder.toolcontext.info("Property coloring", 2) compiler.new_file("{c_name}.classes") compiler.do_property_coloring for m in mainmodule.in_importation.greaters do for mclass in m.intro_mclasses do #if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue compiler.compile_class_to_c(mclass) end end # The main function of the C compiler.new_file("{c_name}.main") compiler.compile_nitni_global_ref_functions compiler.compile_main_function compiler.compile_finalizer_function # compile methods for m in mainmodule.in_importation.greaters do modelbuilder.toolcontext.info("Generate C for module {m.full_name}", 2) compiler.new_file("{m.c_name}.sep") compiler.compile_module_to_c(m) end # compile live & cast type structures modelbuilder.toolcontext.info("Type coloring", 2) compiler.new_file("{c_name}.types") compiler.compile_types end # Color and compile type structures and cast information fun compile_types do var compiler = self var mtypes = compiler.do_type_coloring for t in mtypes do compiler.compile_type_to_c(t) end # compile remaining types structures (useless but needed for the symbol resolution at link-time) for t in compiler.undead_types do if mtypes.has(t) then continue compiler.compile_type_to_c(t) end end redef fun compile_header_structs do self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */") self.compile_header_attribute_structs self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */") # With resolution_table_table, all live type resolution are stored in a big table: resolution_table self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */") self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */") self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */") self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */") end fun compile_header_attribute_structs do if modelbuilder.toolcontext.opt_no_union_attribute.value then self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */") else self.header.add_decl("typedef union \{") self.header.add_decl("void* val;") for c, v in self.box_kinds do var t = c.mclass_type # `Pointer` reuse the `val` field if t.mclass.name == "Pointer" then continue self.header.add_decl("{t.ctype_extern} {t.ctypename};") end self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */") end end fun compile_box_kinds do # Collect all bas box class # FIXME: this is not completely fine with a separate compilation scheme for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do var classes = self.mainmodule.model.get_mclasses_by_name(classname) if classes == null then continue assert classes.length == 1 else print classes.join(", ") self.box_kinds[classes.first] = self.box_kinds.length + 1 end end var box_kinds = new HashMap[MClass, Int] fun box_kind_of(mclass: MClass): Int do #var pointer_type = self.mainmodule.pointer_type #if mclass.mclass_type.ctype == "val*" or mclass.mclass_type.is_subtype(self.mainmodule, mclass.mclass_type pointer_type) then if mclass.mclass_type.ctype_extern == "val*" then return 0 else if mclass.kind == extern_kind and mclass.name != "NativeString" then return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")] else return self.box_kinds[mclass] end end fun compile_color_consts(colors: Map[Object, Int]) do var v = new_visitor for m, c in colors do compile_color_const(v, m, c) end end fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do if color_consts_done.has(m) then return if m isa MEntity then if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then self.provide_declaration(m.const_color, "#define {m.const_color} {color}") else if not modelbuilder.toolcontext.opt_colors_are_symbols.value or not v.compiler.target_platform.supports_linker_script then self.provide_declaration(m.const_color, "extern const int {m.const_color};") v.add("const int {m.const_color} = {color};") else # The color 'C' is the ``address'' of a false static variable 'XC' self.provide_declaration(m.const_color, "#define {m.const_color} ((long)&X{m.const_color})\nextern const void X{m.const_color};") if color == -1 then color = 0 # Symbols cannot be negative, so just use 0 for dead things # Teach the linker that the address of 'XC' is `color`. linker_script.add("X{m.const_color} = {color};") end else abort end color_consts_done.add(m) end private var color_consts_done = new HashSet[Object] # colorize classe properties fun do_property_coloring do var rta = runtime_type_analysis # Layouts var poset = mainmodule.flatten_mclass_hierarchy var mclasses = new HashSet[MClass].from(poset) var colorer = new POSetColorer[MClass] colorer.colorize(poset) # The dead methods, still need to provide a dead color symbol var dead_methods = new Array[MMethod] # lookup properties to build layout with var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]] var mattributes = new HashMap[MClass, Set[MAttribute]] for mclass in mclasses do mmethods[mclass] = new HashSet[PropertyLayoutElement] mattributes[mclass] = new HashSet[MAttribute] for mprop in self.mainmodule.properties(mclass) do if mprop isa MMethod then if not modelbuilder.toolcontext.opt_colo_dead_methods.value and rta != null and not rta.live_methods.has(mprop) then dead_methods.add(mprop) continue end mmethods[mclass].add(mprop) else if mprop isa MAttribute then mattributes[mclass].add(mprop) end end end # Collect all super calls (dead or not) var all_super_calls = new HashSet[MMethodDef] for mmodule in self.mainmodule.in_importation.greaters do for mclassdef in mmodule.mclassdefs do for mpropdef in mclassdef.mpropdefs do if not mpropdef isa MMethodDef then continue if mpropdef.has_supercall then all_super_calls.add(mpropdef) end end end end # lookup super calls and add it to the list of mmethods to build layout with var super_calls if rta != null then super_calls = rta.live_super_sends else super_calls = all_super_calls end for mmethoddef in super_calls do var mclass = mmethoddef.mclassdef.mclass mmethods[mclass].add(mmethoddef) for descendant in mclass.in_hierarchy(self.mainmodule).smallers do mmethods[descendant].add(mmethoddef) end end # methods coloration var meth_colorer = new POSetBucketsColorer[MClass, PropertyLayoutElement](poset, colorer.conflicts) method_colors = meth_colorer.colorize(mmethods) method_tables = build_method_tables(mclasses, super_calls) compile_color_consts(method_colors) # attribute null color to dead methods and supercalls for mproperty in dead_methods do compile_color_const(new_visitor, mproperty, -1) end for mpropdef in all_super_calls do if super_calls.has(mpropdef) then continue compile_color_const(new_visitor, mpropdef, -1) end # attributes coloration var attr_colorer = new POSetBucketsColorer[MClass, MAttribute](poset, colorer.conflicts) attr_colors = attr_colorer.colorize(mattributes) attr_tables = build_attr_tables(mclasses) compile_color_consts(attr_colors) end fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do var tables = new HashMap[MClass, Array[nullable MPropDef]] for mclass in mclasses do var table = new Array[nullable MPropDef] tables[mclass] = table var mproperties = self.mainmodule.properties(mclass) var mtype = mclass.intro.bound_mtype for mproperty in mproperties do if not mproperty isa MMethod then continue if not method_colors.has_key(mproperty) then continue var color = method_colors[mproperty] if table.length <= color then for i in [table.length .. color[ do table[i] = null end end table[color] = mproperty.lookup_first_definition(mainmodule, mtype) end for supercall in super_calls do if not mtype.collect_mclassdefs(mainmodule).has(supercall.mclassdef) then continue var color = method_colors[supercall] if table.length <= color then for i in [table.length .. color[ do table[i] = null end end var mmethoddef = supercall.lookup_next_definition(mainmodule, mtype) table[color] = mmethoddef end end return tables end fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do var tables = new HashMap[MClass, Array[nullable MPropDef]] for mclass in mclasses do var table = new Array[nullable MPropDef] tables[mclass] = table var mproperties = self.mainmodule.properties(mclass) var mtype = mclass.intro.bound_mtype for mproperty in mproperties do if not mproperty isa MAttribute then continue if not attr_colors.has_key(mproperty) then continue var color = attr_colors[mproperty] if table.length <= color then for i in [table.length .. color[ do table[i] = null end end table[color] = mproperty.lookup_first_definition(mainmodule, mtype) end end return tables end # colorize live types of the program private fun do_type_coloring: POSet[MType] do # Collect types to colorize var live_types = runtime_type_analysis.live_types var live_cast_types = runtime_type_analysis.live_cast_types var mtypes = new HashSet[MType] mtypes.add_all(live_types) for c in self.box_kinds.keys do mtypes.add(c.mclass_type) end # Compute colors var poset = poset_from_mtypes(mtypes, live_cast_types) var colorer = new POSetColorer[MType] colorer.colorize(poset) type_ids = colorer.ids type_colors = colorer.colors type_tables = build_type_tables(poset) # VT and FT are stored with other unresolved types in the big resolution_tables self.compile_resolution_tables(mtypes) return poset end private fun poset_from_mtypes(mtypes, cast_types: Set[MType]): POSet[MType] do var poset = new POSet[MType] for e in mtypes do poset.add_node(e) for o in cast_types do if e == o then continue poset.add_node(o) if e.is_subtype(mainmodule, null, o) then poset.add_edge(e, o) end end end return poset end # Build type tables fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do var tables = new HashMap[MType, Array[nullable MType]] for mtype in mtypes do var table = new Array[nullable MType] for sup in mtypes[mtype].greaters do var color = type_colors[sup] if table.length <= color then for i in [table.length .. color[ do table[i] = null end end table[color] = sup end tables[mtype] = table end return tables end protected fun compile_resolution_tables(mtypes: Set[MType]) do # resolution_tables is used to perform a type resolution at runtime in O(1) # During the visit of the body of classes, live_unresolved_types are collected # and associated to # Collect all live_unresolved_types (visited in the body of classes) # Determinate fo each livetype what are its possible requested anchored types var mtype2unresolved = new HashMap[MClassType, Set[MType]] for mtype in self.runtime_type_analysis.live_types do var set = new HashSet[MType] for cd in mtype.collect_mclassdefs(self.mainmodule) do if self.live_unresolved_types.has_key(cd) then set.add_all(self.live_unresolved_types[cd]) end end mtype2unresolved[mtype] = set end # Compute the table layout with the prefered method var colorer = new BucketsColorer[MType, MType] opentype_colors = colorer.colorize(mtype2unresolved) resolution_tables = self.build_resolution_tables(mtype2unresolved) # Compile a C constant for each collected unresolved type. # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it) var all_unresolved = new HashSet[MType] for t in self.live_unresolved_types.values do all_unresolved.add_all(t) end var all_unresolved_types_colors = new HashMap[MType, Int] for t in all_unresolved do if opentype_colors.has_key(t) then all_unresolved_types_colors[t] = opentype_colors[t] else all_unresolved_types_colors[t] = -1 end end self.compile_color_consts(all_unresolved_types_colors) #print "tables" #for k, v in unresolved_types_tables.as(not null) do # print "{k}: {v.join(", ")}" #end #print "" end fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do var tables = new HashMap[MClassType, Array[nullable MType]] for mclasstype, mtypes in elements do var table = new Array[nullable MType] for mtype in mtypes do var color = opentype_colors[mtype] if table.length <= color then for i in [table.length .. color[ do table[i] = null end end table[color] = mtype end tables[mclasstype] = table end return tables end # Separately compile all the method definitions of the module fun compile_module_to_c(mmodule: MModule) do var old_module = self.mainmodule self.mainmodule = mmodule for cd in mmodule.mclassdefs do for pd in cd.mpropdefs do if not pd isa MMethodDef then continue var rta = runtime_type_analysis if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue #print "compile {pd} @ {cd} @ {mmodule}" var r = pd.separate_runtime_function r.compile_to_c(self) var r2 = pd.virtual_runtime_function if r2 != r then r2.compile_to_c(self) # Generate trampolines if modelbuilder.toolcontext.opt_trampoline_call.value then r2.compile_trampolines(self) # Replace monomorphic call to a trampoline by a direct call to the virtual implementation if modelbuilder.toolcontext.opt_substitute_monomorph.value then do var m = pd.mproperty if rta == null then # Without RTA, monomorphic means alone (uniq name) if m.mpropdefs.length != 1 then break label else # With RTA, monomorphic means only live methoddef if not rta.live_methoddefs.has(pd) then break label for md in m.mpropdefs do if md != pd and rta.live_methoddefs.has(md) then break label end end # Here the trick, GNU ld can substitute symbols with specific values. var n2 = "CALL_" + m.const_color linker_script.add("{n2} = {r2.c_name};") end label end end end self.mainmodule = old_module end # Globaly compile the type structure of a live type fun compile_type_to_c(mtype: MType) do assert not mtype.need_anchor var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype) var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype) var c_name = mtype.c_name var v = new SeparateCompilerVisitor(self) v.add_decl("/* runtime type {mtype} */") # extern const struct type_X self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};") # const struct type_X v.add_decl("const struct type type_{c_name} = \{") # type id (for cast target) if is_cast_live then v.add_decl("{type_ids[mtype]},") else v.add_decl("-1, /*CAST DEAD*/") end # type name v.add_decl("\"{mtype}\", /* class_name_string */") # type color (for cast target) if is_cast_live then v.add_decl("{type_colors[mtype]},") else v.add_decl("-1, /*CAST DEAD*/") end # is_nullable bit if mtype isa MNullableType then v.add_decl("1,") else v.add_decl("0,") end # resolution table (for receiver) if is_live then var mclass_type = mtype.as_notnullable assert mclass_type isa MClassType if resolution_tables[mclass_type].is_empty then v.add_decl("NULL, /*NO RESOLUTIONS*/") else compile_type_resolution_table(mtype) v.require_declaration("resolution_table_{c_name}") v.add_decl("&resolution_table_{c_name},") end else v.add_decl("NULL, /*DEAD*/") end # cast table (for receiver) if is_live then v.add_decl("{self.type_tables[mtype].length},") v.add_decl("\{") for stype in self.type_tables[mtype] do if stype == null then v.add_decl("-1, /* empty */") else v.add_decl("{type_ids[stype]}, /* {stype} */") end end v.add_decl("\},") else v.add_decl("0, \{\}, /*DEAD TYPE*/") end v.add_decl("\};") end fun compile_type_resolution_table(mtype: MType) do var mclass_type = mtype.as_notnullable.as(MClassType) # extern const struct resolution_table_X resolution_table_X self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};") # const struct fts_table_X fts_table_X var v = new_visitor v.add_decl("const struct types resolution_table_{mtype.c_name} = \{") v.add_decl("0, /* dummy */") v.add_decl("\{") for t in self.resolution_tables[mclass_type] do if t == null then v.add_decl("NULL, /* empty */") else # The table stores the result of the type resolution # Therefore, for a receiver `mclass_type`, and a unresolved type `t` # the value stored is tv. var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true) # FIXME: What typeids means here? How can a tv not be live? if type_ids.has_key(tv) then v.require_declaration("type_{tv.c_name}") v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */") else v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */") end end end v.add_decl("\}") v.add_decl("\};") end # Globally compile the table of the class mclass # In a link-time optimisation compiler, tables are globally computed # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally fun compile_class_to_c(mclass: MClass) do var mtype = mclass.intro.bound_mtype var c_name = mclass.c_name var vft = self.method_tables[mclass] var attrs = self.attr_tables[mclass] var v = new_visitor var rta = runtime_type_analysis var is_dead = rta != null and not rta.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray" and mclass.name != "Pointer" v.add_decl("/* runtime class {c_name} */") # Build class vft if not is_dead then self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};") v.add_decl("const struct class class_{c_name} = \{") v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */") v.add_decl("\{") for i in [0 .. vft.length[ do var mpropdef = vft[i] if mpropdef == null then v.add_decl("NULL, /* empty */") else assert mpropdef isa MMethodDef if rta != null and not rta.live_methoddefs.has(mpropdef) then v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */") continue end var rf = mpropdef.virtual_runtime_function v.require_declaration(rf.c_name) v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */") end end v.add_decl("\}") v.add_decl("\};") end if mtype.ctype != "val*" or mtype.mclass.name == "Pointer" then # Is a primitive type or the Pointer class, not any other extern class #Build instance struct self.header.add_decl("struct instance_{c_name} \{") self.header.add_decl("const struct type *type;") self.header.add_decl("const struct class *class;") self.header.add_decl("{mtype.ctype_extern} value;") self.header.add_decl("\};") if not rta.live_types.has(mtype) and mtype.mclass.name != "Pointer" then return #Build BOX self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype_extern});") v.add_decl("/* allocate {mtype} */") v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype_extern} value) \{") v.add("struct instance_{c_name}*res = nit_alloc(sizeof(struct instance_{c_name}));") v.compiler.undead_types.add(mtype) v.require_declaration("type_{c_name}") v.add("res->type = &type_{c_name};") v.require_declaration("class_{c_name}") v.add("res->class = &class_{c_name};") v.add("res->value = value;") v.add("return (val*)res;") v.add("\}") if mtype.mclass.name != "Pointer" then return v = new_visitor self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);") v.add_decl("/* allocate {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{") if is_dead then v.add_abort("{mclass} is DEAD") else var res = v.new_named_var(mtype, "self") res.is_exact = true v.add("{res} = nit_alloc(sizeof(struct instance_{mtype.c_name}));") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") v.add("((struct instance_{mtype.c_name}*){res})->value = NULL;") v.add("return {res};") end v.add("\}") return else if mclass.name == "NativeArray" then #Build instance struct self.header.add_decl("struct instance_{c_name} \{") self.header.add_decl("const struct type *type;") self.header.add_decl("const struct class *class;") # NativeArrays are just a instance header followed by a length and an array of values self.header.add_decl("int length;") self.header.add_decl("val* values[0];") self.header.add_decl("\};") #Build NEW self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);") v.add_decl("/* allocate {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{") var res = v.get_name("self") v.add_decl("struct instance_{c_name} *{res};") var mtype_elt = mtype.arguments.first v.add("{res} = nit_alloc(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") v.add("{res}->length = length;") v.add("return (val*){res};") v.add("\}") return else if mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then # Is an extern class (other than Pointer and NativeString) # Pointer is caught in a previous `if`, and NativeString is internal var pointer_type = mainmodule.pointer_type self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);") v.add_decl("/* allocate {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{") if is_dead then v.add_abort("{mclass} is DEAD") else var res = v.new_named_var(mtype, "self") res.is_exact = true v.add("{res} = nit_alloc(sizeof(struct instance_{pointer_type.c_name}));") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") v.add("((struct instance_{pointer_type.c_name}*){res})->value = NULL;") v.add("return {res};") end v.add("\}") return end #Build NEW self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);") v.add_decl("/* allocate {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{") if is_dead then v.add_abort("{mclass} is DEAD") else var res = v.new_named_var(mtype, "self") res.is_exact = true v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") self.generate_init_attr(v, res, mtype) v.set_finalizer res v.add("return {res};") end v.add("\}") end # Add a dynamic test to ensure that the type referenced by `t` is a live type fun hardening_live_type(v: VISITOR, t: String) do if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return v.add("if({t} == NULL) \{") v.add_abort("type null") v.add("\}") v.add("if({t}->table_size == 0) \{") v.add("PRINT_ERROR(\"Insantiation of a dead type: %s\\n\", {t}->name);") v.add_abort("type dead") v.add("\}") end redef fun new_visitor do return new SeparateCompilerVisitor(self) # Stats private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]] private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]] protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] redef fun display_stats do super if self.modelbuilder.toolcontext.opt_tables_metrics.value then display_sizes end if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then display_isset_checks end var tc = self.modelbuilder.toolcontext tc.info("# implementation of method invocation",2) var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline tc.info("total number of invocations: {nb_invok_total}",2) tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2) tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2) tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2) end fun display_sizes do print "# size of subtyping tables" print "\ttotal \tholes" var total = 0 var holes = 0 for t, table in type_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" print "# size of resolution tables" print "\ttotal \tholes" total = 0 holes = 0 for t, table in resolution_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" print "# size of methods tables" print "\ttotal \tholes" total = 0 holes = 0 for t, table in method_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" print "# size of attributes tables" print "\ttotal \tholes" total = 0 holes = 0 for t, table in attr_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" end protected var isset_checks_count = 0 protected var attr_read_count = 0 fun display_isset_checks do print "# total number of compiled attribute reads" print "\t{attr_read_count}" print "# total number of compiled isset-checks" print "\t{isset_checks_count}" end redef fun compile_nitni_structs do self.header.add_decl """ struct nitni_instance \{ struct nitni_instance *next, *prev; /* adjacent global references in global list */ int count; /* number of time this global reference has been marked */ struct instance *value; \}; """ super end redef fun finalize_ffi_for_module(mmodule) do var old_module = self.mainmodule self.mainmodule = mmodule super self.mainmodule = old_module end end # A visitor on the AST of property definition that generate the C code of a separate compilation process. class SeparateCompilerVisitor super AbstractCompilerVisitor redef type COMPILER: SeparateCompiler redef fun adapt_signature(m, args) do var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true) var recv = args.first if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type) end for i in [0..msignature.arity[ do var t = msignature.mparameters[i].mtype if i == msignature.vararg_rank then t = args[i+1].mtype end args[i+1] = self.autobox(args[i+1], t) end end redef fun unbox_signature_extern(m, args) do var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true) if not m.mproperty.is_init and m.is_extern then args.first = self.unbox_extern(args.first, m.mclassdef.mclass.mclass_type) end for i in [0..msignature.arity[ do var t = msignature.mparameters[i].mtype if i == msignature.vararg_rank then t = args[i+1].mtype end if m.is_extern then args[i+1] = self.unbox_extern(args[i+1], t) end end redef fun autobox(value, mtype) do if value.mtype == mtype then return value else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then return value else if value.mtype.ctype == "val*" then return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype) else if mtype.ctype == "val*" then var valtype = value.mtype.as(MClassType) if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then valtype = compiler.mainmodule.pointer_type end var res = self.new_var(mtype) if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */") self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);") return res end self.require_declaration("BOX_{valtype.c_name}") self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */") return res else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or (value.mtype.ctype == "char*" and mtype.ctype == "void*") or (value.mtype.ctype == "void*" and mtype.ctype == "char*") then return value else # Bad things will appen! var res = self.new_var(mtype) self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */") self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);") return res end end redef fun unbox_extern(value, mtype) do if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then var pointer_type = compiler.mainmodule.pointer_type var res = self.new_var_extern(mtype) self.add "{res} = ((struct instance_{pointer_type.c_name}*){value})->value; /* unboxing {value.mtype} */" return res else return value end end redef fun box_extern(value, mtype) do if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then var valtype = compiler.mainmodule.pointer_type var res = self.new_var(mtype) if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(value.mtype.as(MClassType)) then self.add("/*no boxing of {value.mtype}: {value.mtype} is not live! */") self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);") return res end self.require_declaration("BOX_{valtype.c_name}") self.add("{res} = BOX_{valtype.c_name}({value}); /* boxing {value.mtype} */") self.require_declaration("type_{mtype.c_name}") self.add("{res}->type = &type_{mtype.c_name};") self.require_declaration("class_{mtype.c_name}") self.add("{res}->class = &class_{mtype.c_name};") return res else return value end end # Return a C expression returning the runtime type structure of the value # The point of the method is to works also with primitives types. fun type_info(value: RuntimeVariable): String do if value.mtype.ctype == "val*" then return "{value}->type" else compiler.undead_types.add(value.mtype) self.require_declaration("type_{value.mtype.c_name}") return "(&type_{value.mtype.c_name})" end end redef fun compile_callsite(callsite, args) do var rta = compiler.runtime_type_analysis var mmethod = callsite.mproperty # TODO: Inlining of new-style constructors with initializers if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and callsite.mpropdef.initializers.is_empty then var tgs = rta.live_targets(callsite) if tgs.length == 1 then # DIRECT CALL var res0 = before_send(mmethod, args) var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args) if res0 != null then assert res != null self.assign(res0, res) res = res0 end add("\}") # close the before_send return res end end return super end redef fun send(mmethod, arguments) do if arguments.first.mcasttype.ctype != "val*" then # In order to shortcut the primitive, we need to find the most specific method # Howverr, because of performance (no flattening), we always work on the realmainmodule var m = self.compiler.mainmodule self.compiler.mainmodule = self.compiler.realmainmodule var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments) self.compiler.mainmodule = m return res end return table_send(mmethod, arguments, mmethod.const_color) end # Handle common special cases before doing the effective method invocation # This methods handle the `==` and `!=` methods and the case of the null receiver. # Note: a { is open in the generated C, that enclose and protect the effective method invocation. # Client must not forget to close the } after them. # # The value returned is the result of the common special cases. # If not null, client must compile it with the result of their own effective method invocation. # # If `before_send` can shortcut the whole message sending, a dummy `if(0){` # is generated to cancel the effective method invocation that will follow # TODO: find a better approach private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable do var res: nullable RuntimeVariable = null var recv = arguments.first var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_null.value or mmethod.name == "==" or mmethod.name == "!=" var maybenull = (recv.mcasttype isa MNullableType or recv.mcasttype isa MNullType) and consider_null if maybenull then self.add("if ({recv} == NULL) \{") if mmethod.name == "==" or mmethod.name == "is_same_instance" then res = self.new_var(bool_type) var arg = arguments[1] if arg.mcasttype isa MNullableType then self.add("{res} = ({arg} == NULL);") else if arg.mcasttype isa MNullType then self.add("{res} = 1; /* is null */") else self.add("{res} = 0; /* {arg.inspect} cannot be null */") end else if mmethod.name == "!=" then res = self.new_var(bool_type) var arg = arguments[1] if arg.mcasttype isa MNullableType then self.add("{res} = ({arg} != NULL);") else if arg.mcasttype isa MNullType then self.add("{res} = 0; /* is null */") else self.add("{res} = 1; /* {arg.inspect} cannot be null */") end else self.add_abort("Receiver is null") end self.add("\} else \{") else self.add("\{") end if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=" or mmethod.name == "is_same_instance") then # Recv is not null, thus if arg is, it is easy to conclude (and respect the invariants) var arg = arguments[1] if arg.mcasttype isa MNullType then if res == null then res = self.new_var(bool_type) if mmethod.name == "!=" then self.add("{res} = 1; /* arg is null and recv is not */") else # `==` and `is_same_instance` self.add("{res} = 0; /* arg is null but recv is not */") end self.add("\}") # closes the null case self.add("if (0) \{") # what follow is useless, CC will drop it end end return res end private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable do compiler.modelbuilder.nb_invok_by_tables += 1 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;") assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.") var recv = arguments.first var res0 = before_send(mmethod, arguments) var runtime_function = mmethod.intro.virtual_runtime_function var msignature = runtime_function.called_signature var res: nullable RuntimeVariable var ret = msignature.return_mtype if ret == null then res = null else res = self.new_var(ret) end var ss = new FlatBuffer ss.append("{recv}") for i in [0..msignature.arity[ do var a = arguments[i+1] var t = msignature.mparameters[i].mtype if i == msignature.vararg_rank then t = arguments[i+1].mcasttype end a = self.autobox(a, t) ss.append(", {a}") end var call if not compiler.modelbuilder.toolcontext.opt_trampoline_call.value then self.require_declaration(const_color) call = "(({runtime_function.c_funptrtype})({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/" else var callsym = "CALL_" + const_color self.require_declaration(callsym) call = "{callsym}({ss}) /* {mmethod} on {arguments.first.inspect}*/" end if res != null then self.add("{res} = {call};") else self.add("{call};") end if res0 != null then assert res != null assign(res0,res) res = res0 end self.add("\}") # closes the null case return res end redef fun call(mmethoddef, recvtype, arguments) do assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.") var res: nullable RuntimeVariable var ret = mmethoddef.msignature.return_mtype if ret == null then res = null else ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) res = self.new_var(ret) end if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then compiler.modelbuilder.nb_invok_by_inline += 1 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;") var frame = new StaticFrame(self, mmethoddef, recvtype, arguments) frame.returnlabel = self.get_name("RET_LABEL") frame.returnvar = res var old_frame = self.frame self.frame = frame self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */") mmethoddef.compile_inside_to_c(self, arguments) self.add("{frame.returnlabel.as(not null)}:(void)0;") self.add("\}") self.frame = old_frame return res end compiler.modelbuilder.nb_invok_by_direct += 1 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;") # Autobox arguments self.adapt_signature(mmethoddef, arguments) self.require_declaration(mmethoddef.c_name) if res == null then self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/") return null else self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});") end return res end redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable do if arguments.first.mcasttype.ctype != "val*" then # In order to shortcut the primitive, we need to find the most specific method # However, because of performance (no flattening), we always work on the realmainmodule var main = self.compiler.mainmodule self.compiler.mainmodule = self.compiler.realmainmodule var res = self.monomorphic_super_send(m, recvtype, arguments) self.compiler.mainmodule = main return res end return table_send(m.mproperty, arguments, m.const_color) end redef fun vararg_instance(mpropdef, recv, varargs, elttype) do # A vararg must be stored into an new array # The trick is that the dymaic type of the array may depends on the receiver # of the method (ie recv) if the static type is unresolved # This is more complex than usual because the unresolved type must not be resolved # with the current receiver (ie self). # Therefore to isolate the resolution from self, a local StaticFrame is created. # One can see this implementation as an inlined method of the receiver whose only # job is to allocate the array var old_frame = self.frame var frame = new StaticFrame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv]) self.frame = frame #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}" var res = self.array_instance(varargs, elttype) self.frame = old_frame return res end redef fun isset_attribute(a, recv) do self.check_recv_notnull(recv) var res = self.new_var(bool_type) # What is the declared type of the attribute? var mtype = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) if mtype isa MNullableType then self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */") return res end self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/") else if mtype.ctype == "val*" then self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */") else self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */") end end return res end redef fun read_attribute(a, recv) do self.check_recv_notnull(recv) # What is the declared type of the attribute? var ret = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then self.compiler.attr_read_count += 1 self.add("count_attr_reads++;") end self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then # Get the attribute or a box (ie. always a val*) var cret = self.object_type.as_nullable var res = self.new_var(cret) res.mcasttype = ret self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */") # Check for Uninitialized attribute if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then self.add("if (unlikely({res} == NULL)) \{") self.add_abort("Uninitialized attribute {a.name}") self.add("\}") if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then self.compiler.isset_checks_count += 1 self.add("count_isset_checks++;") end end # Return the attribute or its unboxed version # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes return self.autobox(res, ret) else var res = self.new_var(ret) self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */") # Check for Uninitialized attribute if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then self.add("if (unlikely({res} == NULL)) \{") self.add_abort("Uninitialized attribute {a.name}") self.add("\}") if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then self.compiler.isset_checks_count += 1 self.add("count_isset_checks++;") end end return res end end redef fun write_attribute(a, recv, value) do self.check_recv_notnull(recv) # What is the declared type of the attribute? var mtype = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) # Adapt the value to the declared type value = self.autobox(value, mtype) self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then var attr = "{recv}->attrs[{a.const_color}]" if mtype.ctype != "val*" then assert mtype isa MClassType # The attribute is primitive, thus we store it in a box # The trick is to create the box the first time then resuse the box self.add("if ({attr} != NULL) \{") self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */") self.add("\} else \{") value = self.autobox(value, self.object_type.as_nullable) self.add("{attr} = {value}; /* {a} on {recv.inspect} */") self.add("\}") else # The attribute is not primitive, thus store it direclty self.add("{attr} = {value}; /* {a} on {recv.inspect} */") end else self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */") end end # Check that mtype is a live open type fun hardening_live_open_type(mtype: MType) do if not compiler.modelbuilder.toolcontext.opt_hardening.value then return self.require_declaration(mtype.const_color) var col = mtype.const_color self.add("if({col} == -1) \{") self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");") self.add_abort("open type dead") self.add("\}") end # Check that mtype it a pointer to a live cast type fun hardening_cast_type(t: String) do if not compiler.modelbuilder.toolcontext.opt_hardening.value then return add("if({t} == NULL) \{") add_abort("cast type null") add("\}") add("if({t}->id == -1 || {t}->color == -1) \{") add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);") add_abort("cast type dead") add("\}") end redef fun init_instance(mtype) do self.require_declaration("NEW_{mtype.mclass.c_name}") var compiler = self.compiler if mtype isa MGenericType and mtype.need_anchor then hardening_live_open_type(mtype) link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) self.require_declaration(mtype.const_color) return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) end compiler.undead_types.add(mtype) self.require_declaration("type_{mtype.c_name}") return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype) end redef fun type_test(value, mtype, tag) do self.add("/* {value.inspect} isa {mtype} */") var compiler = self.compiler var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) var res = self.new_var(bool_type) var cltype = self.get_name("cltype") self.add_decl("int {cltype};") var idtype = self.get_name("idtype") self.add_decl("int {idtype};") var maybe_null = self.maybe_null(value) var accept_null = "0" var ntype = mtype if ntype isa MNullableType then ntype = ntype.mtype accept_null = "1" end if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/") if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_skipped[tag] += 1 self.add("count_type_test_skipped_{tag}++;") end return res end if ntype.need_anchor then var type_struct = self.get_name("type_struct") self.add_decl("const struct type* {type_struct};") # Either with resolution_table with a direct resolution hardening_live_open_type(mtype) link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) self.require_declaration(mtype.const_color) self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];") if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_unresolved[tag] += 1 self.add("count_type_test_unresolved_{tag}++;") end hardening_cast_type(type_struct) self.add("{cltype} = {type_struct}->color;") self.add("{idtype} = {type_struct}->id;") if maybe_null and accept_null == "0" then var is_nullable = self.get_name("is_nullable") self.add_decl("short int {is_nullable};") self.add("{is_nullable} = {type_struct}->is_nullable;") accept_null = is_nullable.to_s end else if ntype isa MClassType then compiler.undead_types.add(mtype) self.require_declaration("type_{mtype.c_name}") hardening_cast_type("(&type_{mtype.c_name})") self.add("{cltype} = type_{mtype.c_name}.color;") self.add("{idtype} = type_{mtype.c_name}.id;") if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_resolved[tag] += 1 self.add("count_type_test_resolved_{tag}++;") end else self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);") end # check color is in table if maybe_null then self.add("if({value} == NULL) \{") self.add("{res} = {accept_null};") self.add("\} else \{") end var value_type_info = self.type_info(value) self.add("if({cltype} >= {value_type_info}->table_size) \{") self.add("{res} = 0;") self.add("\} else \{") self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};") self.add("\}") if maybe_null then self.add("\}") end return res end redef fun is_same_type_test(value1, value2) do var res = self.new_var(bool_type) # Swap values to be symetric if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then var tmp = value1 value1 = value2 value2 = tmp end if value1.mtype.ctype != "val*" then if value2.mtype == value1.mtype then self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */") else if value2.mtype.ctype != "val*" then self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) self.require_declaration("class_{mtype1.c_name}") self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */") end else self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */") end return res end redef fun class_name_string(value) do var res = self.get_name("var_class_name") self.add_decl("const char* {res};") if value.mtype.ctype == "val*" then self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;" else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind and value.mtype.as(MClassType).name != "NativeString" then self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";" else self.require_declaration("type_{value.mtype.c_name}") self.add "{res} = type_{value.mtype.c_name}.name;" end return res end redef fun equal_test(value1, value2) do var res = self.new_var(bool_type) if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then var tmp = value1 value1 = value2 value2 = tmp end if value1.mtype.ctype != "val*" then if value2.mtype == value1.mtype then self.add("{res} = {value1} == {value2};") else if value2.mtype.ctype != "val*" then self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) self.require_declaration("class_{mtype1.c_name}") self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});") self.add("if ({res}) \{") self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});") self.add("\}") end return res end var maybe_null = true var test = new Array[String] var t1 = value1.mcasttype if t1 isa MNullableType then test.add("{value1} != NULL") t1 = t1.mtype else maybe_null = false end var t2 = value2.mcasttype if t2 isa MNullableType then test.add("{value2} != NULL") t2 = t2.mtype else maybe_null = false end var incompatible = false var primitive if t1.ctype != "val*" then primitive = t1 if t1 == t2 then # No need to compare class else if t2.ctype != "val*" then incompatible = true else if can_be_primitive(value2) then test.add("{value1}->class == {value2}->class") else incompatible = true end else if t2.ctype != "val*" then primitive = t2 if can_be_primitive(value1) then test.add("{value1}->class == {value2}->class") else incompatible = true end else primitive = null end if incompatible then if maybe_null then self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/") return res else self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */") return res end end if primitive != null then test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value") else if can_be_primitive(value1) and can_be_primitive(value2) then test.add("{value1}->class == {value2}->class") var s = new Array[String] for t, v in self.compiler.box_kinds do s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)" end test.add("({s.join(" || ")})") else self.add("{res} = {value1} == {value2};") return res end self.add("{res} = {value1} == {value2} || ({test.join(" && ")});") return res end fun can_be_primitive(value: RuntimeVariable): Bool do var t = value.mcasttype.as_notnullable if not t isa MClassType then return false var k = t.mclass.kind return k == interface_kind or t.ctype != "val*" end fun maybe_null(value: RuntimeVariable): Bool do var t = value.mcasttype return t isa MNullableType or t isa MNullType end redef fun array_instance(array, elttype) do var nclass = self.get_class("NativeArray") var arrayclass = self.get_class("Array") var arraytype = arrayclass.get_mtype([elttype]) var res = self.init_instance(arraytype) self.add("\{ /* {res} = array_instance Array[{elttype}] */") var length = self.int_instance(array.length) var nat = native_array_instance(elttype, length) for i in [0..array.length[ do var r = self.autobox(array[i], self.object_type) self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};") end self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length]) self.add("\}") return res end redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable do var mtype = self.get_class("NativeArray").get_mtype([elttype]) self.require_declaration("NEW_{mtype.mclass.c_name}") assert mtype isa MGenericType var compiler = self.compiler if mtype.need_anchor then hardening_live_open_type(mtype) link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) self.require_declaration(mtype.const_color) return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) end compiler.undead_types.add(mtype) self.require_declaration("type_{mtype.c_name}") return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype) end redef fun native_array_def(pname, ret_type, arguments) do var elttype = arguments.first.mtype var nclass = self.get_class("NativeArray") var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values" if pname == "[]" then self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null))) return else if pname == "[]=" then self.add("{recv}[{arguments[1]}]={arguments[2]};") return else if pname == "length" then self.ret(self.new_expr("((struct instance_{nclass.c_name}*){arguments[0]})->length", ret_type.as(not null))) return else if pname == "copy_to" then var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values" self.add("memmove({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));") return end end redef fun calloc_array(ret_type, arguments) do var mclass = self.get_class("ArrayCapable") var ft = mclass.mparameters.first var res = self.native_array_instance(ft, arguments[1]) self.ret(res) end fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do assert mtype.need_anchor var compiler = self.compiler if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType] end compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype) end end redef class MMethodDef # The C function associated to a mmethoddef fun separate_runtime_function: SeparateRuntimeFunction do var res = self.separate_runtime_function_cache if res == null then var recv = mclassdef.bound_mtype var msignature = msignature.resolve_for(recv, recv, mclassdef.mmodule, true) res = new SeparateRuntimeFunction(self, recv, msignature, c_name) self.separate_runtime_function_cache = res end return res end private var separate_runtime_function_cache: nullable SeparateRuntimeFunction # The C function associated to a mmethoddef, that can be stored into a VFT of a class # The first parameter (the reciever) is always typed by val* in order to accept an object value # The C-signature is always compatible with the intro fun virtual_runtime_function: SeparateRuntimeFunction do var res = self.virtual_runtime_function_cache if res == null then # Because the function is virtual, the signature must match the one of the original class var intromclassdef = mproperty.intro.mclassdef var recv = intromclassdef.bound_mtype res = separate_runtime_function if res.called_recv == recv then self.virtual_runtime_function_cache = res return res end var msignature = mproperty.intro.msignature.resolve_for(recv, recv, intromclassdef.mmodule, true) if recv.ctype == res.called_recv.ctype and msignature.c_equiv(res.called_signature) then self.virtual_runtime_function_cache = res return res end res = new SeparateRuntimeFunction(self, recv, msignature, "VIRTUAL_{c_name}") self.virtual_runtime_function_cache = res res.is_thunk = true end return res end private var virtual_runtime_function_cache: nullable SeparateRuntimeFunction end redef class MSignature # Does the C-version of `self` the same than the C-version of `other`? fun c_equiv(other: MSignature): Bool do if self == other then return true if arity != other.arity then return false for i in [0..arity[ do if mparameters[i].mtype.ctype != other.mparameters[i].mtype.ctype then return false end if return_mtype != other.return_mtype then if return_mtype == null or other.return_mtype == null then return false if return_mtype.ctype != other.return_mtype.ctype then return false end return true end end # The C function associated to a methoddef separately compiled class SeparateRuntimeFunction super AbstractRuntimeFunction # The call-side static receiver var called_recv: MType # The call-side static signature var called_signature: MSignature # The name on the compiled method redef var build_c_name: String # Statically call the original body instead var is_thunk = false redef fun to_s do return self.mmethoddef.to_s # The C return type (something or `void`) var c_ret: String is lazy do var ret = called_signature.return_mtype if ret != null then return ret.ctype else return "void" end end # The C signature (only the parmeter part) var c_sig: String is lazy do var sig = new FlatBuffer sig.append("({called_recv.ctype} self") for i in [0..called_signature.arity[ do var mtype = called_signature.mparameters[i].mtype if i == called_signature.vararg_rank then mtype = mmethoddef.mclassdef.mmodule.get_primitive_class("Array").get_mtype([mtype]) end sig.append(", {mtype.ctype} p{i}") end sig.append(")") return sig.to_s end # The C type for the function pointer. var c_funptrtype: String is lazy do return "{c_ret}(*){c_sig}" # The arguments, as generated by `compile_to_c` private var arguments: Array[RuntimeVariable] is noinit redef fun compile_to_c(compiler) do var mmethoddef = self.mmethoddef var recv = self.mmethoddef.mclassdef.bound_mtype var v = compiler.new_visitor var selfvar = new RuntimeVariable("self", called_recv, recv) var arguments = new Array[RuntimeVariable] var frame = new StaticFrame(v, mmethoddef, recv, arguments) v.frame = frame var msignature = called_signature var ret = called_signature.return_mtype var sig = new FlatBuffer var comment = new FlatBuffer sig.append(c_ret) sig.append(" ") sig.append(self.c_name) sig.append(c_sig) comment.append("({selfvar}: {selfvar.mtype}") arguments.add(selfvar) for i in [0..msignature.arity[ do var mtype = msignature.mparameters[i].mtype if i == msignature.vararg_rank then mtype = v.get_class("Array").get_mtype([mtype]) end comment.append(", {mtype}") var argvar = new RuntimeVariable("p{i}", mtype, mtype) arguments.add(argvar) end comment.append(")") if ret != null then comment.append(": {ret}") end compiler.provide_declaration(self.c_name, "{sig};") self.arguments = arguments.to_a v.add_decl("/* method {self} for {comment} */") v.add_decl("{sig} \{") if ret != null then frame.returnvar = v.new_var(ret) end frame.returnlabel = v.get_name("RET_LABEL") if is_thunk then var subret = v.call(mmethoddef, recv, arguments) if ret != null then assert subret != null v.assign(frame.returnvar.as(not null), subret) end else mmethoddef.compile_inside_to_c(v, arguments) end v.add("{frame.returnlabel.as(not null)}:;") if ret != null then v.add("return {frame.returnvar.as(not null)};") end v.add("\}") compiler.names[self.c_name] = "{mmethoddef.full_name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})" end fun compile_trampolines(compiler: SeparateCompiler) do var recv = self.mmethoddef.mclassdef.bound_mtype var selfvar = arguments.first var ret = called_signature.return_mtype if mmethoddef.is_intro and recv.ctype == "val*" then var m = mmethoddef.mproperty var n2 = "CALL_" + m.const_color compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};") var v2 = compiler.new_visitor v2.add "{c_ret} {n2}{c_sig} \{" v2.require_declaration(m.const_color) var call = "(({c_funptrtype})({selfvar}->class->vft[{m.const_color}]))({arguments.join(", ")});" if ret != null then v2.add "return {call}" else v2.add call end v2.add "\}" end if mmethoddef.has_supercall and recv.ctype == "val*" then var m = mmethoddef var n2 = "CALL_" + m.const_color compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};") var v2 = compiler.new_visitor v2.add "{c_ret} {n2}{c_sig} \{" v2.require_declaration(m.const_color) var call = "(({c_funptrtype})({selfvar}->class->vft[{m.const_color}]))({arguments.join(", ")});" if ret != null then v2.add "return {call}" else v2.add call end v2.add "\}" end end end redef class MEntity var const_color: String is lazy do return "COLOR_{c_name}" end interface PropertyLayoutElement end redef class MProperty super PropertyLayoutElement end redef class MPropDef super PropertyLayoutElement end redef class AMethPropdef # The semi-global compilation does not support inlining calls to extern news redef fun can_inline do var m = mpropdef if m != null and m.mproperty.is_init and m.is_extern then return false return super end end