# This file is part of NIT ( http://www.nitlanguage.org ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Separate compilation of a Nit program module separate_compiler import global_compiler # TODO better separation of concerns import coloring redef class ToolContext # --separate var opt_separate: OptionBool = new OptionBool("Use separate compilation", "--separate") # --no-inline-intern var opt_no_inline_intern: OptionBool = new OptionBool("Do not inline call to intern methods", "--no-inline-intern") # --no-union-attribute var opt_no_union_attribute: OptionBool = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute") # --no-shortcut-equate var opt_no_shortcut_equate: OptionBool = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal") # --inline-coloring-numbers var opt_inline_coloring_numbers: OptionBool = new OptionBool("Inline colors and ids", "--inline-coloring-numbers") # --use-naive-coloring var opt_bm_typing: OptionBool = new OptionBool("Colorize items incrementaly, used to simulate binary matrix typing", "--bm-typing") # --use-mod-perfect-hashing var opt_phmod_typing: OptionBool = new OptionBool("Replace coloration by perfect hashing (with mod operator)", "--phmod-typing") # --use-and-perfect-hashing var opt_phand_typing: OptionBool = new OptionBool("Replace coloration by perfect hashing (with and operator)", "--phand-typing") # --generic-resolution-tree var opt_generic_tree: OptionBool = new OptionBool("Use tree representation for live generic types instead of flattened representation", "--generic-resolution-tree") redef init do super self.option_context.add_option(self.opt_separate) self.option_context.add_option(self.opt_no_inline_intern) self.option_context.add_option(self.opt_no_union_attribute) self.option_context.add_option(self.opt_no_shortcut_equate) self.option_context.add_option(self.opt_inline_coloring_numbers) self.option_context.add_option(self.opt_bm_typing) self.option_context.add_option(self.opt_phmod_typing) self.option_context.add_option(self.opt_phand_typing) self.option_context.add_option(self.opt_generic_tree) end end redef class ModelBuilder fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: RapidTypeAnalysis) do var time0 = get_time self.toolcontext.info("*** COMPILING TO C ***", 1) var compiler = new SeparateCompiler(mainmodule, runtime_type_analysis, self) compiler.compile_header # compile class structures for m in mainmodule.in_importation.greaters do for mclass in m.intro_mclasses do compiler.compile_class_to_c(mclass) end end # The main function of the C compiler.new_file compiler.compile_main_function # compile methods for m in mainmodule.in_importation.greaters do compiler.new_file compiler.compile_module_to_c(m) end # compile live & cast type structures compiler.new_file var mtypes = compiler.do_type_coloring for t in mtypes do compiler.compile_type_to_c(t) end if self.toolcontext.opt_generic_tree.value then # compile live generic types selection structures for mclass in model.mclasses do compiler.compile_live_gentype_to_c(mclass) end end compiler.display_stats write_and_make(compiler) end end # Singleton that store the knowledge about the separate compilation process class SeparateCompiler super GlobalCompiler # TODO better separation of concerns private var undead_types: Set[MType] = new HashSet[MType] private var partial_types: Set[MType] = new HashSet[MType] protected var typeids: HashMap[MType, Int] protected writable = new HashMap[MType, Int] private var type_colors: Map[MType, Int] = typeids private var type_tables: nullable Map[MType, Array[nullable MType]] = null private var livetypes_colors: nullable Map[MType, Int] private var livetypes_tables: nullable Map[MClass, Array[nullable Object]] private var livetypes_tables_sizes: nullable Map[MClass, Array[Int]] private var live_unanchored_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]] private var unanchored_types_colors: nullable Map[MType, Int] private var unanchored_types_tables: nullable Map[MClassType, Array[nullable MType]] private var unanchored_types_masks: nullable Map[MClassType, Int] protected var class_coloring: ClassColoring protected var method_colors: Map[MMethod, Int] protected var method_tables: Map[MClass, Array[nullable MMethodDef]] protected var attr_colors: Map[MAttribute, Int] protected var attr_tables: Map[MClass, Array[nullable MAttributeDef]] protected var vt_colors: Map[MVirtualTypeProp, Int] protected var vt_tables: Map[MClass, Array[nullable MVirtualTypeDef]] protected var vt_masks: nullable Map[MClass, Int] private var ft_colors: nullable Map[MParameterType, Int] private var ft_tables: nullable Map[MClass, Array[nullable MParameterType]] private var ft_masks: nullable Map[MClass, Int] init(mainmodule: MModule, runtime_type_analysis: RapidTypeAnalysis, mmbuilder: ModelBuilder) do self.do_property_coloring self.compile_box_kinds end redef fun compile_header_structs do self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */") self.compile_header_attribute_structs self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[1]; \}; /* general C type representing a Nit class. */") if modelbuilder.toolcontext.opt_generic_tree.value then # With generic_tree, only ft and vt resolution is stored in the type self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; int livecolor; struct types *vts_table; struct types *fts_table; int table_size; int type_table[1]; \}; /* general C type representing a Nit type. */") else # With unanchored_table, all live type resolution are stored in a big table: unanchored_table self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; struct types *unanchored_table; int table_size; int type_table[1]; \}; /* general C type representing a Nit type. */") end if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then self.header.add_decl("struct types \{ int mask; struct type *types[1]; \}; /* a list types (used for vts, fts and unanchored lists). */") else self.header.add_decl("struct types \{ struct type *types[1]; \}; /* a list types (used for vts, fts and unanchored lists). */") end self.header.add_decl("typedef struct \{ struct type *type; struct class *class; nitattribute_t attrs[1]; \} val; /* general C type representing a Nit instance. */") end fun compile_header_attribute_structs do if modelbuilder.toolcontext.opt_no_union_attribute.value then self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */") else self.header.add_decl("typedef union \{") self.header.add_decl("void* val;") for c, v in self.box_kinds do var t = c.mclass_type self.header.add_decl("{t.ctype} {t.ctypename};") end self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */") end end redef fun compile_class_names do abort # There is no class name compilation since the name is stored in the type structure end fun compile_box_kinds do # Collect all bas box class # FIXME: this is not completely fine with a separate compilation scheme for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do var classes = self.mainmodule.model.get_mclasses_by_name(classname) if classes == null then continue assert classes.length == 1 else print classes.join(", ") self.box_kinds[classes.first] = self.box_kinds.length + 1 end end var box_kinds = new HashMap[MClass, Int] fun box_kind_of(mclass: MClass): Int do if mclass.mclass_type.ctype == "val*" then return 0 else if mclass.kind == extern_kind then return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")] else return self.box_kinds[mclass] end end fun compile_color_consts(colors: Map[Object, Int]) do for m, c in colors do if m isa MProperty then if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then self.header.add_decl("#define {m.const_color} {c}") else self.header.add_decl("extern const int {m.const_color};") self.header.add("const int {m.const_color} = {c};") end else if m isa MType then if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then self.header.add_decl("#define {m.const_color} {c}") else self.header.add_decl("extern const int {m.const_color};") self.header.add("const int {m.const_color} = {c};") end end end end # colorize classe properties fun do_property_coloring do # classes coloration self.class_coloring = new ClassColoring(mainmodule) class_coloring.colorize(modelbuilder.model.mclasses) # methods coloration var method_coloring = new MethodColoring(self.class_coloring) self.method_colors = method_coloring.colorize self.method_tables = method_coloring.build_property_tables self.compile_color_consts(self.method_colors) # attributes coloration var attribute_coloring = new AttributeColoring(self.class_coloring) self.attr_colors = attribute_coloring.colorize self.attr_tables = attribute_coloring.build_property_tables self.compile_color_consts(self.attr_colors) if modelbuilder.toolcontext.opt_bm_typing.value then self.class_coloring = new NaiveClassColoring(mainmodule) self.class_coloring.colorize(modelbuilder.model.mclasses) end # vt coloration if modelbuilder.toolcontext.opt_bm_typing.value then var vt_coloring = new NaiveVTColoring(self.class_coloring) self.vt_colors = vt_coloring.colorize self.vt_tables = vt_coloring.build_property_tables else if modelbuilder.toolcontext.opt_phmod_typing.value then var vt_coloring = new VTModPerfectHashing(self.class_coloring) self.vt_colors = vt_coloring.colorize self.vt_masks = vt_coloring.compute_masks self.vt_tables = vt_coloring.build_property_tables else if modelbuilder.toolcontext.opt_phand_typing.value then var vt_coloring = new VTAndPerfectHashing(self.class_coloring) self.vt_colors = vt_coloring.colorize self.vt_masks = vt_coloring.compute_masks self.vt_tables = vt_coloring.build_property_tables else var vt_coloring = new VTColoring(self.class_coloring) self.vt_colors = vt_coloring.colorize self.vt_tables = vt_coloring.build_property_tables end self.compile_color_consts(self.vt_colors) end # colorize live types of the program private fun do_type_coloring: Set[MType] do var mtypes = new HashSet[MType] mtypes.add_all(self.runtime_type_analysis.live_types) mtypes.add_all(self.runtime_type_analysis.live_cast_types) mtypes.add_all(self.undead_types) for c in self.box_kinds.keys do mtypes.add(c.mclass_type) end for mtype in mtypes do retieve_live_partial_types(mtype) end mtypes.add_all(self.partial_types) # set type unique id if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then var sorted_mtypes = new OrderedSet[MType].from(mtypes) sorted_mtypes.linearize(new ReverseTypeSorter(self.mainmodule)) for mtype in sorted_mtypes do self.typeids[mtype] = self.typeids.length + 1 end else for mtype in mtypes do self.typeids[mtype] = self.typeids.length end end if modelbuilder.toolcontext.opt_generic_tree.value then # fts coloration for non-erased compilation if modelbuilder.toolcontext.opt_bm_typing.value then var ft_coloring = new NaiveFTColoring(self.class_coloring) self.ft_colors = ft_coloring.colorize self.ft_tables = ft_coloring.build_ft_tables else if modelbuilder.toolcontext.opt_phmod_typing.value then var ft_coloring = new FTModPerfectHashing(self.class_coloring) self.ft_colors = ft_coloring.colorize self.ft_masks = ft_coloring.compute_masks self.ft_tables = ft_coloring.build_ft_tables else if modelbuilder.toolcontext.opt_phand_typing.value then var ft_coloring = new FTAndPerfectHashing(self.class_coloring) self.ft_colors = ft_coloring.colorize self.ft_masks = ft_coloring.compute_masks self.ft_tables = ft_coloring.build_ft_tables else var ft_coloring = new FTColoring(self.class_coloring) self.ft_colors = ft_coloring.colorize self.ft_tables = ft_coloring.build_ft_tables end self.compile_color_consts(self.ft_colors.as(not null)) # colorize live entries var entries_coloring if modelbuilder.toolcontext.opt_bm_typing.value then entries_coloring = new NaiveLiveEntryColoring else entries_coloring = new LiveEntryColoring end self.livetypes_colors = entries_coloring.colorize(mtypes) self.livetypes_tables = entries_coloring.build_livetype_tables(mtypes) self.livetypes_tables_sizes = entries_coloring.livetypes_tables_sizes else # VT and FT are stored with other unresolved types in the big unanchored_tables self.compile_unanchored_tables(mtypes) end # colorize types if modelbuilder.toolcontext.opt_bm_typing.value then var type_coloring = new NaiveTypeColoring(self.mainmodule, mtypes) self.type_colors = type_coloring.colorize(mtypes) self.type_tables = type_coloring.build_type_tables(mtypes, type_colors) else if modelbuilder.toolcontext.opt_phmod_typing.value then var type_coloring = new TypeModPerfectHashing(self.mainmodule, mtypes) self.type_colors = type_coloring.compute_masks(mtypes, typeids) self.type_tables = type_coloring.hash_type_tables(mtypes, typeids, type_colors) self.header.add_decl("#define HASH(mask, id) ((mask)%(id))") else if modelbuilder.toolcontext.opt_phand_typing.value then var type_coloring = new TypeAndPerfectHashing(self.mainmodule, mtypes) self.type_colors = type_coloring.compute_masks(mtypes, typeids) self.type_tables = type_coloring.hash_type_tables(mtypes, typeids, type_colors) self.header.add_decl("#define HASH(mask, id) ((mask)&(id))") else var type_coloring = new TypeColoring(self.mainmodule, mtypes) self.type_colors = type_coloring.colorize(mtypes) self.type_tables = type_coloring.build_type_tables(mtypes, type_colors) end return mtypes end protected fun compile_unanchored_tables(mtypes: Set[MType]) do # Unanchored_tables is used to perform a type resolution at runtime in O(1) # During the visit of the body of classes, live_unanchored_types are collected # and associated to # Collect all live_unanchored_types (visited in the body of classes) # Determinate fo each livetype what are its possible requested anchored types var mtype2unanchored = new HashMap[MClassType, Set[MType]] for mtype in self.runtime_type_analysis.live_types do var set = new HashSet[MType] for cd in mtype.collect_mclassdefs(self.mainmodule) do if self.live_unanchored_types.has_key(cd) then set.add_all(self.live_unanchored_types[cd]) end end mtype2unanchored[mtype] = set end # Compute the table layout with the prefered method if modelbuilder.toolcontext.opt_bm_typing.value then var unanchored_type_coloring = new NaiveUnanchoredTypeColoring self.unanchored_types_colors = unanchored_type_coloring.colorize(mtype2unanchored) self.unanchored_types_tables = unanchored_type_coloring.build_tables(mtype2unanchored) else if modelbuilder.toolcontext.opt_phmod_typing.value then var unanchored_type_coloring = new UnanchoredTypeModPerfectHashing self.unanchored_types_colors = unanchored_type_coloring.colorize(mtype2unanchored) self.unanchored_types_masks = unanchored_type_coloring.compute_masks(mtype2unanchored) self.unanchored_types_tables = unanchored_type_coloring.build_tables(mtype2unanchored) else if modelbuilder.toolcontext.opt_phand_typing.value then var unanchored_type_coloring = new UnanchoredTypeAndPerfectHashing self.unanchored_types_colors = unanchored_type_coloring.colorize(mtype2unanchored) self.unanchored_types_masks = unanchored_type_coloring.compute_masks(mtype2unanchored) self.unanchored_types_tables = unanchored_type_coloring.build_tables(mtype2unanchored) else var unanchored_type_coloring = new UnanchoredTypeColoring self.unanchored_types_colors = unanchored_type_coloring.colorize(mtype2unanchored) self.unanchored_types_tables = unanchored_type_coloring.build_tables(mtype2unanchored) end # Compile a C constant for each collected unanchored type. # Either to a color, or to -1 if the unanchored type is dead (no live receiver can require it) var all_unanchored = new HashSet[MType] for t in self.live_unanchored_types.values do all_unanchored.add_all(t) end var all_unanchored_types_colors = new HashMap[MType, Int] for t in all_unanchored do if unanchored_types_colors.has_key(t) then all_unanchored_types_colors[t] = unanchored_types_colors[t] else all_unanchored_types_colors[t] = -1 end end self.compile_color_consts(all_unanchored_types_colors) #print "tables" #for k, v in unanchored_types_tables.as(not null) do # print "{k}: {v.join(", ")}" #end #print "" end fun retieve_live_partial_types(mtype: MType) do # add formal types arguments to mtypes if mtype isa MGenericType then for ft in mtype.arguments do if ft.need_anchor then print("Why do we need anchor here ?") abort end self.partial_types.add(ft) retieve_live_partial_types(ft) end end var mclass_type: MClassType if mtype isa MNullableType then mclass_type = mtype.mtype.as(MClassType) else mclass_type = mtype.as(MClassType) end # add virtual types to mtypes for vt in self.vt_tables[mclass_type.mclass] do if vt != null then var anchored = vt.bound.anchor_to(self.mainmodule, mclass_type) self.partial_types.add(anchored) end end end # declare live generic types tables selection private fun compile_live_gentype_to_c(mclass: MClass) do if mclass.arity > 0 then if self.livetypes_tables.has_key(mclass) then var table = self.livetypes_tables[mclass] var sign = self.livetypes_tables_sizes[mclass] var table_buffer = new Buffer.from("const struct type *livetypes_{mclass.c_name}[{sign.join("][")}] = \{\n") compile_livetype_table(table, table_buffer, 1, mclass.arity) table_buffer.append("\};") var v = new SeparateCompilerVisitor(self) self.header.add_decl("extern const struct type *livetypes_{mclass.c_name}[{sign.join("][")}];") v.add_decl(table_buffer.to_s) else var sign = new Array[Int].filled_with(0, mclass.arity) var v = new SeparateCompilerVisitor(self) self.header.add_decl("extern const struct type *livetypes_{mclass.c_name}[{sign.join("][")}];") v.add_decl("const struct type *livetypes_{mclass.c_name}[{sign.join("][")}];") end end end private fun compile_livetype_table(table: Array[nullable Object], buffer: Buffer, depth: Int, max: Int) do for obj in table do if obj == null then if depth == max then buffer.append("NULL,\n") else buffer.append("\{\},\n") end else if obj isa MClassType then buffer.append("(struct type*) &type_{obj.c_name}, /* {obj} */\n") else if obj isa Array[nullable Object] then buffer.append("\{\n") compile_livetype_table(obj, buffer, depth + 1, max) buffer.append("\},\n") end end end # Separately compile all the method definitions of the module fun compile_module_to_c(mmodule: MModule) do var old_module = self.mainmodule self.mainmodule = mmodule for cd in mmodule.mclassdefs do for pd in cd.mpropdefs do if not pd isa MMethodDef then continue #print "compile {pd} @ {cd} @ {mmodule}" var r = new SeparateRuntimeFunction(pd) r.compile_to_c(self) if true or cd.bound_mtype.ctype != "val*" then var r2 = new VirtualRuntimeFunction(pd) r2.compile_to_c(self) end end end self.mainmodule = old_module end # Globaly compile the type structure of a live type fun compile_type_to_c(mtype: MType) do var c_name = mtype.c_name var v = new SeparateCompilerVisitor(self) v.add_decl("/* runtime type {mtype} */") # extern const struct type_X self.header.add_decl("extern const struct type_{c_name} type_{c_name};") self.header.add_decl("struct type_{c_name} \{") self.header.add_decl("int id;") self.header.add_decl("const char *name;") self.header.add_decl("int color;") self.header.add_decl("short int is_nullable;") if modelbuilder.toolcontext.opt_generic_tree.value then self.header.add_decl("int livecolor;") self.header.add_decl("const struct vts_table_{c_name} *vts_table;") self.header.add_decl("const struct fts_table_{c_name} *fts_table;") else self.header.add_decl("const struct types *unanchored_table;") end self.header.add_decl("int table_size;") self.header.add_decl("int type_table[{self.type_tables[mtype].length}];") self.header.add_decl("\};") # const struct type_X v.add_decl("const struct type_{c_name} type_{c_name} = \{") v.add_decl("{self.typeids[mtype]},") v.add_decl("\"{mtype}\", /* class_name_string */") v.add_decl("{self.type_colors[mtype]},") if mtype isa MNullableType then v.add_decl("1,") else v.add_decl("0,") end if modelbuilder.toolcontext.opt_generic_tree.value then v.add_decl("{self.livetypes_colors[mtype]},") if compile_type_vts_table(mtype) then v.add_decl("&vts_table_{c_name},") else v.add_decl("NULL,") end if compile_type_fts_table(mtype) then v.add_decl("&fts_table_{c_name},") else v.add_decl("NULL,") end else if compile_type_unanchored_table(mtype) then v.add_decl("(struct types*) &unanchored_table_{c_name},") else v.add_decl("NULL,") end end v.add_decl("{self.type_tables[mtype].length},") v.add_decl("\{") for stype in self.type_tables[mtype] do if stype == null then v.add_decl("-1, /* empty */") else v.add_decl("{self.typeids[stype]}, /* {stype} */") end end v.add_decl("\},") v.add_decl("\};") end protected fun compile_type_fts_table(mtype: MType): Bool do var mclass_type: MClassType if mtype isa MNullableType then mclass_type = mtype.mtype.as(MClassType) else mclass_type = mtype.as(MClassType) end if self.ft_tables[mclass_type.mclass].is_empty then return false # extern const struct fst_table_X fst_table_X self.header.add_decl("extern const struct fts_table_{mtype.c_name} fts_table_{mtype.c_name};") self.header.add_decl("struct fts_table_{mtype.c_name} \{") if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then self.header.add_decl("int mask;") end self.header.add_decl("struct type *types[{self.ft_tables[mclass_type.mclass].length}];") self.header.add_decl("\};") # const struct fts_table_X fts_table_X var v = new_visitor v.add_decl("const struct fts_table_{mtype.c_name} fts_table_{mtype.c_name} = \{") if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then v.add_decl("{self.ft_masks[mclass_type.mclass]},") end v.add_decl("\{") for ft in self.ft_tables[mclass_type.mclass] do if ft == null then v.add_decl("NULL, /* empty */") else var ntype: MType if ft.mclass == mclass_type.mclass then ntype = mclass_type.arguments[ft.rank] else ntype = ft.anchor_to(self.mainmodule, mclass_type) end if self.typeids.has_key(ntype) then v.add_decl("(struct type*)&type_{ntype.c_name}, /* {ft} ({ntype}) */") else v.add_decl("NULL, /* empty ({ft} not a live type) */") end end end v.add_decl("\},") v.add_decl("\};") return true end protected fun compile_type_vts_table(mtype: MType): Bool do var mclass_type: MClassType if mtype isa MNullableType then mclass_type = mtype.mtype.as(MClassType) else mclass_type = mtype.as(MClassType) end if self.vt_tables[mclass_type.mclass].is_empty then return false # extern const struct vts_table_X vts_table_X self.header.add_decl("extern const struct vts_table_{mtype.c_name} vts_table_{mtype.c_name};") self.header.add_decl("struct vts_table_{mtype.c_name} \{") if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then self.header.add_decl("int mask;") end self.header.add_decl("struct type *types[{self.vt_tables[mclass_type.mclass].length}];") self.header.add_decl("\};") # const struct vts_table_X vts_table_X var v = new_visitor v.add_decl("const struct vts_table_{mtype.c_name} vts_table_{mtype.c_name} = \{") if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then v.add_decl("{vt_masks[mclass_type.mclass]},") end v.add_decl("\{") for vt in self.vt_tables[mclass_type.mclass] do if vt == null then v.add_decl("NULL, /* empty */") else var bound = vt.bound if bound == null then #FIXME how can a bound be null here ? print "No bound found for virtual type {vt} ?" abort else var is_nullable = "" if bound isa MNullableType then bound = bound.mtype is_nullable = "nullable_" end if bound isa MVirtualType then bound = bound.anchor_to(self.mainmodule, mclass_type) else if bound isa MParameterType then bound = bound.anchor_to(self.mainmodule, mclass_type) else if bound isa MGenericType and bound.need_anchor then bound = bound.anchor_to(self.mainmodule, mclass_type) else if bound isa MClassType then else print "NOT YET IMPLEMENTED: mtype_to_livetype with type: {bound}" abort end if self.typeids.has_key(bound) then v.add_decl("(struct type*)&type_{is_nullable}{bound.c_name}, /* {bound} */") else v.add_decl("NULL, /* dead type {bound} */") end end end end v.add_decl("\},") v.add_decl("\};") return true end fun compile_type_unanchored_table(mtype: MType): Bool do var mclass_type: MClassType if mtype isa MNullableType then mclass_type = mtype.mtype.as(MClassType) else mclass_type = mtype.as(MClassType) end if not self.unanchored_types_tables.has_key(mclass_type) then return false # extern const struct unanchored_table_X unanchored_table_X self.header.add_decl("extern const struct unanchored_table_{mtype.c_name} unanchored_table_{mtype.c_name};") self.header.add_decl("struct unanchored_table_{mtype.c_name} \{") if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then self.header.add_decl("int mask;") end self.header.add_decl("struct type *types[{self.unanchored_types_tables[mclass_type].length}];") self.header.add_decl("\};") # const struct fts_table_X fts_table_X var v = new_visitor v.add_decl("const struct unanchored_table_{mtype.c_name} unanchored_table_{mtype.c_name} = \{") if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then v.add_decl("{self.unanchored_types_masks[mclass_type]},") end v.add_decl("\{") for t in self.unanchored_types_tables[mclass_type] do if t == null then v.add_decl("NULL, /* empty */") else # The table stores the result of the type resolution # Therefore, for a receiver `mclass_type`, and a unresolved type `t` # the value stored is tv. var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true) # FIXME: What typeids means here? How can a tv not be live? if self.typeids.has_key(tv) then v.add_decl("(struct type*)&type_{tv.c_name}, /* {t}: {tv} */") else v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */") end end end v.add_decl("\},") v.add_decl("\};") return true end # Globally compile the table of the class mclass # In a link-time optimisation compiler, tables are globally computed # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally fun compile_class_to_c(mclass: MClass) do var mtype = mclass.intro.bound_mtype var c_name = mclass.c_name var vft = self.method_tables[mclass] var attrs = self.attr_tables[mclass] var v = new_visitor v.add_decl("/* runtime class {c_name} */") var idnum = classids.length var idname = "ID_" + c_name self.classids[mtype] = idname #self.header.add_decl("#define {idname} {idnum} /* {c_name} */") self.header.add_decl("struct class_{c_name} \{") self.header.add_decl("int box_kind;") self.header.add_decl("nitmethod_t vft[{vft.length}];") self.header.add_decl("\};") # Build class vft self.header.add_decl("extern const struct class_{c_name} class_{c_name};") v.add_decl("const struct class_{c_name} class_{c_name} = \{") v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */") v.add_decl("\{") for i in [0 .. vft.length[ do var mpropdef = vft[i] if mpropdef == null then v.add_decl("NULL, /* empty */") else if true or mpropdef.mclassdef.bound_mtype.ctype != "val*" then v.add_decl("(nitmethod_t)VIRTUAL_{mpropdef.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */") else v.add_decl("(nitmethod_t){mpropdef.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */") end end end v.add_decl("\}") v.add_decl("\};") if mtype.ctype != "val*" then #Build instance struct self.header.add_decl("struct instance_{c_name} \{") self.header.add_decl("const struct type *type;") self.header.add_decl("const struct class *class;") self.header.add_decl("{mtype.ctype} value;") self.header.add_decl("\};") if not self.runtime_type_analysis.live_types.has(mtype) then return self.header.add_decl("val* BOX_{c_name}({mtype.ctype});") v.add_decl("/* allocate {mtype} */") v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype} value) \{") v.add("struct instance_{c_name}*res = GC_MALLOC(sizeof(struct instance_{c_name}));") v.add("res->type = (struct type*) &type_{c_name};") v.add("res->class = (struct class*) &class_{c_name};") v.add("res->value = value;") v.add("return (val*)res;") v.add("\}") return end var is_native_array = mclass.name == "NativeArray" var sig if is_native_array then sig = "int length, struct type* type" else sig = "struct type* type" end #Build instance struct #extern const struct instance_array__NativeArray instance_array__NativeArray; self.header.add_decl("struct instance_{c_name} \{") self.header.add_decl("const struct type *type;") self.header.add_decl("const struct class *class;") self.header.add_decl("nitattribute_t attrs[{attrs.length}];") if is_native_array then # NativeArrays are just a instance header followed by an array of values self.header.add_decl("val* values[0];") end self.header.add_decl("\};") self.header.add_decl("{mtype.ctype} NEW_{c_name}({sig});") v.add_decl("/* allocate {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}({sig}) \{") var res = v.new_named_var(mtype, "self") res.is_exact = true if is_native_array then var mtype_elt = mtype.arguments.first v.add("{res} = GC_MALLOC(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));") else v.add("{res} = GC_MALLOC(sizeof(struct instance_{c_name}));") end v.add("{res}->type = type;") if v.compiler.modelbuilder.toolcontext.opt_hardening.value then v.add("if(type == NULL) \{") v.add_abort("type null") v.add("\}") if not v.compiler.modelbuilder.toolcontext.opt_generic_tree.value then v.add("if(type->unanchored_table == NULL) \{") v.add("fprintf(stderr, \"Insantiation of a dead type: %s\\n\", type->name);") v.add_abort("type dead") v.add("\}") end end v.add("{res}->class = (struct class*) &class_{c_name};") self.generate_init_attr(v, res, mtype) v.add("return {res};") v.add("\}") generate_check_init_instance(mtype) end redef fun generate_check_init_instance(mtype) do if self.modelbuilder.toolcontext.opt_no_check_initialization.value then return var v = self.new_visitor var c_name = mtype.mclass.c_name var res = new RuntimeVariable("self", mtype, mtype) self.header.add_decl("void CHECK_NEW_{c_name}({mtype.ctype});") v.add_decl("/* allocate {mtype} */") v.add_decl("void CHECK_NEW_{c_name}({mtype.ctype} {res}) \{") self.generate_check_attr(v, res, mtype) v.add("\}") end redef fun new_visitor do return new SeparateCompilerVisitor(self) end # The C function associated to a methoddef separately compiled class SeparateRuntimeFunction super AbstractRuntimeFunction redef fun build_c_name: String do return "{mmethoddef.c_name}" end redef fun to_s do return self.mmethoddef.to_s redef fun compile_to_c(compiler) do var mmethoddef = self.mmethoddef var recv = self.mmethoddef.mclassdef.bound_mtype var v = compiler.new_visitor var selfvar = new RuntimeVariable("self", recv, recv) var arguments = new Array[RuntimeVariable] var frame = new Frame(v, mmethoddef, recv, arguments) v.frame = frame var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) var sig = new Buffer var comment = new Buffer var ret = msignature.return_mtype if ret != null then sig.append("{ret.ctype} ") else if mmethoddef.mproperty.is_new then ret = recv sig.append("{ret.ctype} ") else sig.append("void ") end sig.append(self.c_name) sig.append("({selfvar.mtype.ctype} {selfvar}") comment.append("(self: {selfvar}") arguments.add(selfvar) for i in [0..msignature.arity[ do var mtype = msignature.mparameters[i].mtype if i == msignature.vararg_rank then mtype = v.get_class("Array").get_mtype([mtype]) end comment.append(", {mtype}") sig.append(", {mtype.ctype} p{i}") var argvar = new RuntimeVariable("p{i}", mtype, mtype) arguments.add(argvar) end sig.append(")") comment.append(")") if ret != null then comment.append(": {ret}") end compiler.header.add_decl("{sig};") v.add_decl("/* method {self} for {comment} */") v.add_decl("{sig} \{") if ret != null then frame.returnvar = v.new_var(ret) end frame.returnlabel = v.get_name("RET_LABEL") if recv != arguments.first.mtype then #print "{self} {recv} {arguments.first}" end mmethoddef.compile_inside_to_c(v, arguments) v.add("{frame.returnlabel.as(not null)}:;") if ret != null then v.add("return {frame.returnvar.as(not null)};") end v.add("\}") end end # The C function associated to a methoddef on a primitive type, stored into a VFT of a class # The first parameter (the reciever) is always typed by val* in order to accept an object value class VirtualRuntimeFunction super AbstractRuntimeFunction redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}" end redef fun to_s do return self.mmethoddef.to_s redef fun compile_to_c(compiler) do var mmethoddef = self.mmethoddef var recv = self.mmethoddef.mclassdef.bound_mtype var v = compiler.new_visitor var selfvar = new RuntimeVariable("self", v.object_type, recv) var arguments = new Array[RuntimeVariable] var frame = new Frame(v, mmethoddef, recv, arguments) v.frame = frame var sig = new Buffer var comment = new Buffer # Because the function is virtual, the signature must match the one of the original class var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) var ret = msignature.return_mtype if ret != null then sig.append("{ret.ctype} ") else if mmethoddef.mproperty.is_new then ret = recv sig.append("{ret.ctype} ") else sig.append("void ") end sig.append(self.c_name) sig.append("({selfvar.mtype.ctype} {selfvar}") comment.append("(self: {selfvar}") arguments.add(selfvar) for i in [0..msignature.arity[ do var mtype = msignature.mparameters[i].mtype if i == msignature.vararg_rank then mtype = v.get_class("Array").get_mtype([mtype]) end comment.append(", {mtype}") sig.append(", {mtype.ctype} p{i}") var argvar = new RuntimeVariable("p{i}", mtype, mtype) arguments.add(argvar) end sig.append(")") comment.append(")") if ret != null then comment.append(": {ret}") end compiler.header.add_decl("{sig};") v.add_decl("/* method {self} for {comment} */") v.add_decl("{sig} \{") if ret != null then frame.returnvar = v.new_var(ret) end frame.returnlabel = v.get_name("RET_LABEL") if recv != arguments.first.mtype then #print "{self} {recv} {arguments.first}" end mmethoddef.compile_inside_to_c(v, arguments) v.add("{frame.returnlabel.as(not null)}:;") if ret != null then v.add("return {frame.returnvar.as(not null)};") end v.add("\}") end redef fun call(v, arguments) do abort # TODO ? end end # A visitor on the AST of property definition that generate the C code of a separate compilation process. class SeparateCompilerVisitor super GlobalCompilerVisitor # TODO better separation of concerns redef fun adapt_signature(m: MMethodDef, args: Array[RuntimeVariable]) do var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true) var recv = args.first if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type) end for i in [0..msignature.arity[ do var t = msignature.mparameters[i].mtype if i == msignature.vararg_rank then t = args[i+1].mtype end args[i+1] = self.autobox(args[i+1], t) end end # Box or unbox a value to another type iff a C type conversion is needed # ENSURE: result.mtype.ctype == mtype.ctype redef fun autobox(value: RuntimeVariable, mtype: MType): RuntimeVariable do if value.mtype == mtype then return value else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then return value else if value.mtype.ctype == "val*" then return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype) else if mtype.ctype == "val*" then var valtype = value.mtype.as(MClassType) var res = self.new_var(mtype) if not compiler.runtime_type_analysis.live_types.has(valtype) then self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */") self.add("printf(\"Dead code executed!\\n\"); exit(1);") return res end self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */") return res else # Bad things will appen! var res = self.new_var(mtype) self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */") self.add("printf(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); exit(1);") return res end end # Return a C expression returning the runtime type structure of the value # The point of the method is to works also with primitives types. fun type_info(value: RuntimeVariable): String do if value.mtype.ctype == "val*" then return "{value}->type" else return "(&type_{value.mtype.c_name})" end end redef fun send(mmethod, arguments) do if arguments.first.mcasttype.ctype != "val*" then return self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments) end var res: nullable RuntimeVariable var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true) var ret = msignature.return_mtype if mmethod.is_new then ret = arguments.first.mtype res = self.new_var(ret) else if ret == null then res = null else res = self.new_var(ret) end var s = new Buffer var ss = new Buffer var recv = arguments.first s.append("val*") ss.append("{recv}") self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), arguments) for i in [0..msignature.arity[ do var a = arguments[i+1] var t = msignature.mparameters[i].mtype if i == msignature.vararg_rank then t = arguments[i+1].mcasttype end s.append(", {t.ctype}") a = self.autobox(a, t) ss.append(", {a}") end var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_other.value or mmethod.name == "==" or mmethod.name == "!=" var maybenull = recv.mcasttype isa MNullableType and consider_null if maybenull then self.add("if ({recv} == NULL) \{") if mmethod.name == "==" then assert res != null var arg = arguments[1] if arg.mcasttype isa MNullableType then self.add("{res} = ({arg} == NULL);") else if arg.mcasttype isa MNullType then self.add("{res} = 1; /* is null */") else self.add("{res} = 0; /* {arg.inspect} cannot be null */") end else if mmethod.name == "!=" then assert res != null var arg = arguments[1] if arg.mcasttype isa MNullableType then self.add("{res} = ({arg} != NULL);") else if arg.mcasttype isa MNullType then self.add("{res} = 0; /* is null */") else self.add("{res} = 1; /* {arg.inspect} cannot be null */") end else self.add_abort("Reciever is null") end self.add("\} else \{") end if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then assert res != null # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants) var arg = arguments[1] if arg.mcasttype isa MNullType then if mmethod.name == "==" then self.add("{res} = 0; /* arg is null but recv is not */") else self.add("{res} = 1; /* arg is null and recv is not */") end if maybenull then self.add("\}") end return res end end var r if ret == null then r = "void" else r = ret.ctype var call = "(({r} (*)({s}))({arguments.first}->class->vft[{mmethod.const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/" if res != null then self.add("{res} = {call};") else self.add("{call};") end if maybenull then self.add("\}") end return res end redef fun call(mmethoddef, recvtype, arguments) do var res: nullable RuntimeVariable var ret = mmethoddef.msignature.return_mtype if mmethoddef.mproperty.is_new then ret = arguments.first.mtype res = self.new_var(ret) else if ret == null then res = null else ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) res = self.new_var(ret) end if self.compiler.modelbuilder.mpropdef2npropdef.has_key(mmethoddef) and self.compiler.modelbuilder.mpropdef2npropdef[mmethoddef] isa AInternMethPropdef and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value then var frame = new Frame(self, mmethoddef, recvtype, arguments) frame.returnlabel = self.get_name("RET_LABEL") frame.returnvar = res var old_frame = self.frame self.frame = frame self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) */") mmethoddef.compile_inside_to_c(self, arguments) self.add("{frame.returnlabel.as(not null)}:(void)0;") self.add("\}") self.frame = old_frame return res end # Autobox arguments self.adapt_signature(mmethoddef, arguments) if res == null then self.add("{mmethoddef.c_name}({arguments.join(", ")});") return null else self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});") end return res end redef fun vararg_instance(mpropdef, recv, varargs, elttype) do # A vararg must be stored into an new array # The trick is that the dymaic type of the array may depends on the receiver # of the method (ie recv) if the static type is unresolved # This is more complex than usual because the unanchored type must not be resolved # with the current receiver (ie self). # Therefore to isolate the resolution from self, a local Frame is created. # One can see this implementation as an inlined method of the receiver whose only # job is to allocate the array var old_frame = self.frame var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv]) self.frame = frame #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}" var res = self.array_instance(varargs, elttype) self.frame = old_frame return res end redef fun isset_attribute(a, recv) do self.check_recv_notnull(recv) var res = self.new_var(bool_type) # What is the declared type of the attribute? var mtype = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) if mtype isa MNullableType then self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */") return res end if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/") else if mtype.ctype == "val*" then self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */") else self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */") end end return res end redef fun read_attribute(a, recv) do self.check_recv_notnull(recv) # What is the declared type of the attribute? var ret = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then # Get the attribute or a box (ie. always a val*) var cret = self.object_type.as_nullable var res = self.new_var(cret) res.mcasttype = ret self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */") # Check for Uninitialized attribute if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_initialization.value then self.add("if ({res} == NULL) \{") self.add_abort("Uninitialized attribute {a.name}") self.add("\}") end # Return the attribute or its unboxed version # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes return self.autobox(res, ret) else var res = self.new_var(ret) self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */") # Check for Uninitialized attribute if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_initialization.value then self.add("if ({res} == NULL) \{") self.add_abort("Uninitialized attribute {a.name}") self.add("\}") end return res end end redef fun write_attribute(a, recv, value) do self.check_recv_notnull(recv) # What is the declared type of the attribute? var mtype = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) # Adapt the value to the declared type value = self.autobox(value, mtype) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then var attr = "{recv}->attrs[{a.const_color}]" if mtype.ctype != "val*" then assert mtype isa MClassType # The attribute is primitive, thus we store it in a box # The trick is to create the box the first time then resuse the box self.add("if ({attr} != NULL) \{") self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */") self.add("\} else \{") value = self.autobox(value, self.object_type.as_nullable) self.add("{attr} = {value}; /* {a} on {recv.inspect} */") self.add("\}") else # The attribute is not primitive, thus store it direclty self.add("{attr} = {value}; /* {a} on {recv.inspect} */") end else self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */") end end # Build livetype structure retrieving #ENSURE: mtype.need_anchor fun retrieve_anchored_livetype(mtype: MGenericType, buffer: Buffer) do assert mtype.need_anchor var compiler = self.compiler.as(SeparateCompiler) for ft in mtype.arguments do var ntype = ft var s: String = "" if ntype isa MNullableType then ntype = ntype.mtype end var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) if ntype isa MParameterType then if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then buffer.append("[{recv_type_info}->fts_table->types[HASH({recv_type_info}->fts_table->mask, {ntype.const_color})]->livecolor]") else buffer.append("[{recv_type_info}->fts_table->types[{ntype.const_color}]->livecolor]") end else if ntype isa MVirtualType then if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then buffer.append("[{recv_type_info}->vts_table->types[HASH({recv_type_info}->vts_table->mask, {ntype.mproperty.const_color})]->livecolor]") else buffer.append("[{recv_type_info}->vts_table->types[{ntype.mproperty.const_color}]->livecolor]") end else if ntype isa MGenericType and ntype.need_anchor then var bbuff = new Buffer retrieve_anchored_livetype(ntype, bbuff) buffer.append("[livetypes_{ntype.mclass.c_name}{bbuff.to_s}->livecolor]") else if ntype isa MClassType then compiler.undead_types.add(ft) buffer.append("[type_{ft.c_name}.livecolor]") else self.add("printf(\"NOT YET IMPLEMENTED: init_instance(%s, {mtype}).\\n\", \"{ft}\"); exit(1);") end end end redef fun init_instance(mtype) do var compiler = self.compiler.as(SeparateCompiler) if mtype isa MGenericType and mtype.need_anchor then if compiler.modelbuilder.toolcontext.opt_generic_tree.value then var buff = new Buffer retrieve_anchored_livetype(mtype, buff) mtype = self.anchor(mtype).as(MClassType) return self.new_expr("NEW_{mtype.mclass.c_name}((struct type *) livetypes_{mtype.mclass.c_name}{buff.to_s})", mtype) else link_unanchored_type(self.frame.mpropdef.mclassdef, mtype) var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then return self.new_expr("NEW_{mtype.mclass.c_name}((struct type *) {recv_type_info}->unanchored_table->types[HASH({recv_type_info}->unanchored_table->mask, {mtype.const_color})])", mtype) else return self.new_expr("NEW_{mtype.mclass.c_name}((struct type *) {recv_type_info}->unanchored_table->types[{mtype.const_color}])", mtype) end end end compiler.undead_types.add(mtype) return self.new_expr("NEW_{mtype.mclass.c_name}((struct type *) &type_{mtype.c_name})", mtype) end redef fun check_init_instance(value, mtype) do if self.compiler.modelbuilder.toolcontext.opt_no_check_initialization.value then return self.add("CHECK_NEW_{mtype.mclass.c_name}({value});") end redef fun type_test(value, mtype, tag) do self.add("/* {value.inspect} isa {mtype} */") var compiler = self.compiler.as(SeparateCompiler) var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) var res = self.new_var(bool_type) var cltype = self.get_name("cltype") self.add_decl("int {cltype};") var idtype = self.get_name("idtype") self.add_decl("int {idtype};") var maybe_null = self.maybe_null(value) var accept_null = "0" var ntype = mtype if ntype isa MNullableType then ntype = ntype.mtype accept_null = "1" end if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/") if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_skipped[tag] += 1 self.add("count_type_test_skipped_{tag}++;") end return res end if ntype.need_anchor then var type_struct = self.get_name("type_struct") self.add_decl("struct type* {type_struct};") # For unresolved types, there is two implementations if compiler.modelbuilder.toolcontext.opt_generic_tree.value then # Either with the generic_tree and the construction of a type if ntype isa MParameterType then if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then self.add("{type_struct} = {recv_type_info}->fts_table->types[HASH({recv_type_info}->fts_table->mask, {ntype.const_color})];") else self.add("{type_struct} = {recv_type_info}->fts_table->types[{ntype.const_color}];") end else if ntype isa MVirtualType then var vtcolor = ntype.mproperty.const_color if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then self.add("{type_struct} = {recv_type_info}->vts_table->types[HASH({recv_type_info}->vts_table->mask, {vtcolor})];") else self.add("{type_struct} = {recv_type_info}->vts_table->types[{vtcolor}];") end else if ntype isa MGenericType then var buff = new Buffer retrieve_anchored_livetype(ntype, buff) self.add("{type_struct} = (struct type*)livetypes_{ntype.mclass.c_name}{buff.to_s};") end else # Either with unanchored_table with a direct resolution link_unanchored_type(self.frame.mpropdef.mclassdef, ntype) if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then self.add("{type_struct} = {recv_type_info}->unanchored_table->types[HASH({recv_type_info}->unanchored_table->mask, {ntype.const_color})];") else self.add("{type_struct} = {recv_type_info}->unanchored_table->types[{ntype.const_color}];") end if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_unresolved[tag] += 1 self.add("count_type_test_unresolved_{tag}++;") end end self.add("{cltype} = {type_struct}->color;") self.add("{idtype} = {type_struct}->id;") if maybe_null and accept_null == "0" then var is_nullable = self.get_name("is_nullable") self.add_decl("short int {is_nullable};") self.add("{is_nullable} = {type_struct}->is_nullable;") accept_null = is_nullable.to_s end else if ntype isa MClassType then compiler.undead_types.add(mtype) self.add("{cltype} = type_{mtype.c_name}.color;") self.add("{idtype} = type_{mtype.c_name}.id;") if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_resolved[tag] += 1 self.add("count_type_test_resolved_{tag}++;") end else self.add("printf(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); exit(1);") end # check color is in table if maybe_null then self.add("if({value} == NULL) \{") self.add("{res} = {accept_null};") self.add("\} else \{") end var value_type_info = self.type_info(value) if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then self.add("{cltype} = HASH({value_type_info}->color, {idtype});") end self.add("if({cltype} >= {value_type_info}->table_size) \{") self.add("{res} = 0;") self.add("\} else \{") self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};") self.add("\}") if maybe_null then self.add("\}") end return res end redef fun is_same_type_test(value1, value2) do var res = self.new_var(bool_type) # Swap values to be symetric if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then var tmp = value1 value1 = value2 value2 = tmp end if value1.mtype.ctype != "val*" then if value2.mtype == value1.mtype then self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */") else if value2.mtype.ctype != "val*" then self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) self.add("{res} = ({value2} != NULL) && ({value2}->class == (struct class*) &class_{mtype1.c_name}); /* is_same_type_test */") end else self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */") end return res end redef fun class_name_string(value) do var res = self.get_name("var_class_name") self.add_decl("const char* {res};") if value.mtype.ctype == "val*" then self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;" else self.add "{res} = type_{value.mtype.c_name}.name;" end return res end redef fun equal_test(value1, value2) do var res = self.new_var(bool_type) if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then var tmp = value1 value1 = value2 value2 = tmp end if value1.mtype.ctype != "val*" then if value2.mtype == value1.mtype then self.add("{res} = {value1} == {value2};") else if value2.mtype.ctype != "val*" then self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) self.add("{res} = ({value2} != NULL) && ({value2}->class == (struct class*) &class_{mtype1.c_name});") self.add("if ({res}) \{") self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});") self.add("\}") end return res end var maybe_null = true var test = new Array[String] var t1 = value1.mcasttype if t1 isa MNullableType then test.add("{value1} != NULL") t1 = t1.mtype else maybe_null = false end var t2 = value2.mcasttype if t2 isa MNullableType then test.add("{value2} != NULL") t2 = t2.mtype else maybe_null = false end var incompatible = false var primitive if t1.ctype != "val*" then primitive = t1 if t1 == t2 then # No need to compare class else if t2.ctype != "val*" then incompatible = true else if can_be_primitive(value2) then test.add("{value1}->class == {value2}->class") else incompatible = true end else if t2.ctype != "val*" then primitive = t2 if can_be_primitive(value1) then test.add("{value1}->class == {value2}->class") else incompatible = true end else primitive = null end if incompatible then if maybe_null then self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/") return res else self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */") return res end end if primitive != null then test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value") else if can_be_primitive(value1) and can_be_primitive(value2) then test.add("{value1}->class == {value2}->class") var s = new Array[String] for t, v in self.compiler.as(SeparateCompiler).box_kinds do s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)" end test.add("({s.join(" || ")})") else self.add("{res} = {value1} == {value2};") return res end self.add("{res} = {value1} == {value2} || ({test.join(" && ")});") return res end fun can_be_primitive(value: RuntimeVariable): Bool do var t = value.mcasttype if t isa MNullableType then t = t.mtype if not t isa MClassType then return false var k = t.mclass.kind return k == interface_kind or t.ctype != "val*" end fun maybe_null(value: RuntimeVariable): Bool do var t = value.mcasttype return t isa MNullableType or t isa MNullType end redef fun array_instance(array, elttype) do var nclass = self.get_class("NativeArray") var arrayclass = self.get_class("Array") var arraytype = arrayclass.get_mtype([elttype]) var res = self.init_instance(arraytype) self.add("\{ /* {res} = array_instance Array[{elttype}] */") var length = self.int_instance(array.length) var nat = native_array_instance(elttype, length) for i in [0..array.length[ do var r = self.autobox(array[i], self.object_type) self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};") end self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length]) self.check_init_instance(res, arraytype) self.add("\}") return res end fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable do var mtype = self.get_class("NativeArray").get_mtype([elttype]) assert mtype isa MGenericType var compiler = self.compiler.as(SeparateCompiler) if mtype.need_anchor then if compiler.modelbuilder.toolcontext.opt_generic_tree.value then var buff = new Buffer retrieve_anchored_livetype(mtype, buff) mtype = self.anchor(mtype).as(MClassType) return self.new_expr("NEW_{mtype.mclass.c_name}({length}, (struct type *) livetypes_{mtype.mclass.c_name}{buff.to_s})", mtype) else link_unanchored_type(self.frame.mpropdef.mclassdef, mtype) var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then return self.new_expr("NEW_{mtype.mclass.c_name}({length}, (struct type *) {recv_type_info}->unanchored_table->types[HASH({recv_type_info}->unanchored_table->mask, {mtype.const_color})])", mtype) else return self.new_expr("NEW_{mtype.mclass.c_name}({length}, (struct type *) {recv_type_info}->unanchored_table->types[{mtype.const_color}])", mtype) end end end compiler.undead_types.add(mtype) return self.new_expr("NEW_{mtype.mclass.c_name}({length}, (struct type *) &type_{mtype.c_name})", mtype) end redef fun native_array_def(pname, ret_type, arguments) do var elttype = arguments.first.mtype var nclass = self.get_class("NativeArray") var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values" if pname == "[]" then self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null))) return else if pname == "[]=" then self.add("{recv}[{arguments[1]}]={arguments[2]};") return else if pname == "copy_to" then var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values" self.add("memcpy({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));") return end end redef fun calloc_array(ret_type, arguments) do var mclass = self.get_class("ArrayCapable") var ft = mclass.mclass_type.arguments.first.as(MParameterType) var res = self.native_array_instance(ft, arguments[1]) self.ret(res) end fun link_unanchored_type(mclassdef: MClassDef, mtype: MType) do assert mtype.need_anchor var compiler = self.compiler.as(SeparateCompiler) if not compiler.live_unanchored_types.has_key(self.frame.mpropdef.mclassdef) then compiler.live_unanchored_types[self.frame.mpropdef.mclassdef] = new HashSet[MType] end compiler.live_unanchored_types[self.frame.mpropdef.mclassdef].add(mtype) end end redef class MClass # Return the name of the C structure associated to a Nit class fun c_name: String do var res = self.c_name_cache if res != null then return res res = "{intro_mmodule.name.to_cmangle}__{name.to_cmangle}" self.c_name_cache = res return res end private var c_name_cache: nullable String end redef class MType fun const_color: String do return "COLOR_{c_name}" end redef class MParameterType redef fun c_name do var res = self.c_name_cache if res != null then return res res = "{self.mclass.c_name}_FT{self.rank}" self.c_name_cache = res return res end end redef class MVirtualType redef fun c_name do var res = self.c_name_cache if res != null then return res res = "{self.mproperty.intro.mclassdef.mclass.c_name}_VT{self.mproperty.name}" self.c_name_cache = res return res end end redef class MNullableType redef fun c_name do var res = self.c_name_cache if res != null then return res res = "nullable_{self.mtype.c_name}" self.c_name_cache = res return res end end redef class MProperty fun c_name: String do var res = self.c_name_cache if res != null then return res res = "{self.intro.c_name}" self.c_name_cache = res return res end private var c_name_cache: nullable String fun const_color: String do return "COLOR_{c_name}" end