# This file is part of NIT ( http://www.nitlanguage.org ). # # Copyright 2012 Jean Privat # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Abstract compiler module abstract_compiler import literal import typing import auto_super_init # Add compiling options redef class ToolContext # --output var opt_output: OptionString = new OptionString("Output file", "-o", "--output") # --no-cc var opt_no_cc: OptionBool = new OptionBool("Do not invoke C compiler", "--no-cc") # --cc-paths var opt_cc_path: OptionArray = new OptionArray("Set include path for C header files (may be used more than once)", "--cc-path") # --make-flags var opt_make_flags: OptionString = new OptionString("Additional options to make", "--make-flags") # --hardening var opt_hardening: OptionBool = new OptionBool("Generate contracts in the C code against bugs in the compiler", "--hardening") # --no-shortcut-range var opt_no_shortcut_range: OptionBool = new OptionBool("Always insantiate a range and its iterator on 'for' loops", "--no-shortcut-range") # --no-check-covariance var opt_no_check_covariance: OptionBool = new OptionBool("Disable type tests of covariant parameters (dangerous)", "--no-check-covariance") # --no-check-initialization var opt_no_check_initialization: OptionBool = new OptionBool("Disable isset tests at the end of constructors (dangerous)", "--no-check-initialization") # --no-check-assert var opt_no_check_assert: OptionBool = new OptionBool("Disable the evaluation of explicit 'assert' and 'as' (dangerous)", "--no-check-assert") # --no-check-autocast var opt_no_check_autocast: OptionBool = new OptionBool("Disable implicit casts on unsafe expression usage (dangerous)", "--no-check-autocast") # --no-check-other var opt_no_check_other: OptionBool = new OptionBool("Disable implicit tests: unset attribute, null receiver (dangerous)", "--no-check-other") # --typing-test-metrics var opt_typing_test_metrics: OptionBool = new OptionBool("Enable static and dynamic count of all type tests", "--typing-test-metrics") redef init do super self.option_context.add_option(self.opt_output, self.opt_no_cc, self.opt_make_flags, self.opt_hardening, self.opt_no_shortcut_range) self.option_context.add_option(self.opt_no_check_covariance, self.opt_no_check_initialization, self.opt_no_check_assert, self.opt_no_check_autocast, self.opt_no_check_other) self.option_context.add_option(self.opt_typing_test_metrics) end end redef class ModelBuilder # The list of directories to search for included C headers (-I for C compilers) # The list is initially set with : # * the toolcontext --cc-path option # * the NIT_CC_PATH environment variable # * some heuristics including the NIT_DIR environment variable and the progname of the process # Path can be added (or removed) by the client var cc_paths = new Array[String] redef init(model, toolcontext) do super # Look for the the Nit clib path var path_env = "NIT_DIR".environ if not path_env.is_empty then var libname = "{path_env}/clib" if libname.file_exists then cc_paths.add(libname) end var libname = "{sys.program_name.dirname}/../clib" if libname.file_exists then cc_paths.add(libname.simplify_path) if cc_paths.is_empty then toolcontext.error(null, "Cannot determine the nit clib path. define envvar NIT_DIR.") end # Add user defined cc_paths cc_paths.append(toolcontext.opt_cc_path.value) path_env = "NIT_CC_PATH".environ if not path_env.is_empty then cc_paths.append(path_env.split_with(':')) end end protected fun write_and_make(compiler: AbstractCompiler) do var mainmodule = compiler.mainmodule # Generate the .h and .c files # A single C file regroups many compiled rumtime functions # Note that we do not try to be clever an a small change in a Nit source file may change the content of all the generated .c files var time0 = get_time self.toolcontext.info("*** WRITING C ***", 1) ".nit_compile".mkdir var outname = self.toolcontext.opt_output.value if outname == null then outname = "{mainmodule.name}" end var hfilename = compiler.header.file.name + ".h" var hfilepath = ".nit_compile/{hfilename}" var h = new OFStream.open(hfilepath) for l in compiler.header.decl_lines do h.write l h.write "\n" end for l in compiler.header.lines do h.write l h.write "\n" end h.close var cfiles = new Array[String] for f in compiler.files do var i = 0 var hfile: nullable OFStream = null var count = 0 var cfilename = ".nit_compile/{f.name}.0.h" hfile = new OFStream.open(cfilename) hfile.write "#include \"{hfilename}\"\n" for key in f.required_declarations do if not compiler.provided_declarations.has_key(key) then print "No provided declaration for {key}" abort end hfile.write compiler.provided_declarations[key] hfile.write "\n" end hfile.close var file: nullable OFStream = null for vis in f.writers do if vis == compiler.header then continue var total_lines = vis.lines.length + vis.decl_lines.length if total_lines == 0 then continue count += total_lines if file == null or count > 10000 then i += 1 if file != null then file.close cfilename = ".nit_compile/{f.name}.{i}.c" self.toolcontext.info("new C source files to compile: {cfilename}", 3) cfiles.add(cfilename) file = new OFStream.open(cfilename) file.write "#include \"{f.name}.0.h\"\n" count = total_lines end for l in vis.decl_lines do file.write l file.write "\n" end for l in vis.lines do file.write l file.write "\n" end end if file != null then file.close end self.toolcontext.info("Total C source files to compile: {cfiles.length}", 2) # Generate the Makefile var makename = ".nit_compile/{mainmodule.name}.mk" var makefile = new OFStream.open(makename) var cc_includes = "" for p in cc_paths do #p = "..".join_path(p) cc_includes += " -I \"" + p + "\"" end makefile.write("CC = ccache cc\nCFLAGS = -g -O2\nCINCL = {cc_includes}\nLDFLAGS ?= \nLDLIBS ?= -lm -lgc\n\n") makefile.write("all: {outname}\n\n") var ofiles = new Array[String] # Compile each generated file for f in cfiles do var o = f.strip_extension(".c") + ".o" makefile.write("{o}: {f}\n\t$(CC) $(CFLAGS) $(CINCL) -D NONITCNI -c -o {o} {f}\n\n") ofiles.add(o) end # Add gc_choser.h to aditionnal bodies var gc_chooser = new ExternCFile("{cc_paths.first}/gc_chooser.c", "-DWITH_LIBGC") compiler.extern_bodies.add(gc_chooser) # Compile each required extern body into a specific .o for f in compiler.extern_bodies do var basename = f.filename.basename(".c") var o = ".nit_compile/{basename}.extern.o" makefile.write("{o}: {f.filename}\n\t$(CC) $(CFLAGS) -D NONITCNI {f.cflags} -c -o {o} {f.filename}\n\n") ofiles.add(o) end # Link edition makefile.write("{outname}: {ofiles.join(" ")}\n\t$(CC) $(LDFLAGS) -o {outname} {ofiles.join(" ")} $(LDLIBS)\n\n") # Clean makefile.write("clean:\n\trm {ofiles.join(" ")} 2>/dev/null\n\n") makefile.close self.toolcontext.info("Generated makefile: {makename}", 2) var time1 = get_time self.toolcontext.info("*** END WRITING C: {time1-time0} ***", 2) # Execute the Makefile if self.toolcontext.opt_no_cc.value then return time0 = time1 self.toolcontext.info("*** COMPILING C ***", 1) var makeflags = self.toolcontext.opt_make_flags.value if makeflags == null then makeflags = "" self.toolcontext.info("make -B -f {makename} -j 4 {makeflags}", 2) var res if self.toolcontext.verbose_level >= 3 then res = sys.system("make -B -f {makename} -j 4 {makeflags} 2>&1") else res = sys.system("make -B -f {makename} -j 4 {makeflags} 2>&1 >/dev/null") end if res != 0 then toolcontext.error(null, "make failed! Error code: {res}.") end time1 = get_time self.toolcontext.info("*** END COMPILING C: {time1-time0} ***", 2) end end # Singleton that store the knowledge about the compilation process abstract class AbstractCompiler type VISITOR: AbstractCompilerVisitor # The main module of the program currently compiled # Is assigned during the separate compilation var mainmodule: MModule writable # The real main module of the program var realmainmodule: MModule # The modeulbuilder used to know the model and the AST var modelbuilder: ModelBuilder protected writable # Is hardening asked? (see --hardening) fun hardening: Bool do return self.modelbuilder.toolcontext.opt_hardening.value init(mainmodule: MModule, modelbuilder: ModelBuilder) do self.mainmodule = mainmodule self.realmainmodule = mainmodule self.modelbuilder = modelbuilder end # Force the creation of a new file # The point is to avoid contamination between must-be-compiled-separately files fun new_file(name: String): CodeFile do var f = new CodeFile(name) self.files.add(f) return f end # The list of all associated files # Used to generate .c files var files: List[CodeFile] = new List[CodeFile] # Initialize a visitor specific for a compiler engine fun new_visitor: VISITOR is abstract # Where global declaration are stored (the main .h) var header: CodeWriter writable # Provide a declaration that can be requested (before or latter) by a visitor fun provide_declaration(key: String, s: String) do if self.provided_declarations.has_key(key) then assert self.provided_declarations[key] == s end self.provided_declarations[key] = s end private var provided_declarations = new HashMap[String, String] # Compile C headers # This method call compile_header_strucs method that has to be refined fun compile_header do var v = self.header self.header.add_decl("#include ") self.header.add_decl("#include ") self.header.add_decl("#include ") self.header.add_decl("#include ") compile_header_structs # Global variable used by the legacy native interface self.header.add_decl("extern int glob_argc;") self.header.add_decl("extern char **glob_argv;") self.header.add_decl("extern val *glob_sys;") end # Declaration of structures the live Nit types protected fun compile_header_structs is abstract # Generate the main C function. # This function: # * allocate the Sys object if it exists # * call init if is exists # * call main if it exists fun compile_main_function do var v = self.new_visitor v.add_decl("int glob_argc;") v.add_decl("char **glob_argv;") v.add_decl("val *glob_sys;") if self.modelbuilder.toolcontext.opt_typing_test_metrics.value then for tag in count_type_test_tags do v.add_decl("long count_type_test_resolved_{tag};") v.add_decl("long count_type_test_unresolved_{tag};") v.add_decl("long count_type_test_skipped_{tag};") v.compiler.header.add_decl("extern long count_type_test_resolved_{tag};") v.compiler.header.add_decl("extern long count_type_test_unresolved_{tag};") v.compiler.header.add_decl("extern long count_type_test_skipped_{tag};") end end v.add_decl("int main(int argc, char** argv) \{") v.add("glob_argc = argc; glob_argv = argv;") v.add("initialize_gc_option();") var main_type = mainmodule.sys_type if main_type != null then var mainmodule = v.compiler.mainmodule var glob_sys = v.init_instance(main_type) v.add("glob_sys = {glob_sys};") var main_init = mainmodule.try_get_primitive_method("init", main_type) if main_init != null then v.send(main_init, [glob_sys]) end var main_method = mainmodule.try_get_primitive_method("main", main_type) if main_method != null then v.send(main_method, [glob_sys]) end end if self.modelbuilder.toolcontext.opt_typing_test_metrics.value then v.add_decl("long count_type_test_resolved_total = 0;") v.add_decl("long count_type_test_unresolved_total = 0;") v.add_decl("long count_type_test_skipped_total = 0;") v.add_decl("long count_type_test_total_total = 0;") for tag in count_type_test_tags do v.add_decl("long count_type_test_total_{tag};") v.add("count_type_test_total_{tag} = count_type_test_resolved_{tag} + count_type_test_unresolved_{tag} + count_type_test_skipped_{tag};") v.add("count_type_test_resolved_total += count_type_test_resolved_{tag};") v.add("count_type_test_unresolved_total += count_type_test_unresolved_{tag};") v.add("count_type_test_skipped_total += count_type_test_skipped_{tag};") v.add("count_type_test_total_total += count_type_test_total_{tag};") end v.add("printf(\"# dynamic count_type_test: total %l\\n\");") v.add("printf(\"\\tresolved\\tunresolved\\tskipped\\ttotal\\n\");") var tags = count_type_test_tags.to_a tags.add("total") for tag in tags do v.add("printf(\"{tag}\");") v.add("printf(\"\\t%ld (%.2f%%)\", count_type_test_resolved_{tag}, 100.0*count_type_test_resolved_{tag}/count_type_test_total_total);") v.add("printf(\"\\t%ld (%.2f%%)\", count_type_test_unresolved_{tag}, 100.0*count_type_test_unresolved_{tag}/count_type_test_total_total);") v.add("printf(\"\\t%ld (%.2f%%)\", count_type_test_skipped_{tag}, 100.0*count_type_test_skipped_{tag}/count_type_test_total_total);") v.add("printf(\"\\t%ld (%.2f%%)\\n\", count_type_test_total_{tag}, 100.0*count_type_test_total_{tag}/count_type_test_total_total);") end end v.add("return 0;") v.add("\}") end # List of additional .c files required to compile (native interface) var extern_bodies = new Array[ExternCFile] # This is used to avoid adding an extern file more than once private var seen_extern = new ArraySet[String] # Generate code that check if an instance is correctly initialized fun generate_check_init_instance(mtype: MClassType) is abstract # Generate code that initialize the attributes on a new instance fun generate_init_attr(v: VISITOR, recv: RuntimeVariable, mtype: MClassType) do var cds = mtype.collect_mclassdefs(self.mainmodule).to_a self.mainmodule.linearize_mclassdefs(cds) for cd in cds do var n = self.modelbuilder.mclassdef2nclassdef[cd] for npropdef in n.n_propdefs do if npropdef isa AAttrPropdef then npropdef.init_expr(v, recv) end end end end # Generate code that check if an attribute is correctly initialized fun generate_check_attr(v: VISITOR, recv: RuntimeVariable, mtype: MClassType) do var cds = mtype.collect_mclassdefs(self.mainmodule).to_a self.mainmodule.linearize_mclassdefs(cds) for cd in cds do var n = self.modelbuilder.mclassdef2nclassdef[cd] for npropdef in n.n_propdefs do if npropdef isa AAttrPropdef then npropdef.check_expr(v, recv) end end end end # stats var count_type_test_tags: Array[String] = ["isa", "as", "auto", "covariance", "erasure"] var count_type_test_resolved: HashMap[String, Int] = init_count_type_test_tags var count_type_test_unresolved: HashMap[String, Int] = init_count_type_test_tags var count_type_test_skipped: HashMap[String, Int] = init_count_type_test_tags protected fun init_count_type_test_tags: HashMap[String, Int] do var res = new HashMap[String, Int] for tag in count_type_test_tags do res[tag] = 0 end return res end # Display stats about compilation process # Metrics used: # * type tests against resolved types (x isa Collection[Animal]) # * type tests against unresolved types (x isa Collection[E]) # * type tests skipped # * type tests total # * fun display_stats do if self.modelbuilder.toolcontext.opt_typing_test_metrics.value then print "# static count_type_test" print "\tresolved:\tunresolved\tskipped\ttotal" var count_type_test_total = init_count_type_test_tags count_type_test_resolved["total"] = 0 count_type_test_unresolved["total"] = 0 count_type_test_skipped["total"] = 0 count_type_test_total["total"] = 0 for tag in count_type_test_tags do count_type_test_total[tag] = count_type_test_resolved[tag] + count_type_test_unresolved[tag] + count_type_test_skipped[tag] count_type_test_resolved["total"] += count_type_test_resolved[tag] count_type_test_unresolved["total"] += count_type_test_unresolved[tag] count_type_test_skipped["total"] += count_type_test_skipped[tag] count_type_test_total["total"] += count_type_test_total[tag] end var count_type_test = count_type_test_total["total"] var tags = count_type_test_tags.to_a tags.add("total") for tag in tags do printn tag printn "\t{count_type_test_resolved[tag]} ({div(count_type_test_resolved[tag],count_type_test)}%)" printn "\t{count_type_test_unresolved[tag]} ({div(count_type_test_unresolved[tag],count_type_test)}%)" printn "\t{count_type_test_skipped[tag]} ({div(count_type_test_skipped[tag],count_type_test)}%)" printn "\t{count_type_test_total[tag]} ({div(count_type_test_total[tag],count_type_test)}%)" print "" end end end # Division facility # Avoid division by zero by returning the string "n/a" fun div(a,b:Int):String do if b == 0 then return "n/a" return ((a*10000/b).to_f / 100.0).to_precision(2) end end # A file unit (may be more than one file if # A file unit aim to be autonomous and is made or one or more `CodeWriter`s class CodeFile var name: String var writers = new Array[CodeWriter] var required_declarations = new HashSet[String] end # Where to store generated lines class CodeWriter var file: CodeFile var lines: List[String] = new List[String] var decl_lines: List[String] = new List[String] # Add a line in the main part of the generated C fun add(s: String) do self.lines.add(s) # Add a line in the # (used for local or global declaration) fun add_decl(s: String) do self.decl_lines.add(s) init(file: CodeFile) do self.file = file file.writers.add(self) end end # A visitor on the AST of property definition that generate the C code. abstract class AbstractCompilerVisitor type COMPILER: AbstractCompiler # The associated compiler var compiler: COMPILER # The current visited AST node var current_node: nullable ANode writable = null # The current Frame var frame: nullable Frame writable # Alias for self.compiler.mainmodule.object_type fun object_type: MClassType do return self.compiler.mainmodule.object_type # Alias for self.compiler.mainmodule.bool_type fun bool_type: MClassType do return self.compiler.mainmodule.bool_type var writer: CodeWriter init(compiler: COMPILER) do self.compiler = compiler self.writer = new CodeWriter(compiler.files.last) end # Force to get the primitive class named `name' or abort fun get_class(name: String): MClass do return self.compiler.mainmodule.get_primitive_class(name) # Force to get the primitive property named `name' in the instance `recv' or abort fun get_property(name: String, recv: MType): MMethod do return self.compiler.modelbuilder.force_get_primitive_method(self.current_node.as(not null), name, recv, self.compiler.mainmodule) end fun compile_callsite(callsite: CallSite, args: Array[RuntimeVariable]): nullable RuntimeVariable do return self.send(callsite.mproperty, args) end fun calloc_array(ret_type: MType, arguments: Array[RuntimeVariable]) is abstract fun native_array_def(pname: String, ret_type: nullable MType, arguments: Array[RuntimeVariable]) is abstract # Transform varargs, in raw arguments, into a single argument of type Array # Note: this method modify the given `args` # If there is no vararg, then `args` is not modified. fun varargize(mpropdef: MPropDef, msignature: MSignature, args: Array[RuntimeVariable]) do var recv = args.first var vararg_rank = msignature.vararg_rank if vararg_rank >= 0 then assert args.length >= msignature.arity + 1 # because of self var rawargs = args args = new Array[RuntimeVariable] args.add(rawargs.first) # recv for i in [0..vararg_rank[ do args.add(rawargs[i+1]) end var vararg_lastrank = vararg_rank + rawargs.length-1-msignature.arity var vararg = new Array[RuntimeVariable] for i in [vararg_rank..vararg_lastrank] do vararg.add(rawargs[i+1]) end var elttype = msignature.mparameters[vararg_rank].mtype args.add(self.vararg_instance(mpropdef, recv, vararg, elttype)) for i in [vararg_lastrank+1..rawargs.length-1[ do args.add(rawargs[i+1]) end rawargs.clear rawargs.add_all(args) end end # Type handling # Anchor a type to the main module and the current receiver fun anchor(mtype: MType): MType do if not mtype.need_anchor then return mtype return mtype.anchor_to(self.compiler.mainmodule, self.frame.receiver) end fun resolve_for(mtype: MType, recv: RuntimeVariable): MType do if not mtype.need_anchor then return mtype return mtype.resolve_for(recv.mcasttype, self.frame.receiver, self.compiler.mainmodule, true) end # Unsafely cast a value to a new type # ie the result share the same C variable but my have a different mcasttype # NOTE: if the adaptation is useless then `value' is returned as it. # ENSURE: return.name == value.name fun autoadapt(value: RuntimeVariable, mtype: MType): RuntimeVariable do mtype = self.anchor(mtype) var valmtype = value.mcasttype if valmtype.is_subtype(self.compiler.mainmodule, null, mtype) then return value end if valmtype isa MNullableType and valmtype.mtype.is_subtype(self.compiler.mainmodule, null, mtype) then var res = new RuntimeVariable(value.name, valmtype, valmtype.mtype) return res else var res = new RuntimeVariable(value.name, valmtype, mtype) return res end end # Generate a super call from a method definition fun supercall(m: MMethodDef, recvtype: MClassType, args: Array[RuntimeVariable]): nullable RuntimeVariable is abstract fun adapt_signature(m: MMethodDef, args: Array[RuntimeVariable]) is abstract # Box or unbox a value to another type iff a C type conversion is needed # ENSURE: result.mtype.ctype == mtype.ctype fun autobox(value: RuntimeVariable, mtype: MType): RuntimeVariable is abstract # Generate a polymorphic subtype test fun type_test(value: RuntimeVariable, mtype: MType, tag: String): RuntimeVariable is abstract # Generate the code required to dynamically check if 2 objects share the same runtime type fun is_same_type_test(value1, value2: RuntimeVariable): RuntimeVariable is abstract # Generate a Nit "is" for two runtime_variables fun equal_test(value1, value2: RuntimeVariable): RuntimeVariable is abstract # Sends # Generate a static call on a method definition fun call(m: MMethodDef, recvtype: MClassType, args: Array[RuntimeVariable]): nullable RuntimeVariable is abstract # Generate a polymorphic send for the method `m' and the arguments `args' fun send(m: MMethod, args: Array[RuntimeVariable]): nullable RuntimeVariable is abstract # Generate a monomorphic send for the method `m', the type `t' and the arguments `args' fun monomorphic_send(m: MMethod, t: MType, args: Array[RuntimeVariable]): nullable RuntimeVariable do assert t isa MClassType var propdef = m.lookup_first_definition(self.compiler.mainmodule, t) return self.call(propdef, t, args) end # Attributes handling # Generate a polymorphic attribute is_set test fun isset_attribute(a: MAttribute, recv: RuntimeVariable): RuntimeVariable is abstract # Generate a polymorphic attribute read fun read_attribute(a: MAttribute, recv: RuntimeVariable): RuntimeVariable is abstract # Generate a polymorphic attribute write fun write_attribute(a: MAttribute, recv: RuntimeVariable, value: RuntimeVariable) is abstract # Checks # Add a check and an abort for a null reciever if needed fun check_recv_notnull(recv: RuntimeVariable) do if self.compiler.modelbuilder.toolcontext.opt_no_check_other.value then return var maybenull = recv.mcasttype isa MNullableType or recv.mcasttype isa MNullType if maybenull then self.add("if ({recv} == NULL) \{") self.add_abort("Reciever is null") self.add("\}") end end # Generate a check-init-instance fun check_init_instance(recv: RuntimeVariable, mtype: MClassType) is abstract # Names handling private var names: HashSet[String] = new HashSet[String] private var last: Int = 0 # Return a new name based on `s' and unique in the visitor fun get_name(s: String): String do if not self.names.has(s) then self.names.add(s) return s end var i = self.last + 1 loop var s2 = s + i.to_s if not self.names.has(s2) then self.last = i self.names.add(s2) return s2 end i = i + 1 end end # Return an unique and stable identifier associated with an escapemark fun escapemark_name(e: nullable EscapeMark): String do assert e != null if escapemark_names.has_key(e) then return escapemark_names[e] var name = e.name if name == null then name = "label" name = get_name(name) escapemark_names[e] = name return name end private var escapemark_names = new HashMap[EscapeMark, String] # Return a "const char*" variable associated to the classname of the dynamic type of an object # NOTE: we do not return a RuntimeVariable "NativeString" as the class may not exist in the module/program fun class_name_string(value: RuntimeVariable): String is abstract # Variables handling protected var variables: HashMap[Variable, RuntimeVariable] = new HashMap[Variable, RuntimeVariable] # Return the local runtime_variable associated to a Nit local variable fun variable(variable: Variable): RuntimeVariable do if self.variables.has_key(variable) then return self.variables[variable] else var name = self.get_name("var_{variable.name}") var mtype = variable.declared_type.as(not null) mtype = self.anchor(mtype) var res = new RuntimeVariable(name, mtype, mtype) self.add_decl("{mtype.ctype} {name} /* var {variable}: {mtype} */;") self.variables[variable] = res return res end end # Return a new uninitialized local runtime_variable fun new_var(mtype: MType): RuntimeVariable do mtype = self.anchor(mtype) var name = self.get_name("var") var res = new RuntimeVariable(name, mtype, mtype) self.add_decl("{mtype.ctype} {name} /* : {mtype} */;") return res end # Return a new uninitialized named runtime_variable fun new_named_var(mtype: MType, name: String): RuntimeVariable do mtype = self.anchor(mtype) var res = new RuntimeVariable(name, mtype, mtype) self.add_decl("{mtype.ctype} {name} /* : {mtype} */;") return res end # Correctly assign a left and a right value # Boxing and unboxing is performed if required fun assign(left, right: RuntimeVariable) do right = self.autobox(right, left.mtype) self.add("{left} = {right};") end # Generate instances # Generate a alloc-instance + init-attributes fun init_instance(mtype: MClassType): RuntimeVariable is abstract # Generate an integer value fun int_instance(value: Int): RuntimeVariable do var res = self.new_var(self.get_class("Int").mclass_type) self.add("{res} = {value};") return res end # Generate a string value fun string_instance(string: String): RuntimeVariable do var mtype = self.get_class("String").mclass_type var name = self.get_name("varonce") self.add_decl("static {mtype.ctype} {name};") var res = self.new_var(mtype) self.add("if ({name}) \{") self.add("{res} = {name};") self.add("\} else \{") var nat = self.new_var(self.get_class("NativeString").mclass_type) self.add("{nat} = \"{string.escape_to_c}\";") var res2 = self.init_instance(mtype) self.add("{res} = {res2};") var length = self.int_instance(string.length) self.send(self.get_property("with_native", mtype), [res, nat, length]) self.check_init_instance(res, mtype) self.add("{name} = {res};") self.add("\}") return res end # Generate an array value fun array_instance(array: Array[RuntimeVariable], elttype: MType): RuntimeVariable is abstract # Get an instance of a array for a vararg fun vararg_instance(mpropdef: MPropDef, recv: RuntimeVariable, varargs: Array[RuntimeVariable], elttype: MType): RuntimeVariable is abstract # Code generation # Add a line in the main part of the generated C fun add(s: String) do self.writer.lines.add(s) # Add a line in the # (used for local or global declaration) fun add_decl(s: String) do self.writer.decl_lines.add(s) # Request the presence of a global declaration fun require_declaration(key: String) do self.writer.file.required_declarations.add(key) end # Add a declaration in the local-header # The declaration is ensured to be present once fun declare_once(s: String) do self.compiler.provide_declaration(s, s) self.require_declaration(s) end # look for a needed .h and .c file for a given .nit source-file # FIXME: bad API, parameter should be a MModule, not its source-file fun add_extern(file: String) do file = file.strip_extension(".nit") var tryfile = file + ".nit.h" if tryfile.file_exists then self.declare_once("#include \"{"..".join_path(tryfile)}\"") end tryfile = file + "_nit.h" if tryfile.file_exists then self.declare_once("#include \"{"..".join_path(tryfile)}\"") end if self.compiler.seen_extern.has(file) then return self.compiler.seen_extern.add(file) tryfile = file + ".nit.c" if not tryfile.file_exists then tryfile = file + "_nit.c" if not tryfile.file_exists then return end var f = new ExternCFile(tryfile, "") self.compiler.extern_bodies.add(f) end # Return a new local runtime_variable initialized with the C expression `cexpr'. fun new_expr(cexpr: String, mtype: MType): RuntimeVariable do var res = new_var(mtype) self.add("{res} = {cexpr};") return res end # Generate generic abort # used by aborts, asserts, casts, etc. fun add_abort(message: String) do if self.current_node != null and self.current_node.location.file != null then self.add("fprintf(stderr, \"Runtime error: %s (%s:%d)\\n\", \"{message.escape_to_c}\", \"{self.current_node.location.file.filename.escape_to_c}\", {current_node.location.line_start});") else self.add("fprintf(stderr, \"Runtime error: %s\\n\", \"{message.escape_to_c}\");") end self.add("exit(1);") end # Generate a return with the value `s' fun ret(s: RuntimeVariable) do self.assign(self.frame.returnvar.as(not null), s) self.add("goto {self.frame.returnlabel.as(not null)};") end # Compile a statement (if any) fun stmt(nexpr: nullable AExpr) do if nexpr == null then return var old = self.current_node self.current_node = nexpr nexpr.stmt(self) self.current_node = old end # Compile an expression an return its result # `mtype` is the expected return type, pass null if no specific type is expected. fun expr(nexpr: AExpr, mtype: nullable MType): RuntimeVariable do var old = self.current_node self.current_node = nexpr var res = nexpr.expr(self).as(not null) if mtype != null then mtype = self.anchor(mtype) res = self.autobox(res, mtype) end res = autoadapt(res, nexpr.mtype.as(not null)) var implicit_cast_to = nexpr.implicit_cast_to if implicit_cast_to != null and not self.compiler.modelbuilder.toolcontext.opt_no_check_autocast.value then var castres = self.type_test(res, implicit_cast_to, "auto") self.add("if (!{castres}) \{") self.add_abort("Cast failed") self.add("\}") res = autoadapt(res, implicit_cast_to) end self.current_node = old return res end # Alias for `self.expr(nexpr, self.bool_type)' fun expr_bool(nexpr: AExpr): RuntimeVariable do return expr(nexpr, bool_type) # Safely show a debug message on the current node and repeat the message in the C code as a comment fun debug(message: String) do var node = self.current_node if node == null then print "?: {message}" else node.debug(message) end self.add("/* DEBUG: {message} */") end end # A C function associated to a Nit method # Because of customization, a given Nit method can be compiler more that once abstract class AbstractRuntimeFunction type COMPILER: AbstractCompiler type VISITOR: AbstractCompilerVisitor # The associated Nit method var mmethoddef: MMethodDef # The mangled c name of the runtime_function # Subclasses should redefine `build_c_name` instead fun c_name: String do var res = self.c_name_cache if res != null then return res res = self.build_c_name self.c_name_cache = res return res end # Non cached version of `c_name` protected fun build_c_name: String is abstract protected var c_name_cache: nullable String writable = null # Implements a call of the runtime_function # May inline the body or generate a C function call fun call(v: VISITOR, arguments: Array[RuntimeVariable]): nullable RuntimeVariable is abstract # Generate the code for the RuntimeFunction # Warning: compile more than once compilation makes CC unhappy fun compile_to_c(compiler: COMPILER) is abstract end # A runtime variable hold a runtime value in C. # Runtime variables are associated to Nit local variables and intermediate results in Nit expressions. # # The tricky point is that a single C variable can be associated to more than one RuntimeVariable because the static knowledge of the type of an expression can vary in the C code. class RuntimeVariable # The name of the variable in the C code var name: String # The static type of the variable (as declard in C) var mtype: MType # The current casted type of the variable (as known in Nit) var mcasttype: MType writable # If the variable exaclty a mcasttype? # false (usual value) means that the variable is a mcasttype or a subtype. var is_exact: Bool writable = false init(name: String, mtype: MType, mcasttype: MType) do self.name = name self.mtype = mtype self.mcasttype = mcasttype assert not mtype.need_anchor assert not mcasttype.need_anchor end redef fun to_s do return name redef fun inspect do var exact_str if self.is_exact then exact_str = " exact" else exact_str = "" end var type_str if self.mtype == self.mcasttype then type_str = "{mtype}{exact_str}" else type_str = "{mtype}({mcasttype}{exact_str})" end return "<{name}:{type_str}>" end end # A frame correspond to a visited property in a GlobalCompilerVisitor class Frame type VISITOR: AbstractCompilerVisitor # The associated visitor var visitor: VISITOR # The executed property. # A Method in case of a call, an attribute in case of a default initialization. var mpropdef: MPropDef # The static type of the receiver var receiver: MClassType # Arguments of the method (the first is the receiver) var arguments: Array[RuntimeVariable] # The runtime_variable associated to the return (in a function) var returnvar: nullable RuntimeVariable writable = null # The label at the end of the property var returnlabel: nullable String writable = null end # An extern C file to compile class ExternCFile # The filename of the file var filename: String # Additionnal specific CC compiler -c flags var cflags: String end redef class String # Mangle a string to be a unique valid C identifier fun to_cmangle: String do var res = new Buffer var underscore = false for c in self do if (c >= 'a' and c <= 'z') or (c >='A' and c <= 'Z') then res.add(c) underscore = false continue end if underscore then res.append('_'.ascii.to_s) res.add('d') end if c >= '0' and c <= '9' then res.add(c) underscore = false else if c == '_' then res.add(c) underscore = true else res.add('_') res.append(c.ascii.to_s) res.add('d') underscore = false end end return res.to_s end # Escape " \ ' and non printable characters for literal C strings or characters fun escape_to_c: String do var b = new Buffer for c in self do if c == '\n' then b.append("\\n") else if c == '\0' then b.append("\\0") else if c == '"' then b.append("\\\"") else if c == '\'' then b.append("\\\'") else if c == '\\' then b.append("\\\\") else if c.ascii < 32 then b.append("\\{c.ascii.to_base(8, false)}") else b.add(c) end end return b.to_s end end redef class MType # Return the C type associated to a given Nit static type fun ctype: String do return "val*" fun ctypename: String do return "val" # Return the name of the C structure associated to a Nit live type fun c_name: String is abstract protected var c_name_cache: nullable String protected writable end redef class MClassType redef fun c_name do var res = self.c_name_cache if res != null then return res res = "{mclass.intro_mmodule.name.to_cmangle}__{mclass.name.to_cmangle}" self.c_name_cache = res return res end redef fun ctype: String do if mclass.name == "Int" then return "long" else if mclass.name == "Bool" then return "short int" else if mclass.name == "Char" then return "char" else if mclass.name == "Float" then return "double" else if mclass.name == "NativeString" then return "char*" else if mclass.name == "NativeArray" then return "val*" else if mclass.kind == extern_kind then return "void*" else return "val*" end end redef fun ctypename: String do if mclass.name == "Int" then return "l" else if mclass.name == "Bool" then return "s" else if mclass.name == "Char" then return "c" else if mclass.name == "Float" then return "d" else if mclass.name == "NativeString" then return "str" else if mclass.name == "NativeArray" then #return "{self.arguments.first.ctype}*" return "val" else if mclass.kind == extern_kind then return "ptr" else return "val" end end end redef class MGenericType redef fun c_name do var res = self.c_name_cache if res != null then return res res = super for t in self.arguments do res = res + t.c_name end self.c_name_cache = res return res end end redef class MParameterType redef fun c_name do var res = self.c_name_cache if res != null then return res res = "{self.mclass.c_name}_FT{self.rank}" self.c_name_cache = res return res end end redef class MVirtualType redef fun c_name do var res = self.c_name_cache if res != null then return res res = "{self.mproperty.intro.mclassdef.mclass.c_name}_VT{self.mproperty.name}" self.c_name_cache = res return res end end redef class MNullableType redef fun c_name do var res = self.c_name_cache if res != null then return res res = "nullable_{self.mtype.c_name}" self.c_name_cache = res return res end end redef class MClass # Return the name of the C structure associated to a Nit class fun c_name: String do var res = self.c_name_cache if res != null then return res res = "{intro_mmodule.name.to_cmangle}__{name.to_cmangle}" self.c_name_cache = res return res end private var c_name_cache: nullable String end redef class MProperty fun c_name: String do var res = self.c_name_cache if res != null then return res res = "{self.intro.c_name}" self.c_name_cache = res return res end private var c_name_cache: nullable String end redef class MPropDef type VISITOR: AbstractCompilerVisitor private var c_name_cache: nullable String # The mangled name associated to the property fun c_name: String do var res = self.c_name_cache if res != null then return res res = "{self.mclassdef.mmodule.name.to_cmangle}__{self.mclassdef.mclass.name.to_cmangle}__{self.mproperty.name.to_cmangle}" self.c_name_cache = res return res end end redef class MMethodDef # Can the body be inlined? fun can_inline(v: VISITOR): Bool do var modelbuilder = v.compiler.modelbuilder if modelbuilder.mpropdef2npropdef.has_key(self) then var npropdef = modelbuilder.mpropdef2npropdef[self] return npropdef.can_inline else if self.mproperty.name == "init" then # Automatic free init is always inlined since it is empty or contains only attribtes assigments return true else abort end end # Inline the body in another visitor fun compile_inside_to_c(v: VISITOR, arguments: Array[RuntimeVariable]): nullable RuntimeVariable do var modelbuilder = v.compiler.modelbuilder if modelbuilder.mpropdef2npropdef.has_key(self) then var npropdef = modelbuilder.mpropdef2npropdef[self] var oldnode = v.current_node v.current_node = npropdef self.compile_parameter_check(v, arguments) npropdef.compile_to_c(v, self, arguments) v.current_node = oldnode else if self.mproperty.name == "init" then var nclassdef = modelbuilder.mclassdef2nclassdef[self.mclassdef] var oldnode = v.current_node v.current_node = nclassdef self.compile_parameter_check(v, arguments) nclassdef.compile_to_c(v, self, arguments) v.current_node = oldnode else abort end return null end # Generate type checks in the C code to check covariant parameters fun compile_parameter_check(v: VISITOR, arguments: Array[RuntimeVariable]) do if v.compiler.modelbuilder.toolcontext.opt_no_check_covariance.value then return for i in [0..msignature.arity[ do # skip test for vararg since the array is instantiated with the correct polymorphic type if msignature.vararg_rank == i then continue # skip if the cast is not required var origmtype = self.mproperty.intro.msignature.mparameters[i].mtype if not origmtype.need_anchor then continue # get the parameter type var mtype = self.msignature.mparameters[i].mtype # generate the cast # note that v decides if and how to implements the cast v.add("/* Covariant cast for argument {i} ({self.msignature.mparameters[i].name}) {arguments[i+1].inspect} isa {mtype} */") var cond = v.type_test(arguments[i+1], mtype, "covariance") v.add("if (!{cond}) \{") v.add_abort("Cast failed") v.add("\}") end end end # Node visit redef class APropdef fun compile_to_c(v: AbstractCompilerVisitor, mpropdef: MMethodDef, arguments: Array[RuntimeVariable]) do v.add("printf(\"NOT YET IMPLEMENTED {class_name} {mpropdef} at {location.to_s}\\n\");") debug("Not yet implemented") end fun can_inline: Bool do return true end redef class AConcreteMethPropdef redef fun compile_to_c(v, mpropdef, arguments) do for i in [0..mpropdef.msignature.arity[ do var variable = self.n_signature.n_params[i].variable.as(not null) v.assign(v.variable(variable), arguments[i+1]) end # Call the implicit super-init var auto_super_inits = self.auto_super_inits if auto_super_inits != null then var selfarg = [arguments.first] for auto_super_init in auto_super_inits do if auto_super_init.intro.msignature.arity == 0 then v.send(auto_super_init, selfarg) else v.send(auto_super_init, arguments) end end end v.stmt(self.n_block) end redef fun can_inline do if self.auto_super_inits != null then return false var nblock = self.n_block if nblock == null then return true if (mpropdef.mproperty.name == "==" or mpropdef.mproperty.name == "!=") and mpropdef.mclassdef.mclass.name == "Object" then return true if nblock isa ABlockExpr and nblock.n_expr.length == 0 then return true return false end end redef class AInternMethPropdef redef fun compile_to_c(v, mpropdef, arguments) do var pname = mpropdef.mproperty.name var cname = mpropdef.mclassdef.mclass.name var ret = mpropdef.msignature.return_mtype if ret != null then ret = v.resolve_for(ret, arguments.first) end if pname != "==" and pname != "!=" then v.adapt_signature(mpropdef, arguments) end if cname == "Int" then if pname == "output" then v.add("printf(\"%ld\\n\", {arguments.first});") return else if pname == "object_id" then v.ret(arguments.first) return else if pname == "+" then v.ret(v.new_expr("{arguments[0]} + {arguments[1]}", ret.as(not null))) return else if pname == "-" then v.ret(v.new_expr("{arguments[0]} - {arguments[1]}", ret.as(not null))) return else if pname == "unary -" then v.ret(v.new_expr("-{arguments[0]}", ret.as(not null))) return else if pname == "succ" then v.ret(v.new_expr("{arguments[0]}+1", ret.as(not null))) return else if pname == "prec" then v.ret(v.new_expr("{arguments[0]}-1", ret.as(not null))) return else if pname == "*" then v.ret(v.new_expr("{arguments[0]} * {arguments[1]}", ret.as(not null))) return else if pname == "/" then v.ret(v.new_expr("{arguments[0]} / {arguments[1]}", ret.as(not null))) return else if pname == "%" then v.ret(v.new_expr("{arguments[0]} % {arguments[1]}", ret.as(not null))) return else if pname == "lshift" then v.ret(v.new_expr("{arguments[0]} << {arguments[1]}", ret.as(not null))) return else if pname == "rshift" then v.ret(v.new_expr("{arguments[0]} >> {arguments[1]}", ret.as(not null))) return else if pname == "==" then v.ret(v.equal_test(arguments[0], arguments[1])) return else if pname == "!=" then var res = v.equal_test(arguments[0], arguments[1]) v.ret(v.new_expr("!{res}", ret.as(not null))) return else if pname == "<" then v.ret(v.new_expr("{arguments[0]} < {arguments[1]}", ret.as(not null))) return else if pname == ">" then v.ret(v.new_expr("{arguments[0]} > {arguments[1]}", ret.as(not null))) return else if pname == "<=" then v.ret(v.new_expr("{arguments[0]} <= {arguments[1]}", ret.as(not null))) return else if pname == ">=" then v.ret(v.new_expr("{arguments[0]} >= {arguments[1]}", ret.as(not null))) return else if pname == "to_f" then v.ret(v.new_expr("(double){arguments[0]}", ret.as(not null))) return else if pname == "ascii" then v.ret(v.new_expr("{arguments[0]}", ret.as(not null))) return end else if cname == "Char" then if pname == "output" then v.add("printf(\"%c\", {arguments.first});") return else if pname == "object_id" then v.ret(arguments.first) return else if pname == "+" then v.ret(v.new_expr("{arguments[0]} + {arguments[1]}", ret.as(not null))) return else if pname == "-" then v.ret(v.new_expr("{arguments[0]} - {arguments[1]}", ret.as(not null))) return else if pname == "==" then v.ret(v.equal_test(arguments[0], arguments[1])) return else if pname == "!=" then var res = v.equal_test(arguments[0], arguments[1]) v.ret(v.new_expr("!{res}", ret.as(not null))) return else if pname == "succ" then v.ret(v.new_expr("{arguments[0]}+1", ret.as(not null))) return else if pname == "prec" then v.ret(v.new_expr("{arguments[0]}-1", ret.as(not null))) return else if pname == "<" then v.ret(v.new_expr("{arguments[0]} < {arguments[1]}", ret.as(not null))) return else if pname == ">" then v.ret(v.new_expr("{arguments[0]} > {arguments[1]}", ret.as(not null))) return else if pname == "<=" then v.ret(v.new_expr("{arguments[0]} <= {arguments[1]}", ret.as(not null))) return else if pname == ">=" then v.ret(v.new_expr("{arguments[0]} >= {arguments[1]}", ret.as(not null))) return else if pname == "to_i" then v.ret(v.new_expr("{arguments[0]}-'0'", ret.as(not null))) return else if pname == "ascii" then v.ret(v.new_expr("(unsigned char){arguments[0]}", ret.as(not null))) return end else if cname == "Bool" then if pname == "output" then v.add("printf({arguments.first}?\"true\\n\":\"false\\n\");") return else if pname == "object_id" then v.ret(arguments.first) return else if pname == "==" then v.ret(v.equal_test(arguments[0], arguments[1])) return else if pname == "!=" then var res = v.equal_test(arguments[0], arguments[1]) v.ret(v.new_expr("!{res}", ret.as(not null))) return end else if cname == "Float" then if pname == "output" then v.add("printf(\"%f\\n\", {arguments.first});") return else if pname == "object_id" then v.ret(v.new_expr("(double){arguments.first}", ret.as(not null))) return else if pname == "+" then v.ret(v.new_expr("{arguments[0]} + {arguments[1]}", ret.as(not null))) return else if pname == "-" then v.ret(v.new_expr("{arguments[0]} - {arguments[1]}", ret.as(not null))) return else if pname == "unary -" then v.ret(v.new_expr("-{arguments[0]}", ret.as(not null))) return else if pname == "succ" then v.ret(v.new_expr("{arguments[0]}+1", ret.as(not null))) return else if pname == "prec" then v.ret(v.new_expr("{arguments[0]}-1", ret.as(not null))) return else if pname == "*" then v.ret(v.new_expr("{arguments[0]} * {arguments[1]}", ret.as(not null))) return else if pname == "/" then v.ret(v.new_expr("{arguments[0]} / {arguments[1]}", ret.as(not null))) return else if pname == "==" then v.ret(v.equal_test(arguments[0], arguments[1])) return else if pname == "!=" then var res = v.equal_test(arguments[0], arguments[1]) v.ret(v.new_expr("!{res}", ret.as(not null))) return else if pname == "<" then v.ret(v.new_expr("{arguments[0]} < {arguments[1]}", ret.as(not null))) return else if pname == ">" then v.ret(v.new_expr("{arguments[0]} > {arguments[1]}", ret.as(not null))) return else if pname == "<=" then v.ret(v.new_expr("{arguments[0]} <= {arguments[1]}", ret.as(not null))) return else if pname == ">=" then v.ret(v.new_expr("{arguments[0]} >= {arguments[1]}", ret.as(not null))) return else if pname == "to_i" then v.ret(v.new_expr("(long){arguments[0]}", ret.as(not null))) return end else if cname == "Char" then if pname == "output" then v.add("printf(\"%c\", {arguments.first});") return else if pname == "object_id" then v.ret(arguments.first) return else if pname == "==" then v.ret(v.equal_test(arguments[0], arguments[1])) return else if pname == "!=" then var res = v.equal_test(arguments[0], arguments[1]) v.ret(v.new_expr("!{res}", ret.as(not null))) return else if pname == "ascii" then v.ret(v.new_expr("{arguments[0]}", ret.as(not null))) return end else if cname == "NativeString" then if pname == "[]" then v.ret(v.new_expr("{arguments[0]}[{arguments[1]}]", ret.as(not null))) return else if pname == "[]=" then v.add("{arguments[0]}[{arguments[1]}]={arguments[2]};") return else if pname == "copy_to" then v.add("memcpy({arguments[1]}+{arguments[4]},{arguments[0]}+{arguments[3]},{arguments[2]});") return else if pname == "atoi" then v.ret(v.new_expr("atoi({arguments[0]});", ret.as(not null))) return end else if cname == "NativeArray" then v.native_array_def(pname, ret, arguments) return end if pname == "exit" then v.add("exit({arguments[1]});") return else if pname == "sys" then v.ret(v.new_expr("glob_sys", ret.as(not null))) return else if pname == "calloc_string" then v.ret(v.new_expr("(char*)nit_alloc({arguments[1]})", ret.as(not null))) return else if pname == "calloc_array" then v.calloc_array(ret.as(not null), arguments) return else if pname == "object_id" then v.ret(v.new_expr("(long){arguments.first}", ret.as(not null))) return else if pname == "is_same_type" then v.ret(v.is_same_type_test(arguments[0], arguments[1])) return else if pname == "output_class_name" then var nat = v.class_name_string(arguments.first) v.add("printf(\"%s\\n\", {nat});") return else if pname == "native_class_name" then var nat = v.class_name_string(arguments.first) v.ret(v.new_expr("(char*){nat}", ret.as(not null))) return else if pname == "force_garbage_collection" then v.add("nit_gcollect();") return else if pname == "native_argc" then v.ret(v.new_expr("glob_argc", ret.as(not null))) return else if pname == "native_argv" then v.ret(v.new_expr("glob_argv[{arguments[1]}]", ret.as(not null))) return end v.add("printf(\"NOT YET IMPLEMENTED {class_name}:{mpropdef} at {location.to_s}\\n\");") debug("Not implemented {mpropdef}") end end redef class AExternMethPropdef redef fun compile_to_c(v, mpropdef, arguments) do var externname var nextern = self.n_extern if nextern == null then v.add("fprintf(stderr, \"NOT YET IMPLEMENTED nitni for {mpropdef} at {location.to_s}\\n\");") v.add("exit(1);") return end externname = nextern.text.substring(1, nextern.text.length-2) if location.file != null then var file = location.file.filename v.add_extern(file) end var res: nullable RuntimeVariable = null var ret = mpropdef.msignature.return_mtype if ret != null then ret = v.resolve_for(ret, arguments.first) res = v.new_var(ret) end v.adapt_signature(mpropdef, arguments) if res == null then v.add("{externname}({arguments.join(", ")});") else v.add("{res} = {externname}({arguments.join(", ")});") v.ret(res) end end end redef class AExternInitPropdef redef fun compile_to_c(v, mpropdef, arguments) do var externname var nextern = self.n_extern if nextern == null then v.add("printf(\"NOT YET IMPLEMENTED nitni for {mpropdef} at {location.to_s}\\n\");") v.add("exit(1);") return end externname = nextern.text.substring(1, nextern.text.length-2) if location.file != null then var file = location.file.filename v.add_extern(file) end v.adapt_signature(mpropdef, arguments) var ret = arguments.first.mtype var res = v.new_var(ret) arguments.shift v.add("{res} = {externname}({arguments.join(", ")});") v.ret(res) end end redef class AAttrPropdef redef fun compile_to_c(v, mpropdef, arguments) do if arguments.length == 1 then var res = v.read_attribute(self.mpropdef.mproperty, arguments.first) v.assign(v.frame.returnvar.as(not null), res) else v.write_attribute(self.mpropdef.mproperty, arguments.first, arguments[1]) end end fun init_expr(v: AbstractCompilerVisitor, recv: RuntimeVariable) do var nexpr = self.n_expr if nexpr != null then var oldnode = v.current_node v.current_node = self var old_frame = v.frame var frame = new Frame(v, self.mpropdef.as(not null), recv.mtype.as(MClassType), [recv]) v.frame = frame var value = v.expr(nexpr, self.mpropdef.static_mtype) v.write_attribute(self.mpropdef.mproperty, recv, value) v.frame = old_frame v.current_node = oldnode end end fun check_expr(v: AbstractCompilerVisitor, recv: RuntimeVariable) do var nexpr = self.n_expr if nexpr != null then return var oldnode = v.current_node v.current_node = self var old_frame = v.frame var frame = new Frame(v, self.mpropdef.as(not null), recv.mtype.as(MClassType), [recv]) v.frame = frame # Force read to check the initialization v.read_attribute(self.mpropdef.mproperty, recv) v.frame = old_frame v.current_node = oldnode end end redef class AClassdef private fun compile_to_c(v: AbstractCompilerVisitor, mpropdef: MMethodDef, arguments: Array[RuntimeVariable]) do if mpropdef == self.mfree_init then var super_inits = self.super_inits if super_inits != null then assert arguments.length == 1 for su in super_inits do v.send(su, arguments) end return end var recv = arguments.first var i = 1 # Collect undefined attributes for npropdef in self.n_propdefs do if npropdef isa AAttrPropdef and npropdef.n_expr == null then v.write_attribute(npropdef.mpropdef.mproperty, recv, arguments[i]) i += 1 end end else abort end end end redef class ADeferredMethPropdef redef fun compile_to_c(v, mpropdef, arguments) do v.add_abort("Deferred method called") redef fun can_inline do return true end redef class AExpr # Try to compile self as an expression # Do not call this method directly, use `v.expr' instead private fun expr(v: AbstractCompilerVisitor): nullable RuntimeVariable do v.add("printf(\"NOT YET IMPLEMENTED {class_name}:{location.to_s}\\n\");") var mtype = self.mtype if mtype == null then return null else var res = v.new_var(mtype) v.add("/* {res} = NOT YET {class_name} */") return res end end # Try to compile self as a statement # Do not call this method directly, use `v.stmt' instead private fun stmt(v: AbstractCompilerVisitor) do var res = expr(v) if res != null then v.add("{res};") end end redef class ABlockExpr redef fun stmt(v) do for e in self.n_expr do v.stmt(e) end end redef class AVardeclExpr redef fun stmt(v) do var variable = self.variable.as(not null) var ne = self.n_expr if ne != null then var i = v.expr(ne, variable.declared_type) v.assign(v.variable(variable), i) end end end redef class AVarExpr redef fun expr(v) do var res = v.variable(self.variable.as(not null)) var mtype = self.mtype.as(not null) return v.autoadapt(res, mtype) end end redef class AVarAssignExpr redef fun stmt(v) do var variable = self.variable.as(not null) var i = v.expr(self.n_value, variable.declared_type) v.assign(v.variable(variable), i) end end redef class AVarReassignExpr redef fun stmt(v) do var variable = self.variable.as(not null) var vari = v.variable(variable) var value = v.expr(self.n_value, variable.declared_type) var res = v.compile_callsite(self.reassign_callsite.as(not null), [vari, value]) assert res != null v.assign(v.variable(variable), res) end end redef class ASelfExpr redef fun expr(v) do return v.frame.arguments.first end redef class AContinueExpr redef fun stmt(v) do v.add("goto CONTINUE_{v.escapemark_name(self.escapemark)};") end redef class ABreakExpr redef fun stmt(v) do v.add("goto BREAK_{v.escapemark_name(self.escapemark)};") end redef class AReturnExpr redef fun stmt(v) do var nexpr = self.n_expr if nexpr != null then var returnvar = v.frame.returnvar.as(not null) var i = v.expr(nexpr, returnvar.mtype) v.assign(returnvar, i) end v.add("goto {v.frame.returnlabel.as(not null)};") end end redef class AAbortExpr redef fun stmt(v) do v.add_abort("Aborted") end redef class AIfExpr redef fun stmt(v) do var cond = v.expr_bool(self.n_expr) v.add("if ({cond})\{") v.stmt(self.n_then) v.add("\} else \{") v.stmt(self.n_else) v.add("\}") end end redef class AIfexprExpr redef fun expr(v) do var res = v.new_var(self.mtype.as(not null)) var cond = v.expr_bool(self.n_expr) v.add("if ({cond})\{") v.assign(res, v.expr(self.n_then, null)) v.add("\} else \{") v.assign(res, v.expr(self.n_else, null)) v.add("\}") return res end end redef class ADoExpr redef fun stmt(v) do v.stmt(self.n_block) var escapemark = self.escapemark if escapemark != null then v.add("BREAK_{v.escapemark_name(escapemark)}: (void)0;") end end end redef class AWhileExpr redef fun stmt(v) do v.add("for(;;) \{") var cond = v.expr_bool(self.n_expr) v.add("if (!{cond}) break;") v.stmt(self.n_block) v.add("CONTINUE_{v.escapemark_name(escapemark)}: (void)0;") v.add("\}") v.add("BREAK_{v.escapemark_name(escapemark)}: (void)0;") end end redef class ALoopExpr redef fun stmt(v) do v.add("for(;;) \{") v.stmt(self.n_block) v.add("CONTINUE_{v.escapemark_name(escapemark)}: (void)0;") v.add("\}") v.add("BREAK_{v.escapemark_name(escapemark)}: (void)0;") end end redef class AForExpr redef fun stmt(v) do # Shortcut on explicit range # Avoid the instantiation of the range and the iterator var nexpr = self.n_expr if self.variables.length == 1 and nexpr isa AOrangeExpr and not v.compiler.modelbuilder.toolcontext.opt_no_shortcut_range.value then var from = v.expr(nexpr.n_expr, null) var to = v.expr(nexpr.n_expr2, null) var variable = v.variable(variables.first) v.assign(variable, from) v.add("for(;;) \{ /* shortcut range */") var ok = v.send(v.get_property("<", variable.mtype), [variable, to]) assert ok != null v.add("if(!{ok}) break;") v.stmt(self.n_block) v.add("CONTINUE_{v.escapemark_name(escapemark)}: (void)0;") var succ = v.send(v.get_property("succ", variable.mtype), [variable]) assert succ != null v.assign(variable, succ) v.add("\}") v.add("BREAK_{v.escapemark_name(escapemark)}: (void)0;") return end var cl = v.expr(self.n_expr, null) var it_meth = self.method_iterator assert it_meth != null var it = v.send(it_meth, [cl]) assert it != null v.add("for(;;) \{") var isok_meth = self.method_is_ok assert isok_meth != null var ok = v.send(isok_meth, [it]) assert ok != null v.add("if(!{ok}) break;") if self.variables.length == 1 then var item_meth = self.method_item assert item_meth != null var i = v.send(item_meth, [it]) assert i != null v.assign(v.variable(variables.first), i) else if self.variables.length == 2 then var key_meth = self.method_key assert key_meth != null var i = v.send(key_meth, [it]) assert i != null v.assign(v.variable(variables[0]), i) var item_meth = self.method_item assert item_meth != null i = v.send(item_meth, [it]) assert i != null v.assign(v.variable(variables[1]), i) else abort end v.stmt(self.n_block) v.add("CONTINUE_{v.escapemark_name(escapemark)}: (void)0;") var next_meth = self.method_next assert next_meth != null v.send(next_meth, [it]) v.add("\}") v.add("BREAK_{v.escapemark_name(escapemark)}: (void)0;") end end redef class AAssertExpr redef fun stmt(v) do if v.compiler.modelbuilder.toolcontext.opt_no_check_assert.value then return var cond = v.expr_bool(self.n_expr) v.add("if (!{cond}) \{") v.stmt(self.n_else) var nid = self.n_id if nid != null then v.add_abort("Assert '{nid.text}' failed") else v.add_abort("Assert failed") end v.add("\}") end end redef class AOrExpr redef fun expr(v) do var res = v.new_var(self.mtype.as(not null)) var i1 = v.expr_bool(self.n_expr) v.add("if ({i1}) \{") v.add("{res} = 1;") v.add("\} else \{") var i2 = v.expr_bool(self.n_expr2) v.add("{res} = {i2};") v.add("\}") return res end end redef class AAndExpr redef fun expr(v) do var res = v.new_var(self.mtype.as(not null)) var i1 = v.expr_bool(self.n_expr) v.add("if (!{i1}) \{") v.add("{res} = 0;") v.add("\} else \{") var i2 = v.expr_bool(self.n_expr2) v.add("{res} = {i2};") v.add("\}") return res end end redef class ANotExpr redef fun expr(v) do var cond = v.expr_bool(self.n_expr) return v.new_expr("!{cond}", self.mtype.as(not null)) end end redef class AOrElseExpr redef fun expr(v) do var res = v.new_var(self.mtype.as(not null)) var i1 = v.expr(self.n_expr, null) v.add("if ({i1}!=NULL) \{") v.assign(res, i1) v.add("\} else \{") var i2 = v.expr(self.n_expr2, null) v.assign(res, i2) v.add("\}") return res end end redef class AEeExpr redef fun expr(v) do var value1 = v.expr(self.n_expr, null) var value2 = v.expr(self.n_expr2, null) return v.equal_test(value1, value2) end end redef class AIntExpr redef fun expr(v) do return v.new_expr("{self.n_number.text}", self.mtype.as(not null)) end redef class AFloatExpr redef fun expr(v) do return v.new_expr("{self.n_float.text}", self.mtype.as(not null)) end redef class ACharExpr redef fun expr(v) do return v.new_expr("{self.n_char.text}", self.mtype.as(not null)) end redef class AArrayExpr redef fun expr(v) do var mtype = self.mtype.as(MClassType).arguments.first var array = new Array[RuntimeVariable] for nexpr in self.n_exprs.n_exprs do var i = v.expr(nexpr, mtype) array.add(i) end return v.array_instance(array, mtype) end end redef class AStringFormExpr redef fun expr(v) do return v.string_instance(self.value.as(not null)) end redef class ASuperstringExpr redef fun expr(v) do var array = new Array[RuntimeVariable] for ne in self.n_exprs do if ne isa AStringFormExpr and ne.value == "" then continue # skip empty sub-strings var i = v.expr(ne, null) array.add(i) end var a = v.array_instance(array, v.object_type) var res = v.send(v.get_property("to_s", a.mtype), [a]) return res end end redef class ACrangeExpr redef fun expr(v) do var i1 = v.expr(self.n_expr, null) var i2 = v.expr(self.n_expr2, null) var mtype = self.mtype.as(MClassType) var res = v.init_instance(mtype) var it = v.send(v.get_property("init", res.mtype), [res, i1, i2]) v.check_init_instance(res, mtype) return res end end redef class AOrangeExpr redef fun expr(v) do var i1 = v.expr(self.n_expr, null) var i2 = v.expr(self.n_expr2, null) var mtype = self.mtype.as(MClassType) var res = v.init_instance(mtype) var it = v.send(v.get_property("without_last", res.mtype), [res, i1, i2]) v.check_init_instance(res, mtype) return res end end redef class ATrueExpr redef fun expr(v) do return v.new_expr("1", self.mtype.as(not null)) end redef class AFalseExpr redef fun expr(v) do return v.new_expr("0", self.mtype.as(not null)) end redef class ANullExpr redef fun expr(v) do return v.new_expr("NULL", self.mtype.as(not null)) end redef class AIsaExpr redef fun expr(v) do var i = v.expr(self.n_expr, null) return v.type_test(i, self.cast_type.as(not null), "isa") end end redef class AAsCastExpr redef fun expr(v) do var i = v.expr(self.n_expr, null) if v.compiler.modelbuilder.toolcontext.opt_no_check_assert.value then return i var cond = v.type_test(i, self.mtype.as(not null), "as") v.add("if (!{cond}) \{") v.add_abort("Cast failed") v.add("\}") return i end end redef class AAsNotnullExpr redef fun expr(v) do var i = v.expr(self.n_expr, null) if v.compiler.modelbuilder.toolcontext.opt_no_check_assert.value then return i v.add("if ({i} == NULL) \{") v.add_abort("Cast failed") v.add("\}") return i end end redef class AParExpr redef fun expr(v) do return v.expr(self.n_expr, null) end redef class AOnceExpr redef fun expr(v) do var mtype = self.mtype.as(not null) var name = v.get_name("varonce") var guard = v.get_name(name + "_guard") v.add_decl("static {mtype.ctype} {name};") v.add_decl("static int {guard};") var res = v.new_var(mtype) v.add("if ({guard}) \{") v.add("{res} = {name};") v.add("\} else \{") var i = v.expr(self.n_expr, mtype) v.add("{res} = {i};") v.add("{name} = {res};") v.add("{guard} = 1;") v.add("\}") return res end end redef class ASendExpr redef fun expr(v) do var recv = v.expr(self.n_expr, null) var args = [recv] for a in self.raw_arguments.as(not null) do args.add(v.expr(a, null)) end return v.compile_callsite(self.callsite.as(not null), args) end end redef class ASendReassignFormExpr redef fun stmt(v) do var recv = v.expr(self.n_expr, null) var args = [recv] for a in self.raw_arguments.as(not null) do args.add(v.expr(a, null)) end var value = v.expr(self.n_value, null) var left = v.compile_callsite(self.callsite.as(not null), args) assert left != null var res = v.compile_callsite(self.reassign_callsite.as(not null), [left, value]) assert res != null args.add(res) v.compile_callsite(self.write_callsite.as(not null), args) end end redef class ASuperExpr redef fun expr(v) do var recv = v.frame.arguments.first var args = [recv] for a in self.n_args.n_exprs do args.add(v.expr(a, null)) end if args.length == 1 then args = v.frame.arguments end var mproperty = self.mproperty if mproperty != null then if mproperty.intro.msignature.arity == 0 then args = [recv] end # Super init call var res = v.send(mproperty, args) return res end # stantard call-next-method return v.supercall(v.frame.mpropdef.as(MMethodDef), recv.mtype.as(MClassType), args) end end redef class ANewExpr redef fun expr(v) do var mtype = self.mtype.as(MClassType) var recv var ctype = mtype.ctype if ctype == "val*" then recv = v.init_instance(mtype) else if ctype == "void*" then recv = v.new_expr("NULL/*special!*/", mtype) else debug("cannot new {mtype}") abort end var args = [recv] for a in self.n_args.n_exprs do args.add(v.expr(a, null)) end var res2 = v.compile_callsite(self.callsite.as(not null), args) if res2 != null then #self.debug("got {res2} from {mproperty}. drop {recv}") return res2 end v.check_init_instance(recv, mtype) return recv end end redef class AAttrExpr redef fun expr(v) do var recv = v.expr(self.n_expr, null) var mproperty = self.mproperty.as(not null) return v.read_attribute(mproperty, recv) end end redef class AAttrAssignExpr redef fun stmt(v) do var recv = v.expr(self.n_expr, null) var i = v.expr(self.n_value, null) var mproperty = self.mproperty.as(not null) v.write_attribute(mproperty, recv, i) end end redef class AAttrReassignExpr redef fun stmt(v) do var recv = v.expr(self.n_expr, null) var value = v.expr(self.n_value, null) var mproperty = self.mproperty.as(not null) var attr = v.read_attribute(mproperty, recv) var res = v.compile_callsite(self.reassign_callsite.as(not null), [attr, value]) assert res != null v.write_attribute(mproperty, recv, res) end end redef class AIssetAttrExpr redef fun expr(v) do var recv = v.expr(self.n_expr, null) var mproperty = self.mproperty.as(not null) return v.isset_attribute(mproperty, recv) end end redef class ADebugTypeExpr redef fun stmt(v) do # do nothing end end # Utils redef class Array[E] # Return a new Array with the elements only contened in 'self' and not in 'o' fun -(o: Array[E]): Array[E] do var res = new Array[E] for e in self do if not o.has(e) then res.add(e) return res end end redef class MModule # Return a linearization of a set of mtypes fun linearize_mtypes(mtypes: Set[MType]): Array[MType] do var lin = new Array[MType].from(mtypes) var sorter = new TypeSorter(self) sorter.sort(lin) return lin end # Return a reverse linearization of a set of mtypes fun reverse_linearize_mtypes(mtypes: Set[MType]): Array[MType] do var lin = new Array[MType].from(mtypes) var sorter = new ReverseTypeSorter(self) sorter.sort(lin) return lin end # Return super types of a `mtype` in `self` fun super_mtypes(mtype: MType, mtypes: Set[MType]): Set[MType] do if not self.super_mtypes_cache.has_key(mtype) then var supers = new HashSet[MType] for otype in mtypes do if otype == mtype then continue if mtype.is_subtype(self, null, otype) then supers.add(otype) end end self.super_mtypes_cache[mtype] = supers end return self.super_mtypes_cache[mtype] end private var super_mtypes_cache: Map[MType, Set[MType]] = new HashMap[MType, Set[MType]] # Return all sub mtypes (directs and indirects) of a `mtype` in `self` fun sub_mtypes(mtype: MType, mtypes: Set[MType]): Set[MType] do if not self.sub_mtypes_cache.has_key(mtype) then var subs = new HashSet[MType] for otype in mtypes do if otype == mtype then continue if otype.is_subtype(self, null, mtype) then subs.add(otype) end end self.sub_mtypes_cache[mtype] = subs end return self.sub_mtypes_cache[mtype] end private var sub_mtypes_cache: Map[MType, Set[MType]] = new HashMap[MType, Set[MType]] # Return a linearization of a set of mclasses fun linearize_mclasses_2(mclasses: Set[MClass]): Array[MClass] do var lin = new Array[MClass].from(mclasses) var sorter = new ClassSorter(self) sorter.sort(lin) return lin end # Return a reverse linearization of a set of mtypes fun reverse_linearize_mclasses(mclasses: Set[MClass]): Array[MClass] do var lin = new Array[MClass].from(mclasses) var sorter = new ReverseClassSorter(self) sorter.sort(lin) return lin end # Return all super mclasses (directs and indirects) of a `mclass` in `self` fun super_mclasses(mclass: MClass): Set[MClass] do if not self.super_mclasses_cache.has_key(mclass) then var supers = new HashSet[MClass] if self.flatten_mclass_hierarchy.has(mclass) then for sup in self.flatten_mclass_hierarchy[mclass].greaters do if sup == mclass then continue supers.add(sup) end end self.super_mclasses_cache[mclass] = supers end return self.super_mclasses_cache[mclass] end private var super_mclasses_cache: Map[MClass, Set[MClass]] = new HashMap[MClass, Set[MClass]] # Return all parents of a `mclass` in `self` fun parent_mclasses(mclass: MClass): Set[MClass] do if not self.parent_mclasses_cache.has_key(mclass) then var parents = new HashSet[MClass] if self.flatten_mclass_hierarchy.has(mclass) then for sup in self.flatten_mclass_hierarchy[mclass].direct_greaters do if sup == mclass then continue parents.add(sup) end end self.parent_mclasses_cache[mclass] = parents end return self.parent_mclasses_cache[mclass] end private var parent_mclasses_cache: Map[MClass, Set[MClass]] = new HashMap[MClass, Set[MClass]] # Return all sub mclasses (directs and indirects) of a `mclass` in `self` fun sub_mclasses(mclass: MClass): Set[MClass] do if not self.sub_mclasses_cache.has_key(mclass) then var subs = new HashSet[MClass] if self.flatten_mclass_hierarchy.has(mclass) then for sub in self.flatten_mclass_hierarchy[mclass].smallers do if sub == mclass then continue subs.add(sub) end end self.sub_mclasses_cache[mclass] = subs end return self.sub_mclasses_cache[mclass] end private var sub_mclasses_cache: Map[MClass, Set[MClass]] = new HashMap[MClass, Set[MClass]] # All 'mproperties' associated to all 'mclassdefs' of `mclass` fun properties(mclass: MClass): Set[MProperty] do if not self.properties_cache.has_key(mclass) then var properties = new HashSet[MProperty] var parents = self.super_mclasses(mclass) for parent in parents do properties.add_all(self.properties(parent)) end for mclassdef in mclass.mclassdefs do for mpropdef in mclassdef.mpropdefs do properties.add(mpropdef.mproperty) end end self.properties_cache[mclass] = properties end return properties_cache[mclass] end private var properties_cache: Map[MClass, Set[MProperty]] = new HashMap[MClass, Set[MProperty]] end # A sorter for linearize list of types private class TypeSorter super AbstractSorter[MType] private var mmodule: MModule init(mmodule: MModule) do self.mmodule = mmodule redef fun compare(a, b) do if a == b then return 0 else if a.is_subtype(self.mmodule, null, b) then return -1 end return 1 end end # A sorter for reverse linearization private class ReverseTypeSorter super TypeSorter init(mmodule: MModule) do end redef fun compare(a, b) do if a == b then return 0 else if a.is_subtype(self.mmodule, null, b) then return 1 end return -1 end end # A sorter for linearize list of classes private class ClassSorter super AbstractSorter[MClass] var mmodule: MModule redef fun compare(a, b) do if a == b then return 0 else if self.mmodule.flatten_mclass_hierarchy.has(a) and self.mmodule.flatten_mclass_hierarchy[a].greaters.has(b) then return -1 end return 1 end end # A sorter for reverse linearization private class ReverseClassSorter super AbstractSorter[MClass] var mmodule: MModule redef fun compare(a, b) do if a == b then return 0 else if self.mmodule.flatten_mclass_hierarchy.has(a) and self.mmodule.flatten_mclass_hierarchy[a].greaters.has(b) then return 1 end return -1 end end