# This file is part of NIT ( http://www.nitlanguage.org ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Separate compilation of a Nit program module separate_compiler import abstract_compiler import layout_builders import rapid_type_analysis # Add separate compiler specific options redef class ToolContext # --separate var opt_separate: OptionBool = new OptionBool("Use separate compilation", "--separate") # --no-inline-intern var opt_no_inline_intern: OptionBool = new OptionBool("Do not inline call to intern methods", "--no-inline-intern") # --no-union-attribute var opt_no_union_attribute: OptionBool = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute") # --no-shortcut-equate var opt_no_shortcut_equate: OptionBool = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal") # --inline-coloring-numbers var opt_inline_coloring_numbers: OptionBool = new OptionBool("Inline colors and ids", "--inline-coloring-numbers") # --use-naive-coloring var opt_bm_typing: OptionBool = new OptionBool("Colorize items incrementaly, used to simulate binary matrix typing", "--bm-typing") # --use-mod-perfect-hashing var opt_phmod_typing: OptionBool = new OptionBool("Replace coloration by perfect hashing (with mod operator)", "--phmod-typing") # --use-and-perfect-hashing var opt_phand_typing: OptionBool = new OptionBool("Replace coloration by perfect hashing (with and operator)", "--phand-typing") # --tables-metrics var opt_tables_metrics: OptionBool = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics") redef init do super self.option_context.add_option(self.opt_separate) self.option_context.add_option(self.opt_no_inline_intern) self.option_context.add_option(self.opt_no_union_attribute) self.option_context.add_option(self.opt_no_shortcut_equate) self.option_context.add_option(self.opt_inline_coloring_numbers) self.option_context.add_option(self.opt_bm_typing) self.option_context.add_option(self.opt_phmod_typing) self.option_context.add_option(self.opt_phand_typing) self.option_context.add_option(self.opt_tables_metrics) end end redef class ModelBuilder fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: RapidTypeAnalysis) do var time0 = get_time self.toolcontext.info("*** GENERATING C ***", 1) var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis) compiler.compile_header # compile class structures self.toolcontext.info("Property coloring", 2) compiler.new_file("{mainmodule.name}.classes") compiler.do_property_coloring for m in mainmodule.in_importation.greaters do for mclass in m.intro_mclasses do compiler.compile_class_to_c(mclass) end end # The main function of the C compiler.new_file("{mainmodule.name}.main") compiler.compile_main_function # compile methods for m in mainmodule.in_importation.greaters do self.toolcontext.info("Generate C for module {m}", 2) compiler.new_file("{m.name}.sep") compiler.compile_module_to_c(m) end # compile live & cast type structures self.toolcontext.info("Type coloring", 2) compiler.new_file("{mainmodule.name}.types") var mtypes = compiler.do_type_coloring for t in mtypes do compiler.compile_type_to_c(t) end compiler.display_stats var time1 = get_time self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2) write_and_make(compiler) end end # Singleton that store the knowledge about the separate compilation process class SeparateCompiler super AbstractCompiler # The result of the RTA (used to know live types and methods) var runtime_type_analysis: RapidTypeAnalysis private var undead_types: Set[MType] = new HashSet[MType] private var partial_types: Set[MType] = new HashSet[MType] private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]] private var type_layout: nullable Layout[MType] private var resolution_layout: nullable Layout[MType] protected var method_layout: nullable Layout[MMethod] protected var attr_layout: nullable Layout[MAttribute] init(mainmodule: MModule, mmbuilder: ModelBuilder, runtime_type_analysis: RapidTypeAnalysis) do super(mainmodule, mmbuilder) var file = new_file("nit.common") self.header = new CodeWriter(file) self.runtime_type_analysis = runtime_type_analysis self.compile_box_kinds end redef fun compile_header_structs do self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */") self.compile_header_attribute_structs self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */") # With resolution_table_table, all live type resolution are stored in a big table: resolution_table self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */") self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */") if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then self.header.add_decl("struct types \{ int mask; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */") else self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */") end if modelbuilder.toolcontext.opt_phmod_typing.value then self.header.add_decl("#define HASH(mask, id) ((mask)%(id))") else if modelbuilder.toolcontext.opt_phand_typing.value then self.header.add_decl("#define HASH(mask, id) ((mask)&(id))") end self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */") end fun compile_header_attribute_structs do if modelbuilder.toolcontext.opt_no_union_attribute.value then self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */") else self.header.add_decl("typedef union \{") self.header.add_decl("void* val;") for c, v in self.box_kinds do var t = c.mclass_type self.header.add_decl("{t.ctype} {t.ctypename};") end self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */") end end fun compile_box_kinds do # Collect all bas box class # FIXME: this is not completely fine with a separate compilation scheme for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do var classes = self.mainmodule.model.get_mclasses_by_name(classname) if classes == null then continue assert classes.length == 1 else print classes.join(", ") self.box_kinds[classes.first] = self.box_kinds.length + 1 end end var box_kinds = new HashMap[MClass, Int] fun box_kind_of(mclass: MClass): Int do if mclass.mclass_type.ctype == "val*" then return 0 else if mclass.kind == extern_kind then return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")] else return self.box_kinds[mclass] end end fun compile_color_consts(colors: Map[Object, Int]) do var v = new_visitor for m, c in colors do if color_consts_done.has(m) then continue if m isa MProperty then if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then self.provide_declaration(m.const_color, "#define {m.const_color} {c}") else self.provide_declaration(m.const_color, "extern const int {m.const_color};") v.add("const int {m.const_color} = {c};") end else if m isa MType then if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then self.provide_declaration(m.const_color, "#define {m.const_color} {c}") else self.provide_declaration(m.const_color, "extern const int {m.const_color};") v.add("const int {m.const_color} = {c};") end end color_consts_done.add(m) end end private var color_consts_done = new HashSet[Object] # colorize classe properties fun do_property_coloring do var mclasses = new HashSet[MClass].from(modelbuilder.model.mclasses) # Layouts var method_layout_builder: PropertyLayoutBuilder[MMethod] var attribute_layout_builder: PropertyLayoutBuilder[MAttribute] #FIXME PH and BM layouts too slow for large programs #if modelbuilder.toolcontext.opt_bm_typing.value then # method_layout_builder = new MMethodBMizer(self.mainmodule) # attribute_layout_builder = new MAttributeBMizer(self.mainmodule) #else if modelbuilder.toolcontext.opt_phmod_typing.value then # method_layout_builder = new MMethodHasher(new PHModOperator, self.mainmodule) # attribute_layout_builder = new MAttributeHasher(new PHModOperator, self.mainmodule) #else if modelbuilder.toolcontext.opt_phand_typing.value then # method_layout_builder = new MMethodHasher(new PHAndOperator, self.mainmodule) # attribute_layout_builder = new MAttributeHasher(new PHAndOperator, self.mainmodule) #else method_layout_builder = new MMethodColorer(self.mainmodule) attribute_layout_builder = new MAttributeColorer(self.mainmodule) #end # methods coloration var method_layout = method_layout_builder.build_layout(mclasses) self.method_tables = build_method_tables(mclasses, method_layout) self.compile_color_consts(method_layout.pos) self.method_layout = method_layout # attributes coloration var attr_layout = attribute_layout_builder.build_layout(mclasses) self.attr_tables = build_attr_tables(mclasses, attr_layout) self.compile_color_consts(attr_layout.pos) self.attr_layout = attr_layout end fun build_method_tables(mclasses: Set[MClass], layout: Layout[MProperty]): Map[MClass, Array[nullable MPropDef]] do var tables = new HashMap[MClass, Array[nullable MPropDef]] for mclass in mclasses do var table = new Array[nullable MPropDef] # first, fill table from parents by reverse linearization order var parents = self.mainmodule.super_mclasses(mclass) var lin = self.mainmodule.reverse_linearize_mclasses(parents) for parent in lin do for mproperty in self.mainmodule.properties(parent) do if not mproperty isa MMethod then continue var color = layout.pos[mproperty] if table.length <= color then for i in [table.length .. color[ do table[i] = null end end for mpropdef in mproperty.mpropdefs do if mpropdef.mclassdef.mclass == parent then table[color] = mpropdef end end end end # then override with local properties for mproperty in self.mainmodule.properties(mclass) do if not mproperty isa MMethod then continue var color = layout.pos[mproperty] if table.length <= color then for i in [table.length .. color[ do table[i] = null end end for mpropdef in mproperty.mpropdefs do if mpropdef.mclassdef.mclass == mclass then table[color] = mpropdef end end end tables[mclass] = table end return tables end fun build_attr_tables(mclasses: Set[MClass], layout: Layout[MProperty]): Map[MClass, Array[nullable MPropDef]] do var tables = new HashMap[MClass, Array[nullable MPropDef]] for mclass in mclasses do var table = new Array[nullable MPropDef] # first, fill table from parents by reverse linearization order var parents = self.mainmodule.super_mclasses(mclass) var lin = self.mainmodule.reverse_linearize_mclasses(parents) for parent in lin do for mproperty in self.mainmodule.properties(parent) do if not mproperty isa MAttribute then continue var color = layout.pos[mproperty] if table.length <= color then for i in [table.length .. color[ do table[i] = null end end for mpropdef in mproperty.mpropdefs do if mpropdef.mclassdef.mclass == parent then table[color] = mpropdef end end end end # then override with local properties for mproperty in self.mainmodule.properties(mclass) do if not mproperty isa MAttribute then continue var color = layout.pos[mproperty] if table.length <= color then for i in [table.length .. color[ do table[i] = null end end for mpropdef in mproperty.mpropdefs do if mpropdef.mclassdef.mclass == mclass then table[color] = mpropdef end end end tables[mclass] = table end return tables end # colorize live types of the program private fun do_type_coloring: Set[MType] do var mtypes = new HashSet[MType] mtypes.add_all(self.runtime_type_analysis.live_types) mtypes.add_all(self.runtime_type_analysis.live_cast_types) mtypes.add_all(self.undead_types) for c in self.box_kinds.keys do mtypes.add(c.mclass_type) end for mtype in mtypes do retrieve_partial_types(mtype) end mtypes.add_all(self.partial_types) # Typing Layout var layout_builder: TypingLayoutBuilder[MType] if modelbuilder.toolcontext.opt_bm_typing.value then layout_builder = new MTypeBMizer(self.mainmodule) else if modelbuilder.toolcontext.opt_phmod_typing.value then layout_builder = new MTypeHasher(new PHModOperator, self.mainmodule) else if modelbuilder.toolcontext.opt_phand_typing.value then layout_builder = new MTypeHasher(new PHAndOperator, self.mainmodule) else layout_builder = new MTypeColorer(self.mainmodule) end # colorize types self.type_layout = layout_builder.build_layout(mtypes) self.type_tables = self.build_type_tables(mtypes) # VT and FT are stored with other unresolved types in the big resolution_tables self.compile_resolution_tables(mtypes) return mtypes end # Build type tables fun build_type_tables(mtypes: Set[MType]): Map[MType, Array[nullable MType]] do var tables = new HashMap[MType, Array[nullable MType]] var layout = self.type_layout for mtype in mtypes do var table = new Array[nullable MType] var supers = new HashSet[MType] supers.add_all(self.mainmodule.super_mtypes(mtype, mtypes)) supers.add(mtype) for sup in supers do var color: Int if layout isa PHLayout[MType, MType] then color = layout.hashes[mtype][sup] else color = layout.pos[sup] end if table.length <= color then for i in [table.length .. color[ do table[i] = null end end table[color] = sup end tables[mtype] = table end return tables end protected fun compile_resolution_tables(mtypes: Set[MType]) do # resolution_tables is used to perform a type resolution at runtime in O(1) # During the visit of the body of classes, live_unresolved_types are collected # and associated to # Collect all live_unresolved_types (visited in the body of classes) # Determinate fo each livetype what are its possible requested anchored types var mtype2unresolved = new HashMap[MClassType, Set[MType]] for mtype in self.runtime_type_analysis.live_types do var set = new HashSet[MType] for cd in mtype.collect_mclassdefs(self.mainmodule) do if self.live_unresolved_types.has_key(cd) then set.add_all(self.live_unresolved_types[cd]) end end mtype2unresolved[mtype] = set end # Compute the table layout with the prefered method var resolution_builder: ResolutionLayoutBuilder if modelbuilder.toolcontext.opt_bm_typing.value then resolution_builder = new ResolutionBMizer else if modelbuilder.toolcontext.opt_phmod_typing.value then resolution_builder = new ResolutionHasher(new PHModOperator) else if modelbuilder.toolcontext.opt_phand_typing.value then resolution_builder = new ResolutionHasher(new PHAndOperator) else resolution_builder = new ResolutionColorer end self.resolution_layout = resolution_builder.build_layout(mtype2unresolved) self.resolution_tables = self.build_resolution_tables(mtype2unresolved) # Compile a C constant for each collected unresolved type. # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it) var all_unresolved = new HashSet[MType] for t in self.live_unresolved_types.values do all_unresolved.add_all(t) end var all_unresolved_types_colors = new HashMap[MType, Int] for t in all_unresolved do if self.resolution_layout.pos.has_key(t) then all_unresolved_types_colors[t] = self.resolution_layout.pos[t] else all_unresolved_types_colors[t] = -1 end end self.compile_color_consts(all_unresolved_types_colors) #print "tables" #for k, v in unresolved_types_tables.as(not null) do # print "{k}: {v.join(", ")}" #end #print "" end fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do var tables = new HashMap[MClassType, Array[nullable MType]] var layout = self.resolution_layout for mclasstype, mtypes in elements do var table = new Array[nullable MType] for mtype in mtypes do var color: Int if layout isa PHLayout[MClassType, MType] then color = layout.hashes[mclasstype][mtype] else color = layout.pos[mtype] end if table.length <= color then for i in [table.length .. color[ do table[i] = null end end table[color] = mtype end tables[mclasstype] = table end return tables end fun retrieve_partial_types(mtype: MType) do # add formal types arguments to mtypes if mtype isa MGenericType then for ft in mtype.arguments do if ft.need_anchor then print("Why do we need anchor here ?") abort end self.partial_types.add(ft) retrieve_partial_types(ft) end end var mclass_type: MClassType if mtype isa MNullableType then mclass_type = mtype.mtype.as(MClassType) else mclass_type = mtype.as(MClassType) end # add virtual types to mtypes for vt in self.mainmodule.properties(mclass_type.mclass) do if vt isa MVirtualTypeProp then var anchored = vt.mvirtualtype.lookup_bound(self.mainmodule, mclass_type).anchor_to(self.mainmodule, mclass_type) self.partial_types.add(anchored) end end end # Separately compile all the method definitions of the module fun compile_module_to_c(mmodule: MModule) do var old_module = self.mainmodule self.mainmodule = mmodule for cd in mmodule.mclassdefs do for pd in cd.mpropdefs do if not pd isa MMethodDef then continue #print "compile {pd} @ {cd} @ {mmodule}" var r = pd.separate_runtime_function r.compile_to_c(self) var r2 = pd.virtual_runtime_function r2.compile_to_c(self) end end self.mainmodule = old_module end # Globaly compile the type structure of a live type fun compile_type_to_c(mtype: MType) do var c_name = mtype.c_name var v = new SeparateCompilerVisitor(self) v.add_decl("/* runtime type {mtype} */") # extern const struct type_X self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};") # const struct type_X v.add_decl("const struct type type_{c_name} = \{") v.add_decl("{self.type_layout.ids[mtype]},") v.add_decl("\"{mtype}\", /* class_name_string */") var layout = self.type_layout if layout isa PHLayout[MType, MType] then v.add_decl("{layout.masks[mtype]},") else v.add_decl("{layout.pos[mtype]},") end if mtype isa MNullableType then v.add_decl("1,") else v.add_decl("0,") end if compile_type_resolution_table(mtype) then v.require_declaration("resolution_table_{c_name}") v.add_decl("&resolution_table_{c_name},") else v.add_decl("NULL,") end v.add_decl("{self.type_tables[mtype].length},") v.add_decl("\{") for stype in self.type_tables[mtype] do if stype == null then v.add_decl("-1, /* empty */") else v.add_decl("{self.type_layout.ids[stype]}, /* {stype} */") end end v.add_decl("\},") v.add_decl("\};") end fun compile_type_resolution_table(mtype: MType): Bool do var mclass_type: MClassType if mtype isa MNullableType then mclass_type = mtype.mtype.as(MClassType) else mclass_type = mtype.as(MClassType) end if not self.resolution_tables.has_key(mclass_type) then return false var layout = self.resolution_layout # extern const struct resolution_table_X resolution_table_X self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};") # const struct fts_table_X fts_table_X var v = new_visitor v.add_decl("const struct types resolution_table_{mtype.c_name} = \{") if layout isa PHLayout[MClassType, MType] then v.add_decl("{layout.masks[mclass_type]},") else v.add_decl("0, /* dummy */") end v.add_decl("\{") for t in self.resolution_tables[mclass_type] do if t == null then v.add_decl("NULL, /* empty */") else # The table stores the result of the type resolution # Therefore, for a receiver `mclass_type`, and a unresolved type `t` # the value stored is tv. var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true) # FIXME: What typeids means here? How can a tv not be live? if self.type_layout.ids.has_key(tv) then v.require_declaration("type_{tv.c_name}") v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */") else v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */") end end end v.add_decl("\}") v.add_decl("\};") return true end # Globally compile the table of the class mclass # In a link-time optimisation compiler, tables are globally computed # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally fun compile_class_to_c(mclass: MClass) do var mtype = mclass.intro.bound_mtype var c_name = mclass.c_name var vft = self.method_tables[mclass] var attrs = self.attr_tables[mclass] var v = new_visitor v.add_decl("/* runtime class {c_name} */") # Build class vft self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};") v.add_decl("const struct class class_{c_name} = \{") v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */") v.add_decl("\{") for i in [0 .. vft.length[ do var mpropdef = vft[i] if mpropdef == null then v.add_decl("NULL, /* empty */") else assert mpropdef isa MMethodDef var rf = mpropdef.virtual_runtime_function v.require_declaration(rf.c_name) v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */") end end v.add_decl("\}") v.add_decl("\};") if mtype.ctype != "val*" then #Build instance struct self.header.add_decl("struct instance_{c_name} \{") self.header.add_decl("const struct type *type;") self.header.add_decl("const struct class *class;") self.header.add_decl("{mtype.ctype} value;") self.header.add_decl("\};") if not self.runtime_type_analysis.live_types.has(mtype) then return #Build BOX self.header.add_decl("val* BOX_{c_name}({mtype.ctype});") v.add_decl("/* allocate {mtype} */") v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype} value) \{") v.add("struct instance_{c_name}*res = nit_alloc(sizeof(struct instance_{c_name}));") v.require_declaration("type_{c_name}") v.add("res->type = &type_{c_name};") v.require_declaration("class_{c_name}") v.add("res->class = &class_{c_name};") v.add("res->value = value;") v.add("return (val*)res;") v.add("\}") return else if mclass.name == "NativeArray" then #Build instance struct self.header.add_decl("struct instance_{c_name} \{") self.header.add_decl("const struct type *type;") self.header.add_decl("const struct class *class;") # NativeArrays are just a instance header followed by an array of values self.header.add_decl("val* values[0];") self.header.add_decl("\};") #Build NEW self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);") v.add_decl("/* allocate {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{") var res = v.new_named_var(mtype, "self") res.is_exact = true var mtype_elt = mtype.arguments.first v.add("{res} = nit_alloc(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") v.add("return {res};") v.add("\}") return end #Build NEW self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);") v.add_decl("/* allocate {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{") var res = v.new_named_var(mtype, "self") res.is_exact = true v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") self.generate_init_attr(v, res, mtype) v.add("return {res};") v.add("\}") generate_check_init_instance(mtype) end # Add a dynamic test to ensure that the type referenced by `t` is a live type fun hardening_live_type(v: VISITOR, t: String) do if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return v.add("if({t} == NULL) \{") v.add_abort("type null") v.add("\}") v.add("if({t}->resolution_table == NULL) \{") v.add("fprintf(stderr, \"Insantiation of a dead type: %s\\n\", {t}->name);") v.add_abort("type dead") v.add("\}") end redef fun generate_check_init_instance(mtype) do if self.modelbuilder.toolcontext.opt_no_check_initialization.value then return var v = self.new_visitor var c_name = mtype.mclass.c_name var res = new RuntimeVariable("self", mtype, mtype) self.provide_declaration("CHECK_NEW_{c_name}", "void CHECK_NEW_{c_name}({mtype.ctype});") v.add_decl("/* allocate {mtype} */") v.add_decl("void CHECK_NEW_{c_name}({mtype.ctype} {res}) \{") self.generate_check_attr(v, res, mtype) v.add("\}") end redef fun new_visitor do return new SeparateCompilerVisitor(self) # Stats private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]] private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]] protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] redef fun display_stats do super if self.modelbuilder.toolcontext.opt_tables_metrics.value then display_sizes end end fun display_sizes do print "# size of subtyping tables" print "\ttotal \tholes" var total = 0 var holes = 0 for t, table in type_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" print "# size of resolution tables" print "\ttotal \tholes" total = 0 holes = 0 for t, table in resolution_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" print "# size of methods tables" print "\ttotal \tholes" total = 0 holes = 0 for t, table in method_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" print "# size of attributes tables" print "\ttotal \tholes" total = 0 holes = 0 for t, table in attr_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" end end # A visitor on the AST of property definition that generate the C code of a separate compilation process. class SeparateCompilerVisitor super AbstractCompilerVisitor redef type COMPILER: SeparateCompiler redef fun adapt_signature(m, args) do var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true) var recv = args.first if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type) end for i in [0..msignature.arity[ do var t = msignature.mparameters[i].mtype if i == msignature.vararg_rank then t = args[i+1].mtype end args[i+1] = self.autobox(args[i+1], t) end end redef fun autobox(value, mtype) do if value.mtype == mtype then return value else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then return value else if value.mtype.ctype == "val*" then return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype) else if mtype.ctype == "val*" then var valtype = value.mtype.as(MClassType) var res = self.new_var(mtype) if not compiler.runtime_type_analysis.live_types.has(valtype) then self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */") self.add("printf(\"Dead code executed!\\n\"); exit(1);") return res end self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */") return res else # Bad things will appen! var res = self.new_var(mtype) self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */") self.add("printf(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); exit(1);") return res end end # Return a C expression returning the runtime type structure of the value # The point of the method is to works also with primitives types. fun type_info(value: RuntimeVariable): String do if value.mtype.ctype == "val*" then return "{value}->type" else self.require_declaration("type_{value.mtype.c_name}") return "(&type_{value.mtype.c_name})" end end redef fun send(mmethod, arguments) do if arguments.first.mcasttype.ctype != "val*" then # In order to shortcut the primitive, we need to find the most specific method # Howverr, because of performance (no flattening), we always work on the realmainmodule var m = self.compiler.mainmodule self.compiler.mainmodule = self.compiler.realmainmodule var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments) self.compiler.mainmodule = m return res end var res: nullable RuntimeVariable var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true) var ret = msignature.return_mtype if mmethod.is_new then ret = arguments.first.mtype res = self.new_var(ret) else if ret == null then res = null else res = self.new_var(ret) end var s = new Buffer var ss = new Buffer var recv = arguments.first s.append("val*") ss.append("{recv}") self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), arguments) for i in [0..msignature.arity[ do var a = arguments[i+1] var t = msignature.mparameters[i].mtype if i == msignature.vararg_rank then t = arguments[i+1].mcasttype end s.append(", {t.ctype}") a = self.autobox(a, t) ss.append(", {a}") end var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_other.value or mmethod.name == "==" or mmethod.name == "!=" var maybenull = recv.mcasttype isa MNullableType and consider_null if maybenull then self.add("if ({recv} == NULL) \{") if mmethod.name == "==" then assert res != null var arg = arguments[1] if arg.mcasttype isa MNullableType then self.add("{res} = ({arg} == NULL);") else if arg.mcasttype isa MNullType then self.add("{res} = 1; /* is null */") else self.add("{res} = 0; /* {arg.inspect} cannot be null */") end else if mmethod.name == "!=" then assert res != null var arg = arguments[1] if arg.mcasttype isa MNullableType then self.add("{res} = ({arg} != NULL);") else if arg.mcasttype isa MNullType then self.add("{res} = 0; /* is null */") else self.add("{res} = 1; /* {arg.inspect} cannot be null */") end else self.add_abort("Reciever is null") end self.add("\} else \{") end if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then assert res != null # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants) var arg = arguments[1] if arg.mcasttype isa MNullType then if mmethod.name == "==" then self.add("{res} = 0; /* arg is null but recv is not */") else self.add("{res} = 1; /* arg is null and recv is not */") end if maybenull then self.add("\}") end return res end end var r if ret == null then r = "void" else r = ret.ctype self.require_declaration(mmethod.const_color) var call = "(({r} (*)({s}))({arguments.first}->class->vft[{mmethod.const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/" if res != null then self.add("{res} = {call};") else self.add("{call};") end if maybenull then self.add("\}") end return res end redef fun call(mmethoddef, recvtype, arguments) do var res: nullable RuntimeVariable var ret = mmethoddef.msignature.return_mtype if mmethoddef.mproperty.is_new then ret = arguments.first.mtype res = self.new_var(ret) else if ret == null then res = null else ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) res = self.new_var(ret) end if self.compiler.modelbuilder.mpropdef2npropdef.has_key(mmethoddef) and self.compiler.modelbuilder.mpropdef2npropdef[mmethoddef] isa AInternMethPropdef and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value then var frame = new Frame(self, mmethoddef, recvtype, arguments) frame.returnlabel = self.get_name("RET_LABEL") frame.returnvar = res var old_frame = self.frame self.frame = frame self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) */") mmethoddef.compile_inside_to_c(self, arguments) self.add("{frame.returnlabel.as(not null)}:(void)0;") self.add("\}") self.frame = old_frame return res end # Autobox arguments self.adapt_signature(mmethoddef, arguments) self.require_declaration(mmethoddef.c_name) if res == null then self.add("{mmethoddef.c_name}({arguments.join(", ")});") return null else self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});") end return res end redef fun supercall(m: MMethodDef, recvtype: MClassType, args: Array[RuntimeVariable]): nullable RuntimeVariable do # FIXME implements a polymorphic access in tables m = m.lookup_next_definition(m.mclassdef.mmodule, m.mclassdef.bound_mtype) return self.call(m, recvtype, args) end redef fun vararg_instance(mpropdef, recv, varargs, elttype) do # A vararg must be stored into an new array # The trick is that the dymaic type of the array may depends on the receiver # of the method (ie recv) if the static type is unresolved # This is more complex than usual because the unresolved type must not be resolved # with the current receiver (ie self). # Therefore to isolate the resolution from self, a local Frame is created. # One can see this implementation as an inlined method of the receiver whose only # job is to allocate the array var old_frame = self.frame var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv]) self.frame = frame #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}" var res = self.array_instance(varargs, elttype) self.frame = old_frame return res end redef fun isset_attribute(a, recv) do self.check_recv_notnull(recv) var res = self.new_var(bool_type) # What is the declared type of the attribute? var mtype = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) if mtype isa MNullableType then self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */") return res end self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/") else if mtype.ctype == "val*" then self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */") else self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */") end end return res end redef fun read_attribute(a, recv) do self.check_recv_notnull(recv) # What is the declared type of the attribute? var ret = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then # Get the attribute or a box (ie. always a val*) var cret = self.object_type.as_nullable var res = self.new_var(cret) res.mcasttype = ret self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */") # Check for Uninitialized attribute if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_initialization.value then self.add("if ({res} == NULL) \{") self.add_abort("Uninitialized attribute {a.name}") self.add("\}") end # Return the attribute or its unboxed version # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes return self.autobox(res, ret) else var res = self.new_var(ret) self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */") # Check for Uninitialized attribute if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_initialization.value then self.add("if ({res} == NULL) \{") self.add_abort("Uninitialized attribute {a.name}") self.add("\}") end return res end end redef fun write_attribute(a, recv, value) do self.check_recv_notnull(recv) # What is the declared type of the attribute? var mtype = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) # Adapt the value to the declared type value = self.autobox(value, mtype) self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then var attr = "{recv}->attrs[{a.const_color}]" if mtype.ctype != "val*" then assert mtype isa MClassType # The attribute is primitive, thus we store it in a box # The trick is to create the box the first time then resuse the box self.add("if ({attr} != NULL) \{") self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */") self.add("\} else \{") value = self.autobox(value, self.object_type.as_nullable) self.add("{attr} = {value}; /* {a} on {recv.inspect} */") self.add("\}") else # The attribute is not primitive, thus store it direclty self.add("{attr} = {value}; /* {a} on {recv.inspect} */") end else self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */") end end redef fun init_instance(mtype) do self.require_declaration("NEW_{mtype.mclass.c_name}") var compiler = self.compiler if mtype isa MGenericType and mtype.need_anchor then link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) self.require_declaration(mtype.const_color) if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {mtype.const_color})])", mtype) else return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) end end compiler.undead_types.add(mtype) self.require_declaration("type_{mtype.c_name}") return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype) end redef fun check_init_instance(value, mtype) do if self.compiler.modelbuilder.toolcontext.opt_no_check_initialization.value then return self.require_declaration("CHECK_NEW_{mtype.mclass.c_name}") self.add("CHECK_NEW_{mtype.mclass.c_name}({value});") end redef fun type_test(value, mtype, tag) do self.add("/* {value.inspect} isa {mtype} */") var compiler = self.compiler var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) var res = self.new_var(bool_type) var cltype = self.get_name("cltype") self.add_decl("int {cltype};") var idtype = self.get_name("idtype") self.add_decl("int {idtype};") var maybe_null = self.maybe_null(value) var accept_null = "0" var ntype = mtype if ntype isa MNullableType then ntype = ntype.mtype accept_null = "1" end if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/") if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_skipped[tag] += 1 self.add("count_type_test_skipped_{tag}++;") end return res end if ntype.need_anchor then var type_struct = self.get_name("type_struct") self.add_decl("const struct type* {type_struct};") # Either with resolution_table with a direct resolution link_unresolved_type(self.frame.mpropdef.mclassdef, ntype) self.require_declaration(ntype.const_color) if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then self.add("{type_struct} = {recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {ntype.const_color})];") else self.add("{type_struct} = {recv_type_info}->resolution_table->types[{ntype.const_color}];") end if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_unresolved[tag] += 1 self.add("count_type_test_unresolved_{tag}++;") end self.add("{cltype} = {type_struct}->color;") self.add("{idtype} = {type_struct}->id;") if maybe_null and accept_null == "0" then var is_nullable = self.get_name("is_nullable") self.add_decl("short int {is_nullable};") self.add("{is_nullable} = {type_struct}->is_nullable;") accept_null = is_nullable.to_s end else if ntype isa MClassType then compiler.undead_types.add(mtype) self.require_declaration("type_{mtype.c_name}") self.add("{cltype} = type_{mtype.c_name}.color;") self.add("{idtype} = type_{mtype.c_name}.id;") if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_resolved[tag] += 1 self.add("count_type_test_resolved_{tag}++;") end else self.add("printf(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); exit(1);") end # check color is in table if maybe_null then self.add("if({value} == NULL) \{") self.add("{res} = {accept_null};") self.add("\} else \{") end var value_type_info = self.type_info(value) if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then self.add("{cltype} = HASH({value_type_info}->color, {idtype});") end self.add("if({cltype} >= {value_type_info}->table_size) \{") self.add("{res} = 0;") self.add("\} else \{") self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};") self.add("\}") if maybe_null then self.add("\}") end return res end redef fun is_same_type_test(value1, value2) do var res = self.new_var(bool_type) # Swap values to be symetric if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then var tmp = value1 value1 = value2 value2 = tmp end if value1.mtype.ctype != "val*" then if value2.mtype == value1.mtype then self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */") else if value2.mtype.ctype != "val*" then self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) self.require_declaration("class_{mtype1.c_name}") self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */") end else self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */") end return res end redef fun class_name_string(value) do var res = self.get_name("var_class_name") self.add_decl("const char* {res};") if value.mtype.ctype == "val*" then self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;" else self.require_declaration("type_{value.mtype.c_name}") self.add "{res} = type_{value.mtype.c_name}.name;" end return res end redef fun equal_test(value1, value2) do var res = self.new_var(bool_type) if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then var tmp = value1 value1 = value2 value2 = tmp end if value1.mtype.ctype != "val*" then if value2.mtype == value1.mtype then self.add("{res} = {value1} == {value2};") else if value2.mtype.ctype != "val*" then self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) self.require_declaration("class_{mtype1.c_name}") self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});") self.add("if ({res}) \{") self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});") self.add("\}") end return res end var maybe_null = true var test = new Array[String] var t1 = value1.mcasttype if t1 isa MNullableType then test.add("{value1} != NULL") t1 = t1.mtype else maybe_null = false end var t2 = value2.mcasttype if t2 isa MNullableType then test.add("{value2} != NULL") t2 = t2.mtype else maybe_null = false end var incompatible = false var primitive if t1.ctype != "val*" then primitive = t1 if t1 == t2 then # No need to compare class else if t2.ctype != "val*" then incompatible = true else if can_be_primitive(value2) then test.add("{value1}->class == {value2}->class") else incompatible = true end else if t2.ctype != "val*" then primitive = t2 if can_be_primitive(value1) then test.add("{value1}->class == {value2}->class") else incompatible = true end else primitive = null end if incompatible then if maybe_null then self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/") return res else self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */") return res end end if primitive != null then test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value") else if can_be_primitive(value1) and can_be_primitive(value2) then test.add("{value1}->class == {value2}->class") var s = new Array[String] for t, v in self.compiler.box_kinds do s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)" end test.add("({s.join(" || ")})") else self.add("{res} = {value1} == {value2};") return res end self.add("{res} = {value1} == {value2} || ({test.join(" && ")});") return res end fun can_be_primitive(value: RuntimeVariable): Bool do var t = value.mcasttype if t isa MNullableType then t = t.mtype if not t isa MClassType then return false var k = t.mclass.kind return k == interface_kind or t.ctype != "val*" end fun maybe_null(value: RuntimeVariable): Bool do var t = value.mcasttype return t isa MNullableType or t isa MNullType end redef fun array_instance(array, elttype) do var nclass = self.get_class("NativeArray") var arrayclass = self.get_class("Array") var arraytype = arrayclass.get_mtype([elttype]) var res = self.init_instance(arraytype) self.add("\{ /* {res} = array_instance Array[{elttype}] */") var length = self.int_instance(array.length) var nat = native_array_instance(elttype, length) for i in [0..array.length[ do var r = self.autobox(array[i], self.object_type) self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};") end self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length]) self.check_init_instance(res, arraytype) self.add("\}") return res end fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable do var mtype = self.get_class("NativeArray").get_mtype([elttype]) self.require_declaration("NEW_{mtype.mclass.c_name}") assert mtype isa MGenericType var compiler = self.compiler if mtype.need_anchor then link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) self.require_declaration(mtype.const_color) if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {mtype.const_color})])", mtype) else return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) end end compiler.undead_types.add(mtype) self.require_declaration("type_{mtype.c_name}") return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype) end redef fun native_array_def(pname, ret_type, arguments) do var elttype = arguments.first.mtype var nclass = self.get_class("NativeArray") var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values" if pname == "[]" then self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null))) return else if pname == "[]=" then self.add("{recv}[{arguments[1]}]={arguments[2]};") return else if pname == "copy_to" then var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values" self.add("memcpy({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));") return end end redef fun calloc_array(ret_type, arguments) do var mclass = self.get_class("ArrayCapable") var ft = mclass.mclass_type.arguments.first.as(MParameterType) var res = self.native_array_instance(ft, arguments[1]) self.ret(res) end fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do assert mtype.need_anchor var compiler = self.compiler if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType] end compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype) end end redef class MMethodDef fun separate_runtime_function: AbstractRuntimeFunction do var res = self.separate_runtime_function_cache if res == null then res = new SeparateRuntimeFunction(self) self.separate_runtime_function_cache = res end return res end private var separate_runtime_function_cache: nullable SeparateRuntimeFunction fun virtual_runtime_function: AbstractRuntimeFunction do var res = self.virtual_runtime_function_cache if res == null then res = new VirtualRuntimeFunction(self) self.virtual_runtime_function_cache = res end return res end private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction end # The C function associated to a methoddef separately compiled class SeparateRuntimeFunction super AbstractRuntimeFunction redef fun build_c_name: String do return "{mmethoddef.c_name}" redef fun to_s do return self.mmethoddef.to_s redef fun compile_to_c(compiler) do var mmethoddef = self.mmethoddef var recv = self.mmethoddef.mclassdef.bound_mtype var v = compiler.new_visitor var selfvar = new RuntimeVariable("self", recv, recv) var arguments = new Array[RuntimeVariable] var frame = new Frame(v, mmethoddef, recv, arguments) v.frame = frame var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) var sig = new Buffer var comment = new Buffer var ret = msignature.return_mtype if ret != null then sig.append("{ret.ctype} ") else if mmethoddef.mproperty.is_new then ret = recv sig.append("{ret.ctype} ") else sig.append("void ") end sig.append(self.c_name) sig.append("({selfvar.mtype.ctype} {selfvar}") comment.append("({selfvar}: {selfvar.mtype}") arguments.add(selfvar) for i in [0..msignature.arity[ do var mtype = msignature.mparameters[i].mtype if i == msignature.vararg_rank then mtype = v.get_class("Array").get_mtype([mtype]) end comment.append(", {mtype}") sig.append(", {mtype.ctype} p{i}") var argvar = new RuntimeVariable("p{i}", mtype, mtype) arguments.add(argvar) end sig.append(")") comment.append(")") if ret != null then comment.append(": {ret}") end compiler.provide_declaration(self.c_name, "{sig};") v.add_decl("/* method {self} for {comment} */") v.add_decl("{sig} \{") if ret != null then frame.returnvar = v.new_var(ret) end frame.returnlabel = v.get_name("RET_LABEL") if recv != arguments.first.mtype then #print "{self} {recv} {arguments.first}" end mmethoddef.compile_inside_to_c(v, arguments) v.add("{frame.returnlabel.as(not null)}:;") if ret != null then v.add("return {frame.returnvar.as(not null)};") end v.add("\}") end end # The C function associated to a methoddef on a primitive type, stored into a VFT of a class # The first parameter (the reciever) is always typed by val* in order to accept an object value class VirtualRuntimeFunction super AbstractRuntimeFunction redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}" redef fun to_s do return self.mmethoddef.to_s redef fun compile_to_c(compiler) do var mmethoddef = self.mmethoddef var recv = self.mmethoddef.mclassdef.bound_mtype var v = compiler.new_visitor var selfvar = new RuntimeVariable("self", v.object_type, recv) var arguments = new Array[RuntimeVariable] var frame = new Frame(v, mmethoddef, recv, arguments) v.frame = frame var sig = new Buffer var comment = new Buffer # Because the function is virtual, the signature must match the one of the original class var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) var ret = msignature.return_mtype if ret != null then sig.append("{ret.ctype} ") else if mmethoddef.mproperty.is_new then ret = recv sig.append("{ret.ctype} ") else sig.append("void ") end sig.append(self.c_name) sig.append("({selfvar.mtype.ctype} {selfvar}") comment.append("({selfvar}: {selfvar.mtype}") arguments.add(selfvar) for i in [0..msignature.arity[ do var mtype = msignature.mparameters[i].mtype if i == msignature.vararg_rank then mtype = v.get_class("Array").get_mtype([mtype]) end comment.append(", {mtype}") sig.append(", {mtype.ctype} p{i}") var argvar = new RuntimeVariable("p{i}", mtype, mtype) arguments.add(argvar) end sig.append(")") comment.append(")") if ret != null then comment.append(": {ret}") end compiler.provide_declaration(self.c_name, "{sig};") v.add_decl("/* method {self} for {comment} */") v.add_decl("{sig} \{") if ret != null then frame.returnvar = v.new_var(ret) end frame.returnlabel = v.get_name("RET_LABEL") var subret = v.call(mmethoddef, recv, arguments) if ret != null then assert subret != null v.assign(frame.returnvar.as(not null), subret) end v.add("{frame.returnlabel.as(not null)}:;") if ret != null then v.add("return {frame.returnvar.as(not null)};") end v.add("\}") end # TODO ? redef fun call(v, arguments) do abort end redef class MType fun const_color: String do return "COLOR_{c_name}" end redef class MProperty fun const_color: String do return "COLOR_{c_name}" end