# This file is part of NIT ( http://www.nitlanguage.org ). # # Copyright 2012 Jean Privat # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Classes, types and properties # # All three concepts are defined in this same module because these are strongly connected: # * types are based on classes # * classes contains properties # * some properties are types (virtual types) # # TODO: liearization, extern stuff # FIXME: better handling of the types module model import mmodule import mdoc import ordered_tree private import more_collections redef class MEntity # The visibility of the MEntity. # # MPackages, MGroups and MModules are always public. # The visibility of `MClass` and `MProperty` is defined by the keyword used. # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`. fun visibility: MVisibility do return public_visibility end redef class Model # All known classes var mclasses = new Array[MClass] # All known properties var mproperties = new Array[MProperty] # Hierarchy of class definition. # # Each classdef is associated with its super-classdefs in regard to # its module of definition. # # ~~~ # var m = new ModelDiamond # assert m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_a) # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_a, m.mclassdef_b) # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_c) # ~~~ var mclassdef_hierarchy = new POSet[MClassDef] # Class-type hierarchy restricted to the introduction. # # The idea is that what is true on introduction is always true whatever # the module considered. # Therefore, this hierarchy is used for a fast positive subtype check. # # This poset will evolve in a monotonous way: # * Two non connected nodes will remain unconnected # * New nodes can appear with new edges private var intro_mtype_specialization_hierarchy = new POSet[MClassType] # Global overlapped class-type hierarchy. # The hierarchy when all modules are combined. # Therefore, this hierarchy is used for a fast negative subtype check. # # This poset will evolve in an anarchic way. Loops can even be created. # # FIXME decide what to do on loops private var full_mtype_specialization_hierarchy = new POSet[MClassType] # Collections of classes grouped by their short name private var mclasses_by_name = new MultiHashMap[String, MClass] # Return all classes named `name`. # # If such a class does not exist, null is returned # (instead of an empty array) # # Visibility or modules are not considered # # ~~~ # var m = new ModelStandalone # assert m.get_mclasses_by_name("Object") == [m.mclass_o] # assert m.get_mclasses_by_name("Fail") == null # ~~~ fun get_mclasses_by_name(name: String): nullable Array[MClass] do return mclasses_by_name.get_or_null(name) end # Collections of properties grouped by their short name private var mproperties_by_name = new MultiHashMap[String, MProperty] # Return all properties named `name`. # # If such a property does not exist, null is returned # (instead of an empty array) # # Visibility or modules are not considered fun get_mproperties_by_name(name: String): nullable Array[MProperty] do return mproperties_by_name.get_or_null(name) end # The only null type var null_type = new MNullType(self) # The only bottom type var bottom_type: MBottomType = null_type.as_notnull # Build an ordered tree with from `concerns` fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do var seen = new HashSet[MConcern] var res = new ConcernsTree var todo = new Array[MConcern] todo.add_all mconcerns while not todo.is_empty do var c = todo.pop if seen.has(c) then continue var pc = c.parent_concern if pc == null then res.add(null, c) else res.add(pc, c) todo.add(pc) end seen.add(c) end return res end end # An OrderedTree bound to MEntity. # # We introduce a new class so it can be easily refined by tools working # with a Model. class MEntityTree super OrderedTree[MEntity] end # A MEntityTree borned to MConcern. # # TODO remove when nitdoc is fully merged with model_collect class ConcernsTree super OrderedTree[MConcern] end redef class MGroup redef var is_test is lazy do var parent = self.parent if parent != null and parent.is_test then return true return name == "tests" end end redef class MModule # All the classes introduced in the module var intro_mclasses = new Array[MClass] # All the class definitions of the module # (introduction and refinement) var mclassdefs = new Array[MClassDef] private var mclassdef_sorter: MClassDefSorter is lazy do return new MClassDefSorter(self) end private var mpropdef_sorter: MPropDefSorter is lazy do return new MPropDefSorter(self) end # Does the current module has a given class `mclass`? # Return true if the mmodule introduces, refines or imports a class. # Visibility is not considered. fun has_mclass(mclass: MClass): Bool do return self.in_importation <= mclass.intro_mmodule end # Full hierarchy of introduced and imported classes. # # Create a new hierarchy got by flattening the classes for the module # and its imported modules. # Visibility is not considered. # # Note: this function is expensive and is usually used for the main # module of a program only. Do not use it to do your own subtype # functions. fun flatten_mclass_hierarchy: POSet[MClass] do var res = self.flatten_mclass_hierarchy_cache if res != null then return res self.flatten_mclass_hierarchy_cache = new POSet[MClass] for m in self.in_importation.greaters do for cd in m.mclassdefs do unsafe_update_hierarchy_cache(cd) end end return self.flatten_mclass_hierarchy_cache.as(not null) end # Adds another class definition in the modue. # Updates the class hierarchy cache. fun add_mclassdef(mclassdef: MClassDef) do self.mclassdefs.add(mclassdef) if self.flatten_mclass_hierarchy_cache != null then unsafe_update_hierarchy_cache(mclassdef) end end # Adds a class definition inside `flatten_mclass_hierarchy_cache` without # null check. The caller must have initialized the cache. protected fun unsafe_update_hierarchy_cache(mclassdef: MClassDef) do var hierarchy = self.flatten_mclass_hierarchy_cache.as(not null) # Update the cache var c = mclassdef.mclass hierarchy.add_node(c) for s in mclassdef.supertypes do hierarchy.add_edge(c, s.mclass) end end # Sort a given array of classes using the linearization order of the module # The most general is first, the most specific is last fun linearize_mclasses(mclasses: Array[MClass]) do self.flatten_mclass_hierarchy.sort(mclasses) end # Sort a given array of class definitions using the linearization order of the module # the refinement link is stronger than the specialisation link # The most general is first, the most specific is last fun linearize_mclassdefs(mclassdefs: Array[MClassDef]) do mclassdef_sorter.sort(mclassdefs) end # Sort a given array of property definitions using the linearization order of the module # the refinement link is stronger than the specialisation link # The most general is first, the most specific is last fun linearize_mpropdefs(mpropdefs: Array[MPropDef]) do mpropdef_sorter.sort(mpropdefs) end private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null # The primitive type `Object`, the root of the class hierarchy var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy # The type `Pointer`, super class to all extern classes var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy # The primitive type `Bool` var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy # The primitive type `Int` var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy # The primitive type `Byte` var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy # The primitive type `Int8` var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy # The primitive type `Int16` var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy # The primitive type `UInt16` var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy # The primitive type `Int32` var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy # The primitive type `UInt32` var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy # The primitive type `Char` var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy # The primitive type `Float` var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy # The primitive type `String` var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy # The primitive type `CString` var c_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy # A primitive type of `Array` fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type]) # The primitive class `Array` var array_class: MClass = self.get_primitive_class("Array") is lazy # A primitive type of `NativeArray` fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type]) # The primitive class `NativeArray` var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy # The primitive type `Sys`, the main type of the program, if any fun sys_type: nullable MClassType do var clas = self.model.get_mclasses_by_name("Sys") if clas == null then return null return get_primitive_class("Sys").mclass_type end # The primitive type `Finalizable` # Used to tag classes that need to be finalized. fun finalizable_type: nullable MClassType do var clas = self.model.get_mclasses_by_name("Finalizable") if clas == null then return null return get_primitive_class("Finalizable").mclass_type end # Force to get the primitive class named `name` or abort fun get_primitive_class(name: String): MClass do var cla = self.model.get_mclasses_by_name(name) # Filter classes by introducing module if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c] if cla == null or cla.is_empty then if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then # Bool is injected because it is needed by engine to code the result # of the implicit casts. var loc = model.no_location var c = new MClass(self, name, loc, null, enum_kind, public_visibility) var cladef = new MClassDef(self, c.mclass_type, loc) cladef.set_supertypes([object_type]) cladef.add_in_hierarchy return c end print_error("Fatal Error: no primitive class {name} in {self}") exit(1) abort end if cla.length != 1 then var msg = "Fatal Error: more than one primitive class {name} in {self}:" for c in cla do msg += " {c.full_name}" print_error msg #exit(1) end return cla.first end # Try to get the primitive method named `name` on the type `recv` fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod do var props = self.model.get_mproperties_by_name(name) if props == null then return null var res: nullable MMethod = null var recvtype = recv.intro.bound_mtype for mprop in props do assert mprop isa MMethod if not recvtype.has_mproperty(self, mprop) then continue if res == null then res = mprop else if res != mprop then print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}") abort end end return res end end private class MClassDefSorter super Comparator redef type COMPARED: MClassDef var mmodule: MModule redef fun compare(a, b) do var ca = a.mclass var cb = b.mclass if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb) return mmodule.model.mclassdef_hierarchy.compare(a, b) end end private class MPropDefSorter super Comparator redef type COMPARED: MPropDef var mmodule: MModule redef fun compare(pa, pb) do var a = pa.mclassdef var b = pb.mclassdef return mmodule.mclassdef_sorter.compare(a, b) end end # A named class # # `MClass`es are global to the model; it means that a `MClass` is not bound # to a specific `MModule`. # # This characteristic helps the reasoning about classes in a program since a # single `MClass` object always denote the same class. # # The drawback is that classes (`MClass`) contain almost nothing by themselves. # These do not really have properties nor belong to a hierarchy since the property and the # hierarchy of a class depends of the refinement in the modules. # # Most services on classes require the precision of a module, and no one can asks what are # the super-classes of a class nor what are properties of a class without precising what is # the module considered. # # For instance, during the typing of a source-file, the module considered is the module of the file. # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into # *is the method `foo` exists in the class `Bar` in the current module?* # # During some global analysis, the module considered may be the main module of the program. class MClass super MEntity # The module that introduce the class # # While classes are not bound to a specific module, # the introducing module is used for naming and visibility. var intro_mmodule: MModule # The short name of the class # In Nit, the name of a class cannot evolve in refinements redef var name redef var location # The canonical name of the class # # It is the name of the class prefixed by the full_name of the `intro_mmodule` # Example: `"owner::module::MyClass"` redef var full_name is lazy do return "{self.intro_mmodule.namespace_for(visibility)}::{name}" end redef var c_name is lazy do return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}" end # The number of generic formal parameters # 0 if the class is not generic var arity: Int is noinit # Each generic formal parameters in order. # is empty if the class is not generic var mparameters = new Array[MParameterType] # A string version of the signature a generic class. # # eg. `Map[K: nullable Object, V: nullable Object]` # # If the class in non generic the name is just given. # # eg. `Object` fun signature_to_s: String do if arity == 0 then return name var res = new FlatBuffer res.append name res.append "[" for i in [0..arity[ do if i > 0 then res.append ", " res.append mparameters[i].name res.append ": " res.append intro.bound_mtype.arguments[i].to_s end res.append "]" return res.to_s end # Initialize `mparameters` from their names. protected fun setup_parameter_names(parameter_names: nullable Array[String]) is autoinit do if parameter_names == null then self.arity = 0 else self.arity = parameter_names.length end # Create the formal parameter types if arity > 0 then assert parameter_names != null var mparametertypes = new Array[MParameterType] for i in [0..arity[ do var mparametertype = new MParameterType(self, i, parameter_names[i]) mparametertypes.add(mparametertype) end self.mparameters = mparametertypes var mclass_type = new MGenericType(self, mparametertypes) self.mclass_type = mclass_type self.get_mtype_cache[mparametertypes] = mclass_type else self.mclass_type = new MClassType(self) end end # The kind of the class (interface, abstract class, etc.) # # In Nit, the kind of a class cannot evolve in refinements. var kind: MClassKind # The visibility of the class # # In Nit, the visibility of a class cannot evolve in refinements. redef var visibility init do intro_mmodule.intro_mclasses.add(self) var model = intro_mmodule.model model.mclasses_by_name.add_one(name, self) model.mclasses.add(self) end redef fun model do return intro_mmodule.model # All class definitions (introduction and refinements) var mclassdefs = new Array[MClassDef] # Alias for `name` redef fun to_s do return self.name # The definition that introduces the class. # # Warning: such a definition may not exist in the early life of the object. # In this case, the method will abort. # # Use `try_intro` instead. var intro: MClassDef is noinit # The definition that introduces the class or `null` if not yet known. # # SEE: `intro` fun try_intro: nullable MClassDef do if isset _intro then return _intro else return null end # Return the class `self` in the class hierarchy of the module `mmodule`. # # SEE: `MModule::flatten_mclass_hierarchy` # REQUIRE: `mmodule.has_mclass(self)` fun in_hierarchy(mmodule: MModule): POSetElement[MClass] do return mmodule.flatten_mclass_hierarchy[self] end # The principal static type of the class. # # For non-generic class, `mclass_type` is the only `MClassType` based # on self. # # For a generic class, the arguments are the formal parameters. # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`. # If you want `Array[Object]`, see `MClassDef::bound_mtype`. # # For generic classes, the mclass_type is also the way to get a formal # generic parameter type. # # To get other types based on a generic class, see `get_mtype`. # # ENSURE: `mclass_type.mclass == self` var mclass_type: MClassType is noinit # Return a generic type based on the class # Is the class is not generic, then the result is `mclass_type` # # REQUIRE: `mtype_arguments.length == self.arity` fun get_mtype(mtype_arguments: Array[MType]): MClassType do assert mtype_arguments.length == self.arity if self.arity == 0 then return self.mclass_type var res = get_mtype_cache.get_or_null(mtype_arguments) if res != null then return res res = new MGenericType(self, mtype_arguments) self.get_mtype_cache[mtype_arguments.to_a] = res return res end private var get_mtype_cache = new HashMap[Array[MType], MGenericType] # Is there a `new` factory to allow the pseudo instantiation? var has_new_factory = false is writable # Is `self` a standard or abstract class kind? var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind # Is `self` an interface kind? var is_interface: Bool is lazy do return kind == interface_kind # Is `self` an enum kind? var is_enum: Bool is lazy do return kind == enum_kind # Is `self` and abstract class? var is_abstract: Bool is lazy do return kind == abstract_kind redef var is_test is lazy do return intro.is_test redef fun mdoc_or_fallback do # Don’t use `intro.mdoc_or_fallback` because it would create an infinite # recursion. return intro.mdoc end end # A definition (an introduction or a refinement) of a class in a module # # A `MClassDef` is associated with an explicit (or almost) definition of a # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to # a specific class and a specific module, and contains declarations like super-classes # or properties. # # It is the class definitions that are the backbone of most things in the model: # ClassDefs are defined with regard with other classdefs. # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`. # # Moreover, the extension and the intention of types is defined by looking at the MClassDefs. class MClassDef super MEntity # The module where the definition is var mmodule: MModule # The associated `MClass` var mclass: MClass is noinit # The bounded type associated to the mclassdef # # For a non-generic class, `bound_mtype` and `mclass.mclass_type` # are the same type. # # Example: # For the classdef Array[E: Object], the bound_mtype is Array[Object]. # If you want Array[E], then see `mclass.mclass_type` # # ENSURE: `bound_mtype.mclass == self.mclass` var bound_mtype: MClassType redef var location redef fun visibility do return mclass.visibility # Internal name combining the module and the class # Example: "mymodule$MyClass" redef var to_s is noinit init do self.mclass = bound_mtype.mclass mmodule.add_mclassdef(self) mclass.mclassdefs.add(self) if mclass.intro_mmodule == mmodule then assert not isset mclass._intro mclass.intro = self end self.to_s = "{mmodule}${mclass}" end # Actually the name of the `mclass` redef fun name do return mclass.name # The module and class name separated by a '$'. # # The short-name of the class is used for introduction. # Example: "my_module$MyClass" # # The full-name of the class is used for refinement. # Example: "my_module$intro_module::MyClass" redef var full_name is lazy do if is_intro then # public gives 'p$A' # private gives 'p::m$A' return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}" else if mclass.intro_mmodule.mpackage != mmodule.mpackage then # public gives 'q::n$p::A' # private gives 'q::n$p::m::A' return "{mmodule.full_name}${mclass.full_name}" else if mclass.visibility > private_visibility then # public gives 'p::n$A' return "{mmodule.full_name}${mclass.name}" else # private gives 'p::n$::m::A' (redundant p is omitted) return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}" end end redef var c_name is lazy do if is_intro then return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}" else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then return "{mmodule.c_name}___{mclass.name.to_cmangle}" else return "{mmodule.c_name}___{mclass.c_name}" end end redef fun model do return mmodule.model # All declared super-types # FIXME: quite ugly but not better idea yet var supertypes = new Array[MClassType] # Register some super-types for the class (ie "super SomeType") # # The hierarchy must not already be set # REQUIRE: `self.in_hierarchy == null` fun set_supertypes(supertypes: Array[MClassType]) do assert unique_invocation: self.in_hierarchy == null var mmodule = self.mmodule var model = mmodule.model var mtype = self.bound_mtype for supertype in supertypes do self.supertypes.add(supertype) # Register in full_type_specialization_hierarchy model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype) # Register in intro_type_specialization_hierarchy if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype) end end end # Collect the super-types (set by set_supertypes) to build the hierarchy # # This function can only invoked once by class # REQUIRE: `self.in_hierarchy == null` # ENSURE: `self.in_hierarchy != null` fun add_in_hierarchy do assert unique_invocation: self.in_hierarchy == null var model = mmodule.model var res = model.mclassdef_hierarchy.add_node(self) self.in_hierarchy = res var mtype = self.bound_mtype # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy # The simpliest way is to attach it to collect_mclassdefs for mclassdef in mtype.collect_mclassdefs(mmodule) do res.poset.add_edge(self, mclassdef) end end # The view of the class definition in `mclassdef_hierarchy` var in_hierarchy: nullable POSetElement[MClassDef] = null # Is the definition the one that introduced `mclass`? fun is_intro: Bool do return isset mclass._intro and mclass.intro == self # All properties introduced by the classdef var intro_mproperties = new Array[MProperty] # All property introductions and redefinitions in `self` (not inheritance). var mpropdefs = new Array[MPropDef] # The special default_init constructor var default_init: nullable MMethodDef = null is writable # All property introductions and redefinitions (not inheritance) in `self` by its associated property. var mpropdefs_by_property = new HashMap[MProperty, MPropDef] redef fun mdoc_or_fallback do return mdoc or else mclass.mdoc_or_fallback end # A global static type # # MType are global to the model; it means that a `MType` is not bound to a # specific `MModule`. # This characteristic helps the reasoning about static types in a program # since a single `MType` object always denote the same type. # # However, because a `MType` is global, it does not really have properties # nor have subtypes to a hierarchy since the property and the class hierarchy # depends of a module. # Moreover, virtual types an formal generic parameter types also depends on # a receiver to have sense. # # Therefore, most method of the types require a module and an anchor. # The module is used to know what are the classes and the specialization # links. # The anchor is used to know what is the bound of the virtual types and formal # generic parameter types. # # MType are not directly usable to get properties. See the `anchor_to` method # and the `MClassType` class. # # FIXME: the order of the parameters is not the best. We mus pick on from: # * foo(mmodule, anchor, othertype) # * foo(othertype, anchor, mmodule) # * foo(anchor, mmodule, othertype) # * foo(othertype, mmodule, anchor) abstract class MType super MEntity redef fun name do return to_s # Return true if `self` is an subtype of `sup`. # The typing is done using the standard typing policy of Nit. # # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor` # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)` fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool do var sub = self if sub == sup then return true #print "1.is {sub} a {sup}? ====" if anchor == null then assert not sub.need_anchor assert not sup.need_anchor else # First, resolve the formal types to the simplest equivalent forms in the receiver assert sub.can_resolve_for(anchor, null, mmodule) sub = sub.lookup_fixed(mmodule, anchor) assert sup.can_resolve_for(anchor, null, mmodule) sup = sup.lookup_fixed(mmodule, anchor) end # Does `sup` accept null or not? # Discard the nullable marker if it exists var sup_accept_null = false if sup isa MNullableType then sup_accept_null = true sup = sup.mtype else if sup isa MNotNullType then sup = sup.mtype else if sup isa MNullType then sup_accept_null = true end # Can `sub` provide null or not? # Thus we can match with `sup_accept_null` # Also discard the nullable marker if it exists var sub_reject_null = false if sub isa MNullableType then if not sup_accept_null then return false sub = sub.mtype else if sub isa MNotNullType then sub_reject_null = true sub = sub.mtype else if sub isa MNullType then return sup_accept_null end # Now the case of direct null and nullable is over. # If `sub` is a formal type, then it is accepted if its bound is accepted while sub isa MFormalType do #print "3.is {sub} a {sup}?" # A unfixed formal type can only accept itself if sub == sup then return true assert anchor != null sub = sub.lookup_bound(mmodule, anchor) if sub_reject_null then sub = sub.as_notnull #print "3.is {sub} a {sup}?" # Manage the second layer of null/nullable if sub isa MNullableType then if not sup_accept_null and not sub_reject_null then return false sub = sub.mtype else if sub isa MNotNullType then sub_reject_null = true sub = sub.mtype else if sub isa MNullType then return sup_accept_null end end #print "4.is {sub} a {sup}? <- no more resolution" if sub isa MBottomType or sub isa MErrorType then return true end assert sub isa MClassType else print_error "{sub} Map[B,Y] # # Explanation of the example: # In H, T is set to B, because "H super G[B]", and U is bound to Y, # because "redef type U: Y". Therefore, Map[T, U] is bound to # Map[B, Y] # # REQUIRE: `self.need_anchor implies anchor != null` # ENSURE: `not self.need_anchor implies result == self` # ENSURE: `not result.need_anchor` fun anchor_to(mmodule: MModule, anchor: nullable MClassType): MType do if not need_anchor then return self assert anchor != null and not anchor.need_anchor # Just resolve to the anchor and clear all the virtual types var res = self.resolve_for(anchor, null, mmodule, true) assert not res.need_anchor return res end # Does `self` contain a virtual type or a formal generic parameter type? # In order to remove those types, you usually want to use `anchor_to`. fun need_anchor: Bool do return true # Return the supertype when adapted to a class. # # In Nit, for each super-class of a type, there is a equivalent super-type. # # Example: # # ~~~nitish # class G[T, U] end # class H[V] super G[V, Bool] end # # H[Int] supertype_to G #-> G[Int, Bool] # ~~~ # # REQUIRE: `super_mclass` is a super-class of `self` # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)` # ENSURE: `result.mclass = super_mclass` fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType do if super_mclass.arity == 0 then return super_mclass.mclass_type if self isa MClassType and self.mclass == super_mclass then return self var resolved_self if self.need_anchor then assert anchor != null resolved_self = self.anchor_to(mmodule, anchor) else resolved_self = self end var supertypes = resolved_self.collect_mtypes(mmodule) for supertype in supertypes do if supertype.mclass == super_mclass then # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies? return supertype.resolve_for(self, anchor, mmodule, false) end end abort end # Replace formals generic types in self with resolved values in `mtype` # If `cleanup_virtual` is true, then virtual types are also replaced # with their bounds. # # This function returns self if `need_anchor` is false. # # ## Example 1 # # ~~~ # class G[E] end # class H[F] super G[F] end # class X[Z] end # ~~~ # # * Array[E].resolve_for(H[Int]) #-> Array[Int] # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z] # # Explanation of the example: # * Array[E].need_anchor is true because there is a formal generic parameter type E # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G # * Since "H[F] super G[F]", E is in fact F for H # * More specifically, in H[Int], E is Int # * So, in H[Int], Array[E] is Array[Int] # # This function is mainly used to inherit a signature. # Because, unlike `anchor_to`, we do not want a full resolution of # a type but only an adapted version of it. # # ## Example 2 # # ~~~ # class A[E] # fun foo(e:E):E is abstract # end # class B super A[Int] end # ~~~ # # The signature on foo is (e: E): E # If we resolve the signature for B, we get (e:Int):Int # # ## Example 3 # # ~~~nitish # class A[E] # fun foo(e:E):E is abstract # end # class C[F] # var a: A[Array[F]] # fun bar do a.foo(x) # <- x is here # end # ~~~ # # The first question is: is foo available on `a`? # # The static type of a is `A[Array[F]]`, that is an open type. # in order to find a method `foo`, whe must look at a resolved type. # # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]] # # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`. # # The next question is: what is the accepted types for `x`? # # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E # # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F] # # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`) # # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having # two function instead of one seems also to be a bad idea. # # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)` # ENSURE: `not self.need_anchor implies result == self` fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract # Resolve formal type to its verbatim bound. # If the type is not formal, just return self # # The result is returned exactly as declared in the "type" property (verbatim). # So it could be another formal type. # # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`. fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self # Resolve the formal type to its simplest equivalent form. # # Formal types are either free or fixed. # When it is fixed, it means that it is equivalent with a simpler type. # When a formal type is free, it means that it is only equivalent with itself. # This method return the most simple equivalent type of `self`. # # This method is mainly used for subtype test in order to sanely compare fixed. # # By default, return self. # See the redefinitions for specific behavior in each kind of type. # # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`. fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self # Is the type a `MErrorType` or contains an `MErrorType`? # # `MErrorType` are used in result with conflict or inconsistencies. # # See `is_legal_in` to check conformity with generic bounds. fun is_ok: Bool do return true # Is the type legal in a given `mmodule` (with an optional `anchor`)? # # A type is valid if: # # * it does not contain a `MErrorType` (see `is_ok`). # * its generic formal arguments are within their bounds. fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok # Can the type be resolved? # # In order to resolve open types, the formal types must make sence. # # ## Example # # class A[E] # end # class B[F] # end # # ~~~nitish # E.can_resolve_for(A[Int]) #-> true, E make sense in A # # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B # # B[E].can_resolve_for(A[F], B[Object]) #-> true, # # B[E] is a red hearing only the E is important, # # E make sense in A # ~~~ # # REQUIRE: `anchor != null implies not anchor.need_anchor` # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)` # ENSURE: `not self.need_anchor implies result == true` fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract # Return the nullable version of the type # If the type is already nullable then self is returned fun as_nullable: MType do var res = self.as_nullable_cache if res != null then return res res = new MNullableType(self) self.as_nullable_cache = res return res end # Remove the base type of a decorated (proxy) type. # Is the type is not decorated, then self is returned. # # Most of the time it is used to return the not nullable version of a nullable type. # In this case, this just remove the `nullable` notation, but the result can still contains null. # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type. # If you really want to exclude the `null` value, then use `as_notnull` fun undecorate: MType do return self end # Returns the not null version of the type. # That is `self` minus the `null` value. # # For most types, this return `self`. # For formal types, this returns a special `MNotNullType` fun as_notnull: MType do return self private var as_nullable_cache: nullable MType = null # The depth of the type seen as a tree. # # * A -> 1 # * G[A] -> 2 # * H[A, B] -> 2 # * H[G[A], B] -> 3 # # Formal types have a depth of 1. # Only `MClassType` and `MFormalType` nodes are counted. fun depth: Int do return 1 end # The length of the type seen as a tree. # # * A -> 1 # * G[A] -> 2 # * H[A, B] -> 3 # * H[G[A], B] -> 4 # # Formal types have a length of 1. # Only `MClassType` and `MFormalType` nodes are counted. fun length: Int do return 1 end # Compute all the classdefs inherited/imported. # The returned set contains: # * the class definitions from `mmodule` and its imported modules # * the class definitions of this type and its super-types # # This function is used mainly internally. # # REQUIRE: `not self.need_anchor` fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract # Compute all the super-classes. # This function is used mainly internally. # # REQUIRE: `not self.need_anchor` fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract # Compute all the declared super-types. # Super-types are returned as declared in the classdefs (verbatim). # This function is used mainly internally. # # REQUIRE: `not self.need_anchor` fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract # Is the property in self for a given module # This method does not filter visibility or whatever # # REQUIRE: `not self.need_anchor` fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool do assert not self.need_anchor return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef) end end # A type based on a class. # # `MClassType` have properties (see `has_mproperty`). class MClassType super MType # The associated class var mclass: MClass redef fun model do return self.mclass.intro_mmodule.model redef fun location do return mclass.location # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type` # The formal arguments of the type # ENSURE: `result.length == self.mclass.arity` var arguments = new Array[MType] redef fun to_s do return mclass.to_s redef fun full_name do return mclass.full_name redef fun c_name do return mclass.c_name redef fun need_anchor do return false redef fun anchor_to(mmodule, anchor): MClassType do return super.as(MClassType) end redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self redef fun can_resolve_for(mtype, anchor, mmodule) do return true redef fun collect_mclassdefs(mmodule) do assert not self.need_anchor var cache = self.collect_mclassdefs_cache if not cache.has_key(mmodule) then self.collect_things(mmodule) end return cache[mmodule] end redef fun collect_mclasses(mmodule) do if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache assert not self.need_anchor var cache = self.collect_mclasses_cache if not cache.has_key(mmodule) then self.collect_things(mmodule) end var res = cache[mmodule] collect_mclasses_last_module = mmodule collect_mclasses_last_module_cache = res return res end private var collect_mclasses_last_module: nullable MModule = null private var collect_mclasses_last_module_cache: Set[MClass] is noinit redef fun collect_mtypes(mmodule) do assert not self.need_anchor var cache = self.collect_mtypes_cache if not cache.has_key(mmodule) then self.collect_things(mmodule) end return cache[mmodule] end # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`. private fun collect_things(mmodule: MModule) do var res = new HashSet[MClassDef] var seen = new HashSet[MClass] var types = new HashSet[MClassType] seen.add(self.mclass) var todo = [self.mclass] while not todo.is_empty do var mclass = todo.pop #print "process {mclass}" for mclassdef in mclass.mclassdefs do if not mmodule.in_importation <= mclassdef.mmodule then continue #print " process {mclassdef}" res.add(mclassdef) for supertype in mclassdef.supertypes do types.add(supertype) var superclass = supertype.mclass if seen.has(superclass) then continue #print " add {superclass}" seen.add(superclass) todo.add(superclass) end end end collect_mclassdefs_cache[mmodule] = res collect_mclasses_cache[mmodule] = seen collect_mtypes_cache[mmodule] = types end private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]] private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]] private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]] redef fun mdoc_or_fallback do return mclass.mdoc_or_fallback end # A type based on a generic class. # A generic type a just a class with additional formal generic arguments. class MGenericType super MClassType redef var arguments # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype` init do assert self.mclass.arity == arguments.length self.need_anchor = false for t in arguments do if t.need_anchor then self.need_anchor = true break end end self.to_s = "{mclass}[{arguments.join(", ")}]" end # The short-name of the class, then the full-name of each type arguments within brackets. # Example: `"Map[String, List[Int]]"` redef var to_s is noinit # The full-name of the class, then the full-name of each type arguments within brackets. # Example: `"core::Map[core::String, core::List[core::Int]]"` redef var full_name is lazy do var args = new Array[String] for t in arguments do args.add t.full_name end return "{mclass.full_name}[{args.join(", ")}]" end redef var c_name is lazy do var res = mclass.c_name # Note: because the arity is known, a prefix notation is enough for t in arguments do res += "__" res += t.c_name end return res.to_s end redef var need_anchor is noinit redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do if not need_anchor then return self assert can_resolve_for(mtype, anchor, mmodule) var types = new Array[MType] for t in arguments do types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual)) end return mclass.get_mtype(types) end redef fun can_resolve_for(mtype, anchor, mmodule) do if not need_anchor then return true for t in arguments do if not t.can_resolve_for(mtype, anchor, mmodule) then return false end return true end redef fun is_ok do for t in arguments do if not t.is_ok then return false return super end redef fun is_legal_in(mmodule, anchor) do var mtype if need_anchor then assert anchor != null mtype = anchor_to(mmodule, anchor) else mtype = self end if not mtype.is_ok then return false return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype) end redef fun depth do var dmax = 0 for a in self.arguments do var d = a.depth if d > dmax then dmax = d end return dmax + 1 end redef fun length do var res = 1 for a in self.arguments do res += a.length end return res end end # A formal type (either virtual of parametric). # # The main issue with formal types is that they offer very little information on their own # and need a context (anchor and mmodule) to be useful. abstract class MFormalType super MType redef var as_notnull = new MNotNullType(self) is lazy end # A virtual formal type. class MVirtualType super MFormalType # The property associated with the type. # Its the definitions of this property that determine the bound or the virtual type. var mproperty: MVirtualTypeProp redef fun location do return mproperty.location redef fun model do return self.mproperty.intro_mclassdef.mmodule.model redef fun lookup_bound(mmodule, resolved_receiver) do # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model) return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model) end private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef do assert not resolved_receiver.need_anchor var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver) if props.is_empty then abort else if props.length == 1 then return props.first end var types = new ArraySet[MType] var res = props.first for p in props do types.add(p.bound.as(not null)) if not res.is_fixed then res = p end if types.length == 1 then return res end abort end # A VT is fixed when: # * the VT is (re-)defined with the annotation `is fixed` # * the receiver is an enum class since there is no subtype that can # redefine this virtual type redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do assert not resolved_receiver.need_anchor resolved_receiver = resolved_receiver.undecorate assert resolved_receiver isa MClassType # It is the only remaining type var prop = lookup_single_definition(mmodule, resolved_receiver) var res = prop.bound if res == null then return new MErrorType(model) # Recursively lookup the fixed result res = res.lookup_fixed(mmodule, resolved_receiver) # For a fixed VT, return the resolved bound if prop.is_fixed then return res # For a enum receiver return the bound if resolved_receiver.mclass.kind == enum_kind then return res return self end redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do if not cleanup_virtual then return self assert can_resolve_for(mtype, anchor, mmodule) if mproperty.is_selftype then return mtype # self is a virtual type declared (or inherited) in mtype # The point of the function it to get the bound of the virtual type that make sense for mtype # But because mtype is maybe a virtual/formal type, we need to get a real receiver first #print "{class_name}: {self}/{mtype}/{anchor}?" var resolved_receiver if mtype.need_anchor then assert anchor != null resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true) else resolved_receiver = mtype end # Now, we can get the bound var verbatim_bound = lookup_bound(mmodule, resolved_receiver) # The bound is exactly as declared in the "type" property, so we must resolve it again var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual) return res end redef fun can_resolve_for(mtype, anchor, mmodule) do if mtype.need_anchor then assert anchor != null mtype = mtype.anchor_to(mmodule, anchor) end return mtype.has_mproperty(mmodule, mproperty) end redef fun to_s do return self.mproperty.to_s redef fun full_name do return self.mproperty.full_name redef fun c_name do return self.mproperty.c_name redef fun mdoc_or_fallback do return mproperty.mdoc_or_fallback end # The type associated to a formal parameter generic type of a class # # Each parameter type is associated to a specific class. # It means that all refinements of a same class "share" the parameter type, # but that a generic subclass has its own parameter types. # # However, in the sense of the meta-model, a parameter type of a class is # a valid type in a subclass. The "in the sense of the meta-model" is # important because, in the Nit language, the programmer cannot refers # directly to the parameter types of the super-classes. # # Example: # # class A[E] # fun e: E is abstract # end # class B[F] # super A[Array[F]] # end # # In the class definition B[F], `F` is a valid type but `E` is not. # However, `self.e` is a valid method call, and the signature of `e` is # declared `e: E`. # # Note that parameter types are shared among class refinements. # Therefore parameter only have an internal name (see `to_s` for details). class MParameterType super MFormalType # The generic class where the parameter belong var mclass: MClass redef fun model do return self.mclass.intro_mmodule.model redef fun location do return mclass.location # The position of the parameter (0 for the first parameter) # FIXME: is `position` a better name? var rank: Int redef var name redef fun to_s do return name redef var full_name is lazy do return "{mclass.full_name}::{name}" redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do assert not resolved_receiver.need_anchor resolved_receiver = resolved_receiver.undecorate assert resolved_receiver isa MClassType # It is the only remaining type var goalclass = self.mclass if resolved_receiver.mclass == goalclass then return resolved_receiver.arguments[self.rank] end var supertypes = resolved_receiver.collect_mtypes(mmodule) for t in supertypes do if t.mclass == goalclass then # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies? var res = t.arguments[self.rank] return res end end # Cannot found `self` in `resolved_receiver` return new MErrorType(model) end # A PT is fixed when: # * The `resolved_receiver` is a subclass of `self.mclass`, # so it is necessarily fixed in a `super` clause, either with a normal type # or with another PT. # See `resolve_for` for examples about related issues. redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do assert not resolved_receiver.need_anchor resolved_receiver = resolved_receiver.undecorate assert resolved_receiver isa MClassType # It is the only remaining type var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false) return res end redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do assert can_resolve_for(mtype, anchor, mmodule) #print "{class_name}: {self}/{mtype}/{anchor}?" if mtype isa MGenericType and mtype.mclass == self.mclass then return mtype.arguments[self.rank] end # self is a parameter type of mtype (or of a super-class of mtype) # The point of the function it to get the bound of the virtual type that make sense for mtype # But because mtype is maybe a virtual/formal type, we need to get a real receiver first # FIXME: What happens here is far from clear. Thus this part must be validated and clarified var resolved_receiver if mtype.need_anchor then assert anchor != null resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true) else resolved_receiver = mtype end if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype if resolved_receiver isa MParameterType then assert anchor != null assert resolved_receiver.mclass == anchor.mclass resolved_receiver = anchor.arguments[resolved_receiver.rank] if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype end assert resolved_receiver isa MClassType # It is the only remaining type # Eh! The parameter is in the current class. # So we return the corresponding argument, no mater what! if resolved_receiver.mclass == self.mclass then var res = resolved_receiver.arguments[self.rank] #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}" return res end if resolved_receiver.need_anchor then assert anchor != null resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false) end # Now, we can get the bound var verbatim_bound = lookup_bound(mmodule, resolved_receiver) # The bound is exactly as declared in the "type" property, so we must resolve it again var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual) #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}" return res end redef fun can_resolve_for(mtype, anchor, mmodule) do if mtype.need_anchor then assert anchor != null mtype = mtype.anchor_to(mmodule, anchor) end return mtype.collect_mclassdefs(mmodule).has(mclass.intro) end end # A type that decorates another type. # # The point of this class is to provide a common implementation of sevices that just forward to the original type. # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them. abstract class MProxyType super MType # The base type var mtype: MType redef fun location do return mtype.location redef fun model do return self.mtype.model redef fun need_anchor do return mtype.need_anchor redef fun as_nullable do return mtype.as_nullable redef fun as_notnull do return mtype.as_notnull redef fun undecorate do return mtype.undecorate redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual) return res end redef fun can_resolve_for(mtype, anchor, mmodule) do return self.mtype.can_resolve_for(mtype, anchor, mmodule) end redef fun is_ok do return mtype.is_ok redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor) redef fun lookup_fixed(mmodule, resolved_receiver) do var t = mtype.lookup_fixed(mmodule, resolved_receiver) return t end redef fun depth do return self.mtype.depth redef fun length do return self.mtype.length redef fun collect_mclassdefs(mmodule) do assert not self.need_anchor return self.mtype.collect_mclassdefs(mmodule) end redef fun collect_mclasses(mmodule) do assert not self.need_anchor return self.mtype.collect_mclasses(mmodule) end redef fun collect_mtypes(mmodule) do assert not self.need_anchor return self.mtype.collect_mtypes(mmodule) end end # A type prefixed with "nullable" class MNullableType super MProxyType init do self.to_s = "nullable {mtype}" end redef var to_s is noinit redef var full_name is lazy do return "nullable {mtype.full_name}" redef var c_name is lazy do return "nullable__{mtype.c_name}" redef fun as_nullable do return self redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do var res = super return res.as_nullable end # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable` redef fun lookup_fixed(mmodule, resolved_receiver) do var t = super if t == mtype then return self return t.as_nullable end redef fun mdoc_or_fallback do return mtype.mdoc_or_fallback end # A non-null version of a formal type. # # When a formal type in bounded to a nullable type, this is the type of the not null version of it. class MNotNullType super MProxyType redef fun to_s do return "not null {mtype}" redef var full_name is lazy do return "not null {mtype.full_name}" redef var c_name is lazy do return "notnull__{mtype.c_name}" redef fun as_notnull do return self redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do var res = super return res.as_notnull end # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull` redef fun lookup_fixed(mmodule, resolved_receiver) do var t = super if t == mtype then return self return t.as_notnull end end # The type of the only value null # # The is only one null type per model, see `MModel::null_type`. class MNullType super MType redef var model redef fun to_s do return "null" redef fun full_name do return "null" redef fun c_name do return "null" redef fun as_nullable do return self redef var as_notnull: MBottomType = new MBottomType(model) is lazy redef fun need_anchor do return false redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self redef fun can_resolve_for(mtype, anchor, mmodule) do return true redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef] redef fun collect_mclasses(mmodule) do return new HashSet[MClass] redef fun collect_mtypes(mmodule) do return new HashSet[MClassType] end # The special universal most specific type. # # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user. # The bottom type can de used to denote things that are dead (no instance). # # Semantically it is the singleton `null.as_notnull`. # Is also means that `self.as_nullable == null`. class MBottomType super MType redef var model redef fun to_s do return "bottom" redef fun full_name do return "bottom" redef fun c_name do return "bottom" redef fun as_nullable do return model.null_type redef fun as_notnull do return self redef fun need_anchor do return false redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self redef fun can_resolve_for(mtype, anchor, mmodule) do return true redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef] redef fun collect_mclasses(mmodule) do return new HashSet[MClass] redef fun collect_mtypes(mmodule) do return new HashSet[MClassType] end # A special type used as a silent error marker when building types. # # This type is intended to be only used internally for type operation and should not be exposed to the user. # The error type can de used to denote things that are conflicting or inconsistent. # # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result. # Use `is_ok` to check if a type is (or contains) a `MErrorType` . class MErrorType super MType redef var model redef fun to_s do return "error" redef fun full_name do return "error" redef fun c_name do return "error" redef fun need_anchor do return false redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self redef fun can_resolve_for(mtype, anchor, mmodule) do return true redef fun is_ok do return false redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef] redef fun collect_mclasses(mmodule) do return new HashSet[MClass] redef fun collect_mtypes(mmodule) do return new HashSet[MClassType] end # A signature of a method class MSignature super MType # The each parameter (in order) var mparameters: Array[MParameter] # Returns a parameter named `name`, if any. fun mparameter_by_name(name: String): nullable MParameter do for p in mparameters do if p.name == name then return p end return null end # The return type (null for a procedure) var return_mtype: nullable MType redef fun depth do var dmax = 0 var t = self.return_mtype if t != null then dmax = t.depth for p in mparameters do var d = p.mtype.depth if d > dmax then dmax = d end return dmax + 1 end redef fun length do var res = 1 var t = self.return_mtype if t != null then res += t.length for p in mparameters do res += p.mtype.length end return res end # REQUIRE: 1 <= mparameters.count p -> p.is_vararg init do var vararg_rank = -1 for i in [0..mparameters.length[ do var parameter = mparameters[i] if parameter.is_vararg then if vararg_rank >= 0 then # If there is more than one vararg, # consider that additional arguments cannot be mapped. vararg_rank = -1 break end vararg_rank = i end end self.vararg_rank = vararg_rank end # The rank of the main ellipsis (`...`) for vararg (starting from 0). # value is -1 if there is no vararg. # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1 # # From a model POV, a signature can contain more than one vararg parameter, # the `vararg_rank` just indicates the one that will receive the additional arguments. # However, currently, if there is more that one vararg parameter, no one will be the main one, # and additional arguments will be refused. var vararg_rank: Int is noinit # The number of parameters fun arity: Int do return mparameters.length redef fun to_s do var b = new FlatBuffer if not mparameters.is_empty then b.append("(") var last_mtype = null for i in [0..mparameters.length[ do var mparameter = mparameters[i] # Group types that are common to contiguous parameters if mparameter.mtype != last_mtype and last_mtype != null then b.append(": ") b.append(last_mtype.to_s) end if i > 0 then b.append(", ") b.append(mparameter.name) if mparameter.is_vararg then b.append(": ") b.append(mparameter.mtype.to_s) b.append("...") last_mtype = null else last_mtype = mparameter.mtype end end if last_mtype != null then b.append(": ") b.append(last_mtype.to_s) end b.append(")") end var ret = self.return_mtype if ret != null then b.append(": ") b.append(ret.to_s) end return b.to_s end redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature do var params = new Array[MParameter] for p in self.mparameters do params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual)) end var ret = self.return_mtype if ret != null then ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual) end var res = new MSignature(params, ret) return res end end # A parameter in a signature class MParameter super MEntity # The name of the parameter redef var name # The static type of the parameter var mtype: MType # Is the parameter a vararg? var is_vararg: Bool redef fun to_s do if is_vararg then return "{name}: {mtype}..." else return "{name}: {mtype}" end end # Returns a new parameter with the `mtype` resolved. # See `MType::resolve_for` for details. fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter do if not self.mtype.need_anchor then return self var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual) var res = new MParameter(self.name, newtype, self.is_vararg) return res end redef fun model do return mtype.model end # A service (global property) that generalize method, attribute, etc. # # `MProperty` are global to the model; it means that a `MProperty` is not bound # to a specific `MModule` nor a specific `MClass`. # # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction # and the other in subclasses and in refinements. # # A `MProperty` is used to denotes services in polymorphic way (ie. independent # of any dynamic type). # For instance, a call site "x.foo" is associated to a `MProperty`. abstract class MProperty super MEntity # The associated MPropDef subclass. # The two specialization hierarchy are symmetric. type MPROPDEF: MPropDef # The classdef that introduce the property # While a property is not bound to a specific module, or class, # the introducing mclassdef is used for naming and visibility var intro_mclassdef: MClassDef # The (short) name of the property redef var name redef var location redef fun mdoc_or_fallback do # Don’t use `intro.mdoc_or_fallback` because it would create an infinite # recursion. return intro.mdoc end # The canonical name of the property. # # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module. # Example: "my_package::my_module::MyClass::my_method" # # The full-name of the module is needed because two distinct modules of the same package can # still refine the same class and introduce homonym properties. # # For public properties not introduced by refinement, the module name is not used. # # Example: `my_package::MyClass::My_method` redef var full_name is lazy do if intro_mclassdef.is_intro then return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}" else return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}" end end redef var c_name is lazy do # FIXME use `namespace_for` return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}" end # The visibility of the property redef var visibility # Is the property usable as an initializer? var is_autoinit = false is writable init do intro_mclassdef.intro_mproperties.add(self) var model = intro_mclassdef.mmodule.model model.mproperties_by_name.add_one(name, self) model.mproperties.add(self) end # All definitions of the property. # The first is the introduction, # The other are redefinitions (in refinements and in subclasses) var mpropdefs = new Array[MPROPDEF] # The definition that introduces the property. # # Warning: such a definition may not exist in the early life of the object. # In this case, the method will abort. var intro: MPROPDEF is noinit redef fun model do return intro.model # Alias for `name` redef fun to_s do return name # Return the most specific property definitions defined or inherited by a type. # The selection knows that refinement is stronger than specialization; # however, in case of conflict more than one property are returned. # If mtype does not know mproperty then an empty array is returned. # # If you want the really most specific property, then look at `lookup_first_definition` # # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter) # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty` fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF] do assert not mtype.need_anchor mtype = mtype.undecorate var cache = self.lookup_definitions_cache[mmodule, mtype] if cache != null then return cache #print "select prop {mproperty} for {mtype} in {self}" # First, select all candidates var candidates = new Array[MPROPDEF] # Here we have two strategies: iterate propdefs or iterate classdefs. var mpropdefs = self.mpropdefs if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule` for mpropdef in mpropdefs do # If the definition is not imported by the module, then skip if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue # If the definition is not inherited by the type, then skip if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue # Else, we keep it candidates.add(mpropdef) end else # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any. for mclassdef in mtype.collect_mclassdefs(mmodule) do var p = mclassdef.mpropdefs_by_property.get_or_null(self) if p != null then candidates.add p end end # Fast track for only one candidate if candidates.length <= 1 then self.lookup_definitions_cache[mmodule, mtype] = candidates return candidates end # Second, filter the most specific ones return select_most_specific(mmodule, candidates) end private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]] # Return the most specific property definitions inherited by a type. # The selection knows that refinement is stronger than specialization; # however, in case of conflict more than one property are returned. # If mtype does not know mproperty then an empty array is returned. # # If you want the really most specific property, then look at `lookup_next_definition` # # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter) # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty` fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF] do assert not mtype.need_anchor mtype = mtype.undecorate # First, select all candidates var candidates = new Array[MPROPDEF] for mpropdef in self.mpropdefs do # If the definition is not imported by the module, then skip if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue # If the definition is not inherited by the type, then skip if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue # If the definition is defined by the type, then skip (we want the super, so e skip the current) if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue # Else, we keep it candidates.add(mpropdef) end # Fast track for only one candidate if candidates.length <= 1 then return candidates # Second, filter the most specific ones return select_most_specific(mmodule, candidates) end # Return an array containing olny the most specific property definitions # This is an helper function for `lookup_definitions` and `lookup_super_definitions` private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF] do var res = new Array[MPROPDEF] for pd1 in candidates do var cd1 = pd1.mclassdef var c1 = cd1.mclass var keep = true for pd2 in candidates do if pd2 == pd1 then continue # do not compare with self! var cd2 = pd2.mclassdef var c2 = cd2.mclass if c2.mclass_type == c1.mclass_type then if cd2.mmodule.in_importation < cd1.mmodule then # cd2 refines cd1; therefore we skip pd1 keep = false break end else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then # cd2 < cd1; therefore we skip pd1 keep = false break end end if keep then res.add(pd1) end end if res.is_empty then print_error "All lost! {candidates.join(", ")}" # FIXME: should be abort! end return res end # Return the most specific definition in the linearization of `mtype`. # # If you want to know the next properties in the linearization, # look at `MPropDef::lookup_next_definition`. # # FIXME: the linearization is still unspecified # # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter) # REQUIRE: `mtype.has_mproperty(mmodule, self)` fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF do return lookup_all_definitions(mmodule, mtype).first end # Return all definitions in a linearization order # Most specific first, most general last # # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter) # REQUIRE: `mtype.has_mproperty(mmodule, self)` fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF] do mtype = mtype.undecorate var cache = self.lookup_all_definitions_cache[mmodule, mtype] if cache != null then return cache assert not mtype.need_anchor assert mtype.has_mproperty(mmodule, self) #print "select prop {mproperty} for {mtype} in {self}" # First, select all candidates var candidates = new Array[MPROPDEF] for mpropdef in self.mpropdefs do # If the definition is not imported by the module, then skip if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue # If the definition is not inherited by the type, then skip if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue # Else, we keep it candidates.add(mpropdef) end # Fast track for only one candidate if candidates.length <= 1 then self.lookup_all_definitions_cache[mmodule, mtype] = candidates return candidates end mmodule.linearize_mpropdefs(candidates) candidates = candidates.reversed self.lookup_all_definitions_cache[mmodule, mtype] = candidates return candidates end private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]] redef var is_test is lazy do return intro.is_test # Does self have the `before` annotation? var is_before: Bool is lazy do return intro.is_before # Does self have the `before_all` annotation? var is_before_all: Bool is lazy do return intro.is_before_all # Does self have the `after` annotation? var is_after: Bool is lazy do return intro.is_after # Does self have the `after_all` annotation? var is_after_all: Bool is lazy do return intro.is_after_all end # A global method class MMethod super MProperty redef type MPROPDEF: MMethodDef # Is the property defined at the top_level of the module? # Currently such a property are stored in `Object` var is_toplevel: Bool = false is writable # Is the property a constructor? # Warning, this property can be inherited by subclasses with or without being a constructor # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class var is_init: Bool = false is writable # The constructor is a (the) root init with empty signature but a set of initializers var is_root_init: Bool = false is writable # Is the property a 'new' constructor? var is_new: Bool = false is writable # Is the property a legal constructor for a given class? # As usual, visibility is not considered. # FIXME not implemented fun is_init_for(mclass: MClass): Bool do return self.is_init end # A specific method that is safe to call on null. # Currently, only `==`, `!=` and `is_same_instance` are safe fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance" # Is this method a getter (auto or not)? # # See `getter_for`. fun is_getter: Bool do return getter_for != null # The attribute this getter is for # # Return `null` is this method is not a getter. var getter_for: nullable MAttribute = null is writable # Is this method a setter (auto or not)? # # See `setter_for`. fun is_setter: Bool do return setter_for != null # The attribute this setter is for # # Return `null` is this method is not a setter. var setter_for: nullable MAttribute = null is writable # Is this method a getter or a setter? fun is_accessor: Bool do return is_getter or is_setter end # A global attribute class MAttribute super MProperty redef type MPROPDEF: MAttributeDef # Does this attribute have a getter (auto or not)? # # See `getter`. fun has_getter: Bool do return getter != null # The getter of this attribute (if any) var getter: nullable MProperty = null is writable # Does this attribute have a setter (auto or not)? # # See `setter`. fun has_setter: Bool do return setter != null # The setter of this attribute (if any) var setter: nullable MProperty = null is writable end # A global virtual type class MVirtualTypeProp super MProperty redef type MPROPDEF: MVirtualTypeDef # The formal type associated to the virtual type property var mvirtualtype = new MVirtualType(self) # Is `self` the special virtual type `SELF`? var is_selftype: Bool is lazy do return name == "SELF" end # A definition of a property (local property) # # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a # specific class definition (which belong to a specific module) abstract class MPropDef super MEntity # The associated `MProperty` subclass. # the two specialization hierarchy are symmetric type MPROPERTY: MProperty # Self class type MPROPDEF: MPropDef # The class definition where the property definition is var mclassdef: MClassDef # The associated global property var mproperty: MPROPERTY redef var location redef fun visibility do return mproperty.visibility init do mclassdef.mpropdefs.add(self) mproperty.mpropdefs.add(self) mclassdef.mpropdefs_by_property[mproperty] = self if mproperty.intro_mclassdef == mclassdef then assert not isset mproperty._intro mproperty.intro = self end self.to_s = "{mclassdef}${mproperty}" end # Actually the name of the `mproperty` redef fun name do return mproperty.name # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`. # # Therefore the combination of identifiers is awful, # the worst case being # # * a property "p::m::A::x" # * redefined in a refinement of a class "q::n::B" # * in a module "r::o" # * so "r::o$q::n::B$p::m::A::x" # # Fortunately, the full-name is simplified when entities are repeated. # For the previous case, the simplest form is "p$A$x". redef var full_name is lazy do var res = new FlatBuffer # The first part is the mclassdef. Worst case is "r::o$q::n::B" res.append mclassdef.full_name res.append "$" if mclassdef.mclass == mproperty.intro_mclassdef.mclass then # intro are unambiguous in a class res.append name else # Just try to simplify each part if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then # precise "p::m" only if "p" != "r" res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility) res.append "::" else if mproperty.visibility <= private_visibility then # Same package ("p"=="q"), but private visibility, # does the module part ("::m") need to be displayed if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then res.append "::" res.append mproperty.intro_mclassdef.mmodule.name res.append "::" end end # precise "B" because it is not the same class than "A" res.append mproperty.intro_mclassdef.name res.append "::" # Always use the property name "x" res.append mproperty.name end return res.to_s end redef var c_name is lazy do var res = new FlatBuffer res.append mclassdef.c_name res.append "___" if mclassdef.mclass == mproperty.intro_mclassdef.mclass then res.append name.to_cmangle else if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then res.append mproperty.intro_mclassdef.mmodule.c_name res.append "__" end res.append mproperty.intro_mclassdef.name.to_cmangle res.append "__" res.append mproperty.name.to_cmangle end return res.to_s end redef fun model do return mclassdef.model # Internal name combining the module, the class and the property # Example: "mymodule$MyClass$mymethod" redef var to_s is noinit # Is self the definition that introduce the property? fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self # Return the next definition in linearization of `mtype`. # # This method is used to determine what method is called by a super. # # REQUIRE: `not mtype.need_anchor` fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF do assert not mtype.need_anchor var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype) var i = mpropdefs.iterator while i.is_ok and i.item != self do i.next assert has_property: i.is_ok i.next assert has_next_property: i.is_ok return i.item end redef fun mdoc_or_fallback do return mdoc or else mproperty.mdoc_or_fallback # Does self have the `before` annotation? var is_before = false is writable # Does self have the `before_all` annotation? var is_before_all = false is writable # Does self have the `after` annotation? var is_after = false is writable # Does self have the `after_all` annotation? var is_after_all = false is writable end # A local definition of a method class MMethodDef super MPropDef redef type MPROPERTY: MMethod redef type MPROPDEF: MMethodDef # The signature attached to the property definition var msignature: nullable MSignature = null is writable # List of initialisers to call in root-inits # # They could be setters or attributes var initializers = new Array[MProperty] # Does the method take the responsibility to call `init`? # # If the method is used as an initializer, then # using this information prevents to call `init` twice. var is_calling_init = false is writable # Does the method is a old_style_init? # var is_old_style_init = false is writable # Is the method definition abstract? var is_abstract: Bool = false is writable # Is the method definition intern? var is_intern = false is writable # Is the method definition extern? var is_extern = false is writable # An optional constant value returned in functions. # # Only some specific primitife value are accepted by engines. # Is used when there is no better implementation available. # # Currently used only for the implementation of the `--define` # command-line option. # SEE: module `mixin`. var constant_value: nullable Object = null is writable end # A local definition of an attribute class MAttributeDef super MPropDef redef type MPROPERTY: MAttribute redef type MPROPDEF: MAttributeDef # The static type of the attribute var static_mtype: nullable MType = null is writable end # A local definition of a virtual type class MVirtualTypeDef super MPropDef redef type MPROPERTY: MVirtualTypeProp redef type MPROPDEF: MVirtualTypeDef # The bound of the virtual type var bound: nullable MType = null is writable # Is the bound fixed? var is_fixed = false is writable end # A kind of class. # # * `abstract_kind` # * `concrete_kind` # * `interface_kind` # * `enum_kind` # * `extern_kind` # # Note this class is basically an enum. # FIXME: use a real enum once user-defined enums are available class MClassKind redef var to_s # Can a class of kind `self` define a membership predicate? var can_customize_isa: Bool # Can a class of kind `self` define a constructor? var can_init: Bool # Is a constructor required? var need_init: Bool # TODO: private init because enumeration. # Can a class of kind `self` specializes a class of kind `other`? fun can_specialize(other: MClassKind): Bool do if other == interface_kind then # everybody can specialize interfaces return true else if self == interface_kind or self == enum_kind then # no other case for interfaces and enums return false else if self == subset_kind then # A subset may specialize anything, except another subset. # TODO: Allow sub-subsets once we can handle them. return other != subset_kind else if self == extern_kind then # only compatible with themselves return self == other else # assert self == abstract_kind or self == concrete_kind return other == abstract_kind or other == concrete_kind end end end # The class kind `abstract` fun abstract_kind: MClassKind do return once new MClassKind("abstract class", false, true, true) # The class kind `concrete` fun concrete_kind: MClassKind do return once new MClassKind("class", false, true, true) # The class kind `interface` fun interface_kind: MClassKind do return once new MClassKind("interface", false, true, false) # The class kind `enum` fun enum_kind: MClassKind do return once new MClassKind("enum", false, true, false) # The class kind `extern` fun extern_kind: MClassKind do return once new MClassKind("extern class", false, true, false) # The class kind `subset` fun subset_kind: MClassKind do return once new MClassKind("subset", true, false, false) # A standalone pre-constructed model used to test various model-related methods. # # When instantiated, a standalone model is already filled with entities that are exposed as attributes. class ModelStandalone super Model redef var location = new Location.opaque_file("ModelStandalone") # The first module var mmodule0 = new MModule(self, null, "module0", location) # The root Object class var mclass_o = new MClass(mmodule0, "Object", location, null, interface_kind, public_visibility) # The introduction of `mclass_o` var mclassdef_o = new MClassDef(mmodule0, mclass_o.mclass_type, location) end # A standalone model with the common class diamond-hierarchy ABCD class ModelDiamond super ModelStandalone # A, a simple subclass of Object var mclass_a = new MClass(mmodule0, "A", location, null, concrete_kind, public_visibility) # The introduction of `mclass_a` var mclassdef_a: MClassDef do var res = new MClassDef(mmodule0, mclass_a.mclass_type, location) res.set_supertypes([mclass_o.mclass_type]) res.add_in_hierarchy return res end # B, a subclass of A (`mclass_a`) var mclass_b = new MClass(mmodule0, "B", location, null, concrete_kind, public_visibility) # The introduction of `mclass_b` var mclassdef_b: MClassDef do var res = new MClassDef(mmodule0, mclass_b.mclass_type, location) res.set_supertypes([mclass_a.mclass_type]) res.add_in_hierarchy return res end # C, another subclass of A (`mclass_a`) var mclass_c = new MClass(mmodule0, "C", location, null, concrete_kind, public_visibility) # The introduction of `mclass_c` var mclassdef_c: MClassDef do var res = new MClassDef(mmodule0, mclass_c.mclass_type, location) res.set_supertypes([mclass_a.mclass_type]) res.add_in_hierarchy return res end # D, a multiple subclass of B (`mclass_b`) and C (`mclass_c`) var mclass_d = new MClass(mmodule0, "D", location, null, concrete_kind, public_visibility) # The introduction of `mclass_d` var mclassdef_d: MClassDef do var res = new MClassDef(mmodule0, mclass_d.mclass_type, location) res.set_supertypes([mclass_b.mclass_type, mclass_c.mclass_type]) res.add_in_hierarchy return res end end