# This file is part of NIT ( http://www.nitlanguage.org ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Separate compilation of a Nit program module separate_compiler import abstract_compiler import coloring import rapid_type_analysis # Add separate compiler specific options redef class ToolContext # --separate var opt_separate = new OptionBool("Use separate compilation", "--separate") # --no-inline-intern var opt_no_inline_intern = new OptionBool("Do not inline call to intern methods", "--no-inline-intern") # --no-union-attribute var opt_no_union_attribute = new OptionBool("Put primitive attributes in a box instead of an union", "--no-union-attribute") # --no-shortcut-equate var opt_no_shortcut_equate = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal") # --no-tag-primitives var opt_no_tag_primitives = new OptionBool("Use only boxes for primitive types", "--no-tag-primitives") # --colors-are-symbols var opt_colors_are_symbols = new OptionBool("Store colors as symbols instead of static data (link-boost)", "--colors-are-symbols") # --trampoline-call var opt_trampoline_call = new OptionBool("Use an indirection when calling", "--trampoline-call") # --guard-call var opt_guard_call = new OptionBool("Guard VFT calls with a direct call", "--guard-call") # --substitute-monomorph var opt_substitute_monomorph = new OptionBool("Replace monomorphic trampolines with direct calls (link-boost)", "--substitute-monomorph") # --link-boost var opt_link_boost = new OptionBool("Enable all link-boost optimizations", "--link-boost") # --inline-coloring-numbers var opt_inline_coloring_numbers = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers") # --inline-some-methods var opt_inline_some_methods = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods") # --direct-call-monomorph var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorphic sites (semi-global)", "--direct-call-monomorph") # --direct-call-monomorph0 var opt_direct_call_monomorph0 = new OptionBool("Allow the separate compiler to direct call monomorphic sites (semi-global)", "--direct-call-monomorph0") # --skip-dead-methods var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods") # --semi-global var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global") # --no-colo-dead-methods var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods") # --tables-metrics var opt_tables_metrics = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics") # --type-poset var opt_type_poset = new OptionBool("Build a poset of types to create more condensed tables", "--type-poset") redef init do super self.option_context.add_option(self.opt_separate) self.option_context.add_option(self.opt_no_inline_intern) self.option_context.add_option(self.opt_no_union_attribute) self.option_context.add_option(self.opt_no_shortcut_equate) self.option_context.add_option(self.opt_no_tag_primitives) self.option_context.add_option(opt_colors_are_symbols, opt_trampoline_call, opt_guard_call, opt_direct_call_monomorph0, opt_substitute_monomorph, opt_link_boost) self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global) self.option_context.add_option(self.opt_colo_dead_methods) self.option_context.add_option(self.opt_tables_metrics) self.option_context.add_option(self.opt_type_poset) end redef fun process_options(args) do super var tc = self if tc.opt_semi_global.value then tc.opt_inline_coloring_numbers.value = true tc.opt_inline_some_methods.value = true tc.opt_direct_call_monomorph.value = true tc.opt_skip_dead_methods.value = true end if tc.opt_link_boost.value then tc.opt_colors_are_symbols.value = true tc.opt_substitute_monomorph.value = true end if tc.opt_substitute_monomorph.value then tc.opt_trampoline_call.value = true end end var separate_compiler_phase = new SeparateCompilerPhase(self, null) end class SeparateCompilerPhase super Phase redef fun process_mainmodule(mainmodule, given_mmodules) do if not toolcontext.opt_separate.value then return var modelbuilder = toolcontext.modelbuilder var analysis = modelbuilder.do_rapid_type_analysis(mainmodule) modelbuilder.run_separate_compiler(mainmodule, analysis) end end redef class ModelBuilder fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis) do var time0 = get_time self.toolcontext.info("*** GENERATING C ***", 1) var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis) compiler.do_compilation compiler.display_stats var time1 = get_time self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2) write_and_make(compiler) end # Count number of invocations by VFT private var nb_invok_by_tables = 0 # Count number of invocations by direct call private var nb_invok_by_direct = 0 # Count number of invocations by inlining private var nb_invok_by_inline = 0 end # Singleton that store the knowledge about the separate compilation process class SeparateCompiler super AbstractCompiler redef type VISITOR: SeparateCompilerVisitor # The result of the RTA (used to know live types and methods) var runtime_type_analysis: nullable RapidTypeAnalysis private var undead_types: Set[MType] = new HashSet[MType] private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]] private var type_ids: Map[MType, Int] is noinit private var type_colors: Map[MType, Int] is noinit private var opentype_colors: Map[MType, Int] is noinit private var thunks_to_compile: Set[SeparateRuntimeFunction] = new HashSet[SeparateRuntimeFunction] init do var file = new_file("nit.common") self.header = new CodeWriter(file) self.compile_box_kinds end redef fun do_compilation do var compiler = self compiler.compile_header var c_name = mainmodule.c_name # compile class structures modelbuilder.toolcontext.info("Property coloring", 2) compiler.new_file("{c_name}.classes") compiler.do_property_coloring compiler.compile_class_infos for m in mainmodule.in_importation.greaters do for mclass in m.intro_mclasses do #if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue compiler.compile_class_to_c(mclass) end end # The main function of the C compiler.new_file("{c_name}.main") compiler.compile_nitni_global_ref_functions compiler.compile_main_function compiler.compile_finalizer_function compiler.link_mmethods # compile methods for m in mainmodule.in_importation.greaters do modelbuilder.toolcontext.info("Generate C for module {m.full_name}", 2) compiler.new_file("{m.c_name}.sep") compiler.compile_module_to_c(m) end # compile live & cast type structures modelbuilder.toolcontext.info("Type coloring", 2) compiler.new_file("{c_name}.types") compiler.compile_types end fun thunk_todo(thunk: SeparateRuntimeFunction) do # Concrete instance of `SeparateRuntimeFunction` are already # handled by the compiler. Avoid duplicate compilation. if thunk isa SeparateThunkFunction then thunks_to_compile.add(thunk) end end # Color and compile type structures and cast information fun compile_types do var compiler = self var mtypes = compiler.do_type_coloring for t in mtypes do compiler.compile_type_to_c(t) end # compile remaining types structures (useless but needed for the symbol resolution at link-time) for t in compiler.undead_types do if mtypes.has(t) then continue compiler.compile_type_to_c(t) end end redef fun compile_header_structs do self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */") self.compile_header_attribute_structs self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */") # With resolution_table_table, all live type resolution are stored in a big table: resolution_table self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */") self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */") self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */") self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */") if not modelbuilder.toolcontext.opt_no_tag_primitives.value then self.header.add_decl("extern const struct class *class_info[];") self.header.add_decl("extern const struct type *type_info[];") end end fun compile_header_attribute_structs do if modelbuilder.toolcontext.opt_no_union_attribute.value then self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */") else self.header.add_decl("typedef union \{") self.header.add_decl("void* val;") for c, v in self.box_kinds do var t = c.mclass_type # `Pointer` reuse the `val` field if t.mclass.name == "Pointer" then continue self.header.add_decl("{t.ctype_extern} {t.ctypename};") end self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */") end end fun compile_box_kinds do # Collect all bas box class # FIXME: this is not completely fine with a separate compilation scheme for classname in ["Int", "Bool", "Byte", "Char", "Float", "CString", "Pointer", "Int8", "Int16", "UInt16", "Int32", "UInt32"] do var classes = self.mainmodule.model.get_mclasses_by_name(classname) if classes == null then continue assert classes.length == 1 else print_error classes.join(", ") self.box_kinds[classes.first] = self.box_kinds.length + 1 end end var box_kinds = new HashMap[MClass, Int] fun box_kind_of(mclass: MClass): Int do #var pointer_type = self.mainmodule.pointer_type #if mclass.mclass_type.ctype == "val*" or mclass.mclass_type.is_subtype(self.mainmodule, mclass.mclass_type pointer_type) then if mclass.mclass_type.ctype_extern == "val*" then return 0 else if mclass.kind == extern_kind and mclass.name != "CString" then return self.box_kinds[self.mainmodule.pointer_type.mclass] else return self.box_kinds[mclass] end end fun compile_color_consts(colors: Map[Object, Int]) do var v = new_visitor for m, c in colors do compile_color_const(v, m, c) end end fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do if color_consts_done.has(m) then return if m isa MEntity then if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then self.provide_declaration(m.const_color, "#define {m.const_color} {color}") else if not modelbuilder.toolcontext.opt_colors_are_symbols.value or not v.compiler.target_platform.supports_linker_script then self.provide_declaration(m.const_color, "extern const int {m.const_color};") v.add("const int {m.const_color} = {color};") else # The color 'C' is the ``address'' of a false static variable 'XC' self.provide_declaration(m.const_color, "#define {m.const_color} ((long)&X{m.const_color})\nextern const void X{m.const_color};") if color == -1 then color = 0 # Symbols cannot be negative, so just use 0 for dead things # Teach the linker that the address of 'XC' is `color`. linker_script.add("X{m.const_color} = {color};") end else abort end color_consts_done.add(m) end private var color_consts_done = new HashSet[Object] # The conflict graph of classes used for coloration var class_conflict_graph: POSetConflictGraph[MClass] is noinit # colorize classe properties fun do_property_coloring do var rta = runtime_type_analysis # Class graph var mclasses = mainmodule.flatten_mclass_hierarchy class_conflict_graph = mclasses.to_conflict_graph # Prepare to collect elements to color and build layout with var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]] var mattributes = new HashMap[MClass, Set[MAttribute]] # The dead methods and super-call, still need to provide a dead color symbol var dead_methods = new Array[PropertyLayoutElement] for mclass in mclasses do mmethods[mclass] = new HashSet[PropertyLayoutElement] mattributes[mclass] = new HashSet[MAttribute] end # Pre-collect known live things if rta != null then for m in rta.live_methods do mmethods[m.intro_mclassdef.mclass].add m end for m in rta.live_super_sends do var mclass = m.mclassdef.mclass mmethods[mclass].add m end end for m in mainmodule.in_importation.greaters do for cd in m.mclassdefs do var mclass = cd.mclass # Collect methods and attributes for p in cd.intro_mproperties do if p isa MMethod then if rta == null then mmethods[mclass].add p else if not rta.live_methods.has(p) then dead_methods.add p end else if p isa MAttribute then mattributes[mclass].add p end end # Collect all super calls (dead or not) for mpropdef in cd.mpropdefs do if not mpropdef isa MMethodDef then continue if mpropdef.has_supercall then if rta == null then mmethods[mclass].add mpropdef else if not rta.live_super_sends.has(mpropdef) then dead_methods.add mpropdef end end end end # methods coloration var meth_colorer = new POSetGroupColorer[MClass, PropertyLayoutElement](class_conflict_graph, mmethods) var method_colors = meth_colorer.colors compile_color_consts(method_colors) # give null color to dead methods and supercalls for mproperty in dead_methods do compile_color_const(new_visitor, mproperty, -1) # attribute coloration var attr_colorer = new POSetGroupColorer[MClass, MAttribute](class_conflict_graph, mattributes) var attr_colors = attr_colorer.colors#ize(poset, mattributes) compile_color_consts(attr_colors) # Build method and attribute tables method_tables = new HashMap[MClass, Array[nullable MPropDef]] attr_tables = new HashMap[MClass, Array[nullable MProperty]] for mclass in mclasses do if not mclass.has_new_factory and (mclass.kind == abstract_kind or mclass.kind == interface_kind) then continue if rta != null and not rta.live_classes.has(mclass) then continue var mtype = mclass.intro.bound_mtype # Resolve elements in the layout to get the final table var meth_layout = meth_colorer.build_layout(mclass) var meth_table = new Array[nullable MPropDef].with_capacity(meth_layout.length) method_tables[mclass] = meth_table for e in meth_layout do if e == null then meth_table.add null else if e isa MMethod then # Standard method call of `e` meth_table.add e.lookup_first_definition(mainmodule, mtype) else if e isa MMethodDef then # Super-call in the methoddef `e` meth_table.add e.lookup_next_definition(mainmodule, mtype) else abort end end # Do not need to resolve attributes as only the position is used attr_tables[mclass] = attr_colorer.build_layout(mclass) end end # colorize live types of the program private fun do_type_coloring: Collection[MType] do # Collect types to colorize var live_types = runtime_type_analysis.live_types var live_cast_types = runtime_type_analysis.live_cast_types var res = new HashSet[MType] res.add_all live_types res.add_all live_cast_types if modelbuilder.toolcontext.opt_type_poset.value then # Compute colors with a type poset var poset = poset_from_mtypes(live_types, live_cast_types) var colorer = new POSetColorer[MType] colorer.colorize(poset) type_ids = colorer.ids type_colors = colorer.colors type_tables = build_type_tables(poset) else # Compute colors using the class poset # Faster to compute but the number of holes can degenerate compute_type_test_layouts(live_types, live_cast_types) type_ids = new HashMap[MType, Int] for x in res do type_ids[x] = type_ids.length + 1 end # VT and FT are stored with other unresolved types in the big resolution_tables self.compute_resolution_tables(live_types) return res end private fun poset_from_mtypes(mtypes, cast_types: Set[MType]): POSet[MType] do var poset = new POSet[MType] # Instead of doing the full matrix mtypes X cast_types, # a grouping is done by the base classes of the type so # that we compare only types whose base classes are in inheritance. var mtypes_by_class = new MultiHashMap[MClass, MType] for e in mtypes do var c = e.undecorate.as(MClassType).mclass mtypes_by_class[c].add(e) poset.add_node(e) end var casttypes_by_class = new MultiHashMap[MClass, MType] for e in cast_types do var c = e.undecorate.as(MClassType).mclass casttypes_by_class[c].add(e) poset.add_node(e) end for c1, ts1 in mtypes_by_class do for c2 in c1.in_hierarchy(mainmodule).greaters do var ts2 = casttypes_by_class[c2] for e in ts1 do for o in ts2 do if e == o then continue if e.is_subtype(mainmodule, null, o) then poset.add_edge(e, o) end end end end end return poset end # Build type tables fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do var tables = new HashMap[MType, Array[nullable MType]] for mtype in mtypes do var table = new Array[nullable MType] for sup in mtypes[mtype].greaters do var color = type_colors[sup] if table.length <= color then for i in [table.length .. color[ do table[i] = null end end table[color] = sup end tables[mtype] = table end return tables end private fun compute_type_test_layouts(mtypes: Set[MClassType], cast_types: Set[MType]) do # Group cast_type by their classes var bucklets = new HashMap[MClass, Set[MType]] for e in cast_types do var c = e.undecorate.as(MClassType).mclass if not bucklets.has_key(c) then bucklets[c] = new HashSet[MType] end bucklets[c].add(e) end # Colorize cast_types from the class hierarchy var colorer = new POSetGroupColorer[MClass, MType](class_conflict_graph, bucklets) type_colors = colorer.colors var layouts = new HashMap[MClass, Array[nullable MType]] for c in runtime_type_analysis.live_classes do layouts[c] = colorer.build_layout(c) end # Build the table for each live type for t in mtypes do # A live type use the layout of its class var c = t.mclass var layout = layouts[c] var table = new Array[nullable MType].with_capacity(layout.length) type_tables[t] = table # For each potential super-type in the layout for sup in layout do if sup == null then table.add null else if t.is_subtype(mainmodule, null, sup) then table.add sup else table.add null end end end end # resolution_tables is used to perform a type resolution at runtime in O(1) private fun compute_resolution_tables(mtypes: Set[MType]) do # During the visit of the body of classes, live_unresolved_types are collected # and associated to # Collect all live_unresolved_types (visited in the body of classes) # Determinate fo each livetype what are its possible requested anchored types var mtype2unresolved = new HashMap[MClass, Set[MType]] for mtype in self.runtime_type_analysis.live_types do var mclass = mtype.mclass var set = mtype2unresolved.get_or_null(mclass) if set == null then set = new HashSet[MType] mtype2unresolved[mclass] = set end for cd in mtype.collect_mclassdefs(self.mainmodule) do if self.live_unresolved_types.has_key(cd) then set.add_all(self.live_unresolved_types[cd]) end end end # Compute the table layout with the prefered method var colorer = new BucketsColorer[MClass, MType] opentype_colors = colorer.colorize(mtype2unresolved) resolution_tables = self.build_resolution_tables(self.runtime_type_analysis.live_types, mtype2unresolved) # Compile a C constant for each collected unresolved type. # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it) var all_unresolved = new HashSet[MType] for t in self.live_unresolved_types.values do all_unresolved.add_all(t) end var all_unresolved_types_colors = new HashMap[MType, Int] for t in all_unresolved do if opentype_colors.has_key(t) then all_unresolved_types_colors[t] = opentype_colors[t] else all_unresolved_types_colors[t] = -1 end end self.compile_color_consts(all_unresolved_types_colors) #print "tables" #for k, v in unresolved_types_tables.as(not null) do # print "{k}: {v.join(", ")}" #end #print "" end fun build_resolution_tables(elements: Set[MClassType], map: Map[MClass, Set[MType]]): Map[MClassType, Array[nullable MType]] do var tables = new HashMap[MClassType, Array[nullable MType]] for mclasstype in elements do var mtypes = map[mclasstype.mclass] var table = new Array[nullable MType] for mtype in mtypes do var color = opentype_colors[mtype] if table.length <= color then for i in [table.length .. color[ do table[i] = null end end table[color] = mtype end tables[mclasstype] = table end return tables end # Separately compile all the method definitions of the module fun compile_module_to_c(mmodule: MModule) do var old_module = self.mainmodule self.mainmodule = mmodule for cd in mmodule.mclassdefs do for pd in cd.mpropdefs do if not pd isa MMethodDef then continue if pd.mproperty.is_broken or pd.is_broken or pd.msignature == null then continue # Skip broken method var rta = runtime_type_analysis if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue #print "compile {pd} @ {cd} @ {mmodule}" var r = pd.separate_runtime_function r.compile_to_c(self) var r2 = pd.virtual_runtime_function if r2 != r then r2.compile_to_c(self) # Generate trampolines if modelbuilder.toolcontext.opt_trampoline_call.value then r2.compile_trampolines(self) end end end var compiled_thunks = new Array[SeparateRuntimeFunction] # Compile thunks here to write them in the same module they are declared. for thunk in thunks_to_compile do if thunk.mmethoddef.mclassdef.mmodule == mmodule then thunk.compile_to_c(self) compiled_thunks.add(thunk) end end thunks_to_compile.remove_all(compiled_thunks) self.mainmodule = old_module end # Process all introduced methods and compile some linking information (if needed) fun link_mmethods do if not modelbuilder.toolcontext.opt_substitute_monomorph.value and not modelbuilder.toolcontext.opt_guard_call.value then return for mmodule in mainmodule.in_importation.greaters do for cd in mmodule.mclassdefs do for m in cd.intro_mproperties do if not m isa MMethod then continue link_mmethod(m) end end end end # Compile some linking information (if needed) fun link_mmethod(m: MMethod) do var n2 = "CALL_" + m.const_color # Replace monomorphic call by a direct call to the virtual implementation var md = is_monomorphic(m) if md != null then linker_script.add("{n2} = {md.virtual_runtime_function.c_name};") end # If opt_substitute_monomorph then a trampoline is used, else a weak symbol is used if modelbuilder.toolcontext.opt_guard_call.value then var r = m.intro.virtual_runtime_function provide_declaration(n2, "{r.c_ret} {n2}{r.c_sig} __attribute__((weak));") end end # The single mmethodef called in case of monomorphism. # Returns nul if dead or polymorphic. fun is_monomorphic(m: MMethod): nullable MMethodDef do var rta = runtime_type_analysis if rta == null then # Without RTA, monomorphic means alone (uniq name) if m.mpropdefs.length == 1 then return m.mpropdefs.first else return null end else # With RTA, monomorphic means only live methoddef var res: nullable MMethodDef = null for md in m.mpropdefs do if rta.live_methoddefs.has(md) then if res != null then return null res = md end end return res end end # Globaly compile the type structure of a live type fun compile_type_to_c(mtype: MType) do assert not mtype.need_anchor var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype) var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype) var c_name = mtype.c_name var v = new SeparateCompilerVisitor(self) v.add_decl("/* runtime type {mtype} */") # extern const struct type_X self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};") # const struct type_X v.add_decl("const struct type type_{c_name} = \{") # type id (for cast target) if is_cast_live then v.add_decl("{type_ids[mtype]},") else v.add_decl("-1, /*CAST DEAD*/") end # type name v.add_decl("\"{mtype}\", /* class_name_string */") # type color (for cast target) if is_cast_live then v.add_decl("{type_colors[mtype]},") else v.add_decl("-1, /*CAST DEAD*/") end # is_nullable bit if mtype isa MNullableType then v.add_decl("1,") else v.add_decl("0,") end # resolution table (for receiver) if is_live then var mclass_type = mtype.undecorate assert mclass_type isa MClassType if resolution_tables[mclass_type].is_empty then v.add_decl("NULL, /*NO RESOLUTIONS*/") else compile_type_resolution_table(mtype) v.require_declaration("resolution_table_{c_name}") v.add_decl("&resolution_table_{c_name},") end else v.add_decl("NULL, /*DEAD*/") end # cast table (for receiver) if is_live then v.add_decl("{self.type_tables[mtype].length},") v.add_decl("\{") for stype in self.type_tables[mtype] do if stype == null then v.add_decl("-1, /* empty */") else v.add_decl("{type_ids[stype]}, /* {stype} */") end end v.add_decl("\},") else # Use -1 to indicate dead type, the info is used by --hardening v.add_decl("-1, \{\}, /*DEAD TYPE*/") end v.add_decl("\};") end fun compile_type_resolution_table(mtype: MType) do var mclass_type = mtype.undecorate.as(MClassType) # extern const struct resolution_table_X resolution_table_X self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};") # const struct fts_table_X fts_table_X var v = new_visitor v.add_decl("const struct types resolution_table_{mtype.c_name} = \{") v.add_decl("0, /* dummy */") v.add_decl("\{") for t in self.resolution_tables[mclass_type] do if t == null then v.add_decl("NULL, /* empty */") else # The table stores the result of the type resolution # Therefore, for a receiver `mclass_type`, and a unresolved type `t` # the value stored is tv. var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true) # FIXME: What typeids means here? How can a tv not be live? if type_ids.has_key(tv) then v.require_declaration("type_{tv.c_name}") v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */") else v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */") end end end v.add_decl("\}") v.add_decl("\};") end # Globally compile the table of the class mclass # In a link-time optimisation compiler, tables are globally computed # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally fun compile_class_to_c(mclass: MClass) do if mclass.is_broken then return var mtype = mclass.intro.bound_mtype var c_name = mclass.c_name var v = new_visitor var rta = runtime_type_analysis var is_dead = rta != null and not rta.live_classes.has(mclass) # While the class may be dead, some part of separately compiled code may use symbols associated to the class, so # in order to compile and link correctly the C code, these symbols should be declared and defined. var need_corpse = is_dead and mtype.is_c_primitive or mclass.kind == extern_kind or mclass.kind == enum_kind v.add_decl("/* runtime class {c_name}: {mclass.full_name} (dead={is_dead}; need_corpse={need_corpse})*/") # Build class vft if not is_dead or need_corpse then self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};") v.add_decl("const struct class class_{c_name} = \{") v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */") v.add_decl("\{") var vft = self.method_tables.get_or_null(mclass) if vft != null then for i in [0 .. vft.length[ do var mpropdef = vft[i] if mpropdef == null then v.add_decl("NULL, /* empty */") else assert mpropdef isa MMethodDef if rta != null and not rta.live_methoddefs.has(mpropdef) then v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */") continue else if mpropdef.is_broken or mpropdef.msignature == null or mpropdef.mproperty.is_broken then v.add_decl("NULL, /* DEAD (BROKEN) {mclass.intro_mmodule}:{mclass}:{mpropdef} */") continue end var rf = mpropdef.virtual_runtime_function v.require_declaration(rf.c_name) v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */") end end v.add_decl("\}") v.add_decl("\};") end if mtype.is_c_primitive or mtype.mclass.name == "Pointer" then # Is a primitive type or the Pointer class, not any other extern class if mtype.is_tagged then return #Build instance struct self.header.add_decl("struct instance_{c_name} \{") self.header.add_decl("const struct type *type;") self.header.add_decl("const struct class *class;") self.header.add_decl("{mtype.ctype_extern} value;") self.header.add_decl("\};") # Pointer is needed by extern types, live or not if is_dead and mtype.mclass.name != "Pointer" then return #Build BOX self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype_extern});") v.add_decl("/* allocate {mtype} */") v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype_extern} value) \{") var alloc = v.nit_alloc("sizeof(struct instance_{c_name})", mclass.full_name) v.add("struct instance_{c_name}*res = {alloc};") v.compiler.undead_types.add(mtype) v.require_declaration("type_{c_name}") v.add("res->type = &type_{c_name};") v.require_declaration("class_{c_name}") v.add("res->class = &class_{c_name};") v.add("res->value = value;") v.add("return (val*)res;") v.add("\}") # A Pointer class also need its constructor if mtype.mclass.name != "Pointer" then return v = new_visitor self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);") v.add_decl("/* allocate {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{") if is_dead then v.add_abort("{mclass} is DEAD") else var res = v.new_named_var(mtype, "self") res.is_exact = true alloc = v.nit_alloc("sizeof(struct instance_{mtype.c_name})", mclass.full_name) v.add("{res} = {alloc};") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") v.add("((struct instance_{mtype.c_name}*){res})->value = NULL;") v.add("return {res};") end v.add("\}") return else if mclass.name == "NativeArray" then #Build instance struct self.header.add_decl("struct instance_{c_name} \{") self.header.add_decl("const struct type *type;") self.header.add_decl("const struct class *class;") # NativeArrays are just a instance header followed by a length and an array of values self.header.add_decl("int length;") self.header.add_decl("val* values[0];") self.header.add_decl("\};") #Build NEW self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);") v.add_decl("/* allocate {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{") var res = v.get_name("self") v.add_decl("struct instance_{c_name} *{res};") var mtype_elt = mtype.arguments.first var alloc = v.nit_alloc("sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype})", mclass.full_name) v.add("{res} = {alloc};") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") v.add("{res}->length = length;") v.add("return (val*){res};") v.add("\}") return else if mclass.name == "RoutineRef" then self.header.add_decl("struct instance_{c_name} \{") self.header.add_decl("const struct type *type;") self.header.add_decl("const struct class *class;") self.header.add_decl("val* recv;") self.header.add_decl("nitmethod_t method;") self.header.add_decl("\};") self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(val* recv, nitmethod_t method, const struct class* class, const struct type* type);") v.add_decl("/* allocate {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(val* recv, nitmethod_t method, const struct class* class, const struct type* type)\{") var res = v.get_name("self") v.add_decl("struct instance_{c_name} *{res};") var alloc = v.nit_alloc("sizeof(struct instance_{c_name})", mclass.full_name) v.add("{res} = {alloc};") v.add("{res}->type = type;") hardening_live_type(v, "type") v.add("{res}->class = class;") v.add("{res}->recv = recv;") v.add("{res}->method = method;") v.add("return (val*){res};") v.add("\}") return else if mtype.mclass.kind == extern_kind and mtype.mclass.name != "CString" then # Is an extern class (other than Pointer and CString) # Pointer is caught in a previous `if`, and CString is internal var pointer_type = mainmodule.pointer_type self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);") v.add_decl("/* allocate extern {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{") if is_dead then v.add_abort("{mclass} is DEAD") else var res = v.new_named_var(mtype, "self") res.is_exact = true var alloc = v.nit_alloc("sizeof(struct instance_{pointer_type.c_name})", mclass.full_name) v.add("{res} = {alloc};") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") v.add("((struct instance_{pointer_type.c_name}*){res})->value = NULL;") v.add("return {res};") end v.add("\}") return end #Build NEW self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);") v.add_decl("/* allocate {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{") if is_dead then v.add_abort("{mclass} is DEAD") else var res = v.new_named_var(mtype, "self") res.is_exact = true var attrs = self.attr_tables.get_or_null(mclass) if attrs == null then var alloc = v.nit_alloc("sizeof(struct instance)", mclass.full_name) v.add("{res} = {alloc};") else var alloc = v.nit_alloc("sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t)", mclass.full_name) v.add("{res} = {alloc};") end if modelbuilder.toolcontext.opt_trace.value then v.add("tracepoint(Nit_Compiler, Object_Instance,\"{mtype}\", (uintptr_t)self);") v.add("GC_register_finalizer(self, object_destroy_callback, NULL, NULL, NULL);") end v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") if attrs != null then self.generate_init_attr(v, res, mtype) v.set_finalizer res end v.add("return {res};") end v.add("\}") end # Compile structures used to map tagged primitive values to their classes and types. # This method also determines which class will be tagged. fun compile_class_infos do if modelbuilder.toolcontext.opt_no_tag_primitives.value then return # Note: if you change the tagging scheme, do not forget to update # `autobox` and `extract_tag` var class_info = new Array[nullable MClass].filled_with(null, 4) for t in box_kinds.keys do # Note: a same class can be associated to multiple slots if one want to # use some Huffman coding. if t.name == "Int" then class_info[1] = t t.mclass_type.tag_value = 1 else if t.name == "Char" then class_info[2] = t t.mclass_type.tag_value = 2 else if t.name == "Bool" then class_info[3] = t t.mclass_type.tag_value = 3 else continue end t.mclass_type.is_tagged = true end # Compile the table for classes. The tag is used as an index var v = self.new_visitor v.add_decl "const struct class *class_info[4] = \{" for t in class_info do if t == null then v.add_decl("NULL,") else var s = "class_{t.c_name}" v.require_declaration(s) v.add_decl("&{s},") end end v.add_decl("\};") # Compile the table for types. The tag is used as an index v.add_decl "const struct type *type_info[4] = \{" for t in class_info do if t == null then v.add_decl("NULL,") else var s = "type_{t.c_name}" undead_types.add(t.mclass_type) v.require_declaration(s) v.add_decl("&{s},") end end v.add_decl("\};") end # Add a dynamic test to ensure that the type referenced by `t` is a live type fun hardening_live_type(v: VISITOR, t: String) do if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return v.add("if({t} == NULL) \{") v.add_abort("type null") v.add("\}") v.add("if({t}->table_size < 0) \{") v.add("PRINT_ERROR(\"Instantiation of a dead type: %s\\n\", {t}->name);") v.add_abort("type dead") v.add("\}") end redef fun new_visitor do return new SeparateCompilerVisitor(self) # Stats private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]] private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]] protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] protected var attr_tables: Map[MClass, Array[nullable MProperty]] = new HashMap[MClass, Array[nullable MProperty]] redef fun display_stats do super if self.modelbuilder.toolcontext.opt_tables_metrics.value then display_sizes end if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then display_isset_checks end var tc = self.modelbuilder.toolcontext tc.info("# implementation of method invocation",2) var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline tc.info("total number of invocations: {nb_invok_total}",2) tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2) tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2) tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2) end fun display_sizes do print "# size of subtyping tables" print "\ttotal \tholes" var total = 0 var holes = 0 for t, table in type_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" print "# size of resolution tables" print "\ttotal \tholes" total = 0 holes = 0 for t, table in resolution_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" print "# size of methods tables" print "\ttotal \tholes" total = 0 holes = 0 for t, table in method_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" print "# size of attributes tables" print "\ttotal \tholes" total = 0 holes = 0 for t, table in attr_tables do total += table.length for e in table do if e == null then holes += 1 end print "\t{total}\t{holes}" end protected var isset_checks_count = 0 protected var attr_read_count = 0 fun display_isset_checks do print "# total number of compiled attribute reads" print "\t{attr_read_count}" print "# total number of compiled isset-checks" print "\t{isset_checks_count}" end redef fun compile_nitni_structs do self.header.add_decl """ struct nitni_instance \{ struct nitni_instance *next, *prev; /* adjacent global references in global list */ int count; /* number of time this global reference has been marked */ struct instance *value; \}; """ super end redef fun finalize_ffi_for_module(mmodule) do var old_module = self.mainmodule self.mainmodule = mmodule super self.mainmodule = old_module end end # A visitor on the AST of property definition that generate the C code of a separate compilation process. class SeparateCompilerVisitor super AbstractCompilerVisitor redef type COMPILER: SeparateCompiler redef fun adapt_signature(m, args) do var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true) var recv = args.first if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type) end for i in [0..msignature.arity[ do var mp = msignature.mparameters[i] var t = mp.mtype if mp.is_vararg then t = args[i+1].mtype end args[i+1] = self.autobox(args[i+1], t) end end redef fun unbox_signature_extern(m, args) do var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true) if not m.mproperty.is_init and m.is_extern then args.first = self.unbox_extern(args.first, m.mclassdef.mclass.mclass_type) end for i in [0..msignature.arity[ do var mp = msignature.mparameters[i] var t = mp.mtype if mp.is_vararg then t = args[i+1].mtype end if m.is_extern then args[i+1] = self.unbox_extern(args[i+1], t) end end redef fun autobox(value, mtype) do if value.mtype == mtype then return value else if not value.mtype.is_c_primitive and not mtype.is_c_primitive then return value else if not value.mtype.is_c_primitive then if mtype.is_tagged then if mtype.name == "Int" then return self.new_expr("(long)({value})>>2", mtype) else if mtype.name == "Char" then return self.new_expr("(uint32_t)((long)({value})>>2)", mtype) else if mtype.name == "Bool" then return self.new_expr("(short int)((long)({value})>>2)", mtype) else abort end end return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype) else if not mtype.is_c_primitive then assert value.mtype == value.mcasttype if value.mtype.is_tagged then var res if value.mtype.name == "Int" then res = self.new_expr("(val*)({value}<<2|1)", mtype) else if value.mtype.name == "Char" then res = self.new_expr("(val*)((long)({value})<<2|2)", mtype) else if value.mtype.name == "Bool" then res = self.new_expr("(val*)((long)({value})<<2|3)", mtype) else abort end # Do not loose type info res.mcasttype = value.mcasttype return res end var valtype = value.mtype.as(MClassType) if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "CString" then valtype = compiler.mainmodule.pointer_type end var res = self.new_var(mtype) # Do not loose type info res.mcasttype = value.mcasttype self.require_declaration("BOX_{valtype.c_name}") self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */") return res else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or (value.mtype.ctype == "char*" and mtype.ctype == "void*") or (value.mtype.ctype == "void*" and mtype.ctype == "char*") then return value else # Bad things will appen! var res = self.new_var(mtype) self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */") self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); fatal_exit(1);") return res end end redef fun unbox_extern(value, mtype) do if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "CString" then var pointer_type = compiler.mainmodule.pointer_type var res = self.new_var_extern(mtype) self.add "{res} = ((struct instance_{pointer_type.c_name}*){value})->value; /* unboxing {value.mtype} */" return res else return value end end redef fun box_extern(value, mtype) do if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "CString" then var valtype = compiler.mainmodule.pointer_type var res = self.new_var(mtype) compiler.undead_types.add(mtype) self.require_declaration("BOX_{valtype.c_name}") self.add("{res} = BOX_{valtype.c_name}({value}); /* boxing {value.mtype} */") self.require_declaration("type_{mtype.c_name}") self.add("{res}->type = &type_{mtype.c_name};") self.require_declaration("class_{mtype.c_name}") self.add("{res}->class = &class_{mtype.c_name};") return res else return value end end # Returns a C expression containing the tag of the value as a long. # # If the C expression is evaluated to 0, it means there is no tag. # Thus the expression can be used as a condition. fun extract_tag(value: RuntimeVariable): String do assert not value.mtype.is_c_primitive return "((long){value}&3)" # Get the two low bits end # Returns a C expression of the runtime class structure of the value. # The point of the method is to work also with primitive types. fun class_info(value: RuntimeVariable): String do if not value.mtype.is_c_primitive then if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then var tag = extract_tag(value) return "({tag}?class_info[{tag}]:{value}->class)" end return "{value}->class" else compiler.undead_types.add(value.mtype) self.require_declaration("class_{value.mtype.c_name}") return "(&class_{value.mtype.c_name})" end end # Returns a C expression of the runtime type structure of the value. # The point of the method is to work also with primitive types. fun type_info(value: RuntimeVariable): String do if not value.mtype.is_c_primitive then if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then var tag = extract_tag(value) return "({tag}?type_info[{tag}]:{value}->type)" end return "{value}->type" else compiler.undead_types.add(value.mtype) self.require_declaration("type_{value.mtype.c_name}") return "(&type_{value.mtype.c_name})" end end redef fun compile_callsite(callsite, args) do var rta = compiler.runtime_type_analysis # TODO: Inlining of new-style constructors with initializers if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and callsite.mpropdef.initializers.is_empty then var tgs = rta.live_targets(callsite) if tgs.length == 1 then return direct_call(tgs.first, args) end end # Shortcut intern methods as they are not usually redefinable if callsite.mpropdef.is_intern and callsite.mproperty.name != "object_id" then # `object_id` is the only redefined intern method, so it can not be directly called. # TODO find a less ugly approach? return direct_call(callsite.mpropdef, args) end return super end # Fully and directly call a mpropdef # # This method is used by `compile_callsite` private fun direct_call(mpropdef: MMethodDef, args: Array[RuntimeVariable]): nullable RuntimeVariable do var res0 = before_send(mpropdef.mproperty, args) var res = call(mpropdef, mpropdef.mclassdef.bound_mtype, args) if res0 != null then assert res != null self.assign(res0, res) res = res0 end add("\}") # close the before_send return res end redef fun send(mmethod, arguments) do if arguments.first.mcasttype.is_c_primitive then # In order to shortcut the primitive, we need to find the most specific method # Howverr, because of performance (no flattening), we always work on the realmainmodule var m = self.compiler.mainmodule self.compiler.mainmodule = self.compiler.realmainmodule var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments) self.compiler.mainmodule = m return res end return table_send(mmethod, arguments, mmethod) end # Handle common special cases before doing the effective method invocation # This methods handle the `==` and `!=` methods and the case of the null receiver. # Note: a { is open in the generated C, that enclose and protect the effective method invocation. # Client must not forget to close the } after them. # # The value returned is the result of the common special cases. # If not null, client must compile it with the result of their own effective method invocation. # # If `before_send` can shortcut the whole message sending, a dummy `if(0){` # is generated to cancel the effective method invocation that will follow # TODO: find a better approach private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable do var res: nullable RuntimeVariable = null var recv = arguments.first var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_null.value or mmethod.name == "==" or mmethod.name == "!=" if maybe_null(recv) and consider_null then self.add("if ({recv} == NULL) \{") if mmethod.name == "==" or mmethod.name == "is_same_instance" then res = self.new_var(bool_type) var arg = arguments[1] if arg.mcasttype isa MNullableType then self.add("{res} = ({arg} == NULL);") else if arg.mcasttype isa MNullType then self.add("{res} = 1; /* is null */") else self.add("{res} = 0; /* {arg.inspect} cannot be null */") end else if mmethod.name == "!=" then res = self.new_var(bool_type) var arg = arguments[1] if arg.mcasttype isa MNullableType then self.add("{res} = ({arg} != NULL);") else if arg.mcasttype isa MNullType then self.add("{res} = 0; /* is null */") else self.add("{res} = 1; /* {arg.inspect} cannot be null */") end else self.add_abort("Receiver is null") end self.add("\} else \{") else self.add("\{") end if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=" or mmethod.name == "is_same_instance") then # Recv is not null, thus if arg is, it is easy to conclude (and respect the invariants) var arg = arguments[1] if arg.mcasttype isa MNullType then if res == null then res = self.new_var(bool_type) if mmethod.name == "!=" then self.add("{res} = 1; /* arg is null and recv is not */") else # `==` and `is_same_instance` self.add("{res} = 0; /* arg is null but recv is not */") end self.add("\}") # closes the null case self.add("if (0) \{") # what follow is useless, CC will drop it end end return res end private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], mentity: MEntity): nullable RuntimeVariable do compiler.modelbuilder.nb_invok_by_tables += 1 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;") assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.") var res0 = before_send(mmethod, arguments) var runtime_function = mmethod.intro.virtual_runtime_function var msignature = runtime_function.called_signature adapt_signature(mmethod.intro, arguments) var res: nullable RuntimeVariable var ret = msignature.return_mtype if ret == null then res = null else res = self.new_var(ret) end var ss = arguments.join(", ") var const_color = mentity.const_color var ress if res != null then ress = "{res} = " else ress = "" end if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_direct_call_monomorph0.value then # opt_direct_call_monomorph0 is used to compare the efficiency of the alternative lookup implementation, ceteris paribus. # The difference with the non-zero option is that the monomorphism is looked-at on the mmethod level and not at the callsite level. # TODO: remove this mess and use per callsite service to detect monomorphism in a single place. var md = compiler.is_monomorphic(mentity) if md != null then var callsym = md.virtual_runtime_function.c_name self.require_declaration(callsym) self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/" else self.require_declaration(const_color) self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/" end else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_guard_call.value then var callsym = "CALL_" + const_color self.require_declaration(callsym) self.add "if (!{callsym}) \{" self.require_declaration(const_color) self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/" self.add "\} else \{" self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/" self.add "\}" else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_trampoline_call.value then var callsym = "CALL_" + const_color self.require_declaration(callsym) self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/" else self.require_declaration(const_color) self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/" end if res0 != null then assert res != null assign(res0,res) res = res0 end self.add("\}") # closes the null case return res end redef fun call(mmethoddef, recvtype, arguments) do assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.") var res: nullable RuntimeVariable var ret = mmethoddef.msignature.return_mtype if ret == null then res = null else ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) res = self.new_var(ret) end if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then compiler.modelbuilder.nb_invok_by_inline += 1 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;") var frame = new StaticFrame(self, mmethoddef, recvtype, arguments) frame.returnlabel = self.get_name("RET_LABEL") frame.returnvar = res var old_frame = self.frame self.frame = frame self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */") mmethoddef.compile_inside_to_c(self, arguments) self.add("{frame.returnlabel.as(not null)}:(void)0;") self.add("\}") self.frame = old_frame return res end compiler.modelbuilder.nb_invok_by_direct += 1 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;") # Autobox arguments self.adapt_signature(mmethoddef, arguments) self.require_declaration(mmethoddef.c_name) if res == null then self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/") return null else self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});") end return res end redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable do if arguments.first.mcasttype.is_c_primitive then # In order to shortcut the primitive, we need to find the most specific method # However, because of performance (no flattening), we always work on the realmainmodule var main = self.compiler.mainmodule self.compiler.mainmodule = self.compiler.realmainmodule var res = self.monomorphic_super_send(m, recvtype, arguments) self.compiler.mainmodule = main return res end return table_send(m.mproperty, arguments, m) end redef fun vararg_instance(mpropdef, recv, varargs, elttype) do # A vararg must be stored into an new array # The trick is that the dymaic type of the array may depends on the receiver # of the method (ie recv) if the static type is unresolved # This is more complex than usual because the unresolved type must not be resolved # with the current receiver (ie self). # Therefore to isolate the resolution from self, a local StaticFrame is created. # One can see this implementation as an inlined method of the receiver whose only # job is to allocate the array var old_frame = self.frame var frame = new StaticFrame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv]) self.frame = frame #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}" var res = self.array_instance(varargs, elttype) self.frame = old_frame return res end redef fun isset_attribute(a, recv) do self.check_recv_notnull(recv) var res = self.new_var(bool_type) # What is the declared type of the attribute? var mtype = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) if mtype isa MNullableType then self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */") return res end self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/") else if not mtype.is_c_primitive and not mtype.is_tagged then self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */") else self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */") end end return res end redef fun read_attribute(a, recv) do self.check_recv_notnull(recv) # What is the declared type of the attribute? var ret = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then self.compiler.attr_read_count += 1 self.add("count_attr_reads++;") end self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then # Get the attribute or a box (ie. always a val*) var cret = self.object_type.as_nullable var res = self.new_var(cret) res.mcasttype = ret self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */") # Check for Uninitialized attribute if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then self.add("if (unlikely({res} == NULL)) \{") self.add_abort("Uninitialized attribute {a.name}") self.add("\}") if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then self.compiler.isset_checks_count += 1 self.add("count_isset_checks++;") end end # Return the attribute or its unboxed version # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes return self.autobox(res, ret) else var res = self.new_var(ret) self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */") # Check for Uninitialized attribute if not ret.is_c_primitive and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then self.add("if (unlikely({res} == NULL)) \{") self.add_abort("Uninitialized attribute {a.name}") self.add("\}") if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then self.compiler.isset_checks_count += 1 self.add("count_isset_checks++;") end end return res end end redef fun write_attribute(a, recv, value) do self.check_recv_notnull(recv) # What is the declared type of the attribute? var mtype = a.intro.static_mtype.as(not null) var intromclassdef = a.intro.mclassdef mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) # Adapt the value to the declared type value = self.autobox(value, mtype) self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then var attr = "{recv}->attrs[{a.const_color}]" if mtype.is_tagged then # The attribute is not primitive, thus store it as tagged var tv = autobox(value, compiler.mainmodule.object_type) self.add("{attr} = {tv}; /* {a} on {recv.inspect} */") else if mtype.is_c_primitive then assert mtype isa MClassType # The attribute is primitive, thus we store it in a box # The trick is to create the box the first time then resuse the box self.add("if ({attr} != NULL) \{") self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */") self.add("\} else \{") value = self.autobox(value, self.object_type.as_nullable) self.add("{attr} = {value}; /* {a} on {recv.inspect} */") self.add("\}") else # The attribute is not primitive, thus store it direclty self.add("{attr} = {value}; /* {a} on {recv.inspect} */") end else self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */") end end # Check that mtype is a live open type fun hardening_live_open_type(mtype: MType) do if not compiler.modelbuilder.toolcontext.opt_hardening.value then return self.require_declaration(mtype.const_color) var col = mtype.const_color self.add("if({col} == -1) \{") self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");") self.add_abort("open type dead") self.add("\}") end # Check that mtype it a pointer to a live cast type fun hardening_cast_type(t: String) do if not compiler.modelbuilder.toolcontext.opt_hardening.value then return add("if({t} == NULL) \{") add_abort("cast type null") add("\}") add("if({t}->id == -1 || {t}->color == -1) \{") add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);") add_abort("cast type dead") add("\}") end redef fun init_instance(mtype) do self.require_declaration("NEW_{mtype.mclass.c_name}") var compiler = self.compiler if mtype isa MGenericType and mtype.need_anchor then hardening_live_open_type(mtype) link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) self.require_declaration(mtype.const_color) return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) end compiler.undead_types.add(mtype) self.require_declaration("type_{mtype.c_name}") return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype) end redef fun type_test(value, mtype, tag) do self.add("/* {value.inspect} isa {mtype} */") var compiler = self.compiler var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) var res = self.new_var(bool_type) var cltype = self.get_name("cltype") self.add_decl("int {cltype};") var idtype = self.get_name("idtype") self.add_decl("int {idtype};") var maybe_null = self.maybe_null(value) var accept_null = "0" var ntype = mtype if ntype isa MNullableType then ntype = ntype.mtype accept_null = "1" end if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/") if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_skipped[tag] += 1 self.add("count_type_test_skipped_{tag}++;") end return res end if ntype.need_anchor then var type_struct = self.get_name("type_struct") self.add_decl("const struct type* {type_struct};") # Either with resolution_table with a direct resolution hardening_live_open_type(mtype) link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) self.require_declaration(mtype.const_color) self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];") if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_unresolved[tag] += 1 self.add("count_type_test_unresolved_{tag}++;") end hardening_cast_type(type_struct) self.add("{cltype} = {type_struct}->color;") self.add("{idtype} = {type_struct}->id;") if maybe_null and accept_null == "0" then var is_nullable = self.get_name("is_nullable") self.add_decl("short int {is_nullable};") self.add("{is_nullable} = {type_struct}->is_nullable;") accept_null = is_nullable.to_s end else if ntype isa MClassType then compiler.undead_types.add(mtype) self.require_declaration("type_{mtype.c_name}") hardening_cast_type("(&type_{mtype.c_name})") self.add("{cltype} = type_{mtype.c_name}.color;") self.add("{idtype} = type_{mtype.c_name}.id;") if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then self.compiler.count_type_test_resolved[tag] += 1 self.add("count_type_test_resolved_{tag}++;") end else self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); fatal_exit(1);") end # check color is in table if maybe_null then self.add("if({value} == NULL) \{") self.add("{res} = {accept_null};") self.add("\} else \{") end var value_type_info = self.type_info(value) self.add("if({cltype} >= {value_type_info}->table_size) \{") self.add("{res} = 0;") self.add("\} else \{") self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};") self.add("\}") if maybe_null then self.add("\}") end return res end redef fun is_same_type_test(value1, value2) do var res = self.new_var(bool_type) # Swap values to be symetric if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then var tmp = value1 value1 = value2 value2 = tmp end if value1.mtype.is_c_primitive then if value2.mtype == value1.mtype then self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */") else if value2.mtype.is_c_primitive then self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) self.require_declaration("class_{mtype1.c_name}") self.add("{res} = ({value2} != NULL) && ({class_info(value2)} == &class_{mtype1.c_name}); /* is_same_type_test */") end else self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {class_info(value1)} == {class_info(value2)}); /* is_same_type_test */") end return res end redef fun class_name_string(value) do var res = self.get_name("var_class_name") self.add_decl("const char* {res};") if not value.mtype.is_c_primitive then self.add "{res} = {value} == NULL ? \"null\" : {type_info(value)}->name;" else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind and value.mtype.as(MClassType).name != "CString" then self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";" else self.require_declaration("type_{value.mtype.c_name}") self.add "{res} = type_{value.mtype.c_name}.name;" end return res end redef fun equal_test(value1, value2) do var res = self.new_var(bool_type) if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then var tmp = value1 value1 = value2 value2 = tmp end if value1.mtype.is_c_primitive then var t1 = value1.mtype assert t1 == value1.mcasttype # Fast case: same C type. if value2.mtype == t1 then # Same exact C primitive representation. self.add("{res} = {value1} == {value2};") return res end # Complex case: value2 has a different representation # Thus, it should be checked if `value2` is type-compatible with `value1` # This compatibility is done statically if possible and dynamically else # Conjunction (ands) of dynamic tests according to the static knowledge var tests = new Array[String] var t2 = value2.mcasttype if t2 isa MNullableType then # The destination type cannot be null tests.add("({value2} != NULL)") t2 = t2.mtype else if t2 isa MNullType then # `value2` is known to be null, thus incompatible with a primitive self.add("{res} = 0; /* incompatible types {t1} vs. {t2}*/") return res end if t2 == t1 then # Same type but different representation. else if t2.is_c_primitive then # Type of `value2` is a different primitive type, thus incompatible self.add("{res} = 0; /* incompatible types {t1} vs. {t2}*/") return res else if t1.is_tagged then # To be equal, `value2` should also be correctly tagged tests.add("({extract_tag(value2)} == {t1.tag_value})") else # To be equal, `value2` should also be boxed with the same class self.require_declaration("class_{t1.c_name}") tests.add "({class_info(value2)} == &class_{t1.c_name})" end # Compare the unboxed `value2` with `value1` if tests.not_empty then self.add "if ({tests.join(" && ")}) \{" end self.add "{res} = {self.autobox(value2, t1)} == {value1};" if tests.not_empty then self.add "\} else {res} = 0;" end return res end var maybe_null = true var test = new Array[String] var t1 = value1.mcasttype if t1 isa MNullableType then test.add("{value1} != NULL") t1 = t1.mtype else maybe_null = false end var t2 = value2.mcasttype if t2 isa MNullableType then test.add("{value2} != NULL") t2 = t2.mtype else maybe_null = false end var incompatible = false var primitive if t1.is_c_primitive then primitive = t1 if t1 == t2 then # No need to compare class else if t2.is_c_primitive then incompatible = true else if can_be_primitive(value2) then if t1.is_tagged then self.add("{res} = {value1} == {value2};") return res end if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then test.add("(!{extract_tag(value2)})") end test.add("{value1}->class == {value2}->class") else incompatible = true end else if t2.is_c_primitive then primitive = t2 if can_be_primitive(value1) then if t2.is_tagged then self.add("{res} = {value1} == {value2};") return res end if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then test.add("(!{extract_tag(value1)})") end test.add("{value1}->class == {value2}->class") else incompatible = true end else primitive = null end if incompatible then if maybe_null then self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/") return res else self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */") return res end end if primitive != null then if primitive.is_tagged then self.add("{res} = {value1} == {value2};") return res end test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value") else if can_be_primitive(value1) and can_be_primitive(value2) then if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then test.add("(!{extract_tag(value1)}) && (!{extract_tag(value2)})") end test.add("{value1}->class == {value2}->class") var s = new Array[String] for t, v in self.compiler.box_kinds do if t.mclass_type.is_tagged then continue s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)" end if s.is_empty then self.add("{res} = {value1} == {value2};") return res end test.add("({s.join(" || ")})") else self.add("{res} = {value1} == {value2};") return res end self.add("{res} = {value1} == {value2} || ({test.join(" && ")});") return res end fun can_be_primitive(value: RuntimeVariable): Bool do var t = value.mcasttype.undecorate if not t isa MClassType then return false var k = t.mclass.kind return k == interface_kind or t.is_c_primitive end redef fun array_instance(array, elttype) do var nclass = mmodule.native_array_class var arrayclass = mmodule.array_class var arraytype = arrayclass.get_mtype([elttype]) var res = self.init_instance(arraytype) self.add("\{ /* {res} = array_instance Array[{elttype}] */") var length = self.int_instance(array.length) var nat = native_array_instance(elttype, length) for i in [0..array.length[ do var r = self.autobox(array[i], self.object_type) self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};") end self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length]) self.add("\}") return res end redef fun native_array_instance(elttype, length) do var mtype = mmodule.native_array_type(elttype) self.require_declaration("NEW_{mtype.mclass.c_name}") assert mtype isa MGenericType var compiler = self.compiler length = autobox(length, compiler.mainmodule.int_type) if mtype.need_anchor then hardening_live_open_type(mtype) link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) self.require_declaration(mtype.const_color) return self.new_expr("NEW_{mtype.mclass.c_name}((int){length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) end compiler.undead_types.add(mtype) self.require_declaration("type_{mtype.c_name}") return self.new_expr("NEW_{mtype.mclass.c_name}((int){length}, &type_{mtype.c_name})", mtype) end redef fun native_array_def(pname, ret_type, arguments) do var elttype = arguments.first.mtype var nclass = mmodule.native_array_class var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values" if pname == "[]" then # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing var res = self.new_expr("{recv}[{arguments[1]}]", compiler.mainmodule.object_type) res.mcasttype = ret_type.as(not null) self.ret(res) return true else if pname == "[]=" then self.add("{recv}[{arguments[1]}]={arguments[2]};") return true else if pname == "length" then self.ret(self.new_expr("((struct instance_{nclass.c_name}*){arguments[0]})->length", ret_type.as(not null))) return true else if pname == "copy_to" then var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values" self.add("memmove({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));") return true else if pname == "memmove" then # fun memmove(start: Int, length: Int, dest: NativeArray[E], dest_start: Int) is intern do var recv1 = "((struct instance_{nclass.c_name}*){arguments[3]})->values" self.add("memmove({recv1}+{arguments[4]}, {recv}+{arguments[1]}, {arguments[2]}*sizeof({elttype.ctype}));") return true end return false end redef fun native_array_get(nat, i) do var nclass = mmodule.native_array_class var recv = "((struct instance_{nclass.c_name}*){nat})->values" # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing var res = self.new_expr("{recv}[{i}]", compiler.mainmodule.object_type) return res end redef fun native_array_set(nat, i, val) do var nclass = mmodule.native_array_class var recv = "((struct instance_{nclass.c_name}*){nat})->values" self.add("{recv}[{i}]={val};") end redef fun routine_ref_instance(routine_type, recv, callsite) do #debug "ENTER ref_instance" var mmethoddef = callsite.mpropdef var mmethod = mmethoddef.mproperty # routine_mclass is the specialized one, e.g: FunRef1, ProcRef2, etc.. var routine_mclass = routine_type.mclass var nclasses = mmodule.model.get_mclasses_by_name("RoutineRef").as(not null) var base_routine_mclass = nclasses.first # All routine classes use the same `NEW` constructor. # However, they have different declared `class` and `type` value. self.require_declaration("NEW_{base_routine_mclass.c_name}") var recv_class_cname = recv.mcasttype.as(MClassType).mclass.c_name var my_recv = recv if recv.mtype.is_c_primitive then my_recv = autobox(recv, mmodule.object_type) end var my_recv_mclass_type = my_recv.mtype.as(MClassType) # The class of the concrete Routine must exist (e.g ProcRef0, FunRef0, etc.) self.require_declaration("class_{routine_mclass.c_name}") self.require_declaration(mmethoddef.c_name) var thunk_function = mmethoddef.callref_thunk(my_recv_mclass_type) # If the receiver is exact, then there's no need to make a # polymorph call to the underlying method. thunk_function.polymorph_call_flag = not my_recv.is_exact var runtime_function = mmethoddef.virtual_runtime_function var is_c_equiv = runtime_function.msignature.c_equiv(thunk_function.msignature) var c_ref = thunk_function.c_ref if is_c_equiv then var const_color = mmethoddef.mproperty.const_color c_ref = "{class_info(my_recv)}->vft[{const_color}]" self.require_declaration(const_color) else self.require_declaration(thunk_function.c_name) compiler.thunk_todo(thunk_function) end var res: RuntimeVariable if routine_type.need_anchor then hardening_live_open_type(routine_type) link_unresolved_type(self.frame.mpropdef.mclassdef, routine_type) var recv2 = self.frame.arguments.first var recv2_type_info = self.type_info(recv2) self.require_declaration(routine_type.const_color) res = self.new_expr("NEW_{base_routine_mclass.c_name}({my_recv}, (nitmethod_t){c_ref}, &class_{routine_mclass.c_name}, {recv2_type_info}->resolution_table->types[{routine_type.const_color}])", routine_type) else self.require_declaration("type_{routine_type.c_name}") compiler.undead_types.add(routine_type) res = self.new_expr("NEW_{base_routine_mclass.c_name}({my_recv}, (nitmethod_t){c_ref}, &class_{routine_mclass.c_name}, &type_{routine_type.c_name})", routine_type) end return res end redef fun routine_ref_call(mmethoddef, arguments) do #debug "ENTER ref_call" compiler.modelbuilder.nb_invok_by_tables += 1 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;") var nclasses = mmodule.model.get_mclasses_by_name("RoutineRef").as(not null) var nclass = nclasses.first var runtime_function = mmethoddef.virtual_runtime_function # Save the current receiver since adapt_signature will autobox # the routine receiver which is not the underlying receiver. # The underlying receiver has already been adapted in the # `routine_ref_instance` method. Here we just want to adapt the # rest of the signature, but it's easier to pass the wrong # receiver in adapt_signature then discards it with `shift`. # # ~~~~nitish # class A; def toto do print "toto"; end # var a = new A # var f = &a.toto # `a` is the underlying receiver # f.call # here `f` is the routine receiver # ~~~~ var routine = arguments.first # Retrieve the concrete routine type var original_recv_c = "(((struct instance_{nclass.c_name}*){arguments[0]})->recv)" var nitmethod = "(({runtime_function.c_funptrtype})(((struct instance_{nclass.c_name}*){arguments[0]})->method))" if arguments.length > 1 then adapt_signature(mmethoddef, arguments) end var ret_mtype = runtime_function.called_signature.return_mtype if ret_mtype != null then # `ret` is actually always nullable Object. When invoking # a callref, we don't have the original callsite information. # Thus, we need to recompute the return type of the callsite. ret_mtype = resolve_for(ret_mtype, routine) end # remove the routine's receiver arguments.shift var ss = arguments.join(", ") # replace the receiver with the original one if arguments.length > 0 then ss = "{original_recv_c}, {ss}" else ss = original_recv_c end arguments.unshift routine # put back the routine ref receiver add "/* {mmethoddef.mproperty} on {arguments.first.inspect}*/" var callsite = "{nitmethod}({ss})" if ret_mtype != null then var subres = new_expr("{callsite}", ret_mtype) ret(subres) else add("{callsite};") end end fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do assert mtype.need_anchor var compiler = self.compiler if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType] end compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype) end end redef class MMethodDef # The C function associated to a mmethoddef fun separate_runtime_function: SeparateRuntimeFunction do var res = self.separate_runtime_function_cache if res == null then var recv = mclassdef.bound_mtype var msignature = msignature.resolve_for(recv, recv, mclassdef.mmodule, true) res = new SeparateRuntimeFunction(self, recv, msignature, c_name) self.separate_runtime_function_cache = res end return res end # Returns true if the current method definition differ from # its original introduction in terms of receiver type. fun recv_differ_from_intro: Bool do var intromclassdef = mproperty.intro.mclassdef var introrecv = intromclassdef.bound_mtype return self.mclassdef.bound_mtype != introrecv end # The C thunk function associated to a mmethoddef. Receives only nullable # Object and cast them to the original mmethoddef signature. fun callref_thunk(recv_mtype: MClassType): SeparateThunkFunction do var res = callref_thunk_cache if res == null then var object_type = mclassdef.mmodule.object_type var nullable_object = object_type.as_nullable var ps = new Array[MParameter] # Replace every argument type by nullable object for p in msignature.mparameters do ps.push(new MParameter(p.name, nullable_object, p.is_vararg)) end var ret: nullable MType = null if msignature.return_mtype != null then ret = nullable_object var msignature2 = new MSignature(ps, ret) var intromclassdef = mproperty.intro.mclassdef res = new SeparateThunkFunction(self, recv_mtype, msignature2, "THUNK_{c_name}", mclassdef.bound_mtype) res.polymorph_call_flag = true callref_thunk_cache = res end return res end private var callref_thunk_cache: nullable SeparateThunkFunction private var separate_runtime_function_cache: nullable SeparateRuntimeFunction # The C function associated to a mmethoddef, that can be stored into a VFT of a class # The first parameter (the reciever) is always typed by val* in order to accept an object value # The C-signature is always compatible with the intro fun virtual_runtime_function: SeparateRuntimeFunction do var res = self.virtual_runtime_function_cache if res == null then # Because the function is virtual, the signature must match the one of the original class var intromclassdef = mproperty.intro.mclassdef var recv = intromclassdef.bound_mtype res = separate_runtime_function if res.called_recv == recv then self.virtual_runtime_function_cache = res return res end var msignature = mproperty.intro.msignature.resolve_for(recv, recv, intromclassdef.mmodule, true) if recv.ctype == res.called_recv.ctype and msignature.c_equiv(res.called_signature) then self.virtual_runtime_function_cache = res return res end res = new SeparateThunkFunction(self, recv, msignature, "VIRTUAL_{c_name}", mclassdef.bound_mtype) end return res end private var virtual_runtime_function_cache: nullable SeparateRuntimeFunction end redef class MSignature # Does the C-version of `self` the same than the C-version of `other`? fun c_equiv(other: MSignature): Bool do if self == other then return true if arity != other.arity then return false for i in [0..arity[ do if mparameters[i].mtype.ctype != other.mparameters[i].mtype.ctype then return false end if return_mtype != other.return_mtype then if return_mtype == null or other.return_mtype == null then return false if return_mtype.ctype != other.return_mtype.ctype then return false end return true end end # The C function associated to a methoddef separately compiled class SeparateRuntimeFunction super AbstractRuntimeFunction # The call-side static receiver var called_recv: MType # The call-side static signature var called_signature: MSignature # The name on the compiled method redef var build_c_name: String redef fun to_s do return self.mmethoddef.to_s redef fun msignature do return called_signature end redef fun recv_mtype do return called_recv end redef fun return_mtype do return called_signature.return_mtype end # The C return type (something or `void`) var c_ret: String is lazy do var ret = called_signature.return_mtype if ret != null then return ret.ctype else return "void" end end # The C signature (only the parmeter part) var c_sig: String is lazy do var sig = new FlatBuffer sig.append("({called_recv.ctype} self") for i in [0..called_signature.arity[ do var mp = called_signature.mparameters[i] var mtype = mp.mtype if mp.is_vararg then mtype = mmethoddef.mclassdef.mmodule.array_type(mtype) end sig.append(", {mtype.ctype} p{i}") end sig.append(")") return sig.to_s end # The C type for the function pointer. var c_funptrtype: String is lazy do return "{c_ret}(*){c_sig}" redef fun declare_signature(v, sig) do v.compiler.provide_declaration(c_name, "{sig};") end redef fun body_to_c(v) do var rta = v.compiler.as(SeparateCompiler).runtime_type_analysis if rta != null and not rta.live_mmodules.has(mmethoddef.mclassdef.mmodule) then v.add_abort("FATAL: Dead method executed.") else super end end redef fun end_compile_to_c(v) do var compiler = v.compiler compiler.names[self.c_name] = "{mmethoddef.full_name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})" end redef fun build_frame(v, arguments) do var recv = mmethoddef.mclassdef.bound_mtype return new StaticFrame(v, mmethoddef, recv, arguments) end # Compile the trampolines used to implement late-binding. # # See `opt_trampoline_call`. fun compile_trampolines(compiler: SeparateCompiler) do var recv = self.mmethoddef.mclassdef.bound_mtype var selfvar = new RuntimeVariable("self", called_recv, recv) var ret = called_signature.return_mtype var arguments = ["self"] for i in [0..called_signature.arity[ do arguments.add "p{i}" if mmethoddef.is_intro and not recv.is_c_primitive then var m = mmethoddef.mproperty var n2 = "CALL_" + m.const_color compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};") var v2 = compiler.new_visitor v2.add "{c_ret} {n2}{c_sig} \{" v2.require_declaration(m.const_color) var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});" if ret != null then v2.add "return {call}" else v2.add call end v2.add "\}" end if mmethoddef.has_supercall and not recv.is_c_primitive then var m = mmethoddef var n2 = "CALL_" + m.const_color compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};") var v2 = compiler.new_visitor v2.add "{c_ret} {n2}{c_sig} \{" v2.require_declaration(m.const_color) var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});" if ret != null then v2.add "return {call}" else v2.add call end v2.add "\}" end end end class SeparateThunkFunction super ThunkFunction super SeparateRuntimeFunction redef var target_recv end redef class MType # Are values of `self` tagged? # If false, it means that the type is not primitive, or is boxed. var is_tagged = false # The tag value of the type # # ENSURE `is_tagged == (tag_value > 0)` # ENSURE `not is_tagged == (tag_value == 0)` var tag_value = 0 end redef class MEntity var const_color: String is lazy do return "COLOR_{c_name}" end interface PropertyLayoutElement end redef class MProperty super PropertyLayoutElement end redef class MPropDef super PropertyLayoutElement end redef class AMethPropdef # The semi-global compilation does not support inlining calls to extern news redef fun can_inline do var m = mpropdef if m != null and m.mproperty.is_init and m.is_extern then return false return super end end redef class AAttrPropdef redef fun init_expr(v, recv) do super if is_lazy and v.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then var guard = self.mlazypropdef.mproperty v.write_attribute(guard, recv, v.bool_instance(false)) end end end