# This file is part of NIT ( http://www.nitlanguage.org ). # # Copyright 2012 Jean Privat # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Interpretation of a Nit program directly on the AST module naive_interpreter import literal import semantize private import parser::tables import mixin private import model::serialize_model private import frontend::explain_assert_api redef class ToolContext # --discover-call-trace var opt_discover_call_trace = new OptionBool("Trace calls of the first invocation of methods", "--discover-call-trace") redef init do super self.option_context.add_option(self.opt_discover_call_trace) end end redef class ModelBuilder # Execute the program from the entry point (`Sys::main`) of the `mainmodule` # `arguments` are the command-line arguments in order # REQUIRE that: # 1. the AST is fully loaded. # 2. the model is fully built. # 3. the instructions are fully analysed. fun run_naive_interpreter(mainmodule: MModule, arguments: Array[String]) do var time0 = get_time self.toolcontext.info("*** START INTERPRETING ***", 1) var interpreter = new NaiveInterpreter(self, mainmodule, arguments) interpreter.start(mainmodule) var time1 = get_time self.toolcontext.info("*** END INTERPRETING: {time1-time0} ***", 2) end end # The visitor that interprets the Nit Program by walking on the AST class NaiveInterpreter # The modelbuilder that know the AST and its associations with the model var modelbuilder: ModelBuilder # The main module of the program (used to lookup method) var mainmodule: MModule is writable # The command line arguments of the interpreted program # arguments.first is the program name # arguments[1] is the first argument var arguments: Array[String] # The main Sys instance var mainobj: nullable Instance is noinit # Name of all supported functional names var routine_types: Set[String] = new HashSet[String] init do if mainmodule.model.get_mclasses_by_name("Bool") != null then self.true_instance = new PrimitiveInstance[Bool](mainmodule.bool_type, true) init_instance_primitive(self.true_instance) self.false_instance = new PrimitiveInstance[Bool](mainmodule.bool_type, false) init_instance_primitive(self.false_instance) end self.null_instance = new PrimitiveInstance[nullable Object](mainmodule.model.null_type, null) routine_types.add("RoutineRef") for name in ["Proc", "Fun", "ProcRef", "FunRef"] do # 20 is a magic number = upper limit of the arity of each functional class. # i.e. Proc0, Proc1, ... Proc19 for i in [0..20[ do routine_types.add("{name}{i}") end end end # Starts the interpreter on the main module of a program fun start(mainmodule: MModule) do var interpreter = self var sys_type = mainmodule.sys_type if sys_type == null then return # no class Sys var mainobj = new MutableInstance(sys_type) interpreter.mainobj = mainobj interpreter.init_instance(mainobj) var initprop = mainmodule.try_get_primitive_method("init", sys_type.mclass) if initprop != null then interpreter.send(initprop, [mainobj]) end var mainprop = mainmodule.try_get_primitive_method("run", sys_type.mclass) or else mainmodule.try_get_primitive_method("main", sys_type.mclass) if mainprop != null then interpreter.send(mainprop, [mainobj]) end end # Subtype test in the context of the mainmodule fun is_subtype(sub, sup: MType): Bool do return sub.is_subtype(self.mainmodule, current_receiver_class, sup) end # Get a primitive method in the context of the main module fun force_get_primitive_method(name: String, recv: MType): MMethod do assert recv isa MClassType return self.modelbuilder.force_get_primitive_method(current_node, name, recv.mclass, self.mainmodule) end # Is a return, a break or a continue executed? # Set this mark to skip the evaluation until a labeled statement catch it with `is_escape` var escapemark: nullable EscapeMark = null # The count of `catch` blocs that have been encountered and can catch an abort var catch_count = 0 is writable # The last error thrown on abort/runtime error where catch_count > 0 var last_error: nullable FatalError = null # Is a return or a break or a continue executed? # Use this function to know if you must skip the evaluation of statements fun is_escaping: Bool do return escapemark != null # The value associated with the current return/break/continue, if any. # Set the value when you set a escapemark. # Read the value when you catch a mark or reach the end of a method var escapevalue: nullable Instance = null # If there is a break/continue and is associated with `escapemark`, then return true and clear the mark. # If there is no break/continue or if `escapemark` is null then return false. # Use this function to catch a potential break/continue. fun is_escape(escapemark: nullable EscapeMark): Bool do if escapemark != null and self.escapemark == escapemark then self.escapemark = null return true else return false end end # Evaluate `n` as an expression in the current context. # Return the value of the expression. # If `n` cannot be evaluated, then aborts. fun expr(n: AExpr): nullable Instance do var frame = self.frame var old = frame.current_node frame.current_node = n #n.debug("IN Execute expr") var i = n.expr(self) if i == null and not self.is_escaping then n.debug("inconsitance: no value and not escaping.") end var implicit_cast_to = n.implicit_cast_to if i != null and implicit_cast_to != null then var mtype = self.unanchor_type(implicit_cast_to) if not self.is_subtype(i.mtype, mtype) then n.fatal(self, "Cast failed. Expected `{implicit_cast_to}`, got `{i.mtype}`") end #n.debug("OUT Execute expr: value is {i}") #if not is_subtype(i.mtype, n.mtype.as(not null)) then n.debug("Expected {n.mtype.as(not null)} got {i}") frame.current_node = old return i end # Evaluate `n` as a statement in the current context. # Do nothing if `n` is null. # If `n` cannot be evaluated, then aborts. fun stmt(n: nullable AExpr) do if n == null then return if n.comprehension != null then var comprehension = frame.comprehension.as(not null) var i = expr(n) if i != null then comprehension.add(i) return end var frame = self.frame var old = frame.current_node frame.current_node = n n.stmt(self) frame.current_node = old end # Map used to store values of nodes that must be evaluated once in the system (`AOnceExpr`) var onces: Map[ANode, Instance] = new HashMap[ANode, Instance] # Return the boolean instance associated with `val`. fun bool_instance(val: Bool): Instance do if val then return self.true_instance else return self.false_instance end # Return the integer instance associated with `val`. fun int_instance(val: Int): Instance do var t = mainmodule.int_type var instance = new PrimitiveInstance[Int](t, val) init_instance_primitive(instance) return instance end # Return the byte instance associated with `val`. fun byte_instance(val: Byte): Instance do var t = mainmodule.byte_type var instance = new PrimitiveInstance[Byte](t, val) init_instance_primitive(instance) return instance end # Return the int8 instance associated with `val`. fun int8_instance(val: Int8): Instance do var t = mainmodule.int8_type var instance = new PrimitiveInstance[Int8](t, val) init_instance_primitive(instance) return instance end # Return the int16 instance associated with `val`. fun int16_instance(val: Int16): Instance do var t = mainmodule.int16_type var instance = new PrimitiveInstance[Int16](t, val) init_instance_primitive(instance) return instance end # Return the uint16 instance associated with `val`. fun uint16_instance(val: UInt16): Instance do var t = mainmodule.uint16_type var instance = new PrimitiveInstance[UInt16](t, val) init_instance_primitive(instance) return instance end # Return the int32 instance associated with `val`. fun int32_instance(val: Int32): Instance do var t = mainmodule.int32_type var instance = new PrimitiveInstance[Int32](t, val) init_instance_primitive(instance) return instance end # Return the uint32 instance associated with `val`. fun uint32_instance(val: UInt32): Instance do var t = mainmodule.uint32_type var instance = new PrimitiveInstance[UInt32](t, val) init_instance_primitive(instance) return instance end # Return the char instance associated with `val`. fun char_instance(val: Char): Instance do var t = mainmodule.char_type var instance = new PrimitiveInstance[Char](t, val) init_instance_primitive(instance) return instance end # Return the float instance associated with `val`. fun float_instance(val: Float): Instance do var t = mainmodule.float_type var instance = new PrimitiveInstance[Float](t, val) init_instance_primitive(instance) return instance end # The unique instance of the `true` value. var true_instance: Instance is noinit # The unique instance of the `false` value. var false_instance: Instance is noinit # The unique instance of the `null` value. var null_instance: Instance is noinit # Return a new array made of `values`. # The dynamic type of the result is Array[elttype]. fun array_instance(values: Array[Instance], elttype: MType): Instance do assert not elttype.need_anchor var nat = new PrimitiveInstance[Array[Instance]](mainmodule.native_array_type(elttype), values) init_instance_primitive(nat) var mtype = mainmodule.array_type(elttype) var res = new MutableInstance(mtype) self.init_instance(res) self.send(self.force_get_primitive_method("with_native", mtype), [res, nat, self.int_instance(values.length)]) return res end # Return a instance associated to a primitive class # Current primitive classes are `Int`, `Bool`, and `String` fun value_instance(object: Object): Instance do if object isa Int then return int_instance(object) else if object isa Bool then return bool_instance(object) else if object isa String then return string_instance(object) else abort end end # Return a new C string initialized with `txt` fun c_string_instance(txt: String): Instance do var instance = c_string_instance_len(txt.byte_length+1) var val = instance.val val[txt.byte_length] = 0 txt.to_cstring.copy_to(val, txt.byte_length, 0, 0) return instance end # Return a new C string initialized with `txt` fun c_string_instance_from_ns(txt: CString, len: Int): Instance do var instance = c_string_instance_len(len) var val = instance.val txt.copy_to(val, len, 0, 0) return instance end # Return a new C string instance sharing the same data space as `txt` fun c_string_instance_fast_cstr(txt: CString, from: Int): Instance do var ncstr = txt.fast_cstring(from) var t = mainmodule.c_string_type var instance = new PrimitiveInstance[CString](t, ncstr) init_instance_primitive(instance) return instance end # Return a new C string initialized of `length` fun c_string_instance_len(length: Int): PrimitiveInstance[CString] do var val = new CString(length) var t = mainmodule.c_string_type var instance = new PrimitiveInstance[CString](t, val) init_instance_primitive(instance) return instance end # Return a new String instance for `txt` fun string_instance(txt: String): Instance do var nat = c_string_instance(txt) var res = self.send(self.force_get_primitive_method("to_s_unsafe", nat.mtype), [nat, self.int_instance(txt.byte_length), self.int_instance(txt.length), self.false_instance, self.false_instance]) assert res != null return res end # The virtual type of the frames used in the execution engine type FRAME: Frame # The current frame used to store local variables of the current method executed fun frame: FRAME do return frames.first # The stack of all frames. The first one is the current one. var frames = new List[FRAME] # Return a stack trace. One line per function fun stack_trace: String do var b = new FlatBuffer b.append(",---- Stack trace -- - - -\n") for f in frames do b.append("| {f.mpropdef} ({f.current_node.location})\n") end b.append("`------------------- - - -") return b.to_s end # The current node, used to print errors, debug and stack-traces fun current_node: nullable ANode do if frames.is_empty then return null return frames.first.current_node end # The dynamic type of the current `self` fun current_receiver_class: MClassType do return frames.first.arguments.first.mtype.as(MClassType) end # Initialize the environment for a call and return a new Frame # *`node` The AST node # *`mpropdef` The corresponding mpropdef # *`args` Arguments of the call fun new_frame(node: ANode, mpropdef: MPropDef, args: Array[Instance]): FRAME do return new InterpreterFrame(node, mpropdef, args) end # Exit the program with a message fun fatal(message: String) do var node = current_node if node == null then print message else node.fatal(self, message) end exit(1) end # Debug on the current node fun debug(message: String) do var node = current_node if node == null then print message else node.debug(message) end end # Retrieve the value of the variable in the current frame fun read_variable(v: Variable): Instance do var f = frames.first.as(InterpreterFrame) return f.map[v] end # Assign the value of the variable in the current frame fun write_variable(v: Variable, value: Instance) do var f = frames.first.as(InterpreterFrame) f.map[v] = value end # Store known methods, used to trace methods as they are reached var discover_call_trace: Set[MMethodDef] = new HashSet[MMethodDef] # Consumes an iterator of expressions and tries to map each element to # its corresponding Instance. # # If any AExprs doesn't resolve to an Instance, then it returns null. # Otherwise return an array of instances fun aexprs_to_instances(aexprs: Iterator[AExpr]): nullable Array[Instance] do var accumulator = new Array[Instance] for aexpr in aexprs do var instance = expr(aexpr) if instance == null then return null accumulator.push(instance) end return accumulator end # Evaluate `args` as expressions in the call of `mpropdef` on `recv`. # This method is used to manage varargs in signatures and returns the real array # of instances to use in the call. # Return `null` if one of the evaluation of the arguments return null. fun varargize(mpropdef: MMethodDef, map: nullable SignatureMap, recv: Instance, args: SequenceRead[AExpr]): nullable Array[Instance] do var msignature = mpropdef.new_msignature or else mpropdef.msignature.as(not null) var res = new Array[Instance] res.add(recv) if msignature.arity == 0 then return res if map == null then assert args.length == msignature.arity else debug("Expected {msignature.arity} args, got {args.length}") var rest_args = aexprs_to_instances(args.iterator) if rest_args == null then return null res.append(rest_args) return res end # Eval in order of arguments, not parameters var exprs = aexprs_to_instances(args.iterator) if exprs == null then return null # Fill `res` with the result of the evaluation according to the mapping for i in [0..msignature.arity[ do var param = msignature.mparameters[i] var j = map.map.get_or_null(i) if j == null then # default value res.add(null_instance) continue end if param.is_vararg and args[i].vararg_decl > 0 then var vararg = exprs.sub(j, args[i].vararg_decl) var elttype = param.mtype.anchor_to(self.mainmodule, recv.mtype.as(MClassType)) var arg = self.array_instance(vararg, elttype) res.add(arg) continue end res.add exprs[j] end return res end # Execute `mpropdef` for a `args` (where `args[0]` is the receiver). # Return a value if `mpropdef` is a function, or null if it is a procedure. # The call is direct/static. There is no message-sending/late-binding. fun call(mpropdef: MMethodDef, args: Array[Instance]): nullable Instance do if self.modelbuilder.toolcontext.opt_discover_call_trace.value and not self.discover_call_trace.has(mpropdef) then self.discover_call_trace.add mpropdef self.debug("Discovered {mpropdef}") end assert args.length == mpropdef.msignature.arity + 1 else debug("Invalid arity for {mpropdef}. {args.length} arguments given.") # Look for the AST node that implements the property var val = mpropdef.constant_value var node = modelbuilder.mpropdef2node(mpropdef) if mpropdef.is_abstract then if node != null then self.frames.unshift new_frame(node, mpropdef, args) end fatal("Abstract method `{mpropdef.mproperty.name}` called on `{args.first.mtype}`") abort end if node isa APropdef then self.parameter_check(node, mpropdef, args) return node.call(self, mpropdef, args) else if node isa AClassdef then self.parameter_check(node, mpropdef, args) return node.call(self, mpropdef, args) else if node != null then fatal("Fatal Error: method {mpropdef} associated to unexpected AST node {node.location}") abort else if val != null then return value_instance(val) else fatal("Fatal Error: method {mpropdef} not found in the AST") abort end end # Execute type checks of covariant parameters fun parameter_check(node: ANode, mpropdef: MMethodDef, args: Array[Instance]) do var msignature = mpropdef.msignature.as(not null) for i in [0..msignature.arity[ do var mp = msignature.mparameters[i] # skip test for vararg since the array is instantiated with the correct polymorphic type if mp.is_vararg then continue # skip if the cast is not required var origmtype = mpropdef.mproperty.intro.msignature.mparameters[i].mtype if not origmtype.need_anchor then continue #print "{mpropdef}: {mpropdef.mproperty.intro.msignature.mparameters[i]}" # get the parameter type var mtype = mp.mtype var anchor = args.first.mtype.as(MClassType) var amtype = mtype.anchor_to(self.mainmodule, anchor) if not args[i+1].mtype.is_subtype(self.mainmodule, anchor, amtype) then node.fatal(self, "Cast failed. Expected `{mtype}`, got `{args[i+1].mtype}`") end end end # Common code for runtime injected calls and normal calls fun send_commons(mproperty: MMethod, args: Array[Instance], mtype: MType): nullable Instance do if mtype isa MNullType then if mproperty.name == "==" or mproperty.name == "is_same_instance" then return self.bool_instance(args[0] == args[1]) else if mproperty.name == "!=" then return self.bool_instance(args[0] != args[1]) end #fatal("Receiver is null. {mproperty}. {args.join(" ")} {self.frame.current_node.class_name}") fatal("Receiver is null") end return null end # Execute a full `callsite` for given `args` # Use this method, instead of `send` to execute and control the additional behavior of the call-sites fun callsite(callsite: nullable CallSite, arguments: Array[Instance]): nullable Instance do if callsite == null then return null var initializers = callsite.mpropdef.initializers if not initializers.is_empty then var recv = arguments.first var i = 1 for p in initializers do if p isa MMethod then var args = [recv] for x in p.intro.msignature.mparameters do args.add arguments[i] i += 1 end self.send(p, args) else if p isa MAttribute then assert recv isa MutableInstance write_attribute(p, recv, arguments[i]) i += 1 else abort end assert i == arguments.length return send(callsite.mproperty, [recv]) end return send(callsite.mproperty, arguments) end # Execute `mproperty` for a `args` (where `args[0]` is the receiver). # Return a value if `mproperty` is a function, or null if it is a procedure. # The call is polymorphic. There is a message-sending/late-binding according to the receiver (args[0]). fun send(mproperty: MMethod, args: Array[Instance]): nullable Instance do var recv = args.first var mtype = recv.mtype var ret = send_commons(mproperty, args, mtype) if ret != null then return ret var propdef = mproperty.lookup_first_definition(self.mainmodule, mtype) return self.call(propdef, args) end # Read the attribute `mproperty` of an instance `recv` and return its value. # If the attribute in not yet initialized, then aborts with an error message. fun read_attribute(mproperty: MAttribute, recv: Instance): Instance do assert recv isa MutableInstance if not recv.attributes.has_key(mproperty) then fatal("Uninitialized attribute {mproperty.name}") abort end return recv.attributes[mproperty] end # Replace in `recv` the value of the attribute `mproperty` by `value` fun write_attribute(mproperty: MAttribute, recv: Instance, value: Instance) do assert recv isa MutableInstance recv.attributes[mproperty] = value end # Is the attribute `mproperty` initialized the instance `recv`? fun isset_attribute(mproperty: MAttribute, recv: Instance): Bool do assert recv isa MutableInstance return recv.attributes.has_key(mproperty) end # Collect attributes of a type in the order of their init fun collect_attr_propdef(mtype: MType): Array[AAttrPropdef] do var cache = self.collect_attr_propdef_cache if cache.has_key(mtype) then return cache[mtype] var res = new Array[AAttrPropdef] var cds = mtype.collect_mclassdefs(self.mainmodule).to_a self.mainmodule.linearize_mclassdefs(cds) for cd in cds do res.add_all(modelbuilder.collect_attr_propdef(cd)) end cache[mtype] = res return res end private var collect_attr_propdef_cache = new HashMap[MType, Array[AAttrPropdef]] # Fill the initial values of the newly created instance `recv`. # `recv.mtype` is used to know what must be filled. fun init_instance(recv: Instance) do for npropdef in collect_attr_propdef(recv.mtype) do npropdef.init_expr(self, recv) end end # A hook to initialize a `PrimitiveInstance` fun init_instance_primitive(recv: Instance) do end # This function determines the correct type according to the receiver of the current propdef (self). fun unanchor_type(mtype: MType): MType do return mtype.anchor_to(self.mainmodule, current_receiver_class) end # Placebo instance used to mark internal error result when `null` already have a meaning. # TODO: replace with multiple return or something better var error_instance = new MutableInstance(modelbuilder.model.null_type) is lazy end # A runtime error class FatalError # The error message var message: String # The problematic node, if any var node: nullable ANode end # An instance represents a value of the executed program. abstract class Instance # The dynamic type of the instance # ASSERT: not self.mtype.is_anchored var mtype: MType # Return `true` if the instance is the `true` value. # # Return `false` if the instance is the `false` value. # Abort if the instance is not a boolean value. fun is_true: Bool do abort # Return `true` if the instance is null. # Return `false` otherwise. fun is_null: Bool do return mtype isa MNullType # Return true if `self` IS `o` (using the Nit semantic of is) fun eq_is(o: Instance): Bool do return self.is_same_instance(o) # Human readable object identity "Type#number" redef fun to_s do return "{mtype}" # Return the integer value if the instance is an integer. # else aborts fun to_i: Int do abort # Return the integer value if the instance is a float. # else aborts fun to_f: Float do abort # Return the integer value if the instance is a byte. # else aborts fun to_b: Byte do abort # Return the integer value if the instance is a int8. # else aborts fun to_i8: Int8 do abort # Return the integer value if the instance is a int16. # else aborts fun to_i16: Int16 do abort # Return the integer value if the instance is a uint16. # else aborts fun to_u16: UInt16 do abort # Return the integer value if the instance is a int32. # else aborts fun to_i32: Int32 do abort # Return the integer value if the instance is a uint32. # else aborts fun to_u32: UInt32 do abort # The real value encapsulated if the instance is primitive. # Else aborts. fun val: nullable Object do abort end # A instance with attribute (standards objects) class MutableInstance super Instance # The values of the attributes var attributes: Map[MAttribute, Instance] = new HashMap[MAttribute, Instance] end # An instance with the original receiver and callsite (for function reference) class CallrefInstance super Instance # The original receiver # # ~~~nitish # var a = new A # var f = &a.toto # `a` is the original receiver # ~~~ var recv: Instance # The original callsite # # ~~~nitish # var a = new A # var f = &a.toto # `toto` is the original callsite # ~~~ var callsite: CallSite end # Special instance to handle primitives values (int, bool, etc.) # The trick is just to encapsulate the “real” value. class PrimitiveInstance[E] super Instance # The real value encapsulated redef var val: E redef fun is_true do if val == true then return true if val == false then return false abort end redef fun ==(o) do if not o isa PrimitiveInstance[nullable Object] then return false return self.val == o.val end redef fun eq_is(o) do if not o isa PrimitiveInstance[nullable Object] then return false return self.val.is_same_instance(o.val) end redef fun to_s do return "{mtype}#{val.object_id}({val or else "null"})" redef fun to_i do return val.as(Int) redef fun to_f do return val.as(Float) redef fun to_b do return val.as(Byte) redef fun to_i8 do return val.as(Int8) redef fun to_i16 do return val.as(Int16) redef fun to_u16 do return val.as(UInt16) redef fun to_i32 do return val.as(Int32) redef fun to_u32 do return val.as(UInt32) end # Information about local variables in a running method abstract class Frame # The current visited node # The node is stored by frame to keep a stack trace var current_node: ANode # The executed property. # A Method in case of a call, an attribute in case of a default initialization. var mpropdef: MPropDef # Arguments of the method (the first is the receiver) var arguments: Array[Instance] # Indicate if the expression has an array comprehension form var comprehension: nullable Array[Instance] = null end # Implementation of a Frame with a Hashmap to store local variables class InterpreterFrame super Frame # Mapping between a variable and the current value var map: Map[Variable, Instance] = new HashMap[Variable, Instance] end redef class ANode # Aborts the program with a message # `v` is used to know if a colored message is displayed or not fun fatal(v: NaiveInterpreter, message: String) do # Abort if there is a `catch` block if v.catch_count > 0 then v.last_error = new FatalError(message, self) abort end if v.modelbuilder.toolcontext.opt_no_color.value then sys.stderr.write("Runtime error: {message} ({location.file.filename}:{location.line_start})\n") else sys.stderr.write("{location}: Runtime error: {message}\n{location.colored_line("0;31")}\n") sys.stderr.write(v.stack_trace) sys.stderr.write("\n") end exit(1) end end redef class APropdef # Execute a `mpropdef` associated with the current node. private fun call(v: NaiveInterpreter, mpropdef: MMethodDef, args: Array[Instance]): nullable Instance do fatal(v, "NOT YET IMPLEMENTED method kind {class_name}. {mpropdef}") abort end end redef class AMethPropdef super TablesCapable redef fun call(v, mpropdef, args) do var f = v.new_frame(self, mpropdef, args) var res = call_commons(v, mpropdef, args, f) v.frames.shift if v.is_escape(self.return_mark) then res = v.escapevalue return res end return res end # Execution of the body of the method # # It handle the common special cases: super, intern, extern fun call_commons(v: NaiveInterpreter, mpropdef: MMethodDef, arguments: Array[Instance], f: Frame): nullable Instance do v.frames.unshift(f) for i in [0..mpropdef.msignature.arity[ do var variable = self.n_signature.n_params[i].variable assert variable != null v.write_variable(variable, arguments[i+1]) end # Call the implicit super-init var auto_super_inits = self.auto_super_inits if auto_super_inits != null then var args = [arguments.first] for auto_super_init in auto_super_inits do args.clear for i in [0..auto_super_init.msignature.arity+1[ do args.add(arguments[i]) end assert auto_super_init.mproperty != mpropdef.mproperty v.callsite(auto_super_init, args) end end if auto_super_call then # standard call-next-method var superpd = mpropdef.lookup_next_definition(v.mainmodule, arguments.first.mtype) v.call(superpd, arguments) end # First, try intern if mpropdef.is_intern or mpropdef.is_extern then var res = intern_call(v, mpropdef, arguments) if res != v.error_instance then return res end # Then, try extern if mpropdef.is_extern then var res = call_extern(v, mpropdef, arguments, f) if res != v.error_instance then return res end # Else try block if n_block != null then v.stmt(self.n_block) return null end # Fail if nothing succeed if mpropdef.is_intern then fatal(v, "NOT YET IMPLEMENTED intern {mpropdef}") else if mpropdef.is_extern then fatal(v, "NOT YET IMPLEMENTED extern {mpropdef}") else fatal(v, "NOT YET IMPLEMENTED {mpropdef}") end abort end # Call this extern method protected fun call_extern(v: NaiveInterpreter, mpropdef: MMethodDef, arguments: Array[Instance], f: Frame): nullable Instance do return v.error_instance end # Interprets a intern or a shortcut extern method. # Returns the result for a function, `null` for a procedure, or `error_instance` if the method is unknown. private fun intern_call(v: NaiveInterpreter, mpropdef: MMethodDef, args: Array[Instance]): nullable Instance do var pname = mpropdef.mproperty.name var cname = mpropdef.mclassdef.mclass.name if pname == "call" and v.routine_types.has(cname) then var routine = args.shift assert routine isa CallrefInstance # Swap the receiver position with the original recv of the call form. args.unshift routine.recv var res = v.callsite(routine.callsite, args) # recover the old args state args.shift args.unshift routine return res end if pname == "output" then var recv = args.first recv.val.output return null else if pname == "object_id" then var recv = args.first if recv isa PrimitiveInstance[Object] then return v.int_instance(recv.val.object_id) else return v.int_instance(recv.object_id) end else if pname == "output_class_name" then var recv = args.first print recv.mtype return null else if pname == "native_class_name" then var recv = args.first var txt = recv.mtype.to_s return v.c_string_instance(txt) else if pname == "==" then # == is correctly redefined for instances return v.bool_instance(args[0] == args[1]) else if pname == "!=" then return v.bool_instance(args[0] != args[1]) else if pname == "is_same_type" then return v.bool_instance(args[0].mtype == args[1].mtype) else if pname == "is_same_instance" then return v.bool_instance(args[0].eq_is(args[1])) else if pname == "class_inheritance_metamodel_json" then return v.c_string_instance(v.mainmodule.flatten_mclass_hierarchy.to_thin_json) else if pname == "exit" then exit(args[1].to_i) abort else if pname == "buffer_mode_full" then return v.int_instance(sys.buffer_mode_full) else if pname == "buffer_mode_line" then return v.int_instance(sys.buffer_mode_line) else if pname == "buffer_mode_none" then return v.int_instance(sys.buffer_mode_none) else if pname == "sys" then return v.mainobj else if cname == "Int" then var recvval = args[0].to_i if pname == "unary -" then return v.int_instance(-recvval) else if pname == "unary +" then return args[0] else if pname == "+" then return v.int_instance(recvval + args[1].to_i) else if pname == "-" then return v.int_instance(recvval - args[1].to_i) else if pname == "*" then return v.int_instance(recvval * args[1].to_i) else if pname == "%" then return v.int_instance(recvval % args[1].to_i) else if pname == "/" then return v.int_instance(recvval / args[1].to_i) else if pname == "<" then return v.bool_instance(recvval < args[1].to_i) else if pname == ">" then return v.bool_instance(recvval > args[1].to_i) else if pname == "<=" then return v.bool_instance(recvval <= args[1].to_i) else if pname == ">=" then return v.bool_instance(recvval >= args[1].to_i) else if pname == "<=>" then return v.int_instance(recvval <=> args[1].to_i) else if pname == "&" then return v.int_instance(recvval & args[1].to_i) else if pname == "|" then return v.int_instance(recvval | args[1].to_i) else if pname == "to_f" then return v.float_instance(recvval.to_f) else if pname == "to_b" then return v.byte_instance(recvval.to_b) else if pname == "<<" then return v.int_instance(recvval << args[1].to_i) else if pname == ">>" then return v.int_instance(recvval >> args[1].to_i) else if pname == "to_i8" then return v.int8_instance(recvval.to_i8) else if pname == "to_i16" then return v.int16_instance(recvval.to_i16) else if pname == "to_u16" then return v.uint16_instance(recvval.to_u16) else if pname == "to_i32" then return v.int32_instance(recvval.to_i32) else if pname == "to_u32" then return v.uint32_instance(recvval.to_u32) end else if cname == "Byte" then var recvval = args[0].to_b if pname == "unary -" then return v.byte_instance(-recvval) else if pname == "unary +" then return args[0] else if pname == "+" then return v.byte_instance(recvval + args[1].to_b) else if pname == "-" then return v.byte_instance(recvval - args[1].to_b) else if pname == "*" then return v.byte_instance(recvval * args[1].to_b) else if pname == "%" then return v.byte_instance(recvval % args[1].to_b) else if pname == "/" then return v.byte_instance(recvval / args[1].to_b) else if pname == "<" then return v.bool_instance(recvval < args[1].to_b) else if pname == ">" then return v.bool_instance(recvval > args[1].to_b) else if pname == "<=" then return v.bool_instance(recvval <= args[1].to_b) else if pname == ">=" then return v.bool_instance(recvval >= args[1].to_b) else if pname == "<=>" then return v.int_instance(recvval <=> args[1].to_b) else if pname == "&" then return v.byte_instance(recvval & args[1].to_b) else if pname == "|" then return v.byte_instance(recvval | args[1].to_b) else if pname == "to_f" then return v.float_instance(recvval.to_f) else if pname == "to_i" then return v.int_instance(recvval.to_i) else if pname == "<<" then return v.byte_instance(recvval << args[1].to_i) else if pname == ">>" then return v.byte_instance(recvval >> args[1].to_i) else if pname == "to_i8" then return v.int8_instance(recvval.to_i8) else if pname == "to_i16" then return v.int16_instance(recvval.to_i16) else if pname == "to_u16" then return v.uint16_instance(recvval.to_u16) else if pname == "to_i32" then return v.int32_instance(recvval.to_i32) else if pname == "to_u32" then return v.uint32_instance(recvval.to_u32) else if pname == "byte_to_s_len" then return v.int_instance(recvval.to_s.length) end else if cname == "Char" then var recv = args[0].val.as(Char) if pname == "successor" then return v.char_instance(recv.successor(args[1].to_i)) else if pname == "predecessor" then return v.char_instance(recv.predecessor(args[1].to_i)) else if pname == "<" then return v.bool_instance(recv < args[1].val.as(Char)) else if pname == ">" then return v.bool_instance(recv > args[1].val.as(Char)) else if pname == "<=" then return v.bool_instance(recv <= args[1].val.as(Char)) else if pname == ">=" then return v.bool_instance(recv >= args[1].val.as(Char)) else if pname == "<=>" then return v.int_instance(recv <=> args[1].val.as(Char)) end else if cname == "Float" then var recv = args[0].to_f if pname == "unary -" then return v.float_instance(-recv) else if pname == "unary +" then return args[0] else if pname == "+" then return v.float_instance(recv + args[1].to_f) else if pname == "-" then return v.float_instance(recv - args[1].to_f) else if pname == "*" then return v.float_instance(recv * args[1].to_f) else if pname == "/" then return v.float_instance(recv / args[1].to_f) else if pname == "<" then return v.bool_instance(recv < args[1].to_f) else if pname == ">" then return v.bool_instance(recv > args[1].to_f) else if pname == "<=" then return v.bool_instance(recv <= args[1].to_f) else if pname == ">=" then return v.bool_instance(recv >= args[1].to_f) else if pname == "to_i" then return v.int_instance(recv.to_i) else if pname == "to_b" then return v.byte_instance(recv.to_b) else if pname == "to_i8" then return v.int8_instance(recv.to_i8) else if pname == "to_i16" then return v.int16_instance(recv.to_i16) else if pname == "to_u16" then return v.uint16_instance(recv.to_u16) else if pname == "to_i32" then return v.int32_instance(recv.to_i32) else if pname == "to_u32" then return v.uint32_instance(recv.to_u32) else if pname == "cos" then return v.float_instance(args[0].to_f.cos) else if pname == "sin" then return v.float_instance(args[0].to_f.sin) else if pname == "tan" then return v.float_instance(args[0].to_f.tan) else if pname == "acos" then return v.float_instance(args[0].to_f.acos) else if pname == "asin" then return v.float_instance(args[0].to_f.asin) else if pname == "atan" then return v.float_instance(args[0].to_f.atan) else if pname == "sqrt" then return v.float_instance(args[0].to_f.sqrt) else if pname == "exp" then return v.float_instance(args[0].to_f.exp) else if pname == "log" then return v.float_instance(args[0].to_f.log) else if pname == "pow" then return v.float_instance(args[0].to_f.pow(args[1].to_f)) else if pname == "abs" then return v.float_instance(args[0].to_f.abs) else if pname == "hypot_with" then return v.float_instance(args[0].to_f.hypot_with(args[1].to_f)) else if pname == "is_nan" then return v.bool_instance(args[0].to_f.is_nan) else if pname == "is_inf_extern" then return v.bool_instance(args[0].to_f.is_inf != 0) else if pname == "round" then return v.float_instance(args[0].to_f.round) end else if cname == "CString" then if pname == "new" then return v.c_string_instance_len(args[1].to_i) end var recvval = args.first.val.as(CString) if pname == "[]" then var arg1 = args[1].to_i return v.int_instance(recvval[arg1]) else if pname == "[]=" then var arg1 = args[1].to_i recvval[arg1] = args[2].val.as(Int) return null else if pname == "copy_to" then # sig= copy_to(dest: CString, length: Int, from: Int, to: Int) var destval = args[1].val.as(CString) var lenval = args[2].to_i var fromval = args[3].to_i var toval = args[4].to_i recvval.copy_to(destval, lenval, fromval, toval) return null else if pname == "atoi" then return v.int_instance(recvval.atoi) else if pname == "fast_cstring" then return v.c_string_instance_fast_cstr(args[0].val.as(CString), args[1].to_i) else if pname == "fetch_4_chars" then return v.uint32_instance(args[0].val.as(CString).fetch_4_chars(args[1].to_i)) else if pname == "fetch_4_hchars" then return v.uint32_instance(args[0].val.as(CString).fetch_4_hchars(args[1].to_i)) else if pname == "utf8_length" then return v.int_instance(args[0].val.as(CString).utf8_length(args[1].to_i, args[2].to_i)) end else if cname == "NativeArray" then if pname == "new" then var val = new Array[Instance].filled_with(v.null_instance, args[1].to_i) var instance = new PrimitiveInstance[Array[Instance]](args[0].mtype, val) v.init_instance_primitive(instance) return instance end var recvval = args.first.val.as(Array[Instance]) if pname == "[]" then return recvval[args[1].to_i] else if pname == "[]=" then recvval[args[1].to_i] = args[2] return null else if pname == "length" then return v.int_instance(recvval.length) else if pname == "copy_to" then recvval.copy_to(0, args[2].to_i, args[1].val.as(Array[Instance]), 0) return null end else if cname == "Int8" then var recvval = args[0].to_i8 if pname == "unary -" then return v.int8_instance(-recvval) else if pname == "unary +" then return args[0] else if pname == "+" then return v.int8_instance(recvval + args[1].to_i8) else if pname == "-" then return v.int8_instance(recvval - args[1].to_i8) else if pname == "*" then return v.int8_instance(recvval * args[1].to_i8) else if pname == "%" then return v.int8_instance(recvval % args[1].to_i8) else if pname == "/" then return v.int8_instance(recvval / args[1].to_i8) else if pname == "<" then return v.bool_instance(recvval < args[1].to_i8) else if pname == ">" then return v.bool_instance(recvval > args[1].to_i8) else if pname == "<=" then return v.bool_instance(recvval <= args[1].to_i8) else if pname == ">=" then return v.bool_instance(recvval >= args[1].to_i8) else if pname == "<=>" then return v.int_instance(recvval <=> args[1].to_i8) else if pname == "to_f" then return v.float_instance(recvval.to_f) else if pname == "to_i" then return v.int_instance(recvval.to_i) else if pname == "to_b" then return v.byte_instance(recvval.to_b) else if pname == "to_i16" then return v.int16_instance(recvval.to_i16) else if pname == "to_u16" then return v.uint16_instance(recvval.to_u16) else if pname == "to_i32" then return v.int32_instance(recvval.to_i32) else if pname == "to_u32" then return v.uint32_instance(recvval.to_u32) else if pname == "<<" then return v.int8_instance(recvval << (args[1].to_i)) else if pname == ">>" then return v.int8_instance(recvval >> (args[1].to_i)) else if pname == "&" then return v.int8_instance(recvval & args[1].to_i8) else if pname == "|" then return v.int8_instance(recvval | args[1].to_i8) else if pname == "^" then return v.int8_instance(recvval ^ args[1].to_i8) else if pname == "unary ~" then return v.int8_instance(~recvval) end else if cname == "Int16" then var recvval = args[0].to_i16 if pname == "unary -" then return v.int16_instance(-recvval) else if pname == "unary +" then return args[0] else if pname == "+" then return v.int16_instance(recvval + args[1].to_i16) else if pname == "-" then return v.int16_instance(recvval - args[1].to_i16) else if pname == "*" then return v.int16_instance(recvval * args[1].to_i16) else if pname == "%" then return v.int16_instance(recvval % args[1].to_i16) else if pname == "/" then return v.int16_instance(recvval / args[1].to_i16) else if pname == "<" then return v.bool_instance(recvval < args[1].to_i16) else if pname == ">" then return v.bool_instance(recvval > args[1].to_i16) else if pname == "<=" then return v.bool_instance(recvval <= args[1].to_i16) else if pname == ">=" then return v.bool_instance(recvval >= args[1].to_i16) else if pname == "<=>" then return v.int_instance(recvval <=> args[1].to_i16) else if pname == "to_f" then return v.float_instance(recvval.to_f) else if pname == "to_i" then return v.int_instance(recvval.to_i) else if pname == "to_b" then return v.byte_instance(recvval.to_b) else if pname == "to_i8" then return v.int8_instance(recvval.to_i8) else if pname == "to_u16" then return v.uint16_instance(recvval.to_u16) else if pname == "to_i32" then return v.int32_instance(recvval.to_i32) else if pname == "to_u32" then return v.uint32_instance(recvval.to_u32) else if pname == "<<" then return v.int16_instance(recvval << (args[1].to_i)) else if pname == ">>" then return v.int16_instance(recvval >> (args[1].to_i)) else if pname == "&" then return v.int16_instance(recvval & args[1].to_i16) else if pname == "|" then return v.int16_instance(recvval | args[1].to_i16) else if pname == "^" then return v.int16_instance(recvval ^ args[1].to_i16) else if pname == "unary ~" then return v.int16_instance(~recvval) end else if cname == "UInt16" then var recvval = args[0].to_u16 if pname == "unary -" then return v.uint16_instance(-recvval) else if pname == "unary +" then return args[0] else if pname == "+" then return v.uint16_instance(recvval + args[1].to_u16) else if pname == "-" then return v.uint16_instance(recvval - args[1].to_u16) else if pname == "*" then return v.uint16_instance(recvval * args[1].to_u16) else if pname == "%" then return v.uint16_instance(recvval % args[1].to_u16) else if pname == "/" then return v.uint16_instance(recvval / args[1].to_u16) else if pname == "<" then return v.bool_instance(recvval < args[1].to_u16) else if pname == ">" then return v.bool_instance(recvval > args[1].to_u16) else if pname == "<=" then return v.bool_instance(recvval <= args[1].to_u16) else if pname == ">=" then return v.bool_instance(recvval >= args[1].to_u16) else if pname == "<=>" then return v.int_instance(recvval <=> args[1].to_u16) else if pname == "to_f" then return v.float_instance(recvval.to_f) else if pname == "to_i" then return v.int_instance(recvval.to_i) else if pname == "to_b" then return v.byte_instance(recvval.to_b) else if pname == "to_i8" then return v.int8_instance(recvval.to_i8) else if pname == "to_i16" then return v.int16_instance(recvval.to_i16) else if pname == "to_i32" then return v.int32_instance(recvval.to_i32) else if pname == "to_u32" then return v.uint32_instance(recvval.to_u32) else if pname == "<<" then return v.uint16_instance(recvval << (args[1].to_i)) else if pname == ">>" then return v.uint16_instance(recvval >> (args[1].to_i)) else if pname == "&" then return v.uint16_instance(recvval & args[1].to_u16) else if pname == "|" then return v.uint16_instance(recvval | args[1].to_u16) else if pname == "^" then return v.uint16_instance(recvval ^ args[1].to_u16) else if pname == "unary ~" then return v.uint16_instance(~recvval) end else if cname == "Int32" then var recvval = args[0].to_i32 if pname == "unary -" then return v.int32_instance(-recvval) else if pname == "unary +" then return args[0] else if pname == "+" then return v.int32_instance(recvval + args[1].to_i32) else if pname == "-" then return v.int32_instance(recvval - args[1].to_i32) else if pname == "*" then return v.int32_instance(recvval * args[1].to_i32) else if pname == "%" then return v.int32_instance(recvval % args[1].to_i32) else if pname == "/" then return v.int32_instance(recvval / args[1].to_i32) else if pname == "<" then return v.bool_instance(recvval < args[1].to_i32) else if pname == ">" then return v.bool_instance(recvval > args[1].to_i32) else if pname == "<=" then return v.bool_instance(recvval <= args[1].to_i32) else if pname == ">=" then return v.bool_instance(recvval >= args[1].to_i32) else if pname == "<=>" then return v.int_instance(recvval <=> args[1].to_i32) else if pname == "to_f" then return v.float_instance(recvval.to_f) else if pname == "to_i" then return v.int_instance(recvval.to_i) else if pname == "to_b" then return v.byte_instance(recvval.to_b) else if pname == "to_i8" then return v.int8_instance(recvval.to_i8) else if pname == "to_i16" then return v.int16_instance(recvval.to_i16) else if pname == "to_u16" then return v.uint16_instance(recvval.to_u16) else if pname == "to_u32" then return v.uint32_instance(recvval.to_u32) else if pname == "<<" then return v.int32_instance(recvval << (args[1].to_i)) else if pname == ">>" then return v.int32_instance(recvval >> (args[1].to_i)) else if pname == "&" then return v.int32_instance(recvval & args[1].to_i32) else if pname == "|" then return v.int32_instance(recvval | args[1].to_i32) else if pname == "^" then return v.int32_instance(recvval ^ args[1].to_i32) else if pname == "unary ~" then return v.int32_instance(~recvval) end else if cname == "UInt32" then var recvval = args[0].to_u32 if pname == "unary -" then return v.uint32_instance(-recvval) else if pname == "unary +" then return args[0] else if pname == "+" then return v.uint32_instance(recvval + args[1].to_u32) else if pname == "-" then return v.uint32_instance(recvval - args[1].to_u32) else if pname == "*" then return v.uint32_instance(recvval * args[1].to_u32) else if pname == "%" then return v.uint32_instance(recvval % args[1].to_u32) else if pname == "/" then return v.uint32_instance(recvval / args[1].to_u32) else if pname == "<" then return v.bool_instance(recvval < args[1].to_u32) else if pname == ">" then return v.bool_instance(recvval > args[1].to_u32) else if pname == "<=" then return v.bool_instance(recvval <= args[1].to_u32) else if pname == ">=" then return v.bool_instance(recvval >= args[1].to_u32) else if pname == "<=>" then return v.int_instance(recvval <=> args[1].to_u32) else if pname == "to_f" then return v.float_instance(recvval.to_f) else if pname == "to_i" then return v.int_instance(recvval.to_i) else if pname == "to_b" then return v.byte_instance(recvval.to_b) else if pname == "to_i8" then return v.int8_instance(recvval.to_i8) else if pname == "to_i16" then return v.int16_instance(recvval.to_i16) else if pname == "to_u16" then return v.uint16_instance(recvval.to_u16) else if pname == "to_i32" then return v.int32_instance(recvval.to_i32) else if pname == "<<" then return v.uint32_instance(recvval << (args[1].to_i)) else if pname == ">>" then return v.uint32_instance(recvval >> (args[1].to_i)) else if pname == "&" then return v.uint32_instance(recvval & args[1].to_u32) else if pname == "|" then return v.uint32_instance(recvval | args[1].to_u32) else if pname == "^" then return v.uint32_instance(recvval ^ args[1].to_u32) else if pname == "unary ~" then return v.uint32_instance(~recvval) end else if pname == "native_argc" then return v.int_instance(v.arguments.length) else if pname == "native_argv" then var txt = v.arguments[args[1].to_i] return v.c_string_instance(txt) else if pname == "lexer_goto" then return v.int_instance(lexer_goto(args[1].to_i, args[2].to_i)) else if pname == "lexer_accept" then return v.int_instance(lexer_accept(args[1].to_i)) else if pname == "parser_goto" then return v.int_instance(parser_goto(args[1].to_i, args[2].to_i)) else if pname == "parser_action" then return v.int_instance(parser_action(args[1].to_i, args[2].to_i)) end return v.error_instance end end redef class AAttrPropdef redef fun call(v, mpropdef, args) do var recv = args.first assert recv isa MutableInstance var attr = self.mpropdef.mproperty if mpropdef == mreadpropdef then assert args.length == 1 if not is_lazy or v.isset_attribute(attr, recv) then return v.read_attribute(attr, recv) var f = v.new_frame(self, mpropdef, args) return evaluate_expr(v, recv, f) else if mpropdef == mwritepropdef then assert args.length == 2 var arg = args[1] if is_optional and arg.is_null then var f = v.new_frame(self, mpropdef, args) arg = evaluate_expr(v, recv, f) end v.write_attribute(attr, recv, arg) return null else abort end end # Evaluate and set the default value of the attribute in `recv` private fun init_expr(v: NaiveInterpreter, recv: Instance) do if is_lazy or is_optional then return if has_value then var f = v.new_frame(self, mreadpropdef.as(not null), [recv]) evaluate_expr(v, recv, f) return end var mpropdef = self.mpropdef if mpropdef == null then return var mtype = self.mtype.as(not null) mtype = mtype.anchor_to(v.mainmodule, recv.mtype.as(MClassType)) if mtype isa MNullableType then v.write_attribute(self.mpropdef.mproperty, recv, v.null_instance) end end private fun evaluate_expr(v: NaiveInterpreter, recv: Instance, f: Frame): Instance do assert recv isa MutableInstance v.frames.unshift(f) var val var nexpr = self.n_expr var nblock = self.n_block if nexpr != null then val = v.expr(nexpr) else if nblock != null then v.stmt(nblock) assert v.escapemark == return_mark val = v.escapevalue v.escapemark = null else abort end assert val != null v.frames.shift assert not v.is_escaping v.write_attribute(self.mpropdef.mproperty, recv, val) return val end end redef class AClassdef # Execute an implicit `mpropdef` associated with the current node. private fun call(v: NaiveInterpreter, mpropdef: MMethodDef, arguments: Array[Instance]): nullable Instance do if mpropdef.mproperty.is_root_init then assert arguments.length == 1 if not mpropdef.is_intro then # standard call-next-method var superpd = mpropdef.lookup_next_definition(v.mainmodule, arguments.first.mtype) v.call(superpd, arguments) end return null else abort end end end redef class AExpr # Evaluate the node as a possible expression. # Return a possible value # NOTE: Do not call this method directly, but use `v.expr` # This method is here to be implemented by subclasses. protected fun expr(v: NaiveInterpreter): nullable Instance do fatal(v, "NOT YET IMPLEMENTED expr {class_name}") abort end # Evaluate the node as a statement. # NOTE: Do not call this method directly, but use `v.stmt` # This method is here to be implemented by subclasses (no need to return something). protected fun stmt(v: NaiveInterpreter) do expr(v) end end redef class ABlockExpr redef fun expr(v) do var last = self.n_expr.last for e in self.n_expr do if e == last then break v.stmt(e) if v.is_escaping then return null end return last.expr(v) end redef fun stmt(v) do for e in self.n_expr do v.stmt(e) if v.is_escaping then return end end end redef class AVardeclExpr redef fun expr(v) do var ne = self.n_expr if ne != null then var i = v.expr(ne) if i == null then return null v.write_variable(self.variable.as(not null), i) return i end return null end end redef class AVarExpr redef fun expr(v) do return v.read_variable(self.variable.as(not null)) end end redef class AVarAssignExpr redef fun expr(v) do var i = v.expr(self.n_value) if i == null then return null v.write_variable(self.variable.as(not null), i) return i end end redef class AVarReassignExpr redef fun stmt(v) do var variable = self.variable.as(not null) var vari = v.read_variable(variable) var value = v.expr(self.n_value) if value == null then return var res = v.callsite(reassign_callsite, [vari, value]) assert res != null v.write_variable(variable, res) end end redef class ASelfExpr redef fun expr(v) do return v.frame.arguments.first end end redef class AImplicitSelfExpr redef fun expr(v) do if not is_sys then return super return v.mainobj end end redef class AEscapeExpr redef fun stmt(v) do var ne = self.n_expr if ne != null then var i = v.expr(ne) if i == null then return v.escapevalue = i else v.escapevalue = null end v.escapemark = self.escapemark end end redef class AAbortExpr redef fun stmt(v) do fatal(v, "Aborted") exit(1) end end redef class AIfExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null if cond.is_true then return v.expr(self.n_then.as(not null)) else return v.expr(self.n_else.as(not null)) end end redef fun stmt(v) do var cond = v.expr(self.n_expr) if cond == null then return if cond.is_true then v.stmt(self.n_then) else v.stmt(self.n_else) end end end redef class AIfexprExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null if cond.is_true then return v.expr(self.n_then) else return v.expr(self.n_else) end end end redef class ADoExpr redef fun stmt(v) do # If this bloc has a catch, handle it with a do ... catch ... end if self.n_catch != null then var frame = v.frame v.catch_count += 1 do v.stmt(self.n_block) v.is_escape(self.break_mark) # Clear the break (if any) v.catch_count -= 1 catch # Restore the current frame if needed while v.frame != frame do v.frames.shift v.catch_count -= 1 v.stmt(self.n_catch) end else v.stmt(self.n_block) v.is_escape(self.break_mark) end end end redef class AWhileExpr redef fun stmt(v) do loop var cond = v.expr(self.n_expr) if cond == null then return if not cond.is_true then return v.stmt(self.n_block) if v.is_escape(self.break_mark) then return v.is_escape(self.continue_mark) # Clear the break if v.is_escaping then return end end end redef class ALoopExpr redef fun stmt(v) do loop v.stmt(self.n_block) if v.is_escape(self.break_mark) then return v.is_escape(self.continue_mark) # Clear the break if v.is_escaping then return end end end redef class AForExpr redef fun stmt(v) do var iters = new Array[Instance] for g in n_groups do var col = v.expr(g.n_expr) if col == null then return if col.is_null then fatal(v, "Receiver is null") var iter = v.callsite(g.method_iterator, [col]).as(not null) iters.add iter end loop for g in n_groups, iter in iters do var isok = v.callsite(g.method_is_ok, [iter]).as(not null) if not isok.is_true then break label if g.variables.length == 1 then var item = v.callsite(g.method_item, [iter]).as(not null) #self.debug("item {item}") v.write_variable(g.variables.first, item) else if g.variables.length == 2 then var key = v.callsite(g.method_key, [iter]).as(not null) v.write_variable(g.variables[0], key) var item = v.callsite(g.method_item, [iter]).as(not null) v.write_variable(g.variables[1], item) else abort end end v.stmt(self.n_block) if v.is_escape(self.break_mark) then break v.is_escape(self.continue_mark) # Clear the break if v.is_escaping then break for g in n_groups, iter in iters do v.callsite(g.method_next, [iter]) end end label for g in n_groups, iter in iters do var method_finish = g.method_finish if method_finish != null then v.callsite(method_finish, [iter]) end end end end redef class AWithExpr redef fun stmt(v) do var expr = v.expr(self.n_expr) if expr == null then return v.callsite(method_start, [expr]) v.stmt(self.n_block) v.is_escape(self.break_mark) # Clear the break # Execute the finally without an escape var old_mark = v.escapemark v.escapemark = null v.callsite(method_finish, [expr]) # Restore the escape unless another escape was provided if v.escapemark == null then v.escapemark = old_mark end end redef class AAssertExpr redef fun stmt(v) do var cond = v.expr(self.n_expr) if cond == null then return if not cond.is_true then v.stmt(self.n_else) if v.is_escaping then return # Explain assert if it fails var explain_assert_str = explain_assert_str if explain_assert_str != null then var i = v.expr(explain_assert_str) if i isa MutableInstance then var res = v.send(v.force_get_primitive_method("to_cstring", i.mtype), [i]) if res != null then var val = res.val if val != null then print_error "Runtime assert: {val.to_s}" end end end end var nid = self.n_id if nid != null then fatal(v, "Assert '{nid.text}' failed") else fatal(v, "Assert failed") end exit(1) end end end redef class AOrExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null if cond.is_true then return cond return v.expr(self.n_expr2) end end redef class AImpliesExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null if not cond.is_true then return v.true_instance return v.expr(self.n_expr2) end end redef class AAndExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null if not cond.is_true then return cond return v.expr(self.n_expr2) end end redef class ANotExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null return v.bool_instance(not cond.is_true) end end redef class AOrElseExpr redef fun expr(v) do var i = v.expr(self.n_expr) if i == null then return null if i != v.null_instance then return i return v.expr(self.n_expr2) end end redef class AIntegerExpr redef fun expr(v) do if value isa Int then return v.int_instance(value.as(Int)) if value isa Byte then return v.byte_instance(value.as(Byte)) if value isa Int8 then return v.int8_instance(value.as(Int8)) if value isa Int16 then return v.int16_instance(value.as(Int16)) if value isa UInt16 then return v.uint16_instance(value.as(UInt16)) if value isa Int32 then return v.int32_instance(value.as(Int32)) if value isa UInt32 then return v.uint32_instance(value.as(UInt32)) return null end end redef class AFloatExpr redef fun expr(v) do return v.float_instance(self.value.as(not null)) end end redef class ACharExpr redef fun expr(v) do if is_code_point then return v.int_instance(self.value.as(not null).code_point) end return v.char_instance(self.value.as(not null)) end end redef class AArrayExpr redef fun expr(v) do var val = new Array[Instance] var old_comprehension = v.frame.comprehension v.frame.comprehension = val for nexpr in self.n_exprs do if nexpr isa AForExpr then v.stmt(nexpr) else var i = v.expr(nexpr) if i == null then return null val.add(i) end end v.frame.comprehension = old_comprehension var mtype = v.unanchor_type(self.mtype.as(not null)).as(MClassType) var elttype = mtype.arguments.first return v.array_instance(val, elttype) end end redef class AugmentedStringFormExpr # Factorize the making of a `Regex` object from a literal prefixed string fun make_re(v: NaiveInterpreter, rs: Instance): nullable Instance do var tore = to_re assert tore != null var res = v.callsite(tore, [rs]) if res == null then print "Cannot call property `to_re` on {self}" abort end for j in suffix.chars do if j == 'i' then var prop = ignore_case assert prop != null v.callsite(prop, [res, v.bool_instance(true)]) continue end if j == 'm' then var prop = newline assert prop != null v.callsite(prop, [res, v.bool_instance(true)]) continue end if j == 'b' then var prop = extended assert prop != null v.callsite(prop, [res, v.bool_instance(false)]) continue end # Should not happen, this needs to be updated # along with the addition of new suffixes abort end return res end end redef class AStringFormExpr redef fun expr(v) do return v.string_instance(value) end redef class AStringExpr redef fun expr(v) do var s = v.string_instance(value) if is_string then return s if is_bytestring then var ns = v.c_string_instance_from_ns(bytes.items, bytes.length) var ln = v.int_instance(bytes.length) var prop = to_bytes_with_copy assert prop != null var res = v.callsite(prop, [ns, ln]) if res == null then print "Cannot call property `to_bytes` on {self}" abort end s = res else if is_re then var res = make_re(v, s) assert res != null s = res else print "Unimplemented prefix or suffix for {self}" abort end return s end end redef class ASuperstringExpr redef fun expr(v) do var array = new Array[Instance] for nexpr in n_exprs do var i = v.expr(nexpr) if i == null then return null array.add(i) end var i = v.array_instance(array, v.mainmodule.object_type) var res = v.send(v.force_get_primitive_method("plain_to_s", i.mtype), [i]) assert res != null if is_re then res = make_re(v, res) return res end end redef class ACrangeExpr redef fun expr(v) do var e1 = v.expr(self.n_expr) if e1 == null then return null var e2 = v.expr(self.n_expr2) if e2 == null then return null var mtype = v.unanchor_type(self.mtype.as(not null)) var res = new MutableInstance(mtype) v.init_instance(res) v.callsite(init_callsite, [res, e1, e2]) return res end end redef class AOrangeExpr redef fun expr(v) do var e1 = v.expr(self.n_expr) if e1 == null then return null var e2 = v.expr(self.n_expr2) if e2 == null then return null var mtype = v.unanchor_type(self.mtype.as(not null)) var res = new MutableInstance(mtype) v.init_instance(res) v.callsite(init_callsite, [res, e1, e2]) return res end end redef class ATrueExpr redef fun expr(v) do return v.bool_instance(true) end end redef class AFalseExpr redef fun expr(v) do return v.bool_instance(false) end end redef class ANullExpr redef fun expr(v) do return v.null_instance end end redef class AIsaExpr redef fun expr(v) do var i = v.expr(self.n_expr) if i == null then return null var mtype = v.unanchor_type(self.cast_type.as(not null)) return v.bool_instance(v.is_subtype(i.mtype, mtype)) end end redef class AAsCastExpr redef fun expr(v) do var i = v.expr(self.n_expr) if i == null then return null var mtype = self.mtype.as(not null) var amtype = v.unanchor_type(mtype) if not v.is_subtype(i.mtype, amtype) then fatal(v, "Cast failed. Expected `{amtype}`, got `{i.mtype}`") end return i end end redef class AAsNotnullExpr redef fun expr(v) do var i = v.expr(self.n_expr) if i == null then return null if i.is_null then fatal(v, "Cast failed") end return i end end redef class AParExpr redef fun expr(v) do return v.expr(self.n_expr) end end redef class AOnceExpr redef fun expr(v) do if v.onces.has_key(self) then return v.onces[self] else var res = v.expr(self.n_expr) if res == null then return null v.onces[self] = res return res end end end redef class ASendExpr redef fun expr(v) do var recv = v.expr(self.n_expr) if recv == null then return null # Safe call shortcut if recv is null if is_safe and recv.is_null then return recv end var args = v.varargize(callsite.mpropdef, callsite.signaturemap, recv, self.raw_arguments) if args == null then return null var res = v.callsite(callsite, args) return res end end redef class ACallrefExpr redef fun expr(v) do var recv = v.expr(self.n_expr) if recv == null then return null var mtype = self.mtype assert mtype != null # In case we are in generic class where formal parameter can not # be resolved. var mtype2 = v.unanchor_type(mtype) var inst = new CallrefInstance(mtype2, recv, callsite.as(not null)) return inst end end redef class ASendReassignFormExpr redef fun stmt(v) do var recv = v.expr(self.n_expr) if recv == null then return var args = v.varargize(callsite.mpropdef, callsite.signaturemap, recv, self.raw_arguments) if args == null then return var value = v.expr(self.n_value) if value == null then return var read = v.callsite(callsite, args) assert read != null var write = v.callsite(reassign_callsite, [read, value]) assert write != null args.add(write) v.callsite(write_callsite, args) end end redef class ASuperExpr redef fun expr(v) do var recv = v.frame.arguments.first var callsite = self.callsite if callsite != null then var args if self.n_args.n_exprs.is_empty then # Add automatic arguments for the super init call args = [recv] for i in [0..callsite.msignature.arity[ do args.add(v.frame.arguments[i+1]) end else args = v.varargize(callsite.mpropdef, callsite.signaturemap, recv, self.n_args.n_exprs) if args == null then return null end # Super init call var res = v.callsite(callsite, args) return res end # Standard call-next-method var mpropdef = self.mpropdef mpropdef = mpropdef.lookup_next_definition(v.mainmodule, recv.mtype) var args if self.n_args.n_exprs.is_empty then args = v.frame.arguments else args = v.varargize(mpropdef, signaturemap, recv, self.n_args.n_exprs) if args == null then return null end var res = v.call(mpropdef, args) return res end end redef class ANewExpr redef fun expr(v) do var mtype = v.unanchor_type(self.recvtype.as(not null)) var recv: Instance = new MutableInstance(mtype) v.init_instance(recv) var callsite = self.callsite if callsite == null then return recv var args = v.varargize(callsite.mpropdef, callsite.signaturemap, recv, self.n_args.n_exprs) if args == null then return null var res2 = v.callsite(callsite, args) if res2 != null then #self.debug("got {res2} from {mproperty}. drop {recv}") return res2 end return recv end end redef class AAttrExpr redef fun expr(v) do var recv = v.expr(self.n_expr) if recv == null then return null if recv.is_null then fatal(v, "Receiver is null") var mproperty = self.mproperty.as(not null) return v.read_attribute(mproperty, recv) end end redef class AAttrAssignExpr redef fun stmt(v) do var recv = v.expr(self.n_expr) if recv == null then return if recv.is_null then fatal(v, "Receiver is null") var i = v.expr(self.n_value) if i == null then return var mproperty = self.mproperty.as(not null) v.write_attribute(mproperty, recv, i) end end redef class AAttrReassignExpr redef fun stmt(v) do var recv = v.expr(self.n_expr) if recv == null then return if recv.is_null then fatal(v, "Receiver is null") var value = v.expr(self.n_value) if value == null then return var mproperty = self.mproperty.as(not null) var attr = v.read_attribute(mproperty, recv) var res = v.callsite(reassign_callsite, [attr, value]) assert res != null v.write_attribute(mproperty, recv, res) end end redef class AIssetAttrExpr redef fun expr(v) do var recv = v.expr(self.n_expr) if recv == null then return null if recv.is_null then fatal(v, "Receiver is null") var mproperty = self.mproperty.as(not null) return v.bool_instance(v.isset_attribute(mproperty, recv)) end end redef class AVarargExpr redef fun expr(v) do return v.expr(self.n_expr) end end redef class ASafeExpr redef fun expr(v) do return v.expr(self.n_expr) end end redef class ANamedargExpr redef fun expr(v) do return v.expr(self.n_expr) end end redef class ADebugTypeExpr redef fun stmt(v) do # do nothing end end