# This file is part of NIT ( http://www.nitlanguage.org ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Services on `Matrix` to transform and project 3D coordinates module projection intrude import matrix redef class Matrix # Create an orthogonal projection matrix # # `left, right, bottom, top, near, far` defines the world clip planes. new orthogonal(left, right, bottom, top, near, far: Float) do var dx = right - left var dy = top - bottom var dz = far - near assert dx != 0.0 and dy != 0.0 and dz != 0.0 var mat = new Matrix.identity(4) mat[0, 0] = 2.0 / dx mat[3, 0] = -(right + left) / dx mat[1, 1] = 2.0 / dy mat[3, 1] = -(top + bottom) / dy mat[2, 2] = 2.0 / dz mat[3, 2] = -(near + far) / dz return mat end # Create a perspective transformation matrix # # Using the given vertical `field_of_view_y` in radians, the `aspect_ratio` # and the `near`/`far` world distances. new perspective(field_of_view_y, aspect_ratio, near, far: Float) do var frustum_height = (field_of_view_y/2.0).tan * near var frustum_width = frustum_height * aspect_ratio return new Matrix.frustum(-frustum_width, frustum_width, -frustum_height, frustum_height, near, far) end # Create a frustum transformation matrix # # `left, right, bottom, top, near, far` defines the world clip planes. new frustum(left, right, bottom, top, near, far: Float) do var dx = right - left var dy = top - bottom var dz = far - near assert near > 0.0 assert far > 0.0 assert dx > 0.0 assert dy > 0.0 assert dz > 0.0 var mat = new Matrix(4, 4) mat[0, 0] = 2.0 * near / dx mat[0, 1] = 0.0 mat[0, 2] = 0.0 mat[0, 3] = 0.0 mat[1, 0] = 0.0 mat[1, 1] = 2.0 * near / dy mat[1, 2] = 0.0 mat[1, 3] = 0.0 mat[2, 0] = (right + left) / dx mat[2, 1] = (top + bottom) / dy mat[2, 2] = -(near + far) / dz mat[2, 3] = -1.0 mat[3, 0] = 0.0 mat[3, 1] = 0.0 mat[3, 2] = -2.0 * near * far / dz mat[3, 3] = 0.0 return mat end # Apply a translation by `x, y, z` to this matrix fun translate(x, y, z: Float) do for i in [0..3] do self[3, i] = self[3,i] + self[0, i] * x + self[1, i] * y + self[2, i] * z end end # Apply scaling on `x, y, z` to this matrix fun scale(x, y, z: Float) do for i in [0..3] do self[0, i] = self[0, i] * x self[1, i] = self[1, i] * y self[2, i] = self[2, i] * z end end # Create a rotation matrix by `angle` around the vector defined by `x, y, z` new rotation(angle, x, y, z: Float) do var mat = new Matrix.identity(4) var mag = (x*x + y*y + z*z).sqrt var sin = angle.sin var cos = angle.cos if mag > 0.0 then x = x / mag y = y / mag z = z / mag var inv_cos = 1.0 - cos mat[0, 0] = inv_cos*x*x + cos mat[0, 1] = inv_cos*x*y - z*sin mat[0, 2] = inv_cos*z*x + y*sin mat[1, 0] = inv_cos*x*y + z*sin mat[1, 1] = inv_cos*y*y + cos mat[1, 2] = inv_cos*y*z - x*sin mat[2, 0] = inv_cos*z*x - y*sin mat[2, 1] = inv_cos*y*z + x*sin mat[2, 2] = inv_cos*z*z + cos end return mat end # Apply a rotation of `angle` radians around the vector `x, y, z` fun rotate(angle, x, y, z: Float) do var rotation = new Matrix.rotation(angle, x, y, z) var rotated = self * rotation self.items = rotated.items end end