# This file is part of NIT ( http://www.nitlanguage.org ). # # Copyright 2012 Jean Privat # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Interpretation of a Nit program directly on the AST module naive_interpreter import literal import typing import auto_super_init import frontend import common_ffi private import parser::tables redef class ToolContext # --discover-call-trace var opt_discover_call_trace: OptionBool = new OptionBool("Trace calls of the first invocation of a method", "--discover-call-trace") redef init do super self.option_context.add_option(self.opt_discover_call_trace) end end redef class ModelBuilder # Execute the program from the entry point (`Sys::main`) of the `mainmodule` # `arguments` are the command-line arguments in order # REQUIRE that: # 1. the AST is fully loaded. # 2. the model is fully built. # 3. the instructions are fully analysed. fun run_naive_interpreter(mainmodule: MModule, arguments: Array[String]) do var time0 = get_time self.toolcontext.info("*** START INTERPRETING ***", 1) var interpreter = new NaiveInterpreter(self, mainmodule, arguments) init_naive_interpreter(interpreter, mainmodule) var time1 = get_time self.toolcontext.info("*** END INTERPRETING: {time1-time0} ***", 2) end private fun init_naive_interpreter(interpreter: NaiveInterpreter, mainmodule: MModule) do var sys_type = mainmodule.sys_type if sys_type == null then return # no class Sys var mainobj = new MutableInstance(sys_type) interpreter.mainobj = mainobj interpreter.init_instance(mainobj) var initprop = mainmodule.try_get_primitive_method("init", sys_type.mclass) if initprop != null then interpreter.send(initprop, [mainobj]) end var mainprop = mainmodule.try_get_primitive_method("run", sys_type.mclass) or else mainmodule.try_get_primitive_method("main", sys_type.mclass) if mainprop != null then interpreter.send(mainprop, [mainobj]) end end end # The visitor that interprets the Nit Program by walking on the AST private class NaiveInterpreter # The modelbuilder that know the AST and its associations with the model var modelbuilder: ModelBuilder # The main moduleof the program (used to lookup methoda var mainmodule: MModule # The command line arguments of the interpreted program # arguments.first is the program name # arguments[1] is the first argument var arguments: Array[String] var mainobj: nullable Instance init(modelbuilder: ModelBuilder, mainmodule: MModule, arguments: Array[String]) do self.modelbuilder = modelbuilder self.mainmodule = mainmodule self.arguments = arguments self.true_instance = new PrimitiveInstance[Bool](mainmodule.bool_type, true) self.false_instance = new PrimitiveInstance[Bool](mainmodule.bool_type, false) self.null_instance = new MutableInstance(mainmodule.model.null_type) end # Subtype test in the context of the mainmodule fun is_subtype(sub, sup: MType): Bool do return sub.is_subtype(self.mainmodule, self.frame.arguments.first.mtype.as(MClassType), sup) end fun force_get_primitive_method(name: String, recv: MType): MMethod do assert recv isa MClassType return self.modelbuilder.force_get_primitive_method(self.frame.current_node, name, recv.mclass, self.mainmodule) end # Is a return executed? # Set this mark to skip the evaluation until the end of the specified method frame var returnmark: nullable Frame = null # Is a break executed? # Set this mark to skip the evaluation until a labeled statement catch it with `is_break` var breakmark: nullable EscapeMark = null # Is a continue executed? # Set this mark to skip the evaluation until a labeled statement catch it with `is_continue` var continuemark: nullable EscapeMark = null # Is a return or a break or a continue executed? # Use this function to know if you must skip the evaluation of statements fun is_escaping: Bool do return returnmark != null or breakmark != null or continuemark != null # The value associated with the current return/break/continue, if any. # Set the value when you set a escapemark. # Read the value when you catch a mark or reach the end of a method var escapevalue: nullable Instance = null # If there is a break and is associated with `escapemark`, then return true an clear the mark. # If there is no break or if `escapemark` is null then return false. # Use this function to catch a potential break. fun is_break(escapemark: nullable EscapeMark): Bool do if escapemark != null and self.breakmark == escapemark then self.breakmark = null return true else return false end end # If there is a continue and is associated with `escapemark`, then return true an clear the mark. # If there is no continue or if `escapemark` is null then return false. # Use this function to catch a potential continue. fun is_continue(escapemark: nullable EscapeMark): Bool do if escapemark != null and self.continuemark == escapemark then self.continuemark = null return true else return false end end # Evaluate `n` as an expression in the current context. # Return the value of the expression. # If `n` cannot be evaluated, then aborts. fun expr(n: AExpr): nullable Instance do var frame = self.frame var old = frame.current_node frame.current_node = n #n.debug("IN Execute expr") var i = n.expr(self) if i == null and not self.is_escaping then n.debug("inconsitance: no value and not escaping.") end var implicit_cast_to = n.implicit_cast_to if implicit_cast_to != null then var mtype = self.unanchor_type(implicit_cast_to) if not self.is_subtype(i.mtype, mtype) then n.fatal(self, "Cast failed. Expected `{implicit_cast_to}`, got `{i.mtype}`") end #n.debug("OUT Execute expr: value is {i}") #if not is_subtype(i.mtype, n.mtype.as(not null)) then n.debug("Expected {n.mtype.as(not null)} got {i}") frame.current_node = old return i end # Evaluate `n` as a statement in the current context. # Do nothing if `n` is null. # If `n` cannot be evaluated, then aborts. fun stmt(n: nullable AExpr) do if n != null then var frame = self.frame var old = frame.current_node frame.current_node = n #n.debug("Execute stmt") n.stmt(self) frame.current_node = old end end # Map used to store values of nodes that must be evaluated once in the system (`AOnceExpr`) var onces: Map[ANode, Instance] = new HashMap[ANode, Instance] # Return the boolean instance associated with `val`. fun bool_instance(val: Bool): Instance do if val then return self.true_instance else return self.false_instance end # Return the integer instance associated with `val`. fun int_instance(val: Int): Instance do var ic = self.mainmodule.get_primitive_class("Int") return new PrimitiveInstance[Int](ic.mclass_type, val) end # Return the char instance associated with `val`. fun char_instance(val: Char): Instance do var ic = self.mainmodule.get_primitive_class("Char") return new PrimitiveInstance[Char](ic.mclass_type, val) end # Return the float instance associated with `val`. fun float_instance(val: Float): Instance do var ic = self.mainmodule.get_primitive_class("Float") return new PrimitiveInstance[Float](ic.mclass_type, val) end # The unique intance of the `true` value. var true_instance: Instance # The unique intance of the `false` value. var false_instance: Instance # The unique intance of the `null` value. var null_instance: Instance # Return a new array made of `values`. # The dynamic type of the result is Array[elttype]. fun array_instance(values: Array[Instance], elttype: MType): Instance do assert not elttype.need_anchor var nat = new PrimitiveInstance[Array[Instance]](self.mainmodule.get_primitive_class("NativeArray").get_mtype([elttype]), values) var mtype = self.mainmodule.get_primitive_class("Array").get_mtype([elttype]) var res = new MutableInstance(mtype) self.init_instance(res) self.send(self.force_get_primitive_method("with_native", mtype), [res, nat, self.int_instance(values.length)]) return res end # Return a new native string initialized with `txt` fun native_string_instance(txt: String): Instance do var val = new FlatBuffer.from(txt) val.add('\0') var ic = self.mainmodule.get_primitive_class("NativeString") return new PrimitiveInstance[Buffer](ic.mclass_type, val) end # The current frame used to store local variables of the current method executed fun frame: Frame do return frames.first # The stack of all frames. The first one is the current one. var frames: List[Frame] = new List[Frame] # Return a stack stace. One line per function fun stack_trace: String do var b = new FlatBuffer b.append(",---- Stack trace -- - - -\n") for f in frames do b.append("| {f.mpropdef} ({f.current_node.location})\n") end b.append("`------------------- - - -") return b.to_s end # Exit the program with a message fun fatal(message: String) do if frames.is_empty then print message else self.frame.current_node.fatal(self, message) end exit(1) end # Debug on the current node fun debug(message: String) do if frames.is_empty then print message else self.frame.current_node.debug(message) end end # Store known method, used to trace methods as thez are reached var discover_call_trace: Set[MMethodDef] = new HashSet[MMethodDef] # Common code for calls to injected methods and normal methods fun call_commons(mpropdef: MMethodDef, args: Array[Instance]): Array[Instance] do var vararg_rank = mpropdef.msignature.vararg_rank if vararg_rank >= 0 then assert args.length >= mpropdef.msignature.arity + 1 # because of self var rawargs = args args = new Array[Instance] args.add(rawargs.first) # recv for i in [0..vararg_rank[ do args.add(rawargs[i+1]) end var vararg_lastrank = vararg_rank + rawargs.length-1-mpropdef.msignature.arity var vararg = new Array[Instance] for i in [vararg_rank..vararg_lastrank] do vararg.add(rawargs[i+1]) end # FIXME: its it to late to determine the vararg type, this should have been done during a previous analysis var elttype = mpropdef.msignature.mparameters[vararg_rank].mtype.anchor_to(self.mainmodule, args.first.mtype.as(MClassType)) args.add(self.array_instance(vararg, elttype)) for i in [vararg_lastrank+1..rawargs.length-1[ do args.add(rawargs[i+1]) end end return args end # Execute `mpropdef` for a `args` (where `args[0]` is the receiver). # Return a falue if `mpropdef` is a function, or null if it is a procedure. # The call is direct/static. There is no message-seding/late-binding. fun call(mpropdef: MMethodDef, args: Array[Instance]): nullable Instance do args = call_commons(mpropdef, args) return call_without_varargs(mpropdef, args) end # Common code to call and this function # # Call only executes the variadic part, this avoids # double encapsulation of variadic parameters into an Array fun call_without_varargs(mpropdef: MMethodDef, args: Array[Instance]): nullable Instance do if self.modelbuilder.toolcontext.opt_discover_call_trace.value and not self.discover_call_trace.has(mpropdef) then self.discover_call_trace.add mpropdef self.debug("Discovered {mpropdef}") end assert args.length == mpropdef.msignature.arity + 1 else debug("Invalid arity for {mpropdef}. {args.length} arguments given.") # Look for the AST node that implements the property var mproperty = mpropdef.mproperty if self.modelbuilder.mpropdef2npropdef.has_key(mpropdef) then var npropdef = self.modelbuilder.mpropdef2npropdef[mpropdef] self.parameter_check(npropdef, mpropdef, args) return npropdef.call(self, mpropdef, args) else if mproperty.name == "init" then var nclassdef = self.modelbuilder.mclassdef2nclassdef[mpropdef.mclassdef] self.parameter_check(nclassdef, mpropdef, args) return nclassdef.call(self, mpropdef, args) else fatal("Fatal Error: method {mpropdef} not found in the AST") abort end end # Generate type checks in the C code to check covariant parameters fun parameter_check(node: ANode, mpropdef: MMethodDef, args: Array[Instance]) do var msignature = mpropdef.msignature for i in [0..msignature.arity[ do # skip test for vararg since the array is instantiated with the correct polymorphic type if msignature.vararg_rank == i then continue # skip if the cast is not required var origmtype = mpropdef.mproperty.intro.msignature.mparameters[i].mtype if not origmtype.need_anchor then continue # get the parameter type var mtype = msignature.mparameters[i].mtype var anchor = args.first.mtype.as(MClassType) var amtype = mtype.anchor_to(self.mainmodule, anchor) if not args[i+1].mtype.is_subtype(self.mainmodule, anchor, amtype) then node.fatal(self, "Cast failed. Expected `{mtype}`, got `{args[i+1].mtype}`") end end end # Common code for runtime injected calls and normal calls fun send_commons(mproperty: MMethod, args: Array[Instance], mtype: MType): nullable Instance do if mtype isa MNullType then if mproperty.name == "==" then return self.bool_instance(args[0] == args[1]) else if mproperty.name == "!=" then return self.bool_instance(args[0] != args[1]) end #fatal("Receiver is null. {mproperty}. {args.join(" ")} {self.frame.current_node.class_name}") fatal("Receiver is null") end return null end # Execute a full `callsite` for given `args` # Use this method, instead of `send` to execute and control the aditionnal behavior of the call-sites fun callsite(callsite: nullable CallSite, arguments: Array[Instance]): nullable Instance do return send(callsite.mproperty, arguments) end # Execute `mproperty` for a `args` (where `args[0]` is the receiver). # Return a falue if `mproperty` is a function, or null if it is a procedure. # The call is polimotphic. There is a message-seding/late-bindng according to te receiver (args[0]). fun send(mproperty: MMethod, args: Array[Instance]): nullable Instance do var recv = args.first var mtype = recv.mtype var ret = send_commons(mproperty, args, mtype) if ret != null then return ret var propdef = mproperty.lookup_first_definition(self.mainmodule, mtype) return self.call(propdef, args) end # Read the attribute `mproperty` of an instance `recv` and return its value. # If the attribute in not yet initialized, then aborts with an error message. fun read_attribute(mproperty: MAttribute, recv: Instance): Instance do assert recv isa MutableInstance if not recv.attributes.has_key(mproperty) then fatal("Uninitialized attribute {mproperty.name}") abort end return recv.attributes[mproperty] end # Replace in `recv` the value of the attribute `mproperty` by `value` fun write_attribute(mproperty: MAttribute, recv: Instance, value: Instance) do assert recv isa MutableInstance recv.attributes[mproperty] = value end # Is the attribute `mproperty` initialized the instance `recv`? fun isset_attribute(mproperty: MAttribute, recv: Instance): Bool do assert recv isa MutableInstance return recv.attributes.has_key(mproperty) end # Collect attributes of a type in the order of their init fun collect_attr_propdef(mtype: MType): Array[AAttrPropdef] do var cache = self.collect_attr_propdef_cache if cache.has_key(mtype) then return cache[mtype] var res = new Array[AAttrPropdef] var cds = mtype.collect_mclassdefs(self.mainmodule).to_a self.mainmodule.linearize_mclassdefs(cds) for cd in cds do var n = self.modelbuilder.mclassdef2nclassdef[cd] for npropdef in n.n_propdefs do if npropdef isa AAttrPropdef then res.add(npropdef) end end end cache[mtype] = res return res end var collect_attr_propdef_cache = new HashMap[MType, Array[AAttrPropdef]] # Fill the initial values of the newly created instance `recv`. # `recv.mtype` is used to know what must be filled. fun init_instance(recv: Instance) do for npropdef in collect_attr_propdef(recv.mtype) do npropdef.init_expr(self, recv) end end # This function determine the correct type according the reciever of the current definition (self). fun unanchor_type(mtype: MType): MType do return mtype.anchor_to(self.mainmodule, self.frame.arguments.first.mtype.as(MClassType)) end end # An instance represents a value of the executed program. abstract class Instance # The dynamic type of the instance # ASSERT: not self.mtype.is_anchored var mtype: MType # return true if the instance is the true value. # return false if the instance is the true value. # else aborts fun is_true: Bool do abort # Return true if `self` IS `o` (using the Nit semantic of is) fun eq_is(o: Instance): Bool do return self.is_same_instance(o) # Human readable object identity "Type#number" redef fun to_s do return "{mtype}" # Return the integer value if the instance is an integer. # else aborts fun to_i: Int do abort # Return the integer value if the instance is a float. # else aborts fun to_f: Float do abort # The real value encapsulated if the instance is primitive. # Else aborts. fun val: Object do abort end # A instance with attribute (standards objects) class MutableInstance super Instance # The values of the attributes var attributes: Map[MAttribute, Instance] = new HashMap[MAttribute, Instance] end # Special instance to handle primitives values (int, bool, etc.) # The trick it just to encapsulate the <> value class PrimitiveInstance[E: Object] super Instance # The real value encapsulated redef var val: E init(mtype: MType, val: E) do super(mtype) self.val = val end redef fun is_true do if val == true then return true if val == false then return false abort end redef fun ==(o) do if not o isa PrimitiveInstance[Object] then return false return self.val == o.val end redef fun eq_is(o) do if not o isa PrimitiveInstance[Object] then return false return self.val.is_same_instance(o.val) end redef fun to_s do return "{mtype}#{val.object_id}({val})" redef fun to_i do return val.as(Int) redef fun to_f do return val.as(Float) end # Information about local variables in a running method private class Frame # The current visited node # The node is stored by frame to keep a stack trace var current_node: ANode # The executed property. # A Method in case of a call, an attribute in case of a default initialization. var mpropdef: MPropDef # Arguments of the method (the first is te receiver var arguments: Array[Instance] # Mapping betwen a variable an the current value var map: Map[Variable, Instance] = new HashMap[Variable, Instance] end redef class ANode # Aborts the program with a message # `v` is used to know if a colored message is displayed or not private fun fatal(v: NaiveInterpreter, message: String) do if v.modelbuilder.toolcontext.opt_no_color.value == true then sys.stderr.write("Runtime error: {message} ({location.file.filename}:{location.line_start})\n") else sys.stderr.write("{location}: Runtime error: {message}\n{location.colored_line("0;31")}\n") sys.stderr.write(v.stack_trace) sys.stderr.write("\n") end exit(1) end end redef class APropdef # Execute a `mpropdef` associated with the current node. private fun call(v: NaiveInterpreter, mpropdef: MMethodDef, args: Array[Instance]): nullable Instance do fatal(v, "NOT YET IMPLEMENTED method kind {class_name}. {mpropdef}") abort end end redef class AMethPropdef super TablesCapable redef fun call(v, mpropdef, args) do var f = new Frame(self, self.mpropdef.as(not null), args) var res = call_commons(v, mpropdef, args, f) v.frames.shift if v.returnmark == f then v.returnmark = null res = v.escapevalue v.escapevalue = null return res end return res end private fun call_commons(v: NaiveInterpreter, mpropdef: MMethodDef, arguments: Array[Instance], f: Frame): nullable Instance do for i in [0..mpropdef.msignature.arity[ do var variable = self.n_signature.n_params[i].variable assert variable != null f.map[variable] = arguments[i+1] end v.frames.unshift(f) if mpropdef.is_abstract then v.fatal("Abstract method `{mpropdef.mproperty.name}` called on `{arguments.first.mtype}`") abort end # Call the implicit super-init var auto_super_inits = self.auto_super_inits if auto_super_inits != null then var args = [arguments.first] for auto_super_init in auto_super_inits do args.clear for i in [0..auto_super_init.msignature.arity+1[ do args.add(arguments[i]) end assert auto_super_init.mproperty != mpropdef.mproperty v.callsite(auto_super_init, args) end end if auto_super_call then # standard call-next-method var superpd = mpropdef.lookup_next_definition(v.mainmodule, arguments.first.mtype) v.call_without_varargs(superpd, arguments) end if n_block != null then v.stmt(self.n_block) return null else return intern_call(v, mpropdef, arguments) end end private fun intern_call(v: NaiveInterpreter, mpropdef: MMethodDef, args: Array[Instance]): nullable Instance do var pname = mpropdef.mproperty.name var cname = mpropdef.mclassdef.mclass.name if pname == "output" then var recv = args.first recv.val.output return null else if pname == "object_id" then var recv = args.first if recv isa PrimitiveInstance[Object] then return v.int_instance(recv.val.object_id) else return v.int_instance(recv.object_id) end else if pname == "output_class_name" then var recv = args.first print recv.mtype return null else if pname == "native_class_name" then var recv = args.first var txt = recv.mtype.to_s return v.native_string_instance(txt) else if pname == "==" then # == is correclt redefined for instances return v.bool_instance(args[0] == args[1]) else if pname == "!=" then return v.bool_instance(args[0] != args[1]) else if pname == "is_same_type" then return v.bool_instance(args[0].mtype == args[1].mtype) else if pname == "is_same_instance" then return v.bool_instance(args[1] != null and args[0].eq_is(args[1])) else if pname == "exit" then exit(args[1].to_i) abort else if pname == "sys" then return v.mainobj else if cname == "Int" then var recvval = args[0].to_i if pname == "unary -" then return v.int_instance(-args[0].to_i) else if pname == "+" then return v.int_instance(args[0].to_i + args[1].to_i) else if pname == "-" then return v.int_instance(args[0].to_i - args[1].to_i) else if pname == "*" then return v.int_instance(args[0].to_i * args[1].to_i) else if pname == "%" then return v.int_instance(args[0].to_i % args[1].to_i) else if pname == "/" then return v.int_instance(args[0].to_i / args[1].to_i) else if pname == "<" then return v.bool_instance(args[0].to_i < args[1].to_i) else if pname == ">" then return v.bool_instance(args[0].to_i > args[1].to_i) else if pname == "<=" then return v.bool_instance(args[0].to_i <= args[1].to_i) else if pname == ">=" then return v.bool_instance(args[0].to_i >= args[1].to_i) else if pname == "<=>" then return v.int_instance(args[0].to_i <=> args[1].to_i) else if pname == "ascii" then return v.char_instance(args[0].to_i.ascii) else if pname == "to_f" then return v.float_instance(args[0].to_i.to_f) else if pname == "lshift" then return v.int_instance(args[0].to_i.lshift(args[1].to_i)) else if pname == "rshift" then return v.int_instance(args[0].to_i.rshift(args[1].to_i)) else if pname == "rand" then var res = recvval.rand return v.int_instance(res) else if pname == "bin_and" then return v.int_instance(args[0].to_i.bin_and(args[1].to_i)) else if pname == "bin_or" then return v.int_instance(args[0].to_i.bin_or(args[1].to_i)) else if pname == "bin_xor" then return v.int_instance(args[0].to_i.bin_xor(args[1].to_i)) else if pname == "native_int_to_s" then return v.native_string_instance(recvval.to_s) else if pname == "strerror_ext" then return v.native_string_instance(recvval.strerror) end else if cname == "Char" then var recv = args[0].val.as(Char) if pname == "ascii" then return v.int_instance(recv.ascii) else if pname == "successor" then return v.char_instance(recv.successor(args[1].to_i)) else if pname == "predecessor" then return v.char_instance(recv.predecessor(args[1].to_i)) else if pname == "<" then return v.bool_instance(recv < args[1].val.as(Char)) else if pname == ">" then return v.bool_instance(recv > args[1].val.as(Char)) else if pname == "<=" then return v.bool_instance(recv <= args[1].val.as(Char)) else if pname == ">=" then return v.bool_instance(recv >= args[1].val.as(Char)) else if pname == "<=>" then return v.int_instance(recv <=> args[1].val.as(Char)) end else if cname == "Float" then var recv = args[0].to_f if pname == "unary -" then return v.float_instance(-recv) else if pname == "+" then return v.float_instance(recv + args[1].to_f) else if pname == "-" then return v.float_instance(recv - args[1].to_f) else if pname == "*" then return v.float_instance(recv * args[1].to_f) else if pname == "/" then return v.float_instance(recv / args[1].to_f) else if pname == "<" then return v.bool_instance(recv < args[1].to_f) else if pname == ">" then return v.bool_instance(recv > args[1].to_f) else if pname == "<=" then return v.bool_instance(recv <= args[1].to_f) else if pname == ">=" then return v.bool_instance(recv >= args[1].to_f) else if pname == "to_i" then return v.int_instance(recv.to_i) else if pname == "cos" then return v.float_instance(args[0].to_f.cos) else if pname == "sin" then return v.float_instance(args[0].to_f.sin) else if pname == "tan" then return v.float_instance(args[0].to_f.tan) else if pname == "acos" then return v.float_instance(args[0].to_f.acos) else if pname == "asin" then return v.float_instance(args[0].to_f.asin) else if pname == "atan" then return v.float_instance(args[0].to_f.atan) else if pname == "sqrt" then return v.float_instance(args[0].to_f.sqrt) else if pname == "exp" then return v.float_instance(args[0].to_f.exp) else if pname == "log" then return v.float_instance(args[0].to_f.log) else if pname == "pow" then return v.float_instance(args[0].to_f.pow(args[1].to_f)) else if pname == "rand" then return v.float_instance(args[0].to_f.rand) else if pname == "abs" then return v.float_instance(args[0].to_f.abs) else if pname == "hypot_with" then return v.float_instance(args[0].to_f.hypot_with(args[1].to_f)) else if pname == "is_nan" then return v.bool_instance(args[0].to_f.is_nan) else if pname == "is_inf_extern" then return v.bool_instance(args[0].to_f.is_inf != 0) end else if cname == "NativeString" then if pname == "init" then return v.native_string_instance("!" * args[1].to_i) end var recvval = args.first.val.as(Buffer) if pname == "[]" then var arg1 = args[1].to_i if arg1 >= recvval.length or arg1 < 0 then debug("Illegal access on {recvval} for element {arg1}/{recvval.length}") end return v.char_instance(recvval.chars[arg1]) else if pname == "[]=" then var arg1 = args[1].to_i if arg1 >= recvval.length or arg1 < 0 then debug("Illegal access on {recvval} for element {arg1}/{recvval.length}") end recvval.chars[arg1] = args[2].val.as(Char) return null else if pname == "copy_to" then # sig= copy_to(dest: NativeString, length: Int, from: Int, to: Int) var destval = args[1].val.as(FlatBuffer) var lenval = args[2].to_i var fromval = args[3].to_i var toval = args[4].to_i if fromval < 0 then debug("Illegal access on {recvval} for element {fromval}/{recvval.length}") end if fromval + lenval >= recvval.length then debug("Illegal access on {recvval} for element {fromval}+{lenval}/{recvval.length}") end if toval < 0 then debug("Illegal access on {destval} for element {toval}/{destval.length}") end if toval + lenval >= destval.length then debug("Illegal access on {destval} for element {toval}+{lenval}/{destval.length}") end recvval.as(FlatBuffer).copy(fromval, lenval, destval, toval) return null else if pname == "atoi" then return v.int_instance(recvval.to_i) else if pname == "file_exists" then return v.bool_instance(recvval.to_s.file_exists) else if pname == "file_mkdir" then recvval.to_s.mkdir return null else if pname == "file_chdir" then recvval.to_s.chdir return null else if pname == "file_realpath" then return v.native_string_instance(recvval.to_s.realpath) else if pname == "get_environ" then var txt = recvval.to_s.environ return v.native_string_instance(txt) else if pname == "system" then var res = sys.system(recvval.to_s) return v.int_instance(res) else if pname == "atof" then return v.float_instance(recvval.to_f) end else if pname == "calloc_string" then return v.native_string_instance("!" * args[1].to_i) else if cname == "NativeArray" then if pname == "init" then var val = new Array[Instance].filled_with(v.null_instance, args[1].to_i) return new PrimitiveInstance[Array[Instance]](args[0].mtype, val) end var recvval = args.first.val.as(Array[Instance]) if pname == "[]" then if args[1].to_i >= recvval.length or args[1].to_i < 0 then debug("Illegal access on {recvval} for element {args[1].to_i}/{recvval.length}") end return recvval[args[1].to_i] else if pname == "[]=" then recvval[args[1].to_i] = args[2] return null else if pname == "length" then return v.int_instance(recvval.length) else if pname == "copy_to" then recvval.copy(0, args[2].to_i, args[1].val.as(Array[Instance]), 0) return null end else if cname == "NativeFile" then if pname == "native_stdout" then return new PrimitiveInstance[OStream](mpropdef.mclassdef.mclass.mclass_type, sys.stdout) else if pname == "native_stdin" then return new PrimitiveInstance[IStream](mpropdef.mclassdef.mclass.mclass_type, sys.stdin) else if pname == "native_stderr" then return new PrimitiveInstance[OStream](mpropdef.mclassdef.mclass.mclass_type, sys.stderr) else if pname == "io_open_read" then var a1 = args[1].val.as(Buffer) return new PrimitiveInstance[IStream](mpropdef.mclassdef.mclass.mclass_type, new IFStream.open(a1.to_s)) else if pname == "io_open_write" then var a1 = args[1].val.as(Buffer) return new PrimitiveInstance[OStream](mpropdef.mclassdef.mclass.mclass_type, new OFStream.open(a1.to_s)) end var recvval = args.first.val if pname == "io_write" then var a1 = args[1].val.as(Buffer) recvval.as(OStream).write(a1.substring(0, args[2].to_i).to_s) return args[2] else if pname == "io_read" then var str = recvval.as(IStream).read(args[2].to_i) var a1 = args[1].val.as(Buffer) new FlatBuffer.from(str).copy(0, str.length, a1.as(FlatBuffer), 0) return v.int_instance(str.length) else if pname == "io_close" then recvval.as(IOS).close return v.int_instance(0) else if pname == "address_is_null" then return v.false_instance end else if pname == "calloc_array" then var recvtype = args.first.mtype.as(MClassType) var mtype: MType mtype = recvtype.supertype_to(v.mainmodule, recvtype, v.mainmodule.get_primitive_class("ArrayCapable")) mtype = mtype.arguments.first var val = new Array[Instance].filled_with(v.null_instance, args[1].to_i) return new PrimitiveInstance[Array[Instance]](v.mainmodule.get_primitive_class("NativeArray").get_mtype([mtype]), val) else if pname == "native_argc" then return v.int_instance(v.arguments.length) else if pname == "native_argv" then var txt = v.arguments[args[1].to_i] return v.native_string_instance(txt) else if pname == "native_argc" then return v.int_instance(v.arguments.length) else if pname == "native_argv" then var txt = v.arguments[args[1].to_i] return v.native_string_instance(txt) else if pname == "get_time" then return v.int_instance(get_time) else if pname == "srand_from" then srand_from(args[1].to_i) return null else if pname == "atan2" then return v.float_instance(atan2(args[1].to_f, args[2].to_f)) else if pname == "pi" then return v.float_instance(pi) else if pname == "lexer_goto" then return v.int_instance(lexer_goto(args[1].to_i, args[2].to_i)) else if pname == "lexer_accept" then return v.int_instance(lexer_accept(args[1].to_i)) else if pname == "parser_goto" then return v.int_instance(parser_goto(args[1].to_i, args[2].to_i)) else if pname == "parser_action" then return v.int_instance(parser_action(args[1].to_i, args[2].to_i)) else if pname == "file_getcwd" then return v.native_string_instance(getcwd) else if pname == "errno" then return v.int_instance(sys.errno) else if pname == "address_is_null" then return v.false_instance end if mpropdef.is_intern then fatal(v, "NOT YET IMPLEMENTED intern {mpropdef}") else if mpropdef.is_extern then fatal(v, "NOT YET IMPLEMENTED extern {mpropdef}") else fatal(v, "NOT YET IMPLEMENTED {mpropdef}") end abort end end redef class AbstractArray[E] fun copy(start: Int, len: Int, dest: AbstractArray[E], new_start: Int) do self.copy_to(start, len, dest, new_start) end end redef class AAttrPropdef redef fun call(v, mpropdef, args) do var recv = args.first assert recv isa MutableInstance var attr = self.mpropdef.mproperty if mpropdef == mreadpropdef then assert args.length == 1 if not is_lazy or v.isset_attribute(attr, recv) then return v.read_attribute(attr, recv) return evaluate_expr(v, recv) else if mpropdef == mwritepropdef then assert args.length == 2 v.write_attribute(attr, recv, args[1]) return null else abort end end # Evaluate and set the default value of the attribute in `recv` private fun init_expr(v: NaiveInterpreter, recv: Instance) do if is_lazy then return var nexpr = self.n_expr if nexpr != null then evaluate_expr(v, recv) return end var mtype = self.mpropdef.static_mtype.as(not null) mtype = mtype.anchor_to(v.mainmodule, recv.mtype.as(MClassType)) if mtype isa MNullableType then v.write_attribute(self.mpropdef.mproperty, recv, v.null_instance) end end private fun evaluate_expr(v: NaiveInterpreter, recv: Instance): Instance do assert recv isa MutableInstance var nexpr = self.n_expr assert nexpr != null var f = new Frame(self, self.mpropdef.as(not null), [recv]) v.frames.unshift(f) var val = v.expr(nexpr) assert val != null v.frames.shift assert not v.is_escaping v.write_attribute(self.mpropdef.mproperty, recv, val) return val end end redef class AClassdef # Execute an implicit `mpropdef` associated with the current node. private fun call(v: NaiveInterpreter, mpropdef: MMethodDef, args: Array[Instance]): nullable Instance do var super_inits = self.super_inits if super_inits != null then var args_of_super = args if args.length > 1 then args_of_super = [args.first] for su in super_inits do v.send(su, args_of_super) end end var recv = args.first assert recv isa MutableInstance var i = 1 # Collect undefined attributes for npropdef in self.n_propdefs do if npropdef isa AAttrPropdef and not npropdef.noinit and npropdef.n_expr == null then v.write_attribute(npropdef.mpropdef.mproperty, recv, args[i]) i += 1 end end return null end end redef class AExpr # Evaluate the node as a possible expression. # Return a possible value # NOTE: Do not call this method directly, but use `v.expr` # This method is here to be implemented by subclasses. private fun expr(v: NaiveInterpreter): nullable Instance do fatal(v, "NOT YET IMPLEMENTED expr {class_name}") abort end # Evaluate the node as a statement. # NOTE: Do not call this method directly, but use `v.stmt` # This method is here to be implemented by subclasses (no need to return something). private fun stmt(v: NaiveInterpreter) do expr(v) end end redef class ABlockExpr redef fun expr(v) do var last = self.n_expr.last for e in self.n_expr do if e == last then break v.stmt(e) if v.is_escaping then return null end return last.expr(v) end redef fun stmt(v) do for e in self.n_expr do v.stmt(e) if v.is_escaping then return end end end redef class AVardeclExpr redef fun stmt(v) do var ne = self.n_expr if ne != null then var i = v.expr(ne) if i == null then return v.frame.map[self.variable.as(not null)] = i end end end redef class AVarExpr redef fun expr(v) do return v.frame.map[self.variable.as(not null)] end end redef class AVarAssignExpr redef fun expr(v) do var i = v.expr(self.n_value) if i == null then return null v.frame.map[self.variable.as(not null)] = i return i end end redef class AVarReassignExpr redef fun stmt(v) do var vari = v.frame.map[self.variable.as(not null)] var value = v.expr(self.n_value) if value == null then return var res = v.callsite(reassign_callsite, [vari, value]) assert res != null v.frame.map[self.variable.as(not null)] = res end end redef class ASelfExpr redef fun expr(v) do return v.frame.arguments.first end end redef class AContinueExpr redef fun stmt(v) do var ne = self.n_expr if ne != null then var i = v.expr(ne) if i == null then return v.escapevalue = i end v.continuemark = self.escapemark end end redef class ABreakExpr redef fun stmt(v) do var ne = self.n_expr if ne != null then var i = v.expr(ne) if i == null then return v.escapevalue = i end v.breakmark = self.escapemark end end redef class AReturnExpr redef fun stmt(v) do var ne = self.n_expr if ne != null then var i = v.expr(ne) if i == null then return v.escapevalue = i end v.returnmark = v.frame end end redef class AAbortExpr redef fun stmt(v) do fatal(v, "Aborted") exit(1) end end redef class AIfExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null if cond.is_true then return v.expr(self.n_then.as(not null)) else return v.expr(self.n_else.as(not null)) end end redef fun stmt(v) do var cond = v.expr(self.n_expr) if cond == null then return if cond.is_true then v.stmt(self.n_then) else v.stmt(self.n_else) end end end redef class AIfexprExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null if cond.is_true then return v.expr(self.n_then) else return v.expr(self.n_else) end end end redef class ADoExpr redef fun stmt(v) do v.stmt(self.n_block) v.is_break(self.escapemark) # Clear the break (if any) end end redef class AWhileExpr redef fun stmt(v) do loop var cond = v.expr(self.n_expr) if cond == null then return if not cond.is_true then return v.stmt(self.n_block) if v.is_break(self.escapemark) then return v.is_continue(self.escapemark) # Clear the break if v.is_escaping then return end end end redef class ALoopExpr redef fun stmt(v) do loop v.stmt(self.n_block) if v.is_break(self.escapemark) then return v.is_continue(self.escapemark) # Clear the break if v.is_escaping then return end end end redef class AForExpr redef fun stmt(v) do var col = v.expr(self.n_expr) if col == null then return if col.mtype isa MNullType then fatal(v, "Receiver is null") #self.debug("col {col}") var iter = v.callsite(method_iterator, [col]).as(not null) #self.debug("iter {iter}") loop var isok = v.callsite(method_is_ok, [iter]).as(not null) if not isok.is_true then return if self.variables.length == 1 then var item = v.callsite(method_item, [iter]).as(not null) #self.debug("item {item}") v.frame.map[self.variables.first] = item else if self.variables.length == 2 then var key = v.callsite(method_key, [iter]).as(not null) v.frame.map[self.variables[0]] = key var item = v.callsite(method_item, [iter]).as(not null) v.frame.map[self.variables[1]] = item else abort end v.stmt(self.n_block) if v.is_break(self.escapemark) then return v.is_continue(self.escapemark) # Clear the break if v.is_escaping then return v.callsite(method_next, [iter]) end end end redef class AAssertExpr redef fun stmt(v) do var cond = v.expr(self.n_expr) if cond == null then return if not cond.is_true then v.stmt(self.n_else) if v.is_escaping then return var nid = self.n_id if nid != null then fatal(v, "Assert '{nid.text}' failed") else fatal(v, "Assert failed") end exit(1) end end end redef class AOrExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null if cond.is_true then return cond return v.expr(self.n_expr2) end end redef class AImpliesExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null if not cond.is_true then return v.true_instance return v.expr(self.n_expr2) end end redef class AAndExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null if not cond.is_true then return cond return v.expr(self.n_expr2) end end redef class ANotExpr redef fun expr(v) do var cond = v.expr(self.n_expr) if cond == null then return null return v.bool_instance(not cond.is_true) end end redef class AOrElseExpr redef fun expr(v) do var i = v.expr(self.n_expr) if i == null then return null if i != v.null_instance then return i return v.expr(self.n_expr2) end end redef class AIntExpr redef fun expr(v) do return v.int_instance(self.value.as(not null)) end end redef class AFloatExpr redef fun expr(v) do return v.float_instance(self.value.as(not null)) end end redef class ACharExpr redef fun expr(v) do return v.char_instance(self.value.as(not null)) end end redef class AArrayExpr redef fun expr(v) do var val = new Array[Instance] for nexpr in self.n_exprs.n_exprs do var i = v.expr(nexpr) if i == null then return null val.add(i) end var mtype = v.unanchor_type(self.mtype.as(not null)).as(MClassType) var elttype = mtype.arguments.first return v.array_instance(val, elttype) end end redef class AStringFormExpr redef fun expr(v) do var txt = self.value.as(not null) var nat = v.native_string_instance(txt) var res = v.send(v.force_get_primitive_method("to_s", nat.mtype), [nat]).as(not null) return res end end redef class ASuperstringExpr redef fun expr(v) do var array = new Array[Instance] for nexpr in n_exprs do var i = v.expr(nexpr) if i == null then return null array.add(i) end var i = v.array_instance(array, v.mainmodule.get_primitive_class("Object").mclass_type) var res = v.send(v.force_get_primitive_method("to_s", i.mtype), [i]) assert res != null return res end end redef class ACrangeExpr redef fun expr(v) do var e1 = v.expr(self.n_expr) if e1 == null then return null var e2 = v.expr(self.n_expr2) if e2 == null then return null var mtype = v.unanchor_type(self.mtype.as(not null)) var res = new MutableInstance(mtype) v.init_instance(res) v.callsite(init_callsite, [res, e1, e2]) return res end end redef class AOrangeExpr redef fun expr(v) do var e1 = v.expr(self.n_expr) if e1 == null then return null var e2 = v.expr(self.n_expr2) if e2 == null then return null var mtype = v.unanchor_type(self.mtype.as(not null)) var res = new MutableInstance(mtype) v.init_instance(res) v.callsite(init_callsite, [res, e1, e2]) return res end end redef class ATrueExpr redef fun expr(v) do return v.bool_instance(true) end end redef class AFalseExpr redef fun expr(v) do return v.bool_instance(false) end end redef class ANullExpr redef fun expr(v) do return v.null_instance end end redef class AIsaExpr redef fun expr(v) do var i = v.expr(self.n_expr) if i == null then return null var mtype = v.unanchor_type(self.cast_type.as(not null)) return v.bool_instance(v.is_subtype(i.mtype, mtype)) end end redef class AAsCastExpr redef fun expr(v) do var i = v.expr(self.n_expr) if i == null then return null var mtype = self.mtype.as(not null) var amtype = v.unanchor_type(mtype) if not v.is_subtype(i.mtype, amtype) then fatal(v, "Cast failed. Expected `{amtype}`, got `{i.mtype}`") end return i end end redef class AAsNotnullExpr redef fun expr(v) do var i = v.expr(self.n_expr) if i == null then return null var mtype = v.unanchor_type(self.mtype.as(not null)) if i.mtype isa MNullType then fatal(v, "Cast failed") end return i end end redef class AParExpr redef fun expr(v) do return v.expr(self.n_expr) end end redef class AOnceExpr redef fun expr(v) do if v.onces.has_key(self) then return v.onces[self] else var res = v.expr(self.n_expr) if res == null then return null v.onces[self] = res return res end end end redef class ASendExpr redef fun expr(v) do var recv = v.expr(self.n_expr) if recv == null then return null var args = [recv] for a in self.raw_arguments do var i = v.expr(a) if i == null then return null args.add(i) end var res = v.callsite(callsite, args) return res end end redef class ASendReassignFormExpr redef fun stmt(v) do var recv = v.expr(self.n_expr) if recv == null then return var args = [recv] for a in self.raw_arguments do var i = v.expr(a) if i == null then return args.add(i) end var value = v.expr(self.n_value) if value == null then return var read = v.callsite(callsite, args) assert read != null var write = v.callsite(reassign_callsite, [read, value]) assert write != null args.add(write) v.callsite(write_callsite, args) end end redef class ASuperExpr redef fun expr(v) do var recv = v.frame.arguments.first var args = [recv] for a in self.n_args.n_exprs do var i = v.expr(a) if i == null then return null args.add(i) end var callsite = self.callsite if callsite != null then # Add additionnals arguments for the super init call if args.length == 1 then for i in [0..callsite.msignature.arity[ do args.add(v.frame.arguments[i+1]) end end # Super init call var res = v.callsite(callsite, args) return res end if args.length == 1 then args = v.frame.arguments end # stantard call-next-method var mpropdef = self.mpropdef mpropdef = mpropdef.lookup_next_definition(v.mainmodule, recv.mtype) var res = v.call_without_varargs(mpropdef, args) return res end end redef class ANewExpr redef fun expr(v) do var mtype = v.unanchor_type(self.mtype.as(not null)) var recv: Instance = new MutableInstance(mtype) v.init_instance(recv) var args = [recv] for a in self.n_args.n_exprs do var i = v.expr(a) if i == null then return null args.add(i) end var res2 = v.callsite(callsite, args) if res2 != null then #self.debug("got {res2} from {mproperty}. drop {recv}") return res2 end return recv end end redef class AAttrExpr redef fun expr(v) do var recv = v.expr(self.n_expr) if recv == null then return null if recv.mtype isa MNullType then fatal(v, "Receiver is null") var mproperty = self.mproperty.as(not null) return v.read_attribute(mproperty, recv) end end redef class AAttrAssignExpr redef fun stmt(v) do var recv = v.expr(self.n_expr) if recv == null then return if recv.mtype isa MNullType then fatal(v, "Receiver is null") var i = v.expr(self.n_value) if i == null then return var mproperty = self.mproperty.as(not null) v.write_attribute(mproperty, recv, i) end end redef class AAttrReassignExpr redef fun stmt(v) do var recv = v.expr(self.n_expr) if recv == null then return if recv.mtype isa MNullType then fatal(v, "Receiver is null") var value = v.expr(self.n_value) if value == null then return var mproperty = self.mproperty.as(not null) var attr = v.read_attribute(mproperty, recv) var res = v.callsite(reassign_callsite, [attr, value]) assert res != null v.write_attribute(mproperty, recv, res) end end redef class AIssetAttrExpr redef fun expr(v) do var recv = v.expr(self.n_expr) if recv == null then return null if recv.mtype isa MNullType then fatal(v, "Receiver is null") var mproperty = self.mproperty.as(not null) return v.bool_instance(v.isset_attribute(mproperty, recv)) end end redef class ADebugTypeExpr redef fun stmt(v) do # do nothing end end