# This file is part of NIT ( http://www.nitlanguage.org ). # # Copyright 2004-2008 Jean Privat # Copyright 2006-2008 Floréal Morandat # # This file is free software, which comes along with NIT. This software is # distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. You can modify it is you want, provided this header # is kept unaltered, and a notification of the changes is added. # You are allowed to redistribute it and sell it, alone or is a part of # another product. # Basic manipulations of strings of characters module string import math intrude import collection # FIXME should be collection::array `{ #include `} ############################################################################### # String # ############################################################################### # Common subclass for String and Buffer abstract class AbstractString super AbstractArrayRead[Char] readable private var _items: NativeString fun chars: StringCharView is abstract # Access a character at `index` in the string. # # assert "abcd"[2] == 'c' redef fun [](index) do return _items[index] # Create a substring. # # assert "abcd".substring(1, 2) == "bc" # assert "abcd".substring(-1, 2) == "a" # assert "abcd".substring(1, 0) == "" # assert "abcd".substring(2, 5) == "cd" # # A `from` index < 0 will be replaced by 0. # Unless a `count` value is > 0 at the same time. # In this case, `from += count` and `count -= from`. fun substring(from: Int, count: Int): String do assert count >= 0 count += from if from < 0 then from = 0 if count > length then count = length if from < count then var r = new Buffer.with_capacity(count - from) while from < count do r.chars.push(_items[from]) from += 1 end return r.to_s else return "" end end # Create a substring from `self` beginning at the `from` position # # assert "abcd".substring_from(1) == "bcd" # assert "abcd".substring_from(-1) == "abcd" # assert "abcd".substring_from(2) == "cd" # # As with substring, a `from` index < 0 will be replaced by 0 fun substring_from(from: Int): String do assert from < length return substring(from, length - from) end # Does self have a substring `str` starting from position `pos`? # # assert "abcd".has_substring("bc",1) == true # assert "abcd".has_substring("bc",2) == false fun has_substring(str: String, pos: Int): Bool do var itsindex = str.length - 1 var myindex = pos + itsindex var myitems = _items var itsitems = str._items if myindex > length or itsindex > myindex then return false var its_index_from = str._index_from itsindex += its_index_from while itsindex >= its_index_from do if myitems[myindex] != itsitems[itsindex] then return false myindex -= 1 itsindex -= 1 end return true end # Is this string prefixed by `prefix`? # # assert "abcd".has_prefix("ab") == true # assert "abcbc".has_prefix("bc") == false # assert "ab".has_prefix("abcd") == false fun has_prefix(prefix: String): Bool do return has_substring(prefix,0) # Is this string suffixed by `suffix`? # # assert "abcd".has_suffix("abc") == false # assert "abcd".has_suffix("bcd") == true fun has_suffix(suffix: String): Bool do return has_substring(suffix, length - suffix.length) # If `self` contains only digits, return the corresponding integer # # assert "123".to_i == 123 # assert "-1".to_i == -1 fun to_i: Int do # Shortcut return to_s.to_cstring.atoi end # If `self` contains a float, return the corresponding float # # assert "123".to_f == 123.0 # assert "-1".to_f == -1.0 # assert "-1.2e-3".to_f == -0.0012 fun to_f: Float do # Shortcut return to_s.to_cstring.atof end # If `self` contains only digits and alpha <= 'f', return the corresponding integer. fun to_hex: Int do return a_to(16) # If `self` contains only digits and letters, return the corresponding integer in a given base # # assert "120".a_to(3) == 15 fun a_to(base: Int) : Int do var i = 0 var neg = false for c in self.chars do var v = c.to_i if v > base then if neg then return -i else return i end else if v < 0 then neg = true else i = i * base + v end end if neg then return -i else return i end end # Returns `true` if the string contains only Numeric values (and one "," or one "." character) # # assert "123".is_numeric == true # assert "1.2".is_numeric == true # assert "1,2".is_numeric == true # assert "1..2".is_numeric == false fun is_numeric: Bool do var has_point_or_comma = false for i in self.chars do if not i.is_numeric then if (i == '.' or i == ',') and not has_point_or_comma then has_point_or_comma = true else return false end end end return true end # A upper case version of `self` # # assert "Hello World!".to_upper == "HELLO WORLD!" fun to_upper: String do var s = new Buffer.with_capacity(length) for i in self.chars do s.add(i.to_upper) return s.to_s end # A lower case version of `self` # # assert "Hello World!".to_lower == "hello world!" fun to_lower : String do var s = new Buffer.with_capacity(length) for i in self.chars do s.add(i.to_lower) return s.to_s end # Trims trailing and preceding white spaces # A whitespace is defined as any character which ascii value is less than or equal to 32 # # assert " Hello World ! ".trim == "Hello World !" # assert "\na\nb\tc\t".trim == "a\nb\tc" fun trim: String do if self.length == 0 then return self.to_s # find position of the first non white space char (ascii < 32) from the start of the string var start_pos = 0 while self.chars[start_pos].ascii <= 32 do start_pos += 1 if start_pos == length then return "" end # find position of the first non white space char from the end of the string var end_pos = length - 1 while self.chars[end_pos].ascii <= 32 do end_pos -= 1 if end_pos == start_pos then return self.chars[start_pos].to_s end return self.substring(start_pos, end_pos - start_pos + 1) end redef fun output do var i = 0 while i < length do _items[i].output i += 1 end end # Mangle a string to be a unique string only made of alphanumeric characters fun to_cmangle: String do var res = new Buffer var underscore = false for c in self.chars do if (c >= 'a' and c <= 'z') or (c >='A' and c <= 'Z') then res.add(c) underscore = false continue end if underscore then res.append('_'.ascii.to_s) res.add('d') end if c >= '0' and c <= '9' then res.add(c) underscore = false else if c == '_' then res.add(c) underscore = true else res.add('_') res.append(c.ascii.to_s) res.add('d') underscore = false end end return res.to_s end # Escape " \ ' and non printable characters using the rules of literal C strings and characters # # assert "abAB12<>&".escape_to_c == "abAB12<>&" # assert "\n\"'\\".escape_to_c == "\\n\\\"\\'\\\\" fun escape_to_c: String do var b = new Buffer for c in self.chars do if c == '\n' then b.append("\\n") else if c == '\0' then b.append("\\0") else if c == '"' then b.append("\\\"") else if c == '\'' then b.append("\\\'") else if c == '\\' then b.append("\\\\") else if c.ascii < 32 then b.append("\\{c.ascii.to_base(8, false)}") else b.add(c) end end return b.to_s end # Escape additionnal characters # The result might no be legal in C but be used in other languages # # assert "ab|\{\}".escape_more_to_c("|\{\}") == "ab\\|\\\{\\\}" fun escape_more_to_c(chars: String): String do var b = new Buffer for c in escape_to_c do if chars.has(c) then b.add('\\') end b.add(c) end return b.to_s end # Escape to c plus braces # # assert "\n\"'\\\{\}".escape_to_nit == "\\n\\\"\\'\\\\\\\{\\\}" fun escape_to_nit: String do return escape_more_to_c("\{\}") # Return a string where Nit escape sequences are transformed. # # Example: # var s = "\\n" # assert s.length == 2 # var u = s.unescape_nit # assert u.length == 1 # assert u[0].ascii == 10 # (the ASCII value of the "new line" character) fun unescape_nit: String do var res = new Buffer.with_capacity(self.length) var was_slash = false for c in self do if not was_slash then if c == '\\' then was_slash = true else res.add(c) end continue end was_slash = false if c == 'n' then res.add('\n') else if c == 'r' then res.add('\r') else if c == 't' then res.add('\t') else if c == '0' then res.add('\0') else res.add(c) end end return res.to_s end end # Abstract class for the SequenceRead compatible # views on String and Buffer objects abstract class StringCharView super SequenceRead[Char] type SELFTYPE: AbstractString private var target: SELFTYPE private init(tgt: SELFTYPE) do target = tgt end redef fun is_empty do return target.is_empty redef fun length do return target.length redef fun has(c: Char): Bool do for i in self do if i == c then return true end return false end end # View on Buffer objects, extends Sequence # for mutation operations abstract class BufferCharView super StringCharView super Sequence[Char] redef type SELFTYPE: Buffer end # Immutable strings of characters. class String super Comparable super AbstractString super StringCapable redef type OTHER: String # Index in _items of the start of the string readable var _index_from: Int # Indes in _items of the last item of the string readable var _index_to: Int redef var chars: StringCharView = new FlatStringCharView(self) ################################################ # AbstractString specific methods # ################################################ redef fun [](index) do assert index >= 0 # Check that the index (+ index_from) is not larger than indexTo # In other terms, if the index is valid assert (index + _index_from) <= _index_to return _items[index + _index_from] end redef fun substring(from: Int, count: Int): String do assert count >= 0 if from < 0 then count += from if count < 0 then count = 0 from = 0 end var realFrom = _index_from + from if (realFrom + count) > _index_to then return new String.with_infos(_items, _index_to - realFrom + 1, realFrom, _index_to) if count == 0 then return "" var to = realFrom + count - 1 return new String.with_infos(_items, to - realFrom + 1, realFrom, to) end redef fun substring_from(from: Int): String do if from > _length then return "" if from < 0 then from = 0 return substring(from, _length) end redef fun has_substring(str: String, pos: Int): Bool do var itsindex = str._length - 1 var myindex = pos + itsindex var myitems = _items var itsitems = str._items if myindex > _length or itsindex > myindex then return false var itsindexfrom = str.index_from itsindex += itsindexfrom myindex += index_from while itsindex >= itsindexfrom do if myitems[myindex] != itsitems[itsindex] then return false myindex -= 1 itsindex -= 1 end return true end redef fun to_upper: String do var outstr = calloc_string(self._length + 1) var out_index = 0 var myitems = self._items var index_from = self._index_from var max = self._index_to while index_from <= max do outstr[out_index] = myitems[index_from].to_upper out_index += 1 index_from += 1 end outstr[self.length] = '\0' return outstr.to_s_with_length(self._length) end redef fun to_lower : String do var outstr = calloc_string(self._length + 1) var out_index = 0 var myitems = self._items var index_from = self._index_from var max = self._index_to while index_from <= max do outstr[out_index] = myitems[index_from].to_lower out_index += 1 index_from += 1 end outstr[self.length] = '\0' return outstr.to_s_with_length(self._length) end redef fun trim: String do if self._length == 0 then return self # find position of the first non white space char (ascii < 32) from the start of the string var start_pos = self._index_from while _items[start_pos].ascii <= 32 do start_pos += 1 if start_pos == _index_to + 1 then return "" end # find position of the first non white space char from the end of the string var end_pos = _index_to while _items[end_pos].ascii <= 32 do end_pos -= 1 if end_pos == start_pos then return _items[start_pos].to_s end start_pos -= index_from end_pos -= index_from return self.substring(start_pos, end_pos - start_pos + 1) end redef fun output do var i = self._index_from var imax = self._index_to while i <= imax do _items[i].output i += 1 end end ################################################## # String Specific Methods # ################################################## private init with_infos(items: NativeString, len: Int, from: Int, to: Int) do self._items = items _length = len _index_from = from _index_to = to end # Return a null terminated char * fun to_cstring: NativeString do if _index_from > 0 or _index_to != items.cstring_length - 1 then var newItems = calloc_string(_length + 1) self.items.copy_to(newItems, _length, _index_from, 0) newItems[length] = '\0' return newItems end return _items end redef fun ==(other) do if not other isa String then return false if self.object_id == other.object_id then return true var my_length = _length if other._length != my_length then return false var my_index = _index_from var its_index = other._index_from var last_iteration = my_index + my_length var itsitems = other._items var myitems = self._items while my_index < last_iteration do if myitems[my_index] != itsitems[its_index] then return false my_index += 1 its_index += 1 end return true end # The comparison between two strings is done on a lexicographical basis # # assert ("aa" < "b") == true redef fun <(other) do if self.object_id == other.object_id then return false var my_curr_char : Char var its_curr_char : Char var curr_id_self = self._index_from var curr_id_other = other._index_from var my_items = self._items var its_items = other._items var my_length = self._length var its_length = other._length var max_iterations = curr_id_self + my_length while curr_id_self < max_iterations do my_curr_char = my_items[curr_id_self] its_curr_char = its_items[curr_id_other] if my_curr_char != its_curr_char then if my_curr_char < its_curr_char then return true return false end curr_id_self += 1 curr_id_other += 1 end return my_length < its_length end # The concatenation of `self` with `s` # # assert "hello " + "world!" == "hello world!" fun +(s: String): String do var my_length = self._length var its_length = s._length var total_length = my_length + its_length var target_string = calloc_string(my_length + its_length + 1) self._items.copy_to(target_string, my_length, _index_from, 0) s._items.copy_to(target_string, its_length, s._index_from, my_length) target_string[total_length] = '\0' return target_string.to_s_with_length(total_length) end # `i` repetitions of `self` # # assert "abc"*3 == "abcabcabc" # assert "abc"*1 == "abc" # assert "abc"*0 == "" fun *(i: Int): String do assert i >= 0 var my_length = self._length var final_length = my_length * i var my_items = self._items var target_string = calloc_string((final_length) + 1) target_string[final_length] = '\0' var current_last = 0 for iteration in [1 .. i] do my_items.copy_to(target_string, my_length, 0, current_last) current_last += my_length end return target_string.to_s_with_length(final_length) end redef fun to_s do return self redef fun hash do # djb2 hash algorythm var h = 5381 var i = _length - 1 var myitems = _items var strStart = _index_from i += strStart while i >= strStart do h = (h * 32) + h + self._items[i].ascii i -= 1 end return h end end private class FlatStringIterator super IndexedIterator[Char] var target: String var target_items: NativeString var curr_pos: Int init with_pos(tgt: String, pos: Int) do target = tgt target_items = tgt.items curr_pos = pos + target.index_from end redef fun is_ok do return curr_pos <= target.index_to redef fun item do return target_items[curr_pos] redef fun next do curr_pos += 1 redef fun index do return curr_pos - target.index_from end private class FlatStringCharView super StringCharView redef type SELFTYPE: String redef fun [](index) do # Check that the index (+ index_from) is not larger than indexTo # In other terms, if the index is valid assert index >= 0 assert (index + target._index_from) <= target._index_to return target._items[index + target._index_from] end redef fun iterator: IndexedIterator[Char] do return new FlatStringIterator.with_pos(target, 0) end # Mutable strings of characters. class Buffer super AbstractString super Comparable super StringCapable super AbstractArray[Char] redef type OTHER: String redef var chars: BufferCharView = new FlatBufferCharView(self) redef fun []=(index, item) do if index == length then add(item) return end assert index >= 0 and index < length _items[index] = item end redef fun add(c) do if _capacity <= length then enlarge(length + 5) _items[length] = c _length += 1 end redef fun enlarge(cap) do var c = _capacity if cap <= c then return while c <= cap do c = c * 2 + 2 var a = calloc_string(c+1) _items.copy_to(a, length, 0, 0) _items = a _capacity = c end redef fun append(s) do if s isa String then var sl = s.length if _capacity < _length + sl then enlarge(_length + sl) s.items.copy_to(_items, sl, s._index_from, _length) _length += sl else super end end redef fun to_s: String do var l = length var a = calloc_string(l+1) _items.copy_to(a, l, 0, 0) # Ensure the afterlast byte is '\0' to nul-terminated char * a[length] = '\0' return a.to_s_with_length(length) end redef fun <(s) do var i = 0 var l1 = length var l2 = s.length while i < l1 and i < l2 do var c1 = self.chars[i].ascii var c2 = s.chars[i].ascii if c1 < c2 then return true else if c2 < c1 then return false end i += 1 end if l1 < l2 then return true else return false end end # Create a new empty string. init do with_capacity(5) end init from(s: String) do _capacity = s.length + 1 _length = s.length _items = calloc_string(_capacity) s.items.copy_to(_items, _length, s._index_from, 0) end # Create a new empty string with a given capacity. init with_capacity(cap: Int) do assert cap >= 0 # _items = new NativeString.calloc(cap) _items = calloc_string(cap+1) _capacity = cap _length = 0 end redef fun ==(o) do if not o isa Buffer then return false var l = length if o.length != l then return false var i = 0 var it = _items var oit = o._items while i < l do if it[i] != oit[i] then return false i += 1 end return true end readable private var _capacity: Int end private class FlatBufferCharView super BufferCharView super StringCapable redef type SELFTYPE: Buffer redef fun [](index) do return target._items[index] redef fun []=(index, item) do assert index >= 0 and index <= length if index == length then add(item) return end target._items[index] = item end redef fun push(c) do target.add(c) end redef fun add(c) do target.add(c) end fun enlarge(cap: Int) do target.enlarge(cap) end redef fun append(s) do var my_items = target.items var s_length = s.length if target.capacity < s.length then enlarge(s_length + target.length) end redef fun iterator: IndexedIterator[Char] do return new FlatBufferIterator.with_pos(target, 0) end private class FlatBufferIterator super IndexedIterator[Char] var target: Buffer var target_items: NativeString var curr_pos: Int init with_pos(tgt: Buffer, pos: Int) do target = tgt target_items = tgt.items curr_pos = pos end redef fun index do return curr_pos redef fun is_ok do return curr_pos < target.length redef fun item do return target_items[curr_pos] redef fun next do curr_pos += 1 end ############################################################################### # Refinement # ############################################################################### redef class Object # User readable representation of `self`. fun to_s: String do return inspect # The class name of the object in NativeString format. private fun native_class_name: NativeString is intern # The class name of the object. # # assert 5.class_name == "Int" fun class_name: String do return native_class_name.to_s # Developer readable representation of `self`. # Usually, it uses the form "" fun inspect: String do return "<{inspect_head}>" end # Return "CLASSNAME:#OBJECTID". # This function is mainly used with the redefinition of the inspect method protected fun inspect_head: String do return "{class_name}:#{object_id.to_hex}" end protected fun args: Sequence[String] do return sys.args end end redef class Bool # assert true.to_s == "true" # assert false.to_s == "false" redef fun to_s do if self then return once "true" else return once "false" end end end redef class Int # Fill `s` with the digits in base `base` of `self` (and with the '-' sign if 'signed' and negative). # assume < to_c max const of char fun fill_buffer(s: Buffer, base: Int, signed: Bool) do var n: Int # Sign if self < 0 then n = - self s.chars[0] = '-' else if self == 0 then s.chars[0] = '0' return else n = self end # Fill digits var pos = digit_count(base) - 1 while pos >= 0 and n > 0 do s.chars[pos] = (n % base).to_c n = n / base # / pos -= 1 end end # C function to convert an nit Int to a NativeString (char*) private fun native_int_to_s(len: Int): NativeString is extern "native_int_to_s" # return displayable int in base 10 and signed # # assert 1.to_s == "1" # assert (-123).to_s == "-123" redef fun to_s do var len = digit_count(10) return native_int_to_s(len).to_s_with_length(len) end # return displayable int in hexadecimal (unsigned (not now)) fun to_hex: String do return to_base(16,false) # return displayable int in base base and signed fun to_base(base: Int, signed: Bool): String do var l = digit_count(base) var s = new Buffer.from(" " * l) fill_buffer(s, base, signed) return s.to_s end end redef class Float # Pretty print self, print needoed decimals up to a max of 3. redef fun to_s do var str = to_precision( 3 ) if is_inf != 0 or is_nan then return str var len = str.length for i in [0..len-1] do var j = len-1-i var c = str.chars[j] if c == '0' then continue else if c == '.' then return str.substring( 0, j+2 ) else return str.substring( 0, j+1 ) end end return str end # `self` representation with `nb` digits after the '.'. fun to_precision(nb: Int): String do if is_nan then return "nan" var isinf = self.is_inf if isinf == 1 then return "inf" else if isinf == -1 then return "-inf" end if nb == 0 then return self.to_i.to_s var f = self for i in [0..nb[ do f = f * 10.0 if self > 0.0 then f = f + 0.5 else f = f - 0.5 end var i = f.to_i if i == 0 then return "0.0" var s = i.to_s var sl = s.length if sl > nb then var p1 = s.substring(0, s.length-nb) var p2 = s.substring(s.length-nb, nb) return p1 + "." + p2 else return "0." + ("0"*(nb-sl)) + s end end fun to_precision_native(nb: Int): String import NativeString.to_s `{ int size; char *str; size = snprintf(NULL, 0, "%.*f", (int)nb, recv); str = malloc(size + 1); sprintf(str, "%.*f", (int)nb, recv ); return NativeString_to_s( str ); `} end redef class Char # assert 'x'.to_s == "x" redef fun to_s do var s = new Buffer.with_capacity(1) s.chars[0] = self return s.to_s end # Returns true if the char is a numerical digit fun is_numeric: Bool do if self >= '0' and self <= '9' then return true end return false end # Returns true if the char is an alpha digit fun is_alpha: Bool do if (self >= 'a' and self <= 'z') or (self >= 'A' and self <= 'Z') then return true return false end # Returns true if the char is an alpha or a numeric digit fun is_alphanumeric: Bool do if self.is_numeric or self.is_alpha then return true return false end end redef class Collection[E] # Concatenate elements. redef fun to_s do var s = new Buffer for e in self do if e != null then s.append(e.to_s) return s.to_s end # Concatenate and separate each elements with `sep`. # # assert [1, 2, 3].join(":") == "1:2:3" # assert [1..3].join(":") == "1:2:3" fun join(sep: String): String do if is_empty then return "" var s = new Buffer # Result # Concat first item var i = iterator var e = i.item if e != null then s.append(e.to_s) # Concat other items i.next while i.is_ok do s.append(sep) e = i.item if e != null then s.append(e.to_s) i.next end return s.to_s end end redef class Array[E] # Fast implementation redef fun to_s do var s = new Buffer var i = 0 var l = length while i < l do var e = self[i] if e != null then s.append(e.to_s) i += 1 end return s.to_s end end redef class Map[K,V] # Concatenate couple of 'key value'. # key and value are separated by `couple_sep`. # each couple is separated each couple with `sep`. # # var m = new ArrayMap[Int, String] # m[1] = "one" # m[10] = "ten" # assert m.join("; ", "=") == "1=one; 10=ten" fun join(sep: String, couple_sep: String): String do if is_empty then return "" var s = new Buffer # Result # Concat first item var i = iterator var k = i.key var e = i.item s.append("{k}{couple_sep}{e or else ""}") # Concat other items i.next while i.is_ok do s.append(sep) k = i.key e = i.item s.append("{k}{couple_sep}{e or else ""}") i.next end return s.to_s end end ############################################################################### # Native classes # ############################################################################### # Native strings are simple C char * class NativeString super StringCapable fun [](index: Int): Char is intern fun []=(index: Int, item: Char) is intern fun copy_to(dest: NativeString, length: Int, from: Int, to: Int) is intern # Position of the first nul character. fun cstring_length: Int do var l = 0 while self[l] != '\0' do l += 1 return l end fun atoi: Int is intern fun atof: Float is extern "atof" redef fun to_s do return to_s_with_length(cstring_length) end fun to_s_with_length(length: Int): String do assert length >= 0 return new String.with_infos(self, length, 0, length - 1) end fun to_s_with_copy: String do var length = cstring_length var new_self = calloc_string(length + 1) copy_to(new_self, length, 0, 0) return new String.with_infos(new_self, length, 0, length - 1) end end # StringCapable objects can create native strings interface StringCapable protected fun calloc_string(size: Int): NativeString is intern end redef class Sys var _args_cache: nullable Sequence[String] redef fun args: Sequence[String] do if _args_cache == null then init_args return _args_cache.as(not null) end # The name of the program as given by the OS fun program_name: String do return native_argv(0).to_s end # Initialize `args` with the contents of `native_argc` and `native_argv`. private fun init_args do var argc = native_argc var args = new Array[String].with_capacity(0) var i = 1 while i < argc do args[i-1] = native_argv(i).to_s i += 1 end _args_cache = args end # First argument of the main C function. private fun native_argc: Int is intern # Second argument of the main C function. private fun native_argv(i: Int): NativeString is intern end # Comparator that efficienlty use `to_s` to compare things # # The comparaison call `to_s` on object and use the result to order things. # # var a = [1, 2, 3, 10, 20] # (new CachedAlphaComparator).sort(a) # assert a == [1, 10, 2, 20, 3] # # Internally the result of `to_s` is cached in a HashMap to counter # uneficient implementation of `to_s`. # # Note: it caching is not usefull, see `alpha_comparator` class CachedAlphaComparator super Comparator[Object] private var cache = new HashMap[Object, String] private fun do_to_s(a: Object): String do if cache.has_key(a) then return cache[a] var res = a.to_s cache[a] = res return res end redef fun compare(a, b) do return do_to_s(a) <=> do_to_s(b) end end # see `alpha_comparator` private class AlphaComparator super Comparator[Object] redef fun compare(a, b) do return a.to_s <=> b.to_s end # Stateless comparator that naively use `to_s` to compare things. # # Note: the result of `to_s` is not cached, thus can be invoked a lot # on a single instace. See `CachedAlphaComparator` as an alternative. # # var a = [1, 2, 3, 10, 20] # alpha_comparator.sort(a) # assert a == [1, 10, 2, 20, 3] fun alpha_comparator: Comparator[Object] do return once new AlphaComparator