# This file is part of NIT ( http://www.nitlanguage.org ). # # This file is free software, which comes along with NIT. This software is # distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. You can modify it is you want, provided this header # is kept unaltered, and a notification of the changes is added. # You are allowed to redistribute it and sell it, alone or is a part of # another product. # Abstract class for manipulation of sequences of characters module abstract_text import native import math import collection intrude import collection::array in "C" `{ #include #include #include `} # High-level abstraction for all text representations abstract class Text super Comparable redef type OTHER: Text # Type of self (used for factorization of several methods, ex : substring_from, empty...) type SELFTYPE: Text # Gets a view on the chars of the Text object # # assert "hello".chars.to_a == ['h', 'e', 'l', 'l', 'o'] fun chars: SequenceRead[Char] is abstract # Gets a view on the bytes of the Text object # # assert "hello".bytes.to_a == [104u8, 101u8, 108u8, 108u8, 111u8] fun bytes: SequenceRead[Byte] is abstract # Number of characters contained in self. # # assert "12345".length == 5 # assert "".length == 0 # assert "あいうえお".length == 5 fun length: Int is abstract # Number of bytes in `self` # # assert "12345".bytelen == 5 # assert "あいうえお".bytelen == 15 fun bytelen: Int is abstract # Create a substring. # # assert "abcd".substring(1, 2) == "bc" # assert "abcd".substring(-1, 2) == "a" # assert "abcd".substring(1, 0) == "" # assert "abcd".substring(2, 5) == "cd" # assert "あいうえお".substring(1,3) == "いうえ" # # A `from` index < 0 will be replaced by 0. # Unless a `count` value is > 0 at the same time. # In this case, `from += count` and `count -= from`. fun substring(from: Int, count: Int): SELFTYPE is abstract # Iterates on the substrings of self if any private fun substrings: Iterator[FlatText] is abstract # Is the current Text empty (== "") # # assert "".is_empty # assert not "foo".is_empty fun is_empty: Bool do return self.length == 0 # Returns an empty Text of the right type # # This method is used internally to get the right # implementation of an empty string. protected fun empty: SELFTYPE is abstract # Gets the first char of the Text # # DEPRECATED : Use self.chars.first instead fun first: Char do return self.chars[0] # Access a character at `index` in the string. # # assert "abcd"[2] == 'c' # # DEPRECATED : Use self.chars.[] instead fun [](index: Int): Char do return self.chars[index] # Gets the index of the first occurence of 'c' # # Returns -1 if not found # # DEPRECATED : Use self.chars.index_of instead fun index_of(c: Char): Int do return index_of_from(c, 0) end # Gets the last char of self # # DEPRECATED : Use self.chars.last instead fun last: Char do return self.chars[length-1] # Gets the index of the first occurence of ´c´ starting from ´pos´ # # Returns -1 if not found # # DEPRECATED : Use self.chars.index_of_from instead fun index_of_from(c: Char, pos: Int): Int do var iter = self.chars.iterator_from(pos) while iter.is_ok do if iter.item == c then return iter.index iter.next end return -1 end # Gets the last index of char ´c´ # # Returns -1 if not found # # DEPRECATED : Use self.chars.last_index_of instead fun last_index_of(c: Char): Int do return last_index_of_from(c, length - 1) end # Return a null terminated char * fun to_cstring: NativeString is abstract # The index of the last occurrence of an element starting from pos (in reverse order). # # var s = "/etc/bin/test/test.nit" # assert s.last_index_of_from('/', s.length-1) == 13 # assert s.last_index_of_from('/', 12) == 8 # # Returns -1 if not found # # DEPRECATED : Use self.chars.last_index_of_from instead fun last_index_of_from(item: Char, pos: Int): Int do return chars.last_index_of_from(item, pos) # Gets an iterator on the chars of self # # DEPRECATED : Use self.chars.iterator instead fun iterator: Iterator[Char] do return self.chars.iterator end # Gets an Array containing the chars of self # # DEPRECATED : Use self.chars.to_a instead fun to_a: Array[Char] do return chars.to_a # Create a substring from `self` beginning at the `from` position # # assert "abcd".substring_from(1) == "bcd" # assert "abcd".substring_from(-1) == "abcd" # assert "abcd".substring_from(2) == "cd" # # As with substring, a `from` index < 0 will be replaced by 0 fun substring_from(from: Int): SELFTYPE do if from >= self.length then return empty if from < 0 then from = 0 return substring(from, length - from) end # Does self have a substring `str` starting from position `pos`? # # assert "abcd".has_substring("bc",1) == true # assert "abcd".has_substring("bc",2) == false # # Returns true iff all characters of `str` are presents # at the expected index in `self.` # The first character of `str` being at `pos`, the second # character being at `pos+1` and so on... # # This means that all characters of `str` need to be inside `self`. # # assert "abcd".has_substring("xab", -1) == false # assert "abcd".has_substring("cdx", 2) == false # # And that the empty string is always a valid substring. # # assert "abcd".has_substring("", 2) == true # assert "abcd".has_substring("", 200) == true fun has_substring(str: String, pos: Int): Bool do if str.is_empty then return true if pos < 0 or pos + str.length > length then return false var myiter = self.chars.iterator_from(pos) var itsiter = str.chars.iterator while myiter.is_ok and itsiter.is_ok do if myiter.item != itsiter.item then return false myiter.next itsiter.next end if itsiter.is_ok then return false return true end # Is this string prefixed by `prefix`? # # assert "abcd".has_prefix("ab") == true # assert "abcbc".has_prefix("bc") == false # assert "ab".has_prefix("abcd") == false fun has_prefix(prefix: String): Bool do return has_substring(prefix,0) # Is this string suffixed by `suffix`? # # assert "abcd".has_suffix("abc") == false # assert "abcd".has_suffix("bcd") == true fun has_suffix(suffix: String): Bool do return has_substring(suffix, length - suffix.length) # Returns `self` as the corresponding integer # # assert "123".to_i == 123 # assert "-1".to_i == -1 # assert "0x64".to_i == 100 # assert "0b1100_0011".to_i== 195 # assert "--12".to_i == 12 # # REQUIRE: `self`.`is_int` fun to_i: Int is abstract # If `self` contains a float, return the corresponding float # # assert "123".to_f == 123.0 # assert "-1".to_f == -1.0 # assert "-1.2e-3".to_f == -0.0012 fun to_f: Float do # Shortcut return to_s.to_cstring.atof end # If `self` contains only digits and alpha <= 'f', return the corresponding integer. # # assert "ff".to_hex == 255 fun to_hex(pos, ln: nullable Int): Int do var res = 0 if pos == null then pos = 0 if ln == null then ln = length - pos var max = pos + ln for i in [pos .. max[ do res <<= 4 res += self[i].from_hex end return res end # If `self` contains only digits <= '7', return the corresponding integer. # # assert "714".to_oct == 460 fun to_oct: Int do return a_to(8) # If `self` contains only '0' et '1', return the corresponding integer. # # assert "101101".to_bin == 45 fun to_bin: Int do return a_to(2) # If `self` contains only digits '0' .. '9', return the corresponding integer. # # assert "108".to_dec == 108 fun to_dec: Int do return a_to(10) # If `self` contains only digits and letters, return the corresponding integer in a given base # # assert "120".a_to(3) == 15 fun a_to(base: Int) : Int do var i = 0 var neg = false for j in [0..length[ do var c = chars[j] var v = c.to_i if v > base then if neg then return -i else return i end else if v < 0 then neg = true else i = i * base + v end end if neg then return -i else return i end end # Is this string in a valid numeric format compatible with `to_f`? # # assert "123".is_numeric == true # assert "1.2".is_numeric == true # assert "-1.2".is_numeric == true # assert "-1.23e-2".is_numeric == true # assert "1..2".is_numeric == false # assert "".is_numeric == false fun is_numeric: Bool do var has_point = false var e_index = -1 for i in [0..length[ do var c = chars[i] if not c.is_numeric then if c == '.' and not has_point then has_point = true else if c == 'e' and e_index == -1 and i > 0 and i < length - 1 and chars[i-1] != '-' then e_index = i else if c == '-' and i == e_index + 1 and i < length - 1 then else return false end end end return not is_empty end # Returns `true` if the string contains only Hex chars # # assert "048bf".is_hex == true # assert "ABCDEF".is_hex == true # assert "0G".is_hex == false fun is_hex: Bool do for i in [0..length[ do var c = chars[i] if not (c >= 'a' and c <= 'f') and not (c >= 'A' and c <= 'F') and not (c >= '0' and c <= '9') then return false end return true end # Returns `true` if the string contains only Binary digits # # assert "1101100".is_bin == true # assert "1101020".is_bin == false fun is_bin: Bool do for i in chars do if i != '0' and i != '1' then return false return true end # Returns `true` if the string contains only Octal digits # # assert "213453".is_oct == true # assert "781".is_oct == false fun is_oct: Bool do for i in chars do if i < '0' or i > '7' then return false return true end # Returns `true` if the string contains only Decimal digits # # assert "10839".is_dec == true # assert "164F".is_dec == false fun is_dec: Bool do for i in chars do if i < '0' or i > '9' then return false return true end # Are all letters in `self` upper-case ? # # assert "HELLO WORLD".is_upper == true # assert "%$&%!".is_upper == true # assert "hello world".is_upper == false # assert "Hello World".is_upper == false fun is_upper: Bool do for i in [0..length[ do var char = chars[i] if char.is_lower then return false end return true end # Are all letters in `self` lower-case ? # # assert "hello world".is_lower == true # assert "%$&%!".is_lower == true # assert "Hello World".is_lower == false fun is_lower: Bool do for i in [0..length[ do var char = chars[i] if char.is_upper then return false end return true end # Removes the whitespaces at the beginning of self # # assert " \n\thello \n\t".l_trim == "hello \n\t" # # `Char::is_whitespace` determines what is a whitespace. fun l_trim: SELFTYPE do var iter = self.chars.iterator while iter.is_ok do if not iter.item.is_whitespace then break iter.next end if iter.index == length then return self.empty return self.substring_from(iter.index) end # Removes the whitespaces at the end of self # # assert " \n\thello \n\t".r_trim == " \n\thello" # # `Char::is_whitespace` determines what is a whitespace. fun r_trim: SELFTYPE do var iter = self.chars.reverse_iterator while iter.is_ok do if not iter.item.is_whitespace then break iter.next end if iter.index < 0 then return self.empty return self.substring(0, iter.index + 1) end # Trims trailing and preceding white spaces # # assert " Hello World ! ".trim == "Hello World !" # assert "\na\nb\tc\t".trim == "a\nb\tc" # # `Char::is_whitespace` determines what is a whitespace. fun trim: SELFTYPE do return (self.l_trim).r_trim # Is the string non-empty but only made of whitespaces? # # assert " \n\t ".is_whitespace == true # assert " hello ".is_whitespace == false # assert "".is_whitespace == false # # `Char::is_whitespace` determines what is a whitespace. fun is_whitespace: Bool do if is_empty then return false for c in self.chars do if not c.is_whitespace then return false end return true end # Returns `self` removed from its last line terminator (if any). # # assert "Hello\n".chomp == "Hello" # assert "Hello".chomp == "Hello" # # assert "\n".chomp == "" # assert "".chomp == "" # # Line terminators are `"\n"`, `"\r\n"` and `"\r"`. # A single line terminator, the last one, is removed. # # assert "\r\n".chomp == "" # assert "\r\n\n".chomp == "\r\n" # assert "\r\n\r\n".chomp == "\r\n" # assert "\r\n\r".chomp == "\r\n" # # Note: unlike with most IO methods like `Reader::read_line`, # a single `\r` is considered here to be a line terminator and will be removed. fun chomp: SELFTYPE do var len = length if len == 0 then return self var l = self.chars.last if l == '\r' then return substring(0, len-1) else if l != '\n' then return self else if len > 1 and self.chars[len-2] == '\r' then return substring(0, len-2) else return substring(0, len-1) end end # Justify `self` in a space of `length` # # `left` is the space ratio on the left side. # * 0.0 for left-justified (no space at the left) # * 1.0 for right-justified (all spaces at the left) # * 0.5 for centered (half the spaces at the left) # # `char`, or `' '` by default, is repeated to pad the empty space. # # Examples # # assert "hello".justify(10, 0.0) == "hello " # assert "hello".justify(10, 1.0) == " hello" # assert "hello".justify(10, 0.5) == " hello " # assert "hello".justify(10, 0.5, '.') == "..hello..." # # If `length` is not enough, `self` is returned as is. # # assert "hello".justify(2, 0.0) == "hello" # # REQUIRE: `left >= 0.0 and left <= 1.0` # ENSURE: `self.length <= length implies result.length == length` # ENSURE: `self.length >= length implies result == self` fun justify(length: Int, left: Float, char: nullable Char): String do var pad = (char or else ' ').to_s var diff = length - self.length if diff <= 0 then return to_s assert left >= 0.0 and left <= 1.0 var before = (diff.to_f * left).to_i return pad * before + self + pad * (diff-before) end # Mangle a string to be a unique string only made of alphanumeric characters and underscores. # # This method is injective (two different inputs never produce the same # output) and the returned string always respect the following rules: # # * Contains only US-ASCII letters, digits and underscores. # * Never starts with a digit. # * Never ends with an underscore. # * Never contains two contiguous underscores. # # assert "42_is/The answer!".to_cmangle == "_52d2_is_47dThe_32danswer_33d" # assert "__".to_cmangle == "_95d_95d" # assert "__d".to_cmangle == "_95d_d" # assert "_d_".to_cmangle == "_d_95d" # assert "_42".to_cmangle == "_95d42" # assert "foo".to_cmangle == "foo" # assert "".to_cmangle == "" fun to_cmangle: String do if is_empty then return "" var res = new Buffer var underscore = false var start = 0 var c = chars[0] if c >= '0' and c <= '9' then res.add('_') res.append(c.code_point.to_s) res.add('d') start = 1 end for i in [start..length[ do c = chars[i] if (c >= 'a' and c <= 'z') or (c >='A' and c <= 'Z') then res.add(c) underscore = false continue end if underscore then res.append('_'.code_point.to_s) res.add('d') end if c >= '0' and c <= '9' then res.add(c) underscore = false else if c == '_' then res.add(c) underscore = true else res.add('_') res.append(c.code_point.to_s) res.add('d') underscore = false end end if underscore then res.append('_'.code_point.to_s) res.add('d') end return res.to_s end # Escape " \ ' and non printable characters using the rules of literal C strings and characters # # assert "abAB12<>&".escape_to_c == "abAB12<>&" # assert "\n\"'\\".escape_to_c == "\\n\\\"\\'\\\\" # # Most non-printable characters (bellow ASCII 32) are escaped to an octal form `\nnn`. # Three digits are always used to avoid following digits to be interpreted as an element # of the octal sequence. # # assert "{0.code_point}{1.code_point}{8.code_point}{31.code_point}{32.code_point}".escape_to_c == "\\000\\001\\010\\037 " # # The exceptions are the common `\t` and `\n`. fun escape_to_c: String do var b = new Buffer for i in [0..length[ do var c = chars[i] if c == '\n' then b.append("\\n") else if c == '\t' then b.append("\\t") else if c == '"' then b.append("\\\"") else if c == '\'' then b.append("\\\'") else if c == '\\' then b.append("\\\\") else if c.code_point < 32 then b.add('\\') var oct = c.code_point.to_base(8) # Force 3 octal digits since it is the # maximum allowed in the C specification if oct.length == 1 then b.add('0') b.add('0') else if oct.length == 2 then b.add('0') end b.append(oct) else b.add(c) end end return b.to_s end # Escape additionnal characters # The result might no be legal in C but be used in other languages # # assert "ab|\{\}".escape_more_to_c("|\{\}") == "ab\\|\\\{\\\}" fun escape_more_to_c(chars: String): String do var b = new Buffer for c in escape_to_c.chars do if chars.chars.has(c) then b.add('\\') end b.add(c) end return b.to_s end # Escape to C plus braces # # assert "\n\"'\\\{\}".escape_to_nit == "\\n\\\"\\'\\\\\\\{\\\}" fun escape_to_nit: String do return escape_more_to_c("\{\}") # Escape to POSIX Shell (sh). # # Abort if the text contains a null byte. # # assert "\n\"'\\\{\}0".escape_to_sh == "'\n\"'\\''\\\{\}0'" fun escape_to_sh: String do var b = new Buffer b.chars.add '\'' for i in [0..length[ do var c = chars[i] if c == '\'' then b.append("'\\''") else assert without_null_byte: c != '\0' b.add(c) end end b.chars.add '\'' return b.to_s end # Escape to include in a Makefile # # Unfortunately, some characters are not escapable in Makefile. # These characters are `;`, `|`, `\`, and the non-printable ones. # They will be rendered as `"?{hex}"`. fun escape_to_mk: String do var b = new Buffer for i in [0..length[ do var c = chars[i] if c == '$' then b.append("$$") else if c == ':' or c == ' ' or c == '#' then b.add('\\') b.add(c) else if c.code_point < 32 or c == ';' or c == '|' or c == '\\' or c == '=' then b.append("?{c.code_point.to_base(16)}") else b.add(c) end end return b.to_s end # Return a string where Nit escape sequences are transformed. # # var s = "\\n" # assert s.length == 2 # var u = s.unescape_nit # assert u.length == 1 # assert u.chars[0].code_point == 10 # (the ASCII value of the "new line" character) fun unescape_nit: String do var res = new Buffer.with_cap(self.length) var was_slash = false for i in [0..length[ do var c = chars[i] if not was_slash then if c == '\\' then was_slash = true else res.add(c) end continue end was_slash = false if c == 'n' then res.add('\n') else if c == 'r' then res.add('\r') else if c == 't' then res.add('\t') else if c == '0' then res.add('\0') else res.add(c) end end return res.to_s end # Returns `self` with all characters escaped with their UTF-16 representation # # assert "Aèあ𐏓".escape_to_utf16 == "\\u0041\\u00e8\\u3042\\ud800\\udfd3" fun escape_to_utf16: String do var buf = new Buffer for i in chars do buf.append i.escape_to_utf16 return buf.to_s end # Returns the Unicode char escaped by `self` # # assert "\\u0041".from_utf16_escape == 'A' # assert "\\ud800\\udfd3".from_utf16_escape == '𐏓' # assert "\\u00e8".from_utf16_escape == 'è' # assert "\\u3042".from_utf16_escape == 'あ' fun from_utf16_escape(pos, ln: nullable Int): Char do if pos == null then pos = 0 if ln == null then ln = length - pos if ln < 6 then return 0xFFFD.code_point var cp = from_utf16_digit(pos + 2) if cp < 0xD800 then return cp.code_point if cp > 0xDFFF then return cp.code_point if cp > 0xDBFF then return 0xFFFD.code_point if ln == 6 then return 0xFFFD.code_point if ln < 12 then return 0xFFFD.code_point cp <<= 16 cp += from_utf16_digit(pos + 8) var cplo = cp & 0xFFFF if cplo < 0xDC00 then return 0xFFFD.code_point if cplo > 0xDFFF then return 0xFFFD.code_point return cp.from_utf16_surr.code_point end # Returns a UTF-16 escape value # # var s = "\\ud800\\udfd3" # assert s.from_utf16_digit(2) == 0xD800 # assert s.from_utf16_digit(8) == 0xDFD3 fun from_utf16_digit(pos: nullable Int): Int do if pos == null then pos = 0 return to_hex(pos, 4) end # Encode `self` to percent (or URL) encoding # # assert "aBc09-._~".to_percent_encoding == "aBc09-._~" # assert "%()< >".to_percent_encoding == "%25%28%29%3c%20%3e" # assert ".com/post?e=asdf&f=123".to_percent_encoding == ".com%2fpost%3fe%3dasdf%26f%3d123" # assert "éあいう".to_percent_encoding == "%c3%a9%e3%81%82%e3%81%84%e3%81%86" fun to_percent_encoding: String do var buf = new Buffer for i in [0..length[ do var c = chars[i] if (c >= '0' and c <= '9') or (c >= 'a' and c <= 'z') or (c >= 'A' and c <= 'Z') or c == '-' or c == '.' or c == '_' or c == '~' then buf.add c else var bytes = c.to_s.bytes for b in bytes do buf.append "%{b.to_i.to_hex}" end end return buf.to_s end # Decode `self` from percent (or URL) encoding to a clear string # # Replace invalid use of '%' with '?'. # # assert "aBc09-._~".from_percent_encoding == "aBc09-._~" # assert "%25%28%29%3c%20%3e".from_percent_encoding == "%()< >" # assert ".com%2fpost%3fe%3dasdf%26f%3d123".from_percent_encoding == ".com/post?e=asdf&f=123" # assert "%25%28%29%3C%20%3E".from_percent_encoding == "%()< >" # assert "incomplete %".from_percent_encoding == "incomplete ?" # assert "invalid % usage".from_percent_encoding == "invalid ? usage" # assert "%c3%a9%e3%81%82%e3%81%84%e3%81%86".from_percent_encoding == "éあいう" fun from_percent_encoding: String do var len = bytelen var has_percent = false for c in chars do if c == '%' then len -= 2 has_percent = true end end # If no transformation is needed, return self as a string if not has_percent then return to_s var buf = new NativeString(len) var i = 0 var l = 0 while i < length do var c = chars[i] if c == '%' then if i + 2 >= length then # What follows % has been cut off buf[l] = '?'.ascii else i += 1 var hex_s = substring(i, 2) if hex_s.is_hex then var hex_i = hex_s.to_hex buf[l] = hex_i.to_b i += 1 else # What follows a % is not Hex buf[l] = '?'.ascii i -= 1 end end else buf[l] = c.ascii i += 1 l += 1 end return buf.to_s_unsafe(l) end # Escape the characters `<`, `>`, `&`, `"`, `'` and `/` as HTML/XML entity references. # # assert "a&b-<>\"x\"/'".html_escape == "a&b-<>"x"/'" # # SEE: fun html_escape: String do var buf = new Buffer for i in [0..length[ do var c = chars[i] if c == '&' then buf.append "&" else if c == '<' then buf.append "<" else if c == '>' then buf.append ">" else if c == '"' then buf.append """ else if c == '\'' then buf.append "'" else if c == '/' then buf.append "/" else buf.add c end return buf.to_s end # Equality of text # Two pieces of text are equals if thez have the same characters in the same order. # # assert "hello" == "hello" # assert "hello" != "HELLO" # assert "hello" == "hel"+"lo" # # Things that are not Text are not equal. # # assert "9" != '9' # assert "9" != ['9'] # assert "9" != 9 # # assert "9".chars.first == '9' # equality of Char # assert "9".chars == ['9'] # equality of Sequence # assert "9".to_i == 9 # equality of Int redef fun ==(o) do if o == null then return false if not o isa Text then return false if self.is_same_instance(o) then return true if self.length != o.length then return false return self.chars == o.chars end # Lexicographical comparaison # # assert "abc" < "xy" # assert "ABC" < "abc" redef fun <(other) do var self_chars = self.chars.iterator var other_chars = other.chars.iterator while self_chars.is_ok and other_chars.is_ok do if self_chars.item < other_chars.item then return true if self_chars.item > other_chars.item then return false self_chars.next other_chars.next end if self_chars.is_ok then return false else return true end end # Escape string used in labels for graphviz # # assert ">><<".escape_to_dot == "\\>\\>\\<\\<" fun escape_to_dot: String do return escape_more_to_c("|\{\}<>") end private var hash_cache: nullable Int = null redef fun hash do if hash_cache == null then # djb2 hash algorithm var h = 5381 for i in [0..length[ do var char = chars[i] h = (h << 5) + h + char.code_point end hash_cache = h end return hash_cache.as(not null) end # Format `self` by replacing each `%n` with the `n`th item of `args` # # The character `%` followed by something other than a number are left as is. # To represent a `%` followed by a number, double the `%`, as in `%%7`. # # assert "This %0 is a %1.".format("String", "formatted String") == "This String is a formatted String." # assert "Do not escape % nor %%1".format("unused") == "Do not escape % nor %1" fun format(args: Object...): String do var s = new Array[Text] var curr_st = 0 var i = 0 while i < length do if self[i] == '%' then var fmt_st = i i += 1 var ciph_st = i while i < length and self[i].is_numeric do i += 1 end var ciph_len = i - ciph_st if ciph_len == 0 then # What follows '%' is not a number. s.push substring(curr_st, i - curr_st) if i < length and self[i] == '%' then # Skip the next `%` i += 1 end curr_st = i continue end var arg_index = substring(ciph_st, ciph_len).to_i if arg_index >= args.length then continue s.push substring(curr_st, fmt_st - curr_st) s.push args[arg_index].to_s curr_st = i i -= 1 end i += 1 end s.push substring(curr_st, length - curr_st) return s.plain_to_s end # Return the Levenshtein distance between two strings # # ~~~ # assert "abcd".levenshtein_distance("abcd") == 0 # assert "".levenshtein_distance("abcd") == 4 # assert "abcd".levenshtein_distance("") == 4 # assert "abcd".levenshtein_distance("xyz") == 4 # assert "abcd".levenshtein_distance("xbdy") == 3 # ~~~ fun levenshtein_distance(other: String): Int do var slen = self.length var olen = other.length # fast cases if slen == 0 then return olen if olen == 0 then return slen if self == other then return 0 # previous row of distances var v0 = new Array[Int].with_capacity(olen+1) # current row of distances var v1 = new Array[Int].with_capacity(olen+1) for j in [0..olen] do # prefix insert cost v0[j] = j end for i in [0..slen[ do # prefix delete cost v1[0] = i + 1 for j in [0..olen[ do # delete cost var cost1 = v1[j] + 1 # insert cost var cost2 = v0[j + 1] + 1 # same char cost (+0) var cost3 = v0[j] # change cost if self[i] != other[j] then cost3 += 1 # keep the min v1[j+1] = cost1.min(cost2).min(cost3) end # Switch columns: # * v1 become v0 in the next iteration # * old v0 is reused as the new v1 var tmp = v1 v1 = v0 v0 = tmp end return v0[olen] end # Copies `n` bytes from `self` at `src_offset` into `dest` starting at `dest_offset` # # Basically a high-level synonym of NativeString::copy_to # # REQUIRE: `n` must be large enough to contain `len` bytes # # var ns = new NativeString(8) # "Text is String".copy_to_native(ns, 8, 2, 0) # assert ns.to_s_unsafe(8) == "xt is St" # fun copy_to_native(dest: NativeString, n, src_offset, dest_offset: Int) do var mypos = src_offset var itspos = dest_offset while n > 0 do dest[itspos] = self.bytes[mypos] itspos += 1 mypos += 1 n -= 1 end end # Packs the content of a string in packs of `ln` chars. # This variant ensures that only the last element might be smaller than `ln` # # ~~~nit # var s = "abcdefghijklmnopqrstuvwxyz" # assert s.pack_l(4) == ["abcd","efgh","ijkl","mnop","qrst","uvwx","yz"] # ~~~ fun pack_l(ln: Int): Array[Text] do var st = 0 var retarr = new Array[Text].with_capacity(length / ln + length % ln) while st < length do retarr.add(substring(st, ln)) st += ln end return retarr end # Packs the content of a string in packs of `ln` chars. # This variant ensures that only the first element might be smaller than `ln` # # ~~~nit # var s = "abcdefghijklmnopqrstuvwxyz" # assert s.pack_r(4) == ["ab","cdef","ghij","klmn","opqr","stuv","wxyz"] # ~~~ fun pack_r(ln: Int): Array[Text] do var st = length var retarr = new Array[Text].with_capacity(length / ln + length % ln) while st >= 0 do retarr.add(substring(st - ln, ln)) st -= ln end return retarr.reversed end end # All kinds of array-based text representations. abstract class FlatText super Text # Underlying C-String (`char*`) # # Warning : Might be void in some subclasses, be sure to check # if set before using it. var items: NativeString is noinit # Returns a char* starting at position `first_byte` # # WARNING: If you choose to use this service, be careful of the following. # # Strings and NativeString are *ideally* always allocated through a Garbage Collector. # Since the GC tracks the use of the pointer for the beginning of the char*, it may be # deallocated at any moment, rendering the pointer returned by this function invalid. # Any access to freed memory may very likely cause undefined behaviour or a crash. # (Failure to do so will most certainly result in long and painful debugging hours) # # The only safe use of this pointer is if it is ephemeral (e.g. read in a C function # then immediately return). # # As always, do not modify the content of the String in C code, if this is what you want # copy locally the char* as Nit Strings are immutable. fun fast_cstring: NativeString is abstract redef var length = 0 redef var bytelen = 0 redef fun output do var i = 0 while i < length do items[i].output i += 1 end end redef fun copy_to_native(dest, n, src_offset, dest_offset) do items.copy_to(dest, n, src_offset, dest_offset) end end # Abstract class for the SequenceRead compatible # views on the chars of any Text private abstract class StringCharView super SequenceRead[Char] type SELFTYPE: Text var target: SELFTYPE redef fun is_empty do return target.is_empty redef fun length do return target.length redef fun iterator: IndexedIterator[Char] do return self.iterator_from(0) redef fun reverse_iterator do return self.reverse_iterator_from(self.length - 1) end # Abstract class for the SequenceRead compatible # views on the bytes of any Text private abstract class StringByteView super SequenceRead[Byte] type SELFTYPE: Text var target: SELFTYPE redef fun is_empty do return target.is_empty redef fun length do return target.bytelen redef fun iterator do return self.iterator_from(0) redef fun reverse_iterator do return self.reverse_iterator_from(target.bytelen - 1) end # Immutable sequence of characters. # # String objects may be created using literals. # # assert "Hello World!" isa String abstract class String super Text redef type SELFTYPE: String is fixed redef fun to_s do return self # Concatenates `o` to `self` # # assert "hello" + "world" == "helloworld" # assert "" + "hello" + "" == "hello" fun +(o: Text): SELFTYPE is abstract # Concatenates self `i` times # # assert "abc" * 4 == "abcabcabcabc" # assert "abc" * 1 == "abc" # assert "abc" * 0 == "" fun *(i: Int): SELFTYPE is abstract # Insert `s` at `pos`. # # assert "helloworld".insert_at(" ", 5) == "hello world" fun insert_at(s: String, pos: Int): SELFTYPE is abstract redef fun substrings is abstract # Returns a reversed version of self # # assert "hello".reversed == "olleh" # assert "bob".reversed == "bob" # assert "".reversed == "" fun reversed: SELFTYPE is abstract # A upper case version of `self` # # assert "Hello World!".to_upper == "HELLO WORLD!" fun to_upper: SELFTYPE is abstract # A lower case version of `self` # # assert "Hello World!".to_lower == "hello world!" fun to_lower : SELFTYPE is abstract # Takes a camel case `self` and converts it to snake case # # assert "randomMethodId".to_snake_case == "random_method_id" # # The rules are the following: # # An uppercase is always converted to a lowercase # # assert "HELLO_WORLD".to_snake_case == "hello_world" # # An uppercase that follows a lowercase is prefixed with an underscore # # assert "HelloTheWORLD".to_snake_case == "hello_the_world" # # An uppercase that follows an uppercase and is followed by a lowercase, is prefixed with an underscore # # assert "HelloTHEWorld".to_snake_case == "hello_the_world" # # All other characters are kept as is; `self` does not need to be a proper CamelCased string. # # assert "=-_H3ll0Th3W0rld_-=".to_snake_case == "=-_h3ll0th3w0rld_-=" fun to_snake_case: SELFTYPE do if self.is_lower then return self var new_str = new Buffer.with_cap(self.length) var prev_is_lower = false var prev_is_upper = false for i in [0..length[ do var char = chars[i] if char.is_lower then new_str.add(char) prev_is_lower = true prev_is_upper = false else if char.is_upper then if prev_is_lower then new_str.add('_') else if prev_is_upper and i+1 < length and chars[i+1].is_lower then new_str.add('_') end new_str.add(char.to_lower) prev_is_lower = false prev_is_upper = true else new_str.add(char) prev_is_lower = false prev_is_upper = false end end return new_str.to_s end # Takes a snake case `self` and converts it to camel case # # assert "random_method_id".to_camel_case == "randomMethodId" # # If the identifier is prefixed by an underscore, the underscore is ignored # # assert "_private_field".to_camel_case == "_privateField" # # If `self` is upper, it is returned unchanged # # assert "RANDOM_ID".to_camel_case == "RANDOM_ID" # # If there are several consecutive underscores, they are considered as a single one # # assert "random__method_id".to_camel_case == "randomMethodId" fun to_camel_case: SELFTYPE do if self.is_upper then return self var new_str = new Buffer var is_first_char = true var follows_us = false for i in [0..length[ do var char = chars[i] if is_first_char then new_str.add(char) is_first_char = false else if char == '_' then follows_us = true else if follows_us then new_str.add(char.to_upper) follows_us = false else new_str.add(char) end end return new_str.to_s end # Returns a capitalized `self` # # Letters that follow a letter are lowercased # Letters that follow a non-letter are upcased. # # SEE : `Char::is_letter` for the definition of letter. # # assert "jAVASCRIPT".capitalized == "Javascript" # assert "i am root".capitalized == "I Am Root" # assert "ab_c -ab0c ab\nc".capitalized == "Ab_C -Ab0C Ab\nC" fun capitalized: SELFTYPE do if length == 0 then return self var buf = new Buffer.with_cap(length) var curr = chars[0].to_upper var prev = curr buf[0] = curr for i in [1 .. length[ do prev = curr curr = self[i] if prev.is_letter then buf[i] = curr.to_lower else buf[i] = curr.to_upper end end return buf.to_s end end # A mutable sequence of characters. abstract class Buffer super Text # Returns an arbitrary subclass of `Buffer` with default parameters new is abstract # Returns an instance of a subclass of `Buffer` with `i` base capacity new with_cap(i: Int) is abstract redef type SELFTYPE: Buffer is fixed # Specific implementations MUST set this to `true` in order to invalidate caches protected var is_dirty = true # Copy-On-Write flag # # If the `Buffer` was to_s'd, the next in-place altering # operation will cause the current `Buffer` to be re-allocated. # # The flag will then be set at `false`. protected var written = false # Modifies the char contained at pos `index` # # DEPRECATED : Use self.chars.[]= instead fun []=(index: Int, item: Char) is abstract # Adds a char `c` at the end of self # # DEPRECATED : Use self.chars.add instead fun add(c: Char) is abstract # Clears the buffer # # var b = new Buffer # b.append "hello" # assert not b.is_empty # b.clear # assert b.is_empty fun clear is abstract # Enlarges the subsequent array containing the chars of self fun enlarge(cap: Int) is abstract # Adds the content of text `s` at the end of self # # var b = new Buffer # b.append "hello" # b.append "world" # assert b == "helloworld" fun append(s: Text) is abstract # `self` is appended in such a way that `self` is repeated `r` times # # var b = new Buffer # b.append "hello" # b.times 3 # assert b == "hellohellohello" fun times(r: Int) is abstract # Reverses itself in-place # # var b = new Buffer # b.append("hello") # b.reverse # assert b == "olleh" fun reverse is abstract # Changes each lower-case char in `self` by its upper-case variant # # var b = new Buffer # b.append("Hello World!") # b.upper # assert b == "HELLO WORLD!" fun upper is abstract # Changes each upper-case char in `self` by its lower-case variant # # var b = new Buffer # b.append("Hello World!") # b.lower # assert b == "hello world!" fun lower is abstract # Capitalizes each word in `self` # # Letters that follow a letter are lowercased # Letters that follow a non-letter are upcased. # # SEE: `Char::is_letter` for the definition of a letter. # # var b = new FlatBuffer.from("jAVAsCriPt") # b.capitalize # assert b == "Javascript" # b = new FlatBuffer.from("i am root") # b.capitalize # assert b == "I Am Root" # b = new FlatBuffer.from("ab_c -ab0c ab\nc") # b.capitalize # assert b == "Ab_C -Ab0C Ab\nC" fun capitalize do if length == 0 then return var c = self[0].to_upper self[0] = c var prev = c for i in [1 .. length[ do prev = c c = self[i] if prev.is_letter then self[i] = c.to_lower else self[i] = c.to_upper end end end redef fun hash do if is_dirty then hash_cache = null return super end # In Buffers, the internal sequence of character is mutable # Thus, `chars` can be used to modify the buffer. redef fun chars: Sequence[Char] is abstract # Appends `length` chars from `s` starting at index `from` # # ~~~nit # var b = new Buffer # b.append_substring("abcde", 1, 2) # assert b == "bc" # b.append_substring("vwxyz", 2, 3) # assert b == "bcxyz" # b.append_substring("ABCDE", 4, 300) # assert b == "bcxyzE" # b.append_substring("VWXYZ", 400, 1) # assert b == "bcxyzE" # ~~~ fun append_substring(s: Text, from, length: Int) do if from < 0 then length += from from = 0 end var ln = s.length if (length + from) > ln then length = ln - from if length <= 0 then return append_substring_impl(s, from, length) end # Unsafe version of `append_substring` for performance # # NOTE: Use only if sure about `from` and `length`, no checks # or bound recalculation is done fun append_substring_impl(s: Text, from, length: Int) do var pos = from for i in [0 .. length[ do self.add s[pos] pos += 1 end end end # View for chars on Buffer objects, extends Sequence # for mutation operations private abstract class BufferCharView super StringCharView super Sequence[Char] redef type SELFTYPE: Buffer end # View for bytes on Buffer objects, extends Sequence # for mutation operations private abstract class BufferByteView super StringByteView redef type SELFTYPE: Buffer end redef class Object # User readable representation of `self`. fun to_s: String do return inspect # The class name of the object in NativeString format. private fun native_class_name: NativeString is intern # The class name of the object. # # assert 5.class_name == "Int" fun class_name: String do return native_class_name.to_s # Developer readable representation of `self`. # Usually, it uses the form "" fun inspect: String do return "<{inspect_head}>" end # Return "CLASSNAME:#OBJECTID". # This function is mainly used with the redefinition of the inspect method protected fun inspect_head: String do return "{class_name}:#{object_id.to_hex}" end end redef class Bool # assert true.to_s == "true" # assert false.to_s == "false" redef fun to_s do if self then return once "true" else return once "false" end end end redef class Byte # C function to calculate the length of the `NativeString` to receive `self` private fun byte_to_s_len: Int `{ return snprintf(NULL, 0, "0x%02x", self); `} # C function to convert an nit Int to a NativeString (char*) private fun native_byte_to_s(nstr: NativeString, strlen: Int) `{ snprintf(nstr, strlen, "0x%02x", self); `} # Displayable byte in its hexadecimal form (0x..) # # assert 1.to_b.to_s == "0x01" # assert (-123).to_b.to_s == "0x85" redef fun to_s do var nslen = byte_to_s_len var ns = new NativeString(nslen + 1) ns[nslen] = 0u8 native_byte_to_s(ns, nslen + 1) return ns.to_s_unsafe(nslen) end end redef class Int # Wrapper of strerror C function private fun strerror_ext: NativeString `{ return strerror((int)self); `} # Returns a string describing error number fun strerror: String do return strerror_ext.to_s # Fill `s` with the digits in base `base` of `self` (and with the '-' sign if negative). # assume < to_c max const of char private fun fill_buffer(s: Buffer, base: Int) do var n: Int # Sign if self < 0 then n = - self s.chars[0] = '-' else if self == 0 then s.chars[0] = '0' return else n = self end # Fill digits var pos = digit_count(base) - 1 while pos >= 0 and n > 0 do s.chars[pos] = (n % base).to_c n = n / base # / pos -= 1 end end # C function to calculate the length of the `NativeString` to receive `self` private fun int_to_s_len: Int `{ return snprintf(NULL, 0, "%ld", self); `} # C function to convert an nit Int to a NativeString (char*) private fun native_int_to_s(nstr: NativeString, strlen: Int) `{ snprintf(nstr, strlen, "%ld", self); `} # String representation of `self` in the given `base` # # ~~~ # assert 15.to_base(10) == "15" # assert 15.to_base(16) == "f" # assert 15.to_base(2) == "1111" # assert (-10).to_base(3) == "-101" # ~~~ fun to_base(base: Int): String do var l = digit_count(base) var s = new Buffer s.enlarge(l) for x in [0..l[ do s.add(' ') fill_buffer(s, base) return s.to_s end # return displayable int in hexadecimal # # assert 1.to_hex == "1" # assert (-255).to_hex == "-ff" fun to_hex: String do return to_base(16) end redef class Float # Pretty representation of `self`, with decimals as needed from 1 to a maximum of 3 # # assert 12.34.to_s == "12.34" # assert (-0120.030).to_s == "-120.03" # # see `to_precision` for a custom precision. redef fun to_s do var str = to_precision( 3 ) if is_inf != 0 or is_nan then return str var len = str.length for i in [0..len-1] do var j = len-1-i var c = str.chars[j] if c == '0' then continue else if c == '.' then return str.substring( 0, j+2 ) else return str.substring( 0, j+1 ) end end return str end # `String` representation of `self` with the given number of `decimals` # # assert 12.345.to_precision(0) == "12" # assert 12.345.to_precision(3) == "12.345" # assert (-12.345).to_precision(3) == "-12.345" # assert (-0.123).to_precision(3) == "-0.123" # assert 0.999.to_precision(2) == "1.00" # assert 0.999.to_precision(4) == "0.9990" fun to_precision(decimals: Int): String do if is_nan then return "nan" var isinf = self.is_inf if isinf == 1 then return "inf" else if isinf == -1 then return "-inf" end if decimals == 0 then return self.to_i.to_s var f = self for i in [0..decimals[ do f = f * 10.0 if self > 0.0 then f = f + 0.5 else f = f - 0.5 end var i = f.to_i if i == 0 then return "0." + "0"*decimals # Prepare both parts of the float, before and after the "." var s = i.abs.to_s var sl = s.length var p1 var p2 if sl > decimals then # Has something before the "." p1 = s.substring(0, sl-decimals) p2 = s.substring(sl-decimals, decimals) else p1 = "0" p2 = "0"*(decimals-sl) + s end if i < 0 then p1 = "-" + p1 return p1 + "." + p2 end end redef class Char # Returns a sequence with the UTF-8 bytes of `self` # # assert 'a'.bytes == [0x61u8] # assert 'ま'.bytes == [0xE3u8, 0x81u8, 0xBEu8] fun bytes: SequenceRead[Byte] do return to_s.bytes # Is `self` an UTF-16 surrogate pair ? fun is_surrogate: Bool do var cp = code_point return cp >= 0xD800 and cp <= 0xDFFF end # Is `self` a UTF-16 high surrogate ? fun is_hi_surrogate: Bool do var cp = code_point return cp >= 0xD800 and cp <= 0xDBFF end # Is `self` a UTF-16 low surrogate ? fun is_lo_surrogate: Bool do var cp = code_point return cp >= 0xDC00 and cp <= 0xDFFF end # Length of `self` in a UTF-8 String fun u8char_len: Int do var c = self.code_point if c < 0x80 then return 1 if c <= 0x7FF then return 2 if c <= 0xFFFF then return 3 if c <= 0x10FFFF then return 4 # Bad character format return 1 end # assert 'x'.to_s == "x" redef fun to_s do var ln = u8char_len var ns = new NativeString(ln + 1) u8char_tos(ns, ln) return ns.to_s_unsafe(ln) end # Returns `self` escaped to UTF-16 # # i.e. Represents `self`.`code_point` using UTF-16 codets escaped # with a `\u` # # assert 'A'.escape_to_utf16 == "\\u0041" # assert 'è'.escape_to_utf16 == "\\u00e8" # assert 'あ'.escape_to_utf16 == "\\u3042" # assert '𐏓'.escape_to_utf16 == "\\ud800\\udfd3" fun escape_to_utf16: String do var cp = code_point var buf: Buffer if cp < 0xD800 or (cp >= 0xE000 and cp <= 0xFFFF) then buf = new Buffer.with_cap(6) buf.append("\\u0000") var hx = cp.to_hex var outid = 5 for i in hx.chars.reverse_iterator do buf[outid] = i outid -= 1 end else buf = new Buffer.with_cap(12) buf.append("\\u0000\\u0000") var lo = (((cp - 0x10000) & 0x3FF) + 0xDC00).to_hex var hi = ((((cp - 0x10000) & 0xFFC00) >> 10) + 0xD800).to_hex var out = 2 for i in hi do buf[out] = i out += 1 end out = 8 for i in lo do buf[out] = i out += 1 end end return buf.to_s end private fun u8char_tos(r: NativeString, len: Int) `{ r[len] = '\0'; switch(len){ case 1: r[0] = self; break; case 2: r[0] = 0xC0 | ((self & 0x7C0) >> 6); r[1] = 0x80 | (self & 0x3F); break; case 3: r[0] = 0xE0 | ((self & 0xF000) >> 12); r[1] = 0x80 | ((self & 0xFC0) >> 6); r[2] = 0x80 | (self & 0x3F); break; case 4: r[0] = 0xF0 | ((self & 0x1C0000) >> 18); r[1] = 0x80 | ((self & 0x3F000) >> 12); r[2] = 0x80 | ((self & 0xFC0) >> 6); r[3] = 0x80 | (self & 0x3F); break; } `} # Returns true if the char is a numerical digit # # assert '0'.is_numeric # assert '9'.is_numeric # assert not 'a'.is_numeric # assert not '?'.is_numeric # # FIXME: Works on ASCII-range only fun is_numeric: Bool do return self >= '0' and self <= '9' end # Returns true if the char is an alpha digit # # assert 'a'.is_alpha # assert 'Z'.is_alpha # assert not '0'.is_alpha # assert not '?'.is_alpha # # FIXME: Works on ASCII-range only fun is_alpha: Bool do return (self >= 'a' and self <= 'z') or (self >= 'A' and self <= 'Z') end # Is `self` an hexadecimal digit ? # # assert 'A'.is_hexdigit # assert not 'G'.is_hexdigit # assert 'a'.is_hexdigit # assert not 'g'.is_hexdigit # assert '5'.is_hexdigit fun is_hexdigit: Bool do return (self >= '0' and self <= '9') or (self >= 'A' and self <= 'F') or (self >= 'a' and self <= 'f') # Returns true if the char is an alpha or a numeric digit # # assert 'a'.is_alphanumeric # assert 'Z'.is_alphanumeric # assert '0'.is_alphanumeric # assert '9'.is_alphanumeric # assert not '?'.is_alphanumeric # # FIXME: Works on ASCII-range only fun is_alphanumeric: Bool do return self.is_numeric or self.is_alpha end # Returns `self` to its int value # # REQUIRE: `is_hexdigit` fun from_hex: Int do if self >= '0' and self <= '9' then return code_point - 0x30 if self >= 'A' and self <= 'F' then return code_point - 0x37 if self >= 'a' and self <= 'f' then return code_point - 0x57 # Happens if self is not a hexdigit assert self.is_hexdigit # To make flow analysis happy abort end end redef class Collection[E] # String representation of the content of the collection. # # The standard representation is the list of elements separated with commas. # # ~~~ # assert [1,2,3].to_s == "[1,2,3]" # assert [1..3].to_s == "[1,2,3]" # assert (new Array[Int]).to_s == "[]" # empty collection # ~~~ # # Subclasses may return a more specific string representation. redef fun to_s do return "[" + join(",") + "]" end # Concatenate elements without separators # # ~~~ # assert [1,2,3].plain_to_s == "123" # assert [11..13].plain_to_s == "111213" # assert (new Array[Int]).plain_to_s == "" # empty collection # ~~~ fun plain_to_s: String do var s = new Buffer for e in self do if e != null then s.append(e.to_s) return s.to_s end # Concatenate and separate each elements with `separator`. # # Only concatenate if `separator == null`. # # assert [1, 2, 3].join(":") == "1:2:3" # assert [1..3].join(":") == "1:2:3" # assert [1..3].join == "123" # # if `last_separator` is given, then it is used to separate the last element. # # assert [1, 2, 3, 4].join(", ", " and ") == "1, 2, 3 and 4" fun join(separator: nullable Text, last_separator: nullable Text): String do if is_empty then return "" var s = new Buffer # Result # Concat first item var i = iterator var e = i.item if e != null then s.append(e.to_s) if last_separator == null then last_separator = separator # Concat other items i.next while i.is_ok do e = i.item i.next if i.is_ok then if separator != null then s.append(separator) else if last_separator != null then s.append(last_separator) end if e != null then s.append(e.to_s) end return s.to_s end end redef class Map[K,V] # Concatenate couples of key value. # Key and value are separated by `couple_sep`. # Couples are separated by `sep`. # # var m = new HashMap[Int, String] # m[1] = "one" # m[10] = "ten" # assert m.join("; ", "=") == "1=one; 10=ten" fun join(sep, couple_sep: String): String is abstract end redef class Sys private var args_cache: nullable Sequence[String] = null # The arguments of the program as given by the OS fun program_args: Sequence[String] do if _args_cache == null then init_args return _args_cache.as(not null) end # The name of the program as given by the OS fun program_name: String do return native_argv(0).to_s end # Initialize `program_args` with the contents of `native_argc` and `native_argv`. private fun init_args do var argc = native_argc var args = new Array[String].with_capacity(0) var i = 1 while i < argc do args[i-1] = native_argv(i).to_s i += 1 end _args_cache = args end # First argument of the main C function. private fun native_argc: Int is intern # Second argument of the main C function. private fun native_argv(i: Int): NativeString is intern end # Comparator that efficienlty use `to_s` to compare things # # The comparaison call `to_s` on object and use the result to order things. # # var a = [1, 2, 3, 10, 20] # (new CachedAlphaComparator).sort(a) # assert a == [1, 10, 2, 20, 3] # # Internally the result of `to_s` is cached in a HashMap to counter # uneficient implementation of `to_s`. # # Note: it caching is not usefull, see `alpha_comparator` class CachedAlphaComparator super Comparator redef type COMPARED: Object private var cache = new HashMap[Object, String] private fun do_to_s(a: Object): String do if cache.has_key(a) then return cache[a] var res = a.to_s cache[a] = res return res end redef fun compare(a, b) do return do_to_s(a) <=> do_to_s(b) end end # see `alpha_comparator` private class AlphaComparator super Comparator redef fun compare(a, b) do return a.to_s <=> b.to_s end # Stateless comparator that naively use `to_s` to compare things. # # Note: the result of `to_s` is not cached, thus can be invoked a lot # on a single instace. See `CachedAlphaComparator` as an alternative. # # var a = [1, 2, 3, 10, 20] # alpha_comparator.sort(a) # assert a == [1, 10, 2, 20, 3] fun alpha_comparator: Comparator do return once new AlphaComparator # The arguments of the program as given by the OS fun args: Sequence[String] do return sys.program_args end redef class NativeString # Get a `String` from the data at `self` copied into Nit memory # # Require: `self` is a null-terminated string. fun to_s_with_copy: String is abstract # Get a `String` from `length` bytes at `self` # # The result may point to the data at `self` or # it may make a copy in Nit controlled memory. # This method should only be used when `self` was allocated by the Nit GC, # or when manually controlling the deallocation of `self`. fun to_s_with_length(length: Int): String is abstract # Get a `String` from the raw `length` bytes at `self` # # The default value of `length` is the number of bytes before # the first null character. # # The created `String` points to the data at `self`. # This method should be used when `self` was allocated by the Nit GC, # or when manually controlling the deallocation of `self`. # # /!\: This service does not clean the items for compliance with UTF-8, # use only when the data has already been verified as valid UTF-8. fun to_s_unsafe(length: nullable Int): String is abstract # Get a `String` from the raw `bytelen` bytes at `self` with `unilen` Unicode characters # # The created `String` points to the data at `self`. # This method should be used when `self` was allocated by the Nit GC, # or when manually controlling the deallocation of `self`. # # /!\: This service does not clean the items for compliance with UTF-8, # use only when the data has already been verified as valid UTF-8. # # SEE: `abstract_text::Text` for more info on the difference # between `Text::bytelen` and `Text::length`. fun to_s_full(bytelen, unilen: Int): String is abstract # Copies the content of `src` to `self` # # NOTE: `self` must be large enough to withold `self.bytelen` bytes fun fill_from(src: Text) do src.copy_to_native(self, src.bytelen, 0, 0) end redef class NativeArray[E] # Join all the elements using `to_s` # # REQUIRE: `self isa NativeArray[String]` # REQUIRE: all elements are initialized fun native_to_s: String is abstract end