# This file is part of NIT ( http://www.nitlanguage.org ). # # Copyright 2008 Jean Privat # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Analysis property bodies, statements and expressions package typing import syntax_base import escape import control_flow redef class MMSrcModule # Walk trough the module and type statments and expressions # Require than supermodules are processed fun do_typing(tc: ToolContext) do var tv = new TypingVisitor(tc, self) tv.visit(node) end end # Typing visitor # * Associate local variables to nodes # * Distinguish method call and local variable access # * Resolve call and attribute access # * Check type conformance private class TypingVisitor special AbsSyntaxVisitor redef fun visit(n) do if n != null then n.accept_typing(self) end # Current knowledge about variables names and types fun variable_ctx: VariableContext do return _variable_ctx.as(not null) writable var _variable_ctx: nullable VariableContext # Non-bypassable knowledge about variables names and types fun base_variable_ctx: VariableContext do return _base_variable_ctx.as(not null) writable var _base_variable_ctx: nullable VariableContext # Current knowledge about escapable blocks readable writable var _escapable_ctx: EscapableContext = new EscapableContext(self) # The current reciever fun self_var: ParamVariable do return _self_var.as(not null) writable var _self_var: nullable ParamVariable # Block of the current method readable writable var _top_block: nullable PExpr # List of explicit invocation of constructors of super-classes readable writable var _explicit_super_init_calls: nullable Array[MMMethod] # Is a other constructor of the same class invoked readable writable var _explicit_other_init_call: Bool = false # Make the if_true_variable_ctx of the expression effective private fun use_if_true_variable_ctx(e: PExpr) do var ctx = e.if_true_variable_ctx if ctx != null then variable_ctx = ctx end # Make the if_false_variable_ctx of the expression effective private fun use_if_false_variable_ctx(e: PExpr) do var ctx = e.if_false_variable_ctx if ctx != null then variable_ctx = ctx end # Number of nested once readable writable var _once_count: Int = 0 init(tc, module) do super private fun get_default_constructor_for(n: PNode, c: MMLocalClass, prop: MMSrcMethod): nullable MMMethod do var v = self #var prop = v.local_property #assert prop isa MMMethod var candidates = new Array[MMMethod] var false_candidates = new Array[MMMethod] var parity = prop.signature.arity for g in c.global_properties do if not g.is_init_for(c) then continue var gp = c[g] var gps = gp.signature_for(c.get_type) assert gp isa MMSrcMethod var garity = gps.arity if gp.name == prop.name then if garity == 0 or (parity == garity and prop.signature < gps) then return gp else false_candidates.add(gp) end else if garity == 0 and gp.name == once ("init".to_symbol) then candidates.add(gp) false_candidates.add(gp) else false_candidates.add(gp) end end if candidates.length == 1 then return candidates.first else if candidates.length > 0 then var a = new Array[String] for p in candidates do a.add("{p.full_name}{p.signature}") end v.error(n, "Error: Conflicting default constructor to call for {c}: {a.join(", ")}.") return null else if false_candidates.length > 0 then var a = new Array[String] for p in false_candidates do a.add("{p.full_name}{p.signature}") end v.error(n, "Error: there is no available compatible constrctor in {c}. Discarded candidates are {a.join(", ")}.") return null else v.error(n, "Error: there is no available compatible constrctor in {c}.") return null end end end ############################################################################### redef class PNode private fun accept_typing(v: TypingVisitor) do accept_abs_syntax_visitor(v) after_typing(v) end private fun after_typing(v: TypingVisitor) do end end redef class PClassdef redef fun accept_typing(v) do v.self_var = new ParamVariable("self".to_symbol, self) v.self_var.stype = local_class.get_type super end end redef class AAttrPropdef redef fun accept_typing(v) do super if n_expr != null then v.check_conform_expr(n_expr.as(not null), prop.signature.return_type.as(not null)) end end end redef class AMethPropdef redef fun self_var do return _self_var.as(not null) var _self_var: nullable ParamVariable redef fun accept_typing(v) do v.variable_ctx = new RootVariableContext(v, self) v.base_variable_ctx = v.variable_ctx _self_var = v.self_var super end end redef class AConcreteMethPropdef redef fun accept_typing(v) do super if v.variable_ctx.unreash == false and method.signature.return_type != null then v.error(self, "Control error: Reached end of function (a 'return' with a value was expected).") end end end redef class AConcreteInitPropdef readable var _super_init_calls: Array[MMMethod] = new Array[MMMethod] readable var _explicit_super_init_calls: Array[MMMethod] = new Array[MMMethod] redef fun accept_typing(v) do v.top_block = n_block v.explicit_super_init_calls = explicit_super_init_calls v.explicit_other_init_call = false super if v.explicit_other_init_call or method.global.intro != method then # TODO: something? else var i = 0 var l = explicit_super_init_calls.length var cur_m: nullable MMMethod = null var cur_c: nullable MMLocalClass = null if i < l then cur_m = explicit_super_init_calls[i] cur_c = cur_m.global.intro.local_class.for_module(v.module) end var j = 0 while j < v.local_class.cshe.direct_greaters.length do var c = v.local_class.cshe.direct_greaters[j] if c.global.is_interface or c.global.is_universal or c.global.is_mixin then j += 1 else if cur_c != null and (c.cshe <= cur_c or cur_c.global.is_mixin) then if c == cur_c then j += 1 super_init_calls.add(cur_m.as(not null)) i += 1 if i < l then cur_m = explicit_super_init_calls[i] cur_c = cur_m.global.intro.local_class.for_module(v.module) else cur_m = null cur_c = null end else var p = v.get_default_constructor_for(self, c, method) if p != null then super_init_calls.add(p) end j += 1 end end end end end redef class PParam redef fun after_typing(v) do v.variable_ctx.add(variable) end end redef class AClosureDecl # The corresponding escapable object readable var _escapable: nullable EscapableBlock redef fun accept_typing(v) do # Register the closure for ClosureCallExpr v.variable_ctx.add(variable) var old_var_ctx = v.variable_ctx var old_base_var_ctx = v.base_variable_ctx v.base_variable_ctx = v.variable_ctx v.variable_ctx = v.variable_ctx.sub(self) var escapable = new EscapableClosure(self, variable.closure, null) _escapable = escapable v.escapable_ctx.push(escapable) super if n_expr != null then if v.variable_ctx.unreash == false then if variable.closure.signature.return_type != null then v.error(self, "Control error: Reached end of block (a 'continue' with a value was expected).") else if variable.closure.is_break then v.error(self, "Control error: Reached end of break block (an 'abort' was expected).") end end end old_var_ctx.merge(v.variable_ctx) v.variable_ctx = old_var_ctx v.base_variable_ctx = old_base_var_ctx v.escapable_ctx.pop end end redef class PType fun stype: MMType do return _stype.as(not null) var _stype: nullable MMType redef fun after_typing(v) do _stype = get_stype(v) end end redef class PExpr redef readable var _is_typed: Bool = false redef fun is_statement: Bool do return _stype == null redef fun stype do if not is_typed then print "{locate}: not is_typed" abort end if is_statement then print "{locate}: is_statement" abort end return _stype.as(not null) end var _stype: nullable MMType # Is the expression the implicit receiver fun is_implicit_self: Bool do return false # Is the expression the current receiver (implicit or explicit) fun is_self: Bool do return false # The variable accessed is any fun its_variable: nullable Variable do return null # The variable type information if current boolean expression is true readable private var _if_true_variable_ctx: nullable VariableContext # The variable type information if current boolean expression is false readable private var _if_false_variable_ctx: nullable VariableContext end redef class AVardeclExpr var _variable: nullable VarVariable redef fun variable do return _variable.as(not null) redef fun after_typing(v) do var va = new VarVariable(n_id.to_symbol, self) _variable = va v.variable_ctx.add(va) if n_expr != null then v.variable_ctx.mark_is_set(va) if n_type != null then va.stype = n_type.stype if n_expr != null then v.check_conform_expr(n_expr.as(not null), va.stype) end else if not v.check_expr(n_expr.as(not null)) then return va.stype = n_expr.stype end _is_typed = true end end redef class ABlockExpr redef fun accept_typing(v) do var old_var_ctx = v.variable_ctx v.variable_ctx = v.variable_ctx.sub(self) for e in n_expr do if v.variable_ctx.unreash and not v.variable_ctx.already_unreash then v.variable_ctx.already_unreash = true v.warning(e, "Warning: unreachable statement.") end v.visit(e) end old_var_ctx.merge(v.variable_ctx) v.variable_ctx = old_var_ctx _is_typed = true end end redef class AReturnExpr redef fun after_typing(v) do v.variable_ctx.unreash = true var t = v.local_property.signature.return_type var e = n_expr if e == null and t != null then v.error(self, "Error: Return without value in a function.") else if e != null and t == null then v.error(self, "Error: Return with value in a procedure.") else if e != null and t != null then v.check_conform_expr(e, t) end _is_typed = true end end redef class AContinueExpr redef fun after_typing(v) do v.variable_ctx.unreash = true var esc = compute_escapable_block(v.escapable_ctx) if esc == null then return if esc.is_break_block then v.error(self, "Error: 'continue' forbiden in break blocks.") return end var t = esc.continue_stype if n_expr == null and t != null then v.error(self, "Error: continue with a value required in this block.") else if n_expr != null and t == null then v.error(self, "Error: continue without value required in this block.") else if n_expr != null and t != null then v.check_conform_expr(n_expr.as(not null), t) end _is_typed = true end end redef class ABreakExpr redef fun after_typing(v) do v.variable_ctx.unreash = true var esc = compute_escapable_block(v.escapable_ctx) if esc == null then return var bl = esc.break_list if n_expr == null and bl != null then v.error(self, "Error: break with a value required in this block.") else if n_expr != null and bl == null then v.error(self, "Error: break without value required in this block.") else if n_expr != null and bl != null then # Typing check can only be done later bl.add(n_expr.as(not null)) end _is_typed = true end end redef class AAbortExpr redef fun after_typing(v) do v.variable_ctx.unreash = true end end redef class AIfExpr redef fun accept_typing(v) do var old_var_ctx = v.variable_ctx v.visit(n_expr) v.check_conform_expr(n_expr, v.type_bool) # Prepare 'then' context v.use_if_true_variable_ctx(n_expr) # Process the 'then' if n_then != null then v.variable_ctx = v.variable_ctx.sub(n_then.as(not null)) v.visit(n_then) end # Remember what appened in the 'then' var then_var_ctx = v.variable_ctx # Prepare 'else' context v.variable_ctx = old_var_ctx v.use_if_false_variable_ctx(n_expr) # Process the 'else' if n_else != null then v.variable_ctx = v.variable_ctx.sub(n_else.as(not null)) v.visit(n_else) end # Merge 'then' and 'else' contexts old_var_ctx.merge2(then_var_ctx, v.variable_ctx, v.base_variable_ctx) v.variable_ctx = old_var_ctx _is_typed = true end end redef class AWhileExpr # The corresponding escapable block readable var _escapable: nullable EscapableBlock redef fun accept_typing(v) do var escapable = new EscapableBlock(self) _escapable = escapable v.escapable_ctx.push(escapable) var old_var_ctx = v.variable_ctx var old_base_var_ctx = v.base_variable_ctx v.base_variable_ctx = v.variable_ctx v.variable_ctx = v.variable_ctx.sub(self) # Process condition v.visit(n_expr) v.check_conform_expr(n_expr, v.type_bool) # Prepare inside context (assert cond) v.use_if_true_variable_ctx(n_expr) # Process inside if n_block != null then v.variable_ctx = v.variable_ctx.sub(n_block.as(not null)) v.visit(n_block) end v.variable_ctx = old_var_ctx v.base_variable_ctx = old_base_var_ctx v.escapable_ctx.pop _is_typed = true end end redef class AForExpr var _variable: nullable AutoVariable redef fun variable do return _variable.as(not null) # The corresponding escapable block readable var _escapable: nullable EscapableBlock var _meth_iterator: nullable MMMethod fun meth_iterator: MMMethod do return _meth_iterator.as(not null) var _meth_is_ok: nullable MMMethod fun meth_is_ok: MMMethod do return _meth_is_ok.as(not null) var _meth_item: nullable MMMethod fun meth_item: MMMethod do return _meth_item.as(not null) var _meth_next: nullable MMMethod fun meth_next: MMMethod do return _meth_next.as(not null) redef fun accept_typing(v) do var escapable = new EscapableBlock(self) _escapable = escapable v.escapable_ctx.push(escapable) var old_var_ctx = v.variable_ctx var old_base_var_ctx = v.base_variable_ctx v.base_variable_ctx = v.variable_ctx v.variable_ctx = v.variable_ctx.sub(self) var va = new AutoVariable(n_id.to_symbol, self) _variable = va v.variable_ctx.add(va) v.visit(n_expr) if not v.check_conform_expr(n_expr, v.type_collection) then return var expr_type = n_expr.stype _meth_iterator = expr_type.local_class.select_method(once ("iterator".to_symbol)) if _meth_iterator == null then v.error(self, "Error: Collection MUST have an iterate method") return end var iter_type = _meth_iterator.signature_for(expr_type).return_type.as(not null) _meth_is_ok = iter_type.local_class.select_method(once ("is_ok".to_symbol)) if _meth_is_ok == null then v.error(self, "Error: {iter_type} MUST have an is_ok method") return end _meth_item = iter_type.local_class.select_method(once ("item".to_symbol)) if _meth_item == null then v.error(self, "Error: {iter_type} MUST have an item method") return end _meth_next = iter_type.local_class.select_method(once ("next".to_symbol)) if _meth_next == null then v.error(self, "Error: {iter_type} MUST have a next method") return end var t = _meth_item.signature_for(iter_type).return_type if not n_expr.is_self then t = t.not_for_self va.stype = t if n_block != null then v.visit(n_block) # pop context v.variable_ctx = old_var_ctx v.base_variable_ctx = old_base_var_ctx v.escapable_ctx.pop _is_typed = true end end redef class AAssertExpr redef fun after_typing(v) do v.check_conform_expr(n_expr, v.type_bool) v.use_if_true_variable_ctx(n_expr) _is_typed = true end end redef class AVarFormExpr var _variable: nullable Variable redef fun variable do return _variable.as(not null) end redef class AVarExpr redef fun its_variable do return variable redef fun after_typing(v) do v.variable_ctx.check_is_set(self, variable) _stype = v.variable_ctx.stype(variable) _is_typed = _stype != null end end redef class AVarAssignExpr redef fun after_typing(v) do v.variable_ctx.mark_is_set(variable) var t = v.variable_ctx.stype(variable) # Check the base type var btype = v.base_variable_ctx.stype(variable) if not v.check_conform_expr(n_value, btype) then return # Always cast v.variable_ctx.stype(variable) = n_value.stype _is_typed = true end end redef class AReassignFormExpr # Compute and check method used through the reassigment operator # On success return the static type of the result of the reassigment operator # Else display an error and return null private fun do_rvalue_typing(v: TypingVisitor, type_lvalue: nullable MMType): nullable MMType do if type_lvalue == null then return null end var name = n_assign_op.method_name var lc = type_lvalue.local_class if not lc.has_global_property_by_name(name) then v.error(self, "Error: Method '{name}' doesn't exists in {type_lvalue}.") return null end var prop = lc.select_method(name) prop.global.check_visibility(v, self, v.module, false) var psig = prop.signature_for(type_lvalue) _assign_method = prop if not v.check_conform_expr(n_value, psig[0].not_for_self) then return null return psig.return_type.not_for_self end # Method used through the reassigment operator (once computed) readable var _assign_method: nullable MMMethod end redef class AVarReassignExpr redef fun after_typing(v) do v.variable_ctx.check_is_set(self, variable) v.variable_ctx.mark_is_set(variable) var t = v.variable_ctx.stype(variable) var t2 = do_rvalue_typing(v, t) if t2 == null then return # Check the base type var btype = v.base_variable_ctx.stype(variable) if not v.check_conform(n_value, t2, btype) then return # Always cast v.variable_ctx.stype(variable) = t2 _is_typed = true end end redef class PAssignOp fun method_name: Symbol is abstract end redef class APlusAssignOp redef fun method_name do return once "+".to_symbol end redef class AMinusAssignOp redef fun method_name do return once "-".to_symbol end redef class ASelfExpr var _variable: nullable ParamVariable redef fun variable do return _variable.as(not null) redef fun its_variable do return variable redef fun after_typing(v) do _variable = v.self_var _stype = v.variable_ctx.stype(variable) _is_typed = true end redef fun is_self do return true end redef class AImplicitSelfExpr redef fun is_implicit_self do return true end redef class AIfexprExpr redef fun accept_typing(v) do var old_var_ctx = v.variable_ctx v.visit(n_expr) v.use_if_true_variable_ctx(n_expr) v.visit(n_then) v.variable_ctx = old_var_ctx v.use_if_false_variable_ctx(n_expr) v.visit(n_else) v.check_conform_expr(n_expr, v.type_bool) _stype = v.check_conform_multiexpr(null, [n_then, n_else]) _is_typed = _stype != null end end redef class ABoolExpr redef fun after_typing(v) do _stype = v.type_bool _is_typed = true end end redef class AOrExpr redef fun accept_typing(v) do var old_var_ctx = v.variable_ctx v.visit(n_expr) v.use_if_false_variable_ctx(n_expr) v.visit(n_expr2) if n_expr2.if_false_variable_ctx != null then _if_false_variable_ctx = n_expr2.if_false_variable_ctx else _if_false_variable_ctx = v.variable_ctx end v.variable_ctx = old_var_ctx v.check_conform_expr(n_expr, v.type_bool) v.check_conform_expr(n_expr2, v.type_bool) _stype = v.type_bool _is_typed = true end end redef class AAndExpr redef fun accept_typing(v) do var old_var_ctx = v.variable_ctx v.visit(n_expr) v.use_if_true_variable_ctx(n_expr) v.visit(n_expr2) if n_expr2.if_true_variable_ctx != null then _if_true_variable_ctx = n_expr2.if_true_variable_ctx else _if_true_variable_ctx = v.variable_ctx end v.variable_ctx = old_var_ctx v.check_conform_expr(n_expr, v.type_bool) v.check_conform_expr(n_expr2, v.type_bool) _stype = v.type_bool _is_typed = true end end redef class ANotExpr redef fun after_typing(v) do v.check_conform_expr(n_expr, v.type_bool) # Invert if_true/if_false information _if_false_variable_ctx = n_expr._if_true_variable_ctx _if_true_variable_ctx = n_expr._if_false_variable_ctx _stype = v.type_bool _is_typed = true end end redef class AIntExpr redef fun after_typing(v) do _stype = v.type_int _is_typed = true end end redef class AFloatExpr redef fun after_typing(v) do _stype = v.type_float _is_typed = true end end redef class ACharExpr redef fun after_typing(v) do _stype = v.type_char _is_typed = true end end redef class AStringFormExpr var _meth_with_native: nullable MMMethod fun meth_with_native: MMMethod do return _meth_with_native.as(not null) redef fun after_typing(v) do _stype = v.type_string _is_typed = true _meth_with_native = _stype.local_class.select_method(once "with_native".to_symbol) if _meth_with_native == null then v.error(self, "{_stype} MUST have a with_native method.") end end redef class ASuperstringExpr fun meth_with_capacity: MMMethod do return _meth_with_capacity.as(not null) var _meth_with_capacity: nullable MMMethod fun meth_add: MMMethod do return _meth_add.as(not null) var _meth_add: nullable MMMethod fun meth_to_s: MMMethod do return _meth_to_s.as(not null) var _meth_to_s: nullable MMMethod readable var _atype: nullable MMType redef fun after_typing(v) do var stype = v.type_string _stype = stype var atype = v.type_array(stype) _atype = atype _meth_with_capacity = atype.local_class.select_method(once "with_capacity".to_symbol) if _meth_with_capacity == null then v.error(self, "{_atype} MUST have a with_capacity method.") _meth_add = atype.local_class.select_method(once "add".to_symbol) if _meth_add == null then v.error(self, "{_atype} MUST have an add method.") _meth_to_s = v.type_object.local_class.select_method(once "to_s".to_symbol) if _meth_to_s == null then v.error(self, "Object MUST have a to_s method.") _is_typed = true end end redef class ANullExpr redef fun after_typing(v) do _stype = v.type_none _is_typed = true end end redef class AArrayExpr fun meth_with_capacity: MMMethod do return _meth_with_capacity.as(not null) var _meth_with_capacity: nullable MMMethod fun meth_add: MMMethod do return _meth_add.as(not null) var _meth_add: nullable MMMethod redef fun after_typing(v) do var stype = v.check_conform_multiexpr(null, n_exprs) if stype != null then do_typing(v, stype) end private fun do_typing(v: TypingVisitor, element_type: MMType) do _stype = v.type_array(element_type) _meth_with_capacity = _stype.local_class.select_method(once "with_capacity".to_symbol) if _meth_with_capacity == null then v.error(self, "{_stype} MUST have a with_capacity method.") _meth_add = _stype.local_class.select_method(once "add".to_symbol) if _meth_add == null then v.error(self, "{_stype} MUST have an add method.") _is_typed = true end end redef class ARangeExpr fun meth_init: MMMethod do return _meth_init.as(not null) var _meth_init: nullable MMMethod redef fun after_typing(v) do if not v.check_expr(n_expr) or not v.check_expr(n_expr2) then return var ntype = n_expr.stype var ntype2 = n_expr2.stype if ntype < ntype2 then ntype = ntype2 else if not ntype2 < ntype then v.error(self, "Type error: {ntype} incompatible with {ntype2}.") return end var dtype = v.type_discrete if not v.check_conform_expr(n_expr, dtype) or not v.check_conform_expr(n_expr2, dtype) then return _stype = v.type_range(ntype) _is_typed = true end end redef class ACrangeExpr redef fun after_typing(v) do super _meth_init = stype.local_class.select_method(once "init".to_symbol) end end redef class AOrangeExpr redef fun after_typing(v) do super _meth_init = stype.local_class.select_method(once "without_last".to_symbol) end end redef class ASuperExpr special ASuperInitCall # readable var _prop: MMSrcMethod readable var _init_in_superclass: nullable MMMethod redef fun after_typing(v) do var precs: Array[MMLocalProperty] = v.local_property.prhe.direct_greaters if not precs.is_empty then v.local_property.need_super = true else if v.local_property.global.is_init then var base_precs = v.local_class.super_methods_named(v.local_property.name) for p in base_precs do if not p.global.is_init then v.error(self, "Error: {p.local_class}::{p} is not a constructor.") else precs.add(v.local_class[p.global]) end end if precs.is_empty then v.error(self, "Error: No contructor named {v.local_property.name} in superclasses.") return else if precs.length > 1 then v.error(self, "Error: Conflicting contructors named {v.local_property.name} in superclasses: {precs.join(", ")}.") return end var p = base_precs.first assert p isa MMMethod _init_in_superclass = p register_super_init_call(v, p) if n_args.length > 0 then var signature = get_signature(v, v.self_var.stype.as(not null), p, true) _arguments = process_signature(v, signature, p.name, n_args.to_a) end else v.error(self, "Error: No super method to call for {v.local_property}.") return end if precs.first.signature_for(v.self_var.stype.as(not null)).return_type != null then var stypes = new Array[MMType] var stype: nullable MMType = null for prop in precs do assert prop isa MMMethod var t = prop.signature_for(v.self_var.stype.as(not null)).return_type.for_module(v.module).adapt_to(v.local_property.signature.recv) stypes.add(t) if stype == null or stype < t then stype = t end end for t in stypes do v.check_conform(self, t, stype.as(not null)) end _stype = stype end var p = v.local_property assert p isa MMSrcMethod _prop = p _is_typed = true end end redef class AAttrFormExpr # Attribute accessed readable var _prop: nullable MMAttribute # Attribute type of the acceded attribute readable var _attr_type: nullable MMType # Compute the attribute accessed private fun do_typing(v: TypingVisitor) do if not v.check_expr(n_expr) then return var type_recv = n_expr.stype var name = n_id.to_symbol var lc = type_recv.local_class if not lc.has_global_property_by_name(name) then v.error(self, "Error: Attribute {name} doesn't exists in {type_recv}.") return end var prop = lc.select_attribute(name) if v.module.visibility_for(prop.global.local_class.module) < 3 then v.error(self, "Error: Attribute {name} from {prop.global.local_class.module} is invisible in {v.module}") end _prop = prop var at = prop.signature_for(type_recv).return_type if not n_expr.is_self then at = at.not_for_self _attr_type = at end end redef class AAttrExpr redef fun after_typing(v) do do_typing(v) if prop == null then return _stype = attr_type _is_typed = true end end redef class AAttrAssignExpr redef fun after_typing(v) do do_typing(v) if prop == null then return if not v.check_conform_expr(n_value, attr_type) then return _is_typed = true end end redef class AAttrReassignExpr redef fun after_typing(v) do do_typing(v) if prop == null then return var t = do_rvalue_typing(v, attr_type) if t == null then return v.check_conform(self, t, n_value.stype) _is_typed = true end end redef class AIssetAttrExpr redef fun after_typing(v) do do_typing(v) if prop == null then return if attr_type.is_nullable then v.error(self, "Error: isset on a nullable attribute.") end _stype = v.type_bool _is_typed = true end end class AAbsAbsSendExpr special PExpr # The signature of the called property readable var _prop_signature: nullable MMSignature # The real arguments used (after star transformation) (once computed) readable var _arguments: nullable Array[PExpr] # Check the conformity of a set of arguments `raw_args' to a signature. private fun process_signature(v: TypingVisitor, psig: MMSignature, name: Symbol, raw_args: nullable Array[PExpr]): nullable Array[PExpr] do var par_vararg = psig.vararg_rank var par_arity = psig.arity var raw_arity: Int if raw_args == null then raw_arity = 0 else raw_arity = raw_args.length if par_arity > raw_arity or (par_arity != raw_arity and par_vararg == -1) then v.error(self, "Error: '{name}' arity missmatch.") return null end var arg_idx = 0 var args = new Array[PExpr] for par_idx in [0..par_arity[ do var a: PExpr var par_type = psig[par_idx] if par_idx == par_vararg then var star = new Array[PExpr] for i in [0..(raw_arity-par_arity)] do a = raw_args[arg_idx] v.check_conform_expr(a, par_type) star.add(a) arg_idx = arg_idx + 1 end var aa = new AArrayExpr.init_aarrayexpr(star) aa.do_typing(v, par_type) a = aa else a = raw_args[arg_idx] v.check_conform_expr(a, par_type) arg_idx = arg_idx + 1 end args.add(a) end return args end # Check the conformity of a set of defined closures private fun process_closures(v: TypingVisitor, psig: MMSignature, name: Symbol, cd: nullable Array[PClosureDef]): nullable MMType do var t = psig.return_type var cs = psig.closures # Declared closures var min_arity = 0 for c in cs do if not c.is_optional then min_arity += 1 end if cd != null then if cs.length == 0 then v.error(self, "Error: {name} does not require blocks.") else if cd.length > cs.length or cd.length < min_arity then v.error(self, "Error: {name} requires {cs.length} blocks, {cd.length} found.") else # Initialize the break list if a value is required for breaks (ie. if the method is a function) var break_list: nullable Array[ABreakExpr] = null if t != null then break_list = new Array[ABreakExpr] # Process each closure definition for i in [0..cd.length[ do var csi = cs[i] var cdi = cd[i] var esc = new EscapableClosure(cdi, csi, break_list) v.escapable_ctx.push(esc) cdi.accept_typing2(v, esc) v.escapable_ctx.pop end # Check break type conformity if break_list != null then t = v.check_conform_multiexpr(t, break_list) end end else if min_arity != 0 then v.error(self, "Error: {name} requires {cs.length} blocks.") end return t end end class AAbsSendExpr special AAbsAbsSendExpr # Compute the called global property private fun do_typing(v: TypingVisitor, type_recv: MMType, is_implicit_self: Bool, recv_is_self: Bool, name: Symbol, raw_args: nullable Array[PExpr], closure_defs: nullable Array[PClosureDef]) do var prop = get_property(v, type_recv, is_implicit_self, name) if prop == null then return var sig = get_signature(v, type_recv, prop, recv_is_self) var args = process_signature(v, sig, prop.name, raw_args) if args == null then return var rtype = process_closures(v, sig, prop.name, closure_defs) if rtype == null and sig.return_type != null then return _prop = prop _prop_signature = sig _arguments = args _return_type = rtype end private fun get_property(v: TypingVisitor, type_recv: MMType, is_implicit_self: Bool, name: Symbol): nullable MMMethod do var lc = type_recv.local_class var prop: nullable MMMethod = null if lc.has_global_property_by_name(name) then prop = lc.select_method(name) if prop == null and v.local_property.global.is_init then var props = type_recv.local_class.super_methods_named(name) if props.length > 1 then v.error(self, "Error: Ambigous method name '{name}' for {props.join(", ")}. Use explicit designation.") return null else if props.length == 1 then var p = type_recv.local_class[props.first.global] assert p isa MMMethod prop = p end end if prop == null then if is_implicit_self then v.error(self, "Error: Method or variable '{name}' unknown in {type_recv}.") else v.error(self, "Error: Method '{name}' doesn't exists in {type_recv}.") end return null end return prop end # Get the signature for a local property and a receiver private fun get_signature(v: TypingVisitor, type_recv: MMType, prop: MMMethod, recv_is_self: Bool): MMSignature do prop.global.check_visibility(v, self, v.module, recv_is_self) var psig = prop.signature_for(type_recv) if not recv_is_self then psig = psig.not_for_self return psig end # The invoked method (once computed) readable var _prop: nullable MMMethod # The return type (if any) (once computed) readable var _return_type: nullable MMType end # A possible call of constructor in a super class # Could be an explicit call or with the 'super' keyword class ASuperInitCall special AAbsSendExpr private fun register_super_init_call(v: TypingVisitor, property: MMMethod) do if parent != v.top_block and self != v.top_block then v.error(self, "Error: Constructor invocation {property} must not be in nested block.") end var cla = v.module[property.global.intro.local_class.global] var prev_class: nullable MMLocalClass = null var esic = v.explicit_super_init_calls.as(not null) if not esic.is_empty then prev_class = esic.last.global.intro.local_class end var order = v.local_class.cshe.reverse_linear_extension if cla == v.local_class then v.explicit_other_init_call = true else if not order.has(cla) then v.error(self, "Error: Constructor of class {cla} must be one in {order.join(", ")}.") else if cla == prev_class then v.error(self, "Error: Only one super constructor invocation of class {cla} is allowed.") else var last_is_found = prev_class == null for c in order do if c == prev_class then last_is_found = true else if c == cla then if not last_is_found then v.error(self, "Error: Constructor of {c} must be invoked before constructor of {prev_class}") end esic.add(property) break end end end end end redef class ANewExpr special AAbsSendExpr redef fun after_typing(v) do if n_type._stype == null then return var t = n_type.stype if t.local_class.global.is_abstract then v.error(self, "Error: try to instantiate abstract class {t.local_class}.") return end var name: Symbol if n_id == null then name = once "init".to_symbol else name = n_id.to_symbol end do_typing(v, t, false, false, name, n_args.to_a, null) if prop == null then return if not prop.global.is_init then v.error(self, "Error: {prop} is not a constructor.") return end _stype = t _is_typed = true end end redef class ASendExpr special ASuperInitCall # Name of the invoked property fun name: Symbol is abstract # Raw arguments used (withour star transformation) fun raw_arguments: nullable Array[PExpr] is abstract # Closure definitions fun closure_defs: nullable Array[PClosureDef] do return null redef fun after_typing(v) do do_all_typing(v) end private fun do_all_typing(v: TypingVisitor) do if not v.check_expr(n_expr) then return do_typing(v, n_expr.stype, n_expr.is_implicit_self, n_expr.is_self, name, raw_arguments, closure_defs) if _prop == null then return var prop = _prop.as(not null) if prop.global.is_init then if not v.local_property.global.is_init then v.error(self, "Error: try to invoke constructor {prop} in a method.") else if not n_expr.is_self then v.error(self, "Error: constructor {prop} is not invoken on 'self'.") else register_super_init_call(v, prop) end end _stype = return_type _is_typed = true end end class ASendReassignExpr special ASendExpr special AReassignFormExpr readable var _read_prop: nullable MMMethod redef fun do_all_typing(v) do if not v.check_expr(n_expr) then return var raw_args = raw_arguments do_typing(v, n_expr.stype, n_expr.is_implicit_self, n_expr.is_self, name, raw_args, null) var prop = _prop if prop == null then return if prop.global.is_init then if not v.local_property.global.is_init then v.error(self, "Error: try to invoke constructor {prop} in a method.") else if not n_expr.is_self then v.error(self, "Error: constructor {prop} is not invoken on 'self'.") end end var t = prop.signature_for(n_expr.stype).return_type.as(not null) if not n_expr.is_self then t = t.not_for_self var t2 = do_rvalue_typing(v, t) if t2 == null then return v.check_conform(self, t2, n_value.stype) _read_prop = prop var old_args = arguments raw_args.add(n_value) do_typing(v, n_expr.stype, n_expr.is_implicit_self, n_expr.is_self, "{name}=".to_symbol, raw_args, null) if prop.global.is_init then if not v.local_property.global.is_init then v.error(self, "Error: try to invoke constructor {prop} in a method.") else if not n_expr.is_self then v.error(self, "Error: constructor {prop} is not invoken on 'self'.") end end _arguments = old_args # FIXME: What if star parameters do not match betwen the two methods? _is_typed = true end end redef class ABinopExpr redef fun raw_arguments do return [n_expr2] end redef class AEqExpr redef fun name do return once "==".to_symbol redef fun after_typing(v) do super if not is_typed then return if n_expr.stype isa MMTypeNone and not n_expr2.stype.is_nullable or n_expr2.stype isa MMTypeNone and not n_expr.stype.is_nullable then v.warning(self, "Warning: comparaison between null and a non nullable value.") end if n_expr.stype isa MMTypeNone then try_to_isa(v, n_expr2) else if n_expr2.stype isa MMTypeNone then try_to_isa(v, n_expr) end end private fun try_to_isa(v: TypingVisitor, n: PExpr) do var variable = n.its_variable if variable != null then _if_false_variable_ctx = v.variable_ctx.sub_with(self, variable, n.stype.as_notnull) end end end redef class ANeExpr redef fun name do return once "!=".to_symbol redef fun after_typing(v) do super if not is_typed then return if n_expr.stype isa MMTypeNone and not n_expr2.stype.is_nullable or n_expr2.stype isa MMTypeNone and not n_expr.stype.is_nullable then v.warning(self, "Warning: comparaison between null and a non nullable value.") end if n_expr.stype isa MMTypeNone then try_to_isa(v, n_expr2) else if n_expr2.stype isa MMTypeNone then try_to_isa(v, n_expr) end end private fun try_to_isa(v: TypingVisitor, n: PExpr) do var variable = n.its_variable if variable != null then _if_true_variable_ctx = v.variable_ctx.sub_with(self, variable, n.stype.as_notnull) end end end redef class ALtExpr redef fun name do return once "<".to_symbol end redef class ALeExpr redef fun name do return once "<=".to_symbol end redef class AGtExpr redef fun name do return once ">".to_symbol end redef class AGeExpr redef fun name do return once ">=".to_symbol end redef class APlusExpr redef fun name do return once "+".to_symbol end redef class AMinusExpr redef fun name do return once "-".to_symbol end redef class AStarshipExpr redef fun name do return once "<=>".to_symbol end redef class AStarExpr redef fun name do return once "*".to_symbol end redef class ASlashExpr redef fun name do return once "/".to_symbol end redef class APercentExpr redef fun name do return once "%".to_symbol end redef class AUminusExpr redef fun name do return once "unary -".to_symbol redef fun raw_arguments do return null end redef class ACallFormExpr redef fun after_typing(v) do if n_expr.is_implicit_self then var name = n_id.to_symbol var variable = v.variable_ctx[name] if variable != null then if variable isa ClosureVariable then var n = new AClosureCallExpr.init_aclosurecallexpr(n_id, n_args, n_closure_defs) replace_with(n) n._variable = variable n.after_typing(v) return else if not n_args.is_empty then v.error(self, "Error: {name} is variable, not a function.") return end var vform = variable_create(variable) vform._variable = variable replace_with(vform) vform.after_typing(v) return end end end super end redef fun closure_defs do if n_closure_defs.is_empty then return null else return n_closure_defs.to_a end end # Create a variable acces corresponding to the call form fun variable_create(variable: Variable): AVarFormExpr is abstract end redef class ACallExpr redef fun variable_create(variable) do return new AVarExpr.init_avarexpr(n_id) end redef fun name do return n_id.to_symbol redef fun raw_arguments do return n_args.to_a end redef class ACallAssignExpr redef fun variable_create(variable) do return new AVarAssignExpr.init_avarassignexpr(n_id, n_assign, n_value) end redef fun name do return (n_id.text + "=").to_symbol redef fun raw_arguments do var res = n_args.to_a res.add(n_value) return res end end redef class ACallReassignExpr special ASendReassignExpr redef fun variable_create(variable) do return new AVarReassignExpr.init_avarreassignexpr(n_id, n_assign_op, n_value) end redef fun name do return n_id.to_symbol redef fun raw_arguments do return n_args.to_a end redef class ABraExpr redef fun name do return once "[]".to_symbol redef fun raw_arguments do return n_args.to_a end redef class ABraAssignExpr redef fun name do return once "[]=".to_symbol redef fun raw_arguments do var res = n_args.to_a res.add(n_value) return res end end redef class ABraReassignExpr special ASendReassignExpr redef fun name do return once "[]".to_symbol redef fun raw_arguments do return n_args.to_a end redef class AInitExpr redef fun name do return once "init".to_symbol redef fun raw_arguments do return n_args.to_a end redef class AClosureCallExpr special AAbsAbsSendExpr var _variable: nullable ClosureVariable redef fun variable do return _variable.as(not null) redef fun after_typing(v) do var va = variable if va.closure.is_break then v.variable_ctx.unreash = true var sig = va.closure.signature var args = process_signature(v, sig, n_id.to_symbol, n_args.to_a) if not n_closure_defs.is_empty then process_closures(v, sig, n_id.to_symbol, n_closure_defs.to_a) end if args == null then return _prop_signature = sig _arguments = args _stype = sig.return_type _is_typed = true end end redef class PClosureDef var _closure: nullable MMClosure redef fun closure do return _closure.as(not null) # The corresponding escapable object readable var _escapable: nullable EscapableBlock var _accept_typing2: Bool = false redef fun accept_typing(v) do # Typing is deferred, wait accept_typing2(v) if _accept_typing2 then super end private fun accept_typing2(v: TypingVisitor, esc: EscapableClosure) is abstract end redef class AClosureDef redef fun accept_typing2(v, esc) do _escapable = esc var sig = esc.closure.signature if sig.arity != n_id.length then v.error(self, "Error: {sig.arity} automatic variable names expected, {n_id.length} found.") return end _closure = esc.closure var old_var_ctx = v.variable_ctx var old_base_var_ctx = v.base_variable_ctx v.base_variable_ctx = v.variable_ctx v.variable_ctx = v.variable_ctx.sub(self) variables = new Array[AutoVariable] for i in [0..n_id.length[ do var va = new AutoVariable(n_id[i].to_symbol, self) variables.add(va) va.stype = sig[i] v.variable_ctx.add(va) end _accept_typing2 = true accept_typing(v) if v.variable_ctx.unreash == false then if closure.signature.return_type != null then v.error(self, "Control error: Reached end of block (a 'continue' with a value was expected).") else if closure.is_break then v.error(self, "Control error: Reached end of break block (a 'break' was expected).") end end v.variable_ctx = old_var_ctx v.base_variable_ctx = old_base_var_ctx end end class ATypeCheckExpr special PExpr private fun check_expr_cast(v: TypingVisitor, n_expr: PExpr, n_type: PType) do if not v.check_expr(n_expr) then return var etype = n_expr.stype var ttype = n_type.stype if etype == ttype then v.warning(self, "Warning: Expression is already a {ttype}.") else if etype < ttype then v.warning(self, "Warning: Expression is already a {ttype} since it is a {etype}.") else if etype.is_nullable and etype.as_notnull == ttype then if ttype isa MMTypeFormal and ttype.bound.is_nullable then # No warning in this case since with # type T: nullable A # var x: nullable T # 'x.as(not null)' != 'x.as(T)' # 'x != null' != 'x isa T' else if self isa AIsaExpr then v.warning(self, "Warning: Prefer '!= null'.") else v.warning(self, "Warning: Prefer '.as(not null)'.") end end end end redef class AIsaExpr special ATypeCheckExpr redef fun after_typing(v) do check_expr_cast(v, n_expr, n_type) var variable = n_expr.its_variable if variable != null then _if_true_variable_ctx = v.variable_ctx.sub_with(self, variable, n_type.stype) end _stype = v.type_bool _is_typed = true end end redef class AAsCastExpr special ATypeCheckExpr redef fun after_typing(v) do check_expr_cast(v, n_expr, n_type) _stype = n_type.stype _is_typed = _stype != null end end redef class AAsNotnullExpr redef fun after_typing(v) do if not v.check_expr(n_expr) then return var t = n_expr.stype if t isa MMTypeNone then v.error(n_expr, "Type error: 'as(not null)' on 'null' value.") return else if not t.is_nullable then v.warning(n_expr, "Warning: 'as(not null)' on non nullable type.") end _stype = n_expr.stype.as_notnull _is_typed = true end end redef class AProxyExpr redef fun after_typing(v) do if not n_expr.is_typed then return _is_typed = true if n_expr.is_statement then return _stype = n_expr.stype end end redef class AOnceExpr redef fun accept_typing(v) do if v.once_count > 0 then v.warning(self, "Useless once in a once expression.") end v.once_count = v.once_count + 1 super v.once_count = v.once_count - 1 end end