X-Git-Url: http://nitlanguage.org diff --git a/src/compiler/separate_compiler.nit b/src/compiler/separate_compiler.nit index 13f0bd7..9c98d07 100644 --- a/src/compiler/separate_compiler.nit +++ b/src/compiler/separate_compiler.nit @@ -26,15 +26,31 @@ redef class ToolContext # --no-inline-intern var opt_no_inline_intern = new OptionBool("Do not inline call to intern methods", "--no-inline-intern") # --no-union-attribute - var opt_no_union_attribute = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute") + var opt_no_union_attribute = new OptionBool("Put primitive attributes in a box instead of an union", "--no-union-attribute") # --no-shortcut-equate var opt_no_shortcut_equate = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal") + # --no-tag-primitives + var opt_no_tag_primitives = new OptionBool("Use only boxes for primitive types", "--no-tag-primitives") + + # --colors-are-symbols + var opt_colors_are_symbols = new OptionBool("Store colors as symbols instead of static data (link-boost)", "--colors-are-symbols") + # --trampoline-call + var opt_trampoline_call = new OptionBool("Use an indirection when calling", "--trampoline-call") + # --guard-call + var opt_guard_call = new OptionBool("Guard VFT calls with a direct call", "--guard-call") + # --substitute-monomorph + var opt_substitute_monomorph = new OptionBool("Replace monomorphic trampolines with direct calls (link-boost)", "--substitute-monomorph") + # --link-boost + var opt_link_boost = new OptionBool("Enable all link-boost optimizations", "--link-boost") + # --inline-coloring-numbers var opt_inline_coloring_numbers = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers") # --inline-some-methods var opt_inline_some_methods = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods") # --direct-call-monomorph - var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph") + var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorphic sites (semi-global)", "--direct-call-monomorph") + # --direct-call-monomorph0 + var opt_direct_call_monomorph0 = new OptionBool("Allow the separate compiler to direct call monomorphic sites (semi-global)", "--direct-call-monomorph0") # --skip-dead-methods var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods") # --semi-global @@ -43,6 +59,8 @@ redef class ToolContext var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods") # --tables-metrics var opt_tables_metrics = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics") + # --type-poset + var opt_type_poset = new OptionBool("Build a poset of types to create more condensed tables", "--type-poset") redef init do @@ -51,9 +69,12 @@ redef class ToolContext self.option_context.add_option(self.opt_no_inline_intern) self.option_context.add_option(self.opt_no_union_attribute) self.option_context.add_option(self.opt_no_shortcut_equate) + self.option_context.add_option(self.opt_no_tag_primitives) + self.option_context.add_option(opt_colors_are_symbols, opt_trampoline_call, opt_guard_call, opt_direct_call_monomorph0, opt_substitute_monomorph, opt_link_boost) self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global) self.option_context.add_option(self.opt_colo_dead_methods) self.option_context.add_option(self.opt_tables_metrics) + self.option_context.add_option(self.opt_type_poset) end redef fun process_options(args) @@ -67,6 +88,13 @@ redef class ToolContext tc.opt_direct_call_monomorph.value = true tc.opt_skip_dead_methods.value = true end + if tc.opt_link_boost.value then + tc.opt_colors_are_symbols.value = true + tc.opt_substitute_monomorph.value = true + end + if tc.opt_substitute_monomorph.value then + tc.opt_trampoline_call.value = true + end end var separate_compiler_phase = new SeparateCompilerPhase(self, null) @@ -90,14 +118,57 @@ redef class ModelBuilder self.toolcontext.info("*** GENERATING C ***", 1) var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis) + compiler.do_compilation + compiler.display_stats + + var time1 = get_time + self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2) + write_and_make(compiler) + end + + # Count number of invocations by VFT + private var nb_invok_by_tables = 0 + # Count number of invocations by direct call + private var nb_invok_by_direct = 0 + # Count number of invocations by inlining + private var nb_invok_by_inline = 0 +end + +# Singleton that store the knowledge about the separate compilation process +class SeparateCompiler + super AbstractCompiler + + redef type VISITOR: SeparateCompilerVisitor + + # The result of the RTA (used to know live types and methods) + var runtime_type_analysis: nullable RapidTypeAnalysis + + private var undead_types: Set[MType] = new HashSet[MType] + private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]] + + private var type_ids: Map[MType, Int] is noinit + private var type_colors: Map[MType, Int] is noinit + private var opentype_colors: Map[MType, Int] is noinit + private var thunks_to_compile: Set[SeparateRuntimeFunction] = new HashSet[SeparateRuntimeFunction] + + init do + var file = new_file("nit.common") + self.header = new CodeWriter(file) + self.compile_box_kinds + end + + redef fun do_compilation + do + var compiler = self compiler.compile_header var c_name = mainmodule.c_name # compile class structures - self.toolcontext.info("Property coloring", 2) + modelbuilder.toolcontext.info("Property coloring", 2) compiler.new_file("{c_name}.classes") compiler.do_property_coloring + compiler.compile_class_infos for m in mainmodule.in_importation.greaters do for mclass in m.intro_mclasses do #if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue @@ -110,17 +181,35 @@ redef class ModelBuilder compiler.compile_nitni_global_ref_functions compiler.compile_main_function compiler.compile_finalizer_function + compiler.link_mmethods # compile methods for m in mainmodule.in_importation.greaters do - self.toolcontext.info("Generate C for module {m.full_name}", 2) + modelbuilder.toolcontext.info("Generate C for module {m.full_name}", 2) compiler.new_file("{m.c_name}.sep") compiler.compile_module_to_c(m) end # compile live & cast type structures - self.toolcontext.info("Type coloring", 2) + modelbuilder.toolcontext.info("Type coloring", 2) compiler.new_file("{c_name}.types") + compiler.compile_types + end + + fun thunk_todo(thunk: SeparateRuntimeFunction) + do + # Concrete instance of `SeparateRuntimeFunction` are already + # handled by the compiler. Avoid duplicate compilation. + if thunk isa SeparateThunkFunction then + thunks_to_compile.add(thunk) + end + end + + # Color and compile type structures and cast information + fun compile_types + do + var compiler = self + var mtypes = compiler.do_type_coloring for t in mtypes do compiler.compile_type_to_c(t) @@ -131,43 +220,6 @@ redef class ModelBuilder compiler.compile_type_to_c(t) end - compiler.display_stats - - var time1 = get_time - self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2) - write_and_make(compiler) - end - - # Count number of invocations by VFT - private var nb_invok_by_tables = 0 - # Count number of invocations by direct call - private var nb_invok_by_direct = 0 - # Count number of invocations by inlining - private var nb_invok_by_inline = 0 -end - -# Singleton that store the knowledge about the separate compilation process -class SeparateCompiler - super AbstractCompiler - - redef type VISITOR: SeparateCompilerVisitor - - # The result of the RTA (used to know live types and methods) - var runtime_type_analysis: nullable RapidTypeAnalysis - - private var undead_types: Set[MType] = new HashSet[MType] - private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]] - - private var type_ids: Map[MType, Int] is noinit - private var type_colors: Map[MType, Int] is noinit - private var opentype_colors: Map[MType, Int] is noinit - protected var method_colors: Map[PropertyLayoutElement, Int] is noinit - protected var attr_colors: Map[MAttribute, Int] is noinit - - init do - var file = new_file("nit.common") - self.header = new CodeWriter(file) - self.compile_box_kinds end redef fun compile_header_structs do @@ -180,6 +232,11 @@ class SeparateCompiler self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */") self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */") self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */") + + if not modelbuilder.toolcontext.opt_no_tag_primitives.value then + self.header.add_decl("extern const struct class *class_info[];") + self.header.add_decl("extern const struct type *type_info[];") + end end fun compile_header_attribute_structs @@ -205,10 +262,11 @@ class SeparateCompiler do # Collect all bas box class # FIXME: this is not completely fine with a separate compilation scheme - for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do + for classname in ["Int", "Bool", "Byte", "Char", "Float", "CString", + "Pointer", "Int8", "Int16", "UInt16", "Int32", "UInt32"] do var classes = self.mainmodule.model.get_mclasses_by_name(classname) if classes == null then continue - assert classes.length == 1 else print classes.join(", ") + assert classes.length == 1 else print_error classes.join(", ") self.box_kinds[classes.first] = self.box_kinds.length + 1 end end @@ -221,12 +279,11 @@ class SeparateCompiler #if mclass.mclass_type.ctype == "val*" or mclass.mclass_type.is_subtype(self.mainmodule, mclass.mclass_type pointer_type) then if mclass.mclass_type.ctype_extern == "val*" then return 0 - else if mclass.kind == extern_kind and mclass.name != "NativeString" then - return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")] + else if mclass.kind == extern_kind and mclass.name != "CString" then + return self.box_kinds[self.mainmodule.pointer_type.mclass] else return self.box_kinds[mclass] end - end fun compile_color_consts(colors: Map[Object, Int]) do @@ -238,213 +295,200 @@ class SeparateCompiler fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do if color_consts_done.has(m) then return - if m isa MProperty then + if m isa MEntity then if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then self.provide_declaration(m.const_color, "#define {m.const_color} {color}") - else - self.provide_declaration(m.const_color, "extern const int {m.const_color};") - v.add("const int {m.const_color} = {color};") - end - else if m isa MPropDef then - if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then - self.provide_declaration(m.const_color, "#define {m.const_color} {color}") - else + else if not modelbuilder.toolcontext.opt_colors_are_symbols.value or not v.compiler.target_platform.supports_linker_script then self.provide_declaration(m.const_color, "extern const int {m.const_color};") v.add("const int {m.const_color} = {color};") - end - else if m isa MType then - if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then - self.provide_declaration(m.const_color, "#define {m.const_color} {color}") else - self.provide_declaration(m.const_color, "extern const int {m.const_color};") - v.add("const int {m.const_color} = {color};") + # The color 'C' is the ``address'' of a false static variable 'XC' + self.provide_declaration(m.const_color, "#define {m.const_color} ((long)&X{m.const_color})\nextern const void X{m.const_color};") + if color == -1 then color = 0 # Symbols cannot be negative, so just use 0 for dead things + # Teach the linker that the address of 'XC' is `color`. + linker_script.add("X{m.const_color} = {color};") end + else + abort end color_consts_done.add(m) end private var color_consts_done = new HashSet[Object] + # The conflict graph of classes used for coloration + var class_conflict_graph: POSetConflictGraph[MClass] is noinit + # colorize classe properties fun do_property_coloring do var rta = runtime_type_analysis - # Layouts - var poset = mainmodule.flatten_mclass_hierarchy - var mclasses = new HashSet[MClass].from(poset) - var colorer = new POSetColorer[MClass] - colorer.colorize(poset) + # Class graph + var mclasses = mainmodule.flatten_mclass_hierarchy + class_conflict_graph = mclasses.to_conflict_graph - # The dead methods, still need to provide a dead color symbol - var dead_methods = new Array[MMethod] - - # lookup properties to build layout with + # Prepare to collect elements to color and build layout with var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]] var mattributes = new HashMap[MClass, Set[MAttribute]] + + # The dead methods and super-call, still need to provide a dead color symbol + var dead_methods = new Array[PropertyLayoutElement] + for mclass in mclasses do mmethods[mclass] = new HashSet[PropertyLayoutElement] mattributes[mclass] = new HashSet[MAttribute] - for mprop in self.mainmodule.properties(mclass) do - if mprop isa MMethod then - if not modelbuilder.toolcontext.opt_colo_dead_methods.value and rta != null and not rta.live_methods.has(mprop) then - dead_methods.add(mprop) - continue - end - mmethods[mclass].add(mprop) - else if mprop isa MAttribute then - mattributes[mclass].add(mprop) - end + end + + # Pre-collect known live things + if rta != null then + for m in rta.live_methods do + mmethods[m.intro_mclassdef.mclass].add m + end + for m in rta.live_super_sends do + var mclass = m.mclassdef.mclass + mmethods[mclass].add m end end - # Collect all super calls (dead or not) - var all_super_calls = new HashSet[MMethodDef] - for mmodule in self.mainmodule.in_importation.greaters do - for mclassdef in mmodule.mclassdefs do - for mpropdef in mclassdef.mpropdefs do - if not mpropdef isa MMethodDef then continue - if mpropdef.has_supercall then - all_super_calls.add(mpropdef) + for m in mainmodule.in_importation.greaters do for cd in m.mclassdefs do + var mclass = cd.mclass + # Collect methods and attributes + for p in cd.intro_mproperties do + if p isa MMethod then + if rta == null then + mmethods[mclass].add p + else if not rta.live_methods.has(p) then + dead_methods.add p end + else if p isa MAttribute then + mattributes[mclass].add p end end - end - # lookup super calls and add it to the list of mmethods to build layout with - var super_calls - if rta != null then - super_calls = rta.live_super_sends - else - super_calls = all_super_calls - end - - for mmethoddef in super_calls do - var mclass = mmethoddef.mclassdef.mclass - mmethods[mclass].add(mmethoddef) - for descendant in mclass.in_hierarchy(self.mainmodule).smallers do - mmethods[descendant].add(mmethoddef) + # Collect all super calls (dead or not) + for mpropdef in cd.mpropdefs do + if not mpropdef isa MMethodDef then continue + if mpropdef.has_supercall then + if rta == null then + mmethods[mclass].add mpropdef + else if not rta.live_super_sends.has(mpropdef) then + dead_methods.add mpropdef + end + end end end # methods coloration - var meth_colorer = new POSetBucketsColorer[MClass, PropertyLayoutElement](poset, colorer.conflicts) - method_colors = meth_colorer.colorize(mmethods) - method_tables = build_method_tables(mclasses, super_calls) + var meth_colorer = new POSetGroupColorer[MClass, PropertyLayoutElement](class_conflict_graph, mmethods) + var method_colors = meth_colorer.colors compile_color_consts(method_colors) - # attribute null color to dead methods and supercalls - for mproperty in dead_methods do - compile_color_const(new_visitor, mproperty, -1) - end - for mpropdef in all_super_calls do - if super_calls.has(mpropdef) then continue - compile_color_const(new_visitor, mpropdef, -1) - end + # give null color to dead methods and supercalls + for mproperty in dead_methods do compile_color_const(new_visitor, mproperty, -1) - # attributes coloration - var attr_colorer = new POSetBucketsColorer[MClass, MAttribute](poset, colorer.conflicts) - attr_colors = attr_colorer.colorize(mattributes) - attr_tables = build_attr_tables(mclasses) + # attribute coloration + var attr_colorer = new POSetGroupColorer[MClass, MAttribute](class_conflict_graph, mattributes) + var attr_colors = attr_colorer.colors#ize(poset, mattributes) compile_color_consts(attr_colors) - end - fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do - var tables = new HashMap[MClass, Array[nullable MPropDef]] + # Build method and attribute tables + method_tables = new HashMap[MClass, Array[nullable MPropDef]] + attr_tables = new HashMap[MClass, Array[nullable MProperty]] for mclass in mclasses do - var table = new Array[nullable MPropDef] - tables[mclass] = table + if not mclass.has_new_factory and (mclass.kind == abstract_kind or mclass.kind == interface_kind) then continue + if rta != null and not rta.live_classes.has(mclass) then continue - var mproperties = self.mainmodule.properties(mclass) var mtype = mclass.intro.bound_mtype - for mproperty in mproperties do - if not mproperty isa MMethod then continue - if not method_colors.has_key(mproperty) then continue - var color = method_colors[mproperty] - if table.length <= color then - for i in [table.length .. color[ do - table[i] = null - end - end - table[color] = mproperty.lookup_first_definition(mainmodule, mtype) - end - - for supercall in super_calls do - if not mtype.collect_mclassdefs(mainmodule).has(supercall.mclassdef) then continue - - var color = method_colors[supercall] - if table.length <= color then - for i in [table.length .. color[ do - table[i] = null - end + # Resolve elements in the layout to get the final table + var meth_layout = meth_colorer.build_layout(mclass) + var meth_table = new Array[nullable MPropDef].with_capacity(meth_layout.length) + method_tables[mclass] = meth_table + for e in meth_layout do + if e == null then + meth_table.add null + else if e isa MMethod then + # Standard method call of `e` + meth_table.add e.lookup_first_definition(mainmodule, mtype) + else if e isa MMethodDef then + # Super-call in the methoddef `e` + meth_table.add e.lookup_next_definition(mainmodule, mtype) + else + abort end - var mmethoddef = supercall.lookup_next_definition(mainmodule, mtype) - table[color] = mmethoddef end + # Do not need to resolve attributes as only the position is used + attr_tables[mclass] = attr_colorer.build_layout(mclass) end - return tables - end - - fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do - var tables = new HashMap[MClass, Array[nullable MPropDef]] - for mclass in mclasses do - var table = new Array[nullable MPropDef] - tables[mclass] = table - - var mproperties = self.mainmodule.properties(mclass) - var mtype = mclass.intro.bound_mtype - for mproperty in mproperties do - if not mproperty isa MAttribute then continue - if not attr_colors.has_key(mproperty) then continue - var color = attr_colors[mproperty] - if table.length <= color then - for i in [table.length .. color[ do - table[i] = null - end - end - table[color] = mproperty.lookup_first_definition(mainmodule, mtype) - end - end - return tables end # colorize live types of the program - private fun do_type_coloring: POSet[MType] do + private fun do_type_coloring: Collection[MType] do # Collect types to colorize var live_types = runtime_type_analysis.live_types var live_cast_types = runtime_type_analysis.live_cast_types - var mtypes = new HashSet[MType] - mtypes.add_all(live_types) - for c in self.box_kinds.keys do - mtypes.add(c.mclass_type) - end - # Compute colors - var poset = poset_from_mtypes(mtypes, live_cast_types) - var colorer = new POSetColorer[MType] - colorer.colorize(poset) - type_ids = colorer.ids - type_colors = colorer.colors - type_tables = build_type_tables(poset) + var res = new HashSet[MType] + res.add_all live_types + res.add_all live_cast_types + + if modelbuilder.toolcontext.opt_type_poset.value then + # Compute colors with a type poset + var poset = poset_from_mtypes(live_types, live_cast_types) + var colorer = new POSetColorer[MType] + colorer.colorize(poset) + type_ids = colorer.ids + type_colors = colorer.colors + type_tables = build_type_tables(poset) + else + # Compute colors using the class poset + # Faster to compute but the number of holes can degenerate + compute_type_test_layouts(live_types, live_cast_types) + + type_ids = new HashMap[MType, Int] + for x in res do type_ids[x] = type_ids.length + 1 + end # VT and FT are stored with other unresolved types in the big resolution_tables - self.compile_resolution_tables(mtypes) + self.compute_resolution_tables(live_types) - return poset + return res end private fun poset_from_mtypes(mtypes, cast_types: Set[MType]): POSet[MType] do var poset = new POSet[MType] + + # Instead of doing the full matrix mtypes X cast_types, + # a grouping is done by the base classes of the type so + # that we compare only types whose base classes are in inheritance. + + var mtypes_by_class = new MultiHashMap[MClass, MType] for e in mtypes do + var c = e.undecorate.as(MClassType).mclass + mtypes_by_class[c].add(e) + poset.add_node(e) + end + + var casttypes_by_class = new MultiHashMap[MClass, MType] + for e in cast_types do + var c = e.undecorate.as(MClassType).mclass + casttypes_by_class[c].add(e) poset.add_node(e) - for o in cast_types do - if e == o then continue - poset.add_node(o) - if e.is_subtype(mainmodule, null, o) then - poset.add_edge(e, o) + end + + for c1, ts1 in mtypes_by_class do + for c2 in c1.in_hierarchy(mainmodule).greaters do + var ts2 = casttypes_by_class[c2] + for e in ts1 do + for o in ts2 do + if e == o then continue + if e.is_subtype(mainmodule, null, o) then + poset.add_edge(e, o) + end + end end end end @@ -470,29 +514,74 @@ class SeparateCompiler return tables end - protected fun compile_resolution_tables(mtypes: Set[MType]) do - # resolution_tables is used to perform a type resolution at runtime in O(1) + private fun compute_type_test_layouts(mtypes: Set[MClassType], cast_types: Set[MType]) do + # Group cast_type by their classes + var bucklets = new HashMap[MClass, Set[MType]] + for e in cast_types do + var c = e.undecorate.as(MClassType).mclass + if not bucklets.has_key(c) then + bucklets[c] = new HashSet[MType] + end + bucklets[c].add(e) + end + + # Colorize cast_types from the class hierarchy + var colorer = new POSetGroupColorer[MClass, MType](class_conflict_graph, bucklets) + type_colors = colorer.colors + + var layouts = new HashMap[MClass, Array[nullable MType]] + for c in runtime_type_analysis.live_classes do + layouts[c] = colorer.build_layout(c) + end + + # Build the table for each live type + for t in mtypes do + # A live type use the layout of its class + var c = t.mclass + var layout = layouts[c] + var table = new Array[nullable MType].with_capacity(layout.length) + type_tables[t] = table + + # For each potential super-type in the layout + for sup in layout do + if sup == null then + table.add null + else if t.is_subtype(mainmodule, null, sup) then + table.add sup + else + table.add null + end + end + end + end + # resolution_tables is used to perform a type resolution at runtime in O(1) + private fun compute_resolution_tables(mtypes: Set[MType]) do # During the visit of the body of classes, live_unresolved_types are collected # and associated to # Collect all live_unresolved_types (visited in the body of classes) # Determinate fo each livetype what are its possible requested anchored types - var mtype2unresolved = new HashMap[MClassType, Set[MType]] + var mtype2unresolved = new HashMap[MClass, Set[MType]] for mtype in self.runtime_type_analysis.live_types do - var set = new HashSet[MType] + var mclass = mtype.mclass + var set = mtype2unresolved.get_or_null(mclass) + if set == null then + set = new HashSet[MType] + mtype2unresolved[mclass] = set + end for cd in mtype.collect_mclassdefs(self.mainmodule) do if self.live_unresolved_types.has_key(cd) then set.add_all(self.live_unresolved_types[cd]) end end - mtype2unresolved[mtype] = set end # Compute the table layout with the prefered method - var colorer = new BucketsColorer[MType, MType] + var colorer = new BucketsColorer[MClass, MType] + opentype_colors = colorer.colorize(mtype2unresolved) - resolution_tables = self.build_resolution_tables(mtype2unresolved) + resolution_tables = self.build_resolution_tables(self.runtime_type_analysis.live_types, mtype2unresolved) # Compile a C constant for each collected unresolved type. # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it) @@ -517,9 +606,10 @@ class SeparateCompiler #print "" end - fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do + fun build_resolution_tables(elements: Set[MClassType], map: Map[MClass, Set[MType]]): Map[MClassType, Array[nullable MType]] do var tables = new HashMap[MClassType, Array[nullable MType]] - for mclasstype, mtypes in elements do + for mclasstype in elements do + var mtypes = map[mclasstype.mclass] var table = new Array[nullable MType] for mtype in mtypes do var color = opentype_colors[mtype] @@ -543,18 +633,91 @@ class SeparateCompiler for cd in mmodule.mclassdefs do for pd in cd.mpropdefs do if not pd isa MMethodDef then continue + if pd.mproperty.is_broken or pd.is_broken or pd.msignature == null then continue # Skip broken method var rta = runtime_type_analysis if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue #print "compile {pd} @ {cd} @ {mmodule}" var r = pd.separate_runtime_function r.compile_to_c(self) var r2 = pd.virtual_runtime_function - r2.compile_to_c(self) + if r2 != r then r2.compile_to_c(self) + + # Generate trampolines + if modelbuilder.toolcontext.opt_trampoline_call.value then + r2.compile_trampolines(self) + end end end + var compiled_thunks = new Array[SeparateRuntimeFunction] + # Compile thunks here to write them in the same module they are declared. + for thunk in thunks_to_compile do + if thunk.mmethoddef.mclassdef.mmodule == mmodule then + thunk.compile_to_c(self) + compiled_thunks.add(thunk) + end + end + thunks_to_compile.remove_all(compiled_thunks) self.mainmodule = old_module end + # Process all introduced methods and compile some linking information (if needed) + fun link_mmethods + do + if not modelbuilder.toolcontext.opt_substitute_monomorph.value and not modelbuilder.toolcontext.opt_guard_call.value then return + + for mmodule in mainmodule.in_importation.greaters do + for cd in mmodule.mclassdefs do + for m in cd.intro_mproperties do + if not m isa MMethod then continue + link_mmethod(m) + end + end + end + end + + # Compile some linking information (if needed) + fun link_mmethod(m: MMethod) + do + var n2 = "CALL_" + m.const_color + + # Replace monomorphic call by a direct call to the virtual implementation + var md = is_monomorphic(m) + if md != null then + linker_script.add("{n2} = {md.virtual_runtime_function.c_name};") + end + + # If opt_substitute_monomorph then a trampoline is used, else a weak symbol is used + if modelbuilder.toolcontext.opt_guard_call.value then + var r = m.intro.virtual_runtime_function + provide_declaration(n2, "{r.c_ret} {n2}{r.c_sig} __attribute__((weak));") + end + end + + # The single mmethodef called in case of monomorphism. + # Returns nul if dead or polymorphic. + fun is_monomorphic(m: MMethod): nullable MMethodDef + do + var rta = runtime_type_analysis + if rta == null then + # Without RTA, monomorphic means alone (uniq name) + if m.mpropdefs.length == 1 then + return m.mpropdefs.first + else + return null + end + else + # With RTA, monomorphic means only live methoddef + var res: nullable MMethodDef = null + for md in m.mpropdefs do + if rta.live_methoddefs.has(md) then + if res != null then return null + res = md + end + end + return res + end + end + # Globaly compile the type structure of a live type fun compile_type_to_c(mtype: MType) do @@ -597,7 +760,7 @@ class SeparateCompiler # resolution table (for receiver) if is_live then - var mclass_type = mtype.as_notnullable + var mclass_type = mtype.undecorate assert mclass_type isa MClassType if resolution_tables[mclass_type].is_empty then v.add_decl("NULL, /*NO RESOLUTIONS*/") @@ -623,14 +786,15 @@ class SeparateCompiler end v.add_decl("\},") else - v.add_decl("0, \{\}, /*DEAD TYPE*/") + # Use -1 to indicate dead type, the info is used by --hardening + v.add_decl("-1, \{\}, /*DEAD TYPE*/") end v.add_decl("\};") end fun compile_type_resolution_table(mtype: MType) do - var mclass_type = mtype.as_notnullable.as(MClassType) + var mclass_type = mtype.undecorate.as(MClassType) # extern const struct resolution_table_X resolution_table_X self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};") @@ -666,25 +830,29 @@ class SeparateCompiler # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally fun compile_class_to_c(mclass: MClass) do + if mclass.is_broken then return + var mtype = mclass.intro.bound_mtype var c_name = mclass.c_name - var vft = self.method_tables[mclass] - var attrs = self.attr_tables[mclass] var v = new_visitor var rta = runtime_type_analysis - var is_dead = rta != null and not rta.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray" and mclass.name != "Pointer" + var is_dead = rta != null and not rta.live_classes.has(mclass) + # While the class may be dead, some part of separately compiled code may use symbols associated to the class, so + # in order to compile and link correctly the C code, these symbols should be declared and defined. + var need_corpse = is_dead and mtype.is_c_primitive or mclass.kind == extern_kind or mclass.kind == enum_kind - v.add_decl("/* runtime class {c_name} */") + v.add_decl("/* runtime class {c_name}: {mclass.full_name} (dead={is_dead}; need_corpse={need_corpse})*/") # Build class vft - if not is_dead then + if not is_dead or need_corpse then self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};") v.add_decl("const struct class class_{c_name} = \{") v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */") v.add_decl("\{") - for i in [0 .. vft.length[ do + var vft = self.method_tables.get_or_null(mclass) + if vft != null then for i in [0 .. vft.length[ do var mpropdef = vft[i] if mpropdef == null then v.add_decl("NULL, /* empty */") @@ -693,6 +861,9 @@ class SeparateCompiler if rta != null and not rta.live_methoddefs.has(mpropdef) then v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */") continue + else if mpropdef.is_broken or mpropdef.msignature == null or mpropdef.mproperty.is_broken then + v.add_decl("NULL, /* DEAD (BROKEN) {mclass.intro_mmodule}:{mclass}:{mpropdef} */") + continue end var rf = mpropdef.virtual_runtime_function v.require_declaration(rf.c_name) @@ -703,9 +874,11 @@ class SeparateCompiler v.add_decl("\};") end - if mtype.ctype != "val*" or mtype.mclass.name == "Pointer" then + if mtype.is_c_primitive or mtype.mclass.name == "Pointer" then # Is a primitive type or the Pointer class, not any other extern class + if mtype.is_tagged then return + #Build instance struct self.header.add_decl("struct instance_{c_name} \{") self.header.add_decl("const struct type *type;") @@ -713,13 +886,15 @@ class SeparateCompiler self.header.add_decl("{mtype.ctype_extern} value;") self.header.add_decl("\};") - if not rta.live_types.has(mtype) and mtype.mclass.name != "Pointer" then return + # Pointer is needed by extern types, live or not + if is_dead and mtype.mclass.name != "Pointer" then return #Build BOX self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype_extern});") v.add_decl("/* allocate {mtype} */") v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype_extern} value) \{") - v.add("struct instance_{c_name}*res = nit_alloc(sizeof(struct instance_{c_name}));") + var alloc = v.nit_alloc("sizeof(struct instance_{c_name})", mclass.full_name) + v.add("struct instance_{c_name}*res = {alloc};") v.compiler.undead_types.add(mtype) v.require_declaration("type_{c_name}") v.add("res->type = &type_{c_name};") @@ -729,6 +904,7 @@ class SeparateCompiler v.add("return (val*)res;") v.add("\}") + # A Pointer class also need its constructor if mtype.mclass.name != "Pointer" then return v = new_visitor @@ -740,7 +916,8 @@ class SeparateCompiler else var res = v.new_named_var(mtype, "self") res.is_exact = true - v.add("{res} = nit_alloc(sizeof(struct instance_{mtype.c_name}));") + alloc = v.nit_alloc("sizeof(struct instance_{mtype.c_name})", mclass.full_name) + v.add("{res} = {alloc};") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") @@ -767,7 +944,8 @@ class SeparateCompiler var res = v.get_name("self") v.add_decl("struct instance_{c_name} *{res};") var mtype_elt = mtype.arguments.first - v.add("{res} = nit_alloc(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));") + var alloc = v.nit_alloc("sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype})", mclass.full_name) + v.add("{res} = {alloc};") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") @@ -776,21 +954,45 @@ class SeparateCompiler v.add("return (val*){res};") v.add("\}") return - else if mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then - # Is an extern class (other than Pointer and NativeString) - # Pointer is caught in a previous `if`, and NativeString is internal + else if mclass.name == "RoutineRef" then + self.header.add_decl("struct instance_{c_name} \{") + self.header.add_decl("const struct type *type;") + self.header.add_decl("const struct class *class;") + self.header.add_decl("val* recv;") + self.header.add_decl("nitmethod_t method;") + self.header.add_decl("\};") + + self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(val* recv, nitmethod_t method, const struct class* class, const struct type* type);") + v.add_decl("/* allocate {mtype} */") + v.add_decl("{mtype.ctype} NEW_{c_name}(val* recv, nitmethod_t method, const struct class* class, const struct type* type)\{") + var res = v.get_name("self") + v.add_decl("struct instance_{c_name} *{res};") + var alloc = v.nit_alloc("sizeof(struct instance_{c_name})", mclass.full_name) + v.add("{res} = {alloc};") + v.add("{res}->type = type;") + hardening_live_type(v, "type") + v.add("{res}->class = class;") + v.add("{res}->recv = recv;") + v.add("{res}->method = method;") + v.add("return (val*){res};") + v.add("\}") + return + else if mtype.mclass.kind == extern_kind and mtype.mclass.name != "CString" then + # Is an extern class (other than Pointer and CString) + # Pointer is caught in a previous `if`, and CString is internal var pointer_type = mainmodule.pointer_type self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);") - v.add_decl("/* allocate {mtype} */") + v.add_decl("/* allocate extern {mtype} */") v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{") if is_dead then v.add_abort("{mclass} is DEAD") else var res = v.new_named_var(mtype, "self") res.is_exact = true - v.add("{res} = nit_alloc(sizeof(struct instance_{pointer_type.c_name}));") + var alloc = v.nit_alloc("sizeof(struct instance_{pointer_type.c_name})", mclass.full_name) + v.add("{res} = {alloc};") v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") @@ -811,18 +1013,87 @@ class SeparateCompiler else var res = v.new_named_var(mtype, "self") res.is_exact = true - v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));") + var attrs = self.attr_tables.get_or_null(mclass) + if attrs == null then + var alloc = v.nit_alloc("sizeof(struct instance)", mclass.full_name) + v.add("{res} = {alloc};") + else + var alloc = v.nit_alloc("sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t)", mclass.full_name) + v.add("{res} = {alloc};") + end + if modelbuilder.toolcontext.opt_trace.value then + v.add("tracepoint(Nit_Compiler, Object_Instance,\"{mtype}\", (uintptr_t)self);") + v.add("GC_register_finalizer(self, object_destroy_callback, NULL, NULL, NULL);") + end v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") - self.generate_init_attr(v, res, mtype) - v.set_finalizer res + if attrs != null then + self.generate_init_attr(v, res, mtype) + v.set_finalizer res + end v.add("return {res};") end v.add("\}") end + # Compile structures used to map tagged primitive values to their classes and types. + # This method also determines which class will be tagged. + fun compile_class_infos + do + if modelbuilder.toolcontext.opt_no_tag_primitives.value then return + + # Note: if you change the tagging scheme, do not forget to update + # `autobox` and `extract_tag` + var class_info = new Array[nullable MClass].filled_with(null, 4) + for t in box_kinds.keys do + # Note: a same class can be associated to multiple slots if one want to + # use some Huffman coding. + if t.name == "Int" then + class_info[1] = t + t.mclass_type.tag_value = 1 + else if t.name == "Char" then + class_info[2] = t + t.mclass_type.tag_value = 2 + else if t.name == "Bool" then + class_info[3] = t + t.mclass_type.tag_value = 3 + else + continue + end + t.mclass_type.is_tagged = true + end + + # Compile the table for classes. The tag is used as an index + var v = self.new_visitor + v.add_decl "const struct class *class_info[4] = \{" + for t in class_info do + if t == null then + v.add_decl("NULL,") + else + var s = "class_{t.c_name}" + v.require_declaration(s) + v.add_decl("&{s},") + end + end + v.add_decl("\};") + + # Compile the table for types. The tag is used as an index + v.add_decl "const struct type *type_info[4] = \{" + for t in class_info do + if t == null then + v.add_decl("NULL,") + else + var s = "type_{t.c_name}" + undead_types.add(t.mclass_type) + v.require_declaration(s) + v.add_decl("&{s},") + end + end + v.add_decl("\};") + end + # Add a dynamic test to ensure that the type referenced by `t` is a live type fun hardening_live_type(v: VISITOR, t: String) do @@ -830,8 +1101,8 @@ class SeparateCompiler v.add("if({t} == NULL) \{") v.add_abort("type null") v.add("\}") - v.add("if({t}->table_size == 0) \{") - v.add("PRINT_ERROR(\"Insantiation of a dead type: %s\\n\", {t}->name);") + v.add("if({t}->table_size < 0) \{") + v.add("PRINT_ERROR(\"Instantiation of a dead type: %s\\n\", {t}->name);") v.add_abort("type dead") v.add("\}") end @@ -843,7 +1114,7 @@ class SeparateCompiler private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]] private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]] protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] - protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] + protected var attr_tables: Map[MClass, Array[nullable MProperty]] = new HashMap[MClass, Array[nullable MProperty]] redef fun display_stats do @@ -952,8 +1223,9 @@ class SeparateCompilerVisitor args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type) end for i in [0..msignature.arity[ do - var t = msignature.mparameters[i].mtype - if i == msignature.vararg_rank then + var mp = msignature.mparameters[i] + var t = mp.mtype + if mp.is_vararg then t = args[i+1].mtype end args[i+1] = self.autobox(args[i+1], t) @@ -967,8 +1239,9 @@ class SeparateCompilerVisitor args.first = self.unbox_extern(args.first, m.mclassdef.mclass.mclass_type) end for i in [0..msignature.arity[ do - var t = msignature.mparameters[i].mtype - if i == msignature.vararg_rank then + var mp = msignature.mparameters[i] + var t = mp.mtype + if mp.is_vararg then t = args[i+1].mtype end if m.is_extern then args[i+1] = self.unbox_extern(args[i+1], t) @@ -979,21 +1252,45 @@ class SeparateCompilerVisitor do if value.mtype == mtype then return value - else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then + else if not value.mtype.is_c_primitive and not mtype.is_c_primitive then return value - else if value.mtype.ctype == "val*" then + else if not value.mtype.is_c_primitive then + if mtype.is_tagged then + if mtype.name == "Int" then + return self.new_expr("(long)({value})>>2", mtype) + else if mtype.name == "Char" then + return self.new_expr("(uint32_t)((long)({value})>>2)", mtype) + else if mtype.name == "Bool" then + return self.new_expr("(short int)((long)({value})>>2)", mtype) + else + abort + end + end return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype) - else if mtype.ctype == "val*" then + else if not mtype.is_c_primitive then + assert value.mtype == value.mcasttype + if value.mtype.is_tagged then + var res + if value.mtype.name == "Int" then + res = self.new_expr("(val*)({value}<<2|1)", mtype) + else if value.mtype.name == "Char" then + res = self.new_expr("(val*)((long)({value})<<2|2)", mtype) + else if value.mtype.name == "Bool" then + res = self.new_expr("(val*)((long)({value})<<2|3)", mtype) + else + abort + end + # Do not loose type info + res.mcasttype = value.mcasttype + return res + end var valtype = value.mtype.as(MClassType) - if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then + if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "CString" then valtype = compiler.mainmodule.pointer_type end var res = self.new_var(mtype) - if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then - self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */") - self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);") - return res - end + # Do not loose type info + res.mcasttype = value.mcasttype self.require_declaration("BOX_{valtype.c_name}") self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */") return res @@ -1005,7 +1302,7 @@ class SeparateCompilerVisitor # Bad things will appen! var res = self.new_var(mtype) self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */") - self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);") + self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); fatal_exit(1);") return res end end @@ -1013,7 +1310,7 @@ class SeparateCompilerVisitor redef fun unbox_extern(value, mtype) do if mtype isa MClassType and mtype.mclass.kind == extern_kind and - mtype.mclass.name != "NativeString" then + mtype.mclass.name != "CString" then var pointer_type = compiler.mainmodule.pointer_type var res = self.new_var_extern(mtype) self.add "{res} = ((struct instance_{pointer_type.c_name}*){value})->value; /* unboxing {value.mtype} */" @@ -1026,14 +1323,10 @@ class SeparateCompilerVisitor redef fun box_extern(value, mtype) do if mtype isa MClassType and mtype.mclass.kind == extern_kind and - mtype.mclass.name != "NativeString" then + mtype.mclass.name != "CString" then var valtype = compiler.mainmodule.pointer_type var res = self.new_var(mtype) - if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(value.mtype.as(MClassType)) then - self.add("/*no boxing of {value.mtype}: {value.mtype} is not live! */") - self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);") - return res - end + compiler.undead_types.add(mtype) self.require_declaration("BOX_{valtype.c_name}") self.add("{res} = BOX_{valtype.c_name}({value}); /* boxing {value.mtype} */") self.require_declaration("type_{mtype.c_name}") @@ -1046,11 +1339,42 @@ class SeparateCompilerVisitor end end - # Return a C expression returning the runtime type structure of the value - # The point of the method is to works also with primitives types. + # Returns a C expression containing the tag of the value as a long. + # + # If the C expression is evaluated to 0, it means there is no tag. + # Thus the expression can be used as a condition. + fun extract_tag(value: RuntimeVariable): String + do + assert not value.mtype.is_c_primitive + return "((long){value}&3)" # Get the two low bits + end + + # Returns a C expression of the runtime class structure of the value. + # The point of the method is to work also with primitive types. + fun class_info(value: RuntimeVariable): String + do + if not value.mtype.is_c_primitive then + if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then + var tag = extract_tag(value) + return "({tag}?class_info[{tag}]:{value}->class)" + end + return "{value}->class" + else + compiler.undead_types.add(value.mtype) + self.require_declaration("class_{value.mtype.c_name}") + return "(&class_{value.mtype.c_name})" + end + end + + # Returns a C expression of the runtime type structure of the value. + # The point of the method is to work also with primitive types. fun type_info(value: RuntimeVariable): String do - if value.mtype.ctype == "val*" then + if not value.mtype.is_c_primitive then + if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then + var tag = extract_tag(value) + return "({tag}?type_info[{tag}]:{value}->type)" + end return "{value}->type" else compiler.undead_types.add(value.mtype) @@ -1062,28 +1386,40 @@ class SeparateCompilerVisitor redef fun compile_callsite(callsite, args) do var rta = compiler.runtime_type_analysis - var mmethod = callsite.mproperty - # TODO: Inlining of new-style constructors - if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and not mmethod.is_root_init then + # TODO: Inlining of new-style constructors with initializers + if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and callsite.mpropdef.initializers.is_empty then var tgs = rta.live_targets(callsite) if tgs.length == 1 then - # DIRECT CALL - var res0 = before_send(mmethod, args) - var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args) - if res0 != null then - assert res != null - self.assign(res0, res) - res = res0 - end - add("\}") # close the before_send - return res + return direct_call(tgs.first, args) end end + # Shortcut intern methods as they are not usually redefinable + if callsite.mpropdef.is_intern and callsite.mproperty.name != "object_id" then + # `object_id` is the only redefined intern method, so it can not be directly called. + # TODO find a less ugly approach? + return direct_call(callsite.mpropdef, args) + end return super end + + # Fully and directly call a mpropdef + # + # This method is used by `compile_callsite` + private fun direct_call(mpropdef: MMethodDef, args: Array[RuntimeVariable]): nullable RuntimeVariable + do + var res0 = before_send(mpropdef.mproperty, args) + var res = call(mpropdef, mpropdef.mclassdef.bound_mtype, args) + if res0 != null then + assert res != null + self.assign(res0, res) + res = res0 + end + add("\}") # close the before_send + return res + end redef fun send(mmethod, arguments) do - if arguments.first.mcasttype.ctype != "val*" then + if arguments.first.mcasttype.is_c_primitive then # In order to shortcut the primitive, we need to find the most specific method # Howverr, because of performance (no flattening), we always work on the realmainmodule var m = self.compiler.mainmodule @@ -1093,7 +1429,7 @@ class SeparateCompilerVisitor return res end - return table_send(mmethod, arguments, mmethod.const_color) + return table_send(mmethod, arguments, mmethod) end # Handle common special cases before doing the effective method invocation @@ -1112,10 +1448,9 @@ class SeparateCompilerVisitor var res: nullable RuntimeVariable = null var recv = arguments.first var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_null.value or mmethod.name == "==" or mmethod.name == "!=" - var maybenull = recv.mcasttype isa MNullableType and consider_null - if maybenull then + if maybe_null(recv) and consider_null then self.add("if ({recv} == NULL) \{") - if mmethod.name == "==" then + if mmethod.name == "==" or mmethod.name == "is_same_instance" then res = self.new_var(bool_type) var arg = arguments[1] if arg.mcasttype isa MNullableType then @@ -1142,15 +1477,15 @@ class SeparateCompilerVisitor else self.add("\{") end - if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then - if res == null then res = self.new_var(bool_type) - # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants) + if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=" or mmethod.name == "is_same_instance") then + # Recv is not null, thus if arg is, it is easy to conclude (and respect the invariants) var arg = arguments[1] if arg.mcasttype isa MNullType then - if mmethod.name == "==" then - self.add("{res} = 0; /* arg is null but recv is not */") - else + if res == null then res = self.new_var(bool_type) + if mmethod.name == "!=" then self.add("{res} = 1; /* arg is null and recv is not */") + else # `==` and `is_same_instance` + self.add("{res} = 0; /* arg is null but recv is not */") end self.add("\}") # closes the null case self.add("if (0) \{") # what follow is useless, CC will drop it @@ -1159,18 +1494,21 @@ class SeparateCompilerVisitor return res end - private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable + private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], mentity: MEntity): nullable RuntimeVariable do compiler.modelbuilder.nb_invok_by_tables += 1 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;") assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.") - var recv = arguments.first var res0 = before_send(mmethod, arguments) + var runtime_function = mmethod.intro.virtual_runtime_function + var msignature = runtime_function.called_signature + + adapt_signature(mmethod.intro, arguments) + var res: nullable RuntimeVariable - var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true) var ret = msignature.return_mtype if ret == null then res = null @@ -1178,32 +1516,44 @@ class SeparateCompilerVisitor res = self.new_var(ret) end - var s = new FlatBuffer - var ss = new FlatBuffer - - s.append("val*") - ss.append("{recv}") - for i in [0..msignature.arity[ do - var a = arguments[i+1] - var t = msignature.mparameters[i].mtype - if i == msignature.vararg_rank then - t = arguments[i+1].mcasttype - end - s.append(", {t.ctype}") - a = self.autobox(a, t) - ss.append(", {a}") - end - - - var r - if ret == null then r = "void" else r = ret.ctype - self.require_declaration(const_color) - var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/" + var ss = arguments.join(", ") + var const_color = mentity.const_color + var ress if res != null then - self.add("{res} = {call};") + ress = "{res} = " else - self.add("{call};") + ress = "" + end + if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_direct_call_monomorph0.value then + # opt_direct_call_monomorph0 is used to compare the efficiency of the alternative lookup implementation, ceteris paribus. + # The difference with the non-zero option is that the monomorphism is looked-at on the mmethod level and not at the callsite level. + # TODO: remove this mess and use per callsite service to detect monomorphism in a single place. + var md = compiler.is_monomorphic(mentity) + if md != null then + var callsym = md.virtual_runtime_function.c_name + self.require_declaration(callsym) + self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/" + else + self.require_declaration(const_color) + self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/" + end + else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_guard_call.value then + var callsym = "CALL_" + const_color + self.require_declaration(callsym) + self.add "if (!{callsym}) \{" + self.require_declaration(const_color) + self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/" + self.add "\} else \{" + self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/" + self.add "\}" + else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_trampoline_call.value then + var callsym = "CALL_" + const_color + self.require_declaration(callsym) + self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/" + else + self.require_declaration(const_color) + self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/" end if res0 != null then @@ -1234,7 +1584,7 @@ class SeparateCompilerVisitor (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then compiler.modelbuilder.nb_invok_by_inline += 1 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;") - var frame = new Frame(self, mmethoddef, recvtype, arguments) + var frame = new StaticFrame(self, mmethoddef, recvtype, arguments) frame.returnlabel = self.get_name("RET_LABEL") frame.returnvar = res var old_frame = self.frame @@ -1265,7 +1615,7 @@ class SeparateCompilerVisitor redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable do - if arguments.first.mcasttype.ctype != "val*" then + if arguments.first.mcasttype.is_c_primitive then # In order to shortcut the primitive, we need to find the most specific method # However, because of performance (no flattening), we always work on the realmainmodule var main = self.compiler.mainmodule @@ -1274,7 +1624,7 @@ class SeparateCompilerVisitor self.compiler.mainmodule = main return res end - return table_send(m.mproperty, arguments, m.const_color) + return table_send(m.mproperty, arguments, m) end redef fun vararg_instance(mpropdef, recv, varargs, elttype) @@ -1284,11 +1634,11 @@ class SeparateCompilerVisitor # of the method (ie recv) if the static type is unresolved # This is more complex than usual because the unresolved type must not be resolved # with the current receiver (ie self). - # Therefore to isolate the resolution from self, a local Frame is created. + # Therefore to isolate the resolution from self, a local StaticFrame is created. # One can see this implementation as an inlined method of the receiver whose only # job is to allocate the array var old_frame = self.frame - var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv]) + var frame = new StaticFrame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv]) self.frame = frame #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}" var res = self.array_instance(varargs, elttype) @@ -1316,7 +1666,7 @@ class SeparateCompilerVisitor self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/") else - if mtype.ctype == "val*" then + if not mtype.is_c_primitive and not mtype.is_tagged then self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */") else self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */") @@ -1368,7 +1718,7 @@ class SeparateCompilerVisitor self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */") # Check for Uninitialized attribute - if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then + if not ret.is_c_primitive and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then self.add("if (unlikely({res} == NULL)) \{") self.add_abort("Uninitialized attribute {a.name}") self.add("\}") @@ -1397,7 +1747,11 @@ class SeparateCompilerVisitor self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then var attr = "{recv}->attrs[{a.const_color}]" - if mtype.ctype != "val*" then + if mtype.is_tagged then + # The attribute is not primitive, thus store it as tagged + var tv = autobox(value, compiler.mainmodule.object_type) + self.add("{attr} = {tv}; /* {a} on {recv.inspect} */") + else if mtype.is_c_primitive then assert mtype isa MClassType # The attribute is primitive, thus we store it in a box # The trick is to create the box the first time then resuse the box @@ -1523,7 +1877,7 @@ class SeparateCompilerVisitor self.add("count_type_test_resolved_{tag}++;") end else - self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);") + self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); fatal_exit(1);") end # check color is in table @@ -1549,23 +1903,23 @@ class SeparateCompilerVisitor do var res = self.new_var(bool_type) # Swap values to be symetric - if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then + if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then var tmp = value1 value1 = value2 value2 = tmp end - if value1.mtype.ctype != "val*" then + if value1.mtype.is_c_primitive then if value2.mtype == value1.mtype then self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */") - else if value2.mtype.ctype != "val*" then + else if value2.mtype.is_c_primitive then self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) self.require_declaration("class_{mtype1.c_name}") - self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */") + self.add("{res} = ({value2} != NULL) && ({class_info(value2)} == &class_{mtype1.c_name}); /* is_same_type_test */") end else - self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */") + self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {class_info(value1)} == {class_info(value2)}); /* is_same_type_test */") end return res end @@ -1574,10 +1928,10 @@ class SeparateCompilerVisitor do var res = self.get_name("var_class_name") self.add_decl("const char* {res};") - if value.mtype.ctype == "val*" then - self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;" + if not value.mtype.is_c_primitive then + self.add "{res} = {value} == NULL ? \"null\" : {type_info(value)}->name;" else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind and - value.mtype.as(MClassType).name != "NativeString" then + value.mtype.as(MClassType).name != "CString" then self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";" else self.require_declaration("type_{value.mtype.c_name}") @@ -1589,24 +1943,64 @@ class SeparateCompilerVisitor redef fun equal_test(value1, value2) do var res = self.new_var(bool_type) - if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then + if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then var tmp = value1 value1 = value2 value2 = tmp end - if value1.mtype.ctype != "val*" then - if value2.mtype == value1.mtype then + if value1.mtype.is_c_primitive then + var t1 = value1.mtype + assert t1 == value1.mcasttype + + # Fast case: same C type. + if value2.mtype == t1 then + # Same exact C primitive representation. self.add("{res} = {value1} == {value2};") - else if value2.mtype.ctype != "val*" then - self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/") + return res + end + + # Complex case: value2 has a different representation + # Thus, it should be checked if `value2` is type-compatible with `value1` + # This compatibility is done statically if possible and dynamically else + + # Conjunction (ands) of dynamic tests according to the static knowledge + var tests = new Array[String] + + var t2 = value2.mcasttype + if t2 isa MNullableType then + # The destination type cannot be null + tests.add("({value2} != NULL)") + t2 = t2.mtype + else if t2 isa MNullType then + # `value2` is known to be null, thus incompatible with a primitive + self.add("{res} = 0; /* incompatible types {t1} vs. {t2}*/") + return res + end + + if t2 == t1 then + # Same type but different representation. + else if t2.is_c_primitive then + # Type of `value2` is a different primitive type, thus incompatible + self.add("{res} = 0; /* incompatible types {t1} vs. {t2}*/") + return res + else if t1.is_tagged then + # To be equal, `value2` should also be correctly tagged + tests.add("({extract_tag(value2)} == {t1.tag_value})") else - var mtype1 = value1.mtype.as(MClassType) - self.require_declaration("class_{mtype1.c_name}") - self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});") - self.add("if ({res}) \{") - self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});") - self.add("\}") + # To be equal, `value2` should also be boxed with the same class + self.require_declaration("class_{t1.c_name}") + tests.add "({class_info(value2)} == &class_{t1.c_name})" + end + + # Compare the unboxed `value2` with `value1` + if tests.not_empty then + self.add "if ({tests.join(" && ")}) \{" + end + self.add "{res} = {self.autobox(value2, t1)} == {value1};" + if tests.not_empty then + self.add "\} else {res} = 0;" end + return res end var maybe_null = true @@ -1628,20 +2022,34 @@ class SeparateCompilerVisitor var incompatible = false var primitive - if t1.ctype != "val*" then + if t1.is_c_primitive then primitive = t1 if t1 == t2 then # No need to compare class - else if t2.ctype != "val*" then + else if t2.is_c_primitive then incompatible = true else if can_be_primitive(value2) then + if t1.is_tagged then + self.add("{res} = {value1} == {value2};") + return res + end + if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then + test.add("(!{extract_tag(value2)})") + end test.add("{value1}->class == {value2}->class") else incompatible = true end - else if t2.ctype != "val*" then + else if t2.is_c_primitive then primitive = t2 if can_be_primitive(value1) then + if t2.is_tagged then + self.add("{res} = {value1} == {value2};") + return res + end + if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then + test.add("(!{extract_tag(value1)})") + end test.add("{value1}->class == {value2}->class") else incompatible = true @@ -1660,13 +2068,25 @@ class SeparateCompilerVisitor end end if primitive != null then + if primitive.is_tagged then + self.add("{res} = {value1} == {value2};") + return res + end test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value") else if can_be_primitive(value1) and can_be_primitive(value2) then + if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then + test.add("(!{extract_tag(value1)}) && (!{extract_tag(value2)})") + end test.add("{value1}->class == {value2}->class") var s = new Array[String] for t, v in self.compiler.box_kinds do + if t.mclass_type.is_tagged then continue s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)" end + if s.is_empty then + self.add("{res} = {value1} == {value2};") + return res + end test.add("({s.join(" || ")})") else self.add("{res} = {value1} == {value2};") @@ -1678,22 +2098,16 @@ class SeparateCompilerVisitor fun can_be_primitive(value: RuntimeVariable): Bool do - var t = value.mcasttype.as_notnullable + var t = value.mcasttype.undecorate if not t isa MClassType then return false var k = t.mclass.kind - return k == interface_kind or t.ctype != "val*" - end - - fun maybe_null(value: RuntimeVariable): Bool - do - var t = value.mcasttype - return t isa MNullableType or t isa MNullType + return k == interface_kind or t.is_c_primitive end redef fun array_instance(array, elttype) do - var nclass = self.get_class("NativeArray") - var arrayclass = self.get_class("Array") + var nclass = mmodule.native_array_class + var arrayclass = mmodule.array_class var arraytype = arrayclass.get_mtype([elttype]) var res = self.init_instance(arraytype) self.add("\{ /* {res} = array_instance Array[{elttype}] */") @@ -1708,52 +2122,184 @@ class SeparateCompilerVisitor return res end - redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable + redef fun native_array_instance(elttype, length) do - var mtype = self.get_class("NativeArray").get_mtype([elttype]) + var mtype = mmodule.native_array_type(elttype) self.require_declaration("NEW_{mtype.mclass.c_name}") assert mtype isa MGenericType var compiler = self.compiler + length = autobox(length, compiler.mainmodule.int_type) if mtype.need_anchor then hardening_live_open_type(mtype) link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) self.require_declaration(mtype.const_color) - return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) + return self.new_expr("NEW_{mtype.mclass.c_name}((int){length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) end compiler.undead_types.add(mtype) self.require_declaration("type_{mtype.c_name}") - return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype) + return self.new_expr("NEW_{mtype.mclass.c_name}((int){length}, &type_{mtype.c_name})", mtype) end redef fun native_array_def(pname, ret_type, arguments) do var elttype = arguments.first.mtype - var nclass = self.get_class("NativeArray") + var nclass = mmodule.native_array_class var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values" if pname == "[]" then - self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null))) - return + # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing + var res = self.new_expr("{recv}[{arguments[1]}]", compiler.mainmodule.object_type) + res.mcasttype = ret_type.as(not null) + self.ret(res) + return true else if pname == "[]=" then self.add("{recv}[{arguments[1]}]={arguments[2]};") - return + return true else if pname == "length" then self.ret(self.new_expr("((struct instance_{nclass.c_name}*){arguments[0]})->length", ret_type.as(not null))) - return + return true else if pname == "copy_to" then var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values" self.add("memmove({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));") - return + return true + else if pname == "memmove" then + # fun memmove(start: Int, length: Int, dest: NativeArray[E], dest_start: Int) is intern do + var recv1 = "((struct instance_{nclass.c_name}*){arguments[3]})->values" + self.add("memmove({recv1}+{arguments[4]}, {recv}+{arguments[1]}, {arguments[2]}*sizeof({elttype.ctype}));") + return true + end + return false + end + + redef fun native_array_get(nat, i) + do + var nclass = mmodule.native_array_class + var recv = "((struct instance_{nclass.c_name}*){nat})->values" + # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing + var res = self.new_expr("{recv}[{i}]", compiler.mainmodule.object_type) + return res + end + + redef fun native_array_set(nat, i, val) + do + var nclass = mmodule.native_array_class + var recv = "((struct instance_{nclass.c_name}*){nat})->values" + self.add("{recv}[{i}]={val};") + end + + redef fun routine_ref_instance(routine_type, recv, mmethoddef) + do + #debug "ENTER ref_instance" + var mmethod = mmethoddef.mproperty + # routine_mclass is the specialized one, e.g: FunRef1, ProcRef2, etc.. + var routine_mclass = routine_type.mclass + + var nclasses = mmodule.model.get_mclasses_by_name("RoutineRef").as(not null) + var base_routine_mclass = nclasses.first + + # All routine classes use the same `NEW` constructor. + # However, they have different declared `class` and `type` value. + self.require_declaration("NEW_{base_routine_mclass.c_name}") + + var recv_class_cname = recv.mcasttype.as(MClassType).mclass.c_name + var my_recv = recv + + if recv.mtype.is_c_primitive then + my_recv = autobox(recv, mmodule.object_type) end + var my_recv_mclass_type = my_recv.mtype.as(MClassType) + + # The class of the concrete Routine must exist (e.g ProcRef0, FunRef0, etc.) + self.require_declaration("class_{routine_mclass.c_name}") + self.require_declaration("type_{routine_type.c_name}") + + compiler.undead_types.add(routine_type) + self.require_declaration(mmethoddef.c_name) + + var thunk_function = mmethoddef.callref_thunk(my_recv_mclass_type) + # If the receiver is exact, then there's no need to make a + # polymorph call to the underlying method. + thunk_function.polymorph_call_flag = not my_recv.is_exact + var runtime_function = mmethoddef.virtual_runtime_function + + var is_c_equiv = runtime_function.msignature.c_equiv(thunk_function.msignature) + + var c_ref = thunk_function.c_ref + if is_c_equiv then + var const_color = mmethoddef.mproperty.const_color + c_ref = "{class_info(my_recv)}->vft[{const_color}]" + self.require_declaration(const_color) + else + self.require_declaration(thunk_function.c_name) + compiler.thunk_todo(thunk_function) + end + + # Each RoutineRef points to a receiver AND a callref_thunk + var res = self.new_expr("NEW_{base_routine_mclass.c_name}({my_recv}, (nitmethod_t){c_ref}, &class_{routine_mclass.c_name}, &type_{routine_type.c_name})", routine_type) + #debug "LEAVING ref_instance" + return res end - redef fun calloc_array(ret_type, arguments) + redef fun routine_ref_call(mmethoddef, arguments) do - var mclass = self.get_class("ArrayCapable") - var ft = mclass.mparameters.first - var res = self.native_array_instance(ft, arguments[1]) - self.ret(res) + #debug "ENTER ref_call" + compiler.modelbuilder.nb_invok_by_tables += 1 + if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;") + var nclasses = mmodule.model.get_mclasses_by_name("RoutineRef").as(not null) + var nclass = nclasses.first + var runtime_function = mmethoddef.virtual_runtime_function + + # Save the current receiver since adapt_signature will autobox + # the routine receiver which is not the underlying receiver. + # The underlying receiver has already been adapted in the + # `routine_ref_instance` method. Here we just want to adapt the + # rest of the signature, but it's easier to pass the wrong + # receiver in adapt_signature then discards it with `shift`. + # + # ~~~~nitish + # class A; def toto do print "toto"; end + # var a = new A + # var f = &a.toto # `a` is the underlying receiver + # f.call # here `f` is the routine receiver + # ~~~~ + var routine = arguments.first + + # Retrieve the concrete routine type + var original_recv_c = "(((struct instance_{nclass.c_name}*){arguments[0]})->recv)" + var nitmethod = "(({runtime_function.c_funptrtype})(((struct instance_{nclass.c_name}*){arguments[0]})->method))" + if arguments.length > 1 then + adapt_signature(mmethoddef, arguments) + end + + var ret_mtype = runtime_function.called_signature.return_mtype + + if ret_mtype != null then + # `ret` is actually always nullable Object. When invoking + # a callref, we don't have the original callsite information. + # Thus, we need to recompute the return type of the callsite. + ret_mtype = resolve_for(ret_mtype, routine) + end + + # remove the routine's receiver + arguments.shift + var ss = arguments.join(", ") + # replace the receiver with the original one + if arguments.length > 0 then + ss = "{original_recv_c}, {ss}" + else + ss = original_recv_c + end + + arguments.unshift routine # put back the routine ref receiver + add "/* {mmethoddef.mproperty} on {arguments.first.inspect}*/" + var callsite = "{nitmethod}({ss})" + if ret_mtype != null then + var subres = new_expr("{callsite}", ret_mtype) + ret(subres) + else + add("{callsite};") + end end fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do @@ -1767,192 +2313,267 @@ class SeparateCompilerVisitor end redef class MMethodDef - fun separate_runtime_function: AbstractRuntimeFunction + # The C function associated to a mmethoddef + fun separate_runtime_function: SeparateRuntimeFunction do var res = self.separate_runtime_function_cache if res == null then - res = new SeparateRuntimeFunction(self) + var recv = mclassdef.bound_mtype + var msignature = msignature.resolve_for(recv, recv, mclassdef.mmodule, true) + res = new SeparateRuntimeFunction(self, recv, msignature, c_name) self.separate_runtime_function_cache = res end return res end + + # Returns true if the current method definition differ from + # its original introduction in terms of receiver type. + fun recv_differ_from_intro: Bool + do + var intromclassdef = mproperty.intro.mclassdef + var introrecv = intromclassdef.bound_mtype + return self.mclassdef.bound_mtype != introrecv + end + + # The C thunk function associated to a mmethoddef. Receives only nullable + # Object and cast them to the original mmethoddef signature. + fun callref_thunk(recv_mtype: MClassType): SeparateThunkFunction + do + var res = callref_thunk_cache + if res == null then + var object_type = mclassdef.mmodule.object_type + var nullable_object = object_type.as_nullable + var ps = new Array[MParameter] + + # Replace every argument type by nullable object + for p in msignature.mparameters do + ps.push(new MParameter(p.name, nullable_object, p.is_vararg)) + end + var ret: nullable MType = null + if msignature.return_mtype != null then ret = nullable_object + var msignature2 = new MSignature(ps, ret) + var intromclassdef = mproperty.intro.mclassdef + + res = new SeparateThunkFunction(self, recv_mtype, msignature2, "THUNK_{c_name}", mclassdef.bound_mtype) + res.polymorph_call_flag = true + callref_thunk_cache = res + end + return res + end + + private var callref_thunk_cache: nullable SeparateThunkFunction private var separate_runtime_function_cache: nullable SeparateRuntimeFunction - fun virtual_runtime_function: AbstractRuntimeFunction + # The C function associated to a mmethoddef, that can be stored into a VFT of a class + # The first parameter (the reciever) is always typed by val* in order to accept an object value + # The C-signature is always compatible with the intro + fun virtual_runtime_function: SeparateRuntimeFunction do var res = self.virtual_runtime_function_cache if res == null then - res = new VirtualRuntimeFunction(self) - self.virtual_runtime_function_cache = res + # Because the function is virtual, the signature must match the one of the original class + var intromclassdef = mproperty.intro.mclassdef + var recv = intromclassdef.bound_mtype + + res = separate_runtime_function + if res.called_recv == recv then + self.virtual_runtime_function_cache = res + return res + end + + var msignature = mproperty.intro.msignature.resolve_for(recv, recv, intromclassdef.mmodule, true) + + if recv.ctype == res.called_recv.ctype and msignature.c_equiv(res.called_signature) then + self.virtual_runtime_function_cache = res + return res + end + res = new SeparateThunkFunction(self, recv, msignature, "VIRTUAL_{c_name}", mclassdef.bound_mtype) end return res end - private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction + private var virtual_runtime_function_cache: nullable SeparateRuntimeFunction +end + +redef class MSignature + # Does the C-version of `self` the same than the C-version of `other`? + fun c_equiv(other: MSignature): Bool + do + if self == other then return true + if arity != other.arity then return false + for i in [0..arity[ do + if mparameters[i].mtype.ctype != other.mparameters[i].mtype.ctype then return false + end + if return_mtype != other.return_mtype then + if return_mtype == null or other.return_mtype == null then return false + if return_mtype.ctype != other.return_mtype.ctype then return false + end + return true + end end # The C function associated to a methoddef separately compiled class SeparateRuntimeFunction super AbstractRuntimeFunction - redef fun build_c_name: String do return "{mmethoddef.c_name}" + # The call-side static receiver + var called_recv: MType + + # The call-side static signature + var called_signature: MSignature + + # The name on the compiled method + redef var build_c_name: String redef fun to_s do return self.mmethoddef.to_s - redef fun compile_to_c(compiler) + redef fun msignature do - var mmethoddef = self.mmethoddef + return called_signature + end - var recv = self.mmethoddef.mclassdef.bound_mtype - var v = compiler.new_visitor - var selfvar = new RuntimeVariable("self", recv, recv) - var arguments = new Array[RuntimeVariable] - var frame = new Frame(v, mmethoddef, recv, arguments) - v.frame = frame + redef fun recv_mtype + do + return called_recv + end - var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) + redef fun return_mtype + do + return called_signature.return_mtype + end - var sig = new FlatBuffer - var comment = new FlatBuffer - var ret = msignature.return_mtype + # The C return type (something or `void`) + var c_ret: String is lazy do + var ret = called_signature.return_mtype if ret != null then - sig.append("{ret.ctype} ") + return ret.ctype else - sig.append("void ") + return "void" end - sig.append(self.c_name) - sig.append("({selfvar.mtype.ctype} {selfvar}") - comment.append("({selfvar}: {selfvar.mtype}") - arguments.add(selfvar) - for i in [0..msignature.arity[ do - var mtype = msignature.mparameters[i].mtype - if i == msignature.vararg_rank then - mtype = v.get_class("Array").get_mtype([mtype]) + end + + # The C signature (only the parmeter part) + var c_sig: String is lazy do + var sig = new FlatBuffer + sig.append("({called_recv.ctype} self") + for i in [0..called_signature.arity[ do + var mp = called_signature.mparameters[i] + var mtype = mp.mtype + if mp.is_vararg then + mtype = mmethoddef.mclassdef.mmodule.array_type(mtype) end - comment.append(", {mtype}") sig.append(", {mtype.ctype} p{i}") - var argvar = new RuntimeVariable("p{i}", mtype, mtype) - arguments.add(argvar) end sig.append(")") - comment.append(")") - if ret != null then - comment.append(": {ret}") - end - compiler.provide_declaration(self.c_name, "{sig};") + return sig.to_s + end - v.add_decl("/* method {self} for {comment} */") - v.add_decl("{sig} \{") - if ret != null then - frame.returnvar = v.new_var(ret) - end - frame.returnlabel = v.get_name("RET_LABEL") + # The C type for the function pointer. + var c_funptrtype: String is lazy do return "{c_ret}(*){c_sig}" - if recv != arguments.first.mtype then - #print "{self} {recv} {arguments.first}" - end - mmethoddef.compile_inside_to_c(v, arguments) + redef fun declare_signature(v, sig) + do + v.compiler.provide_declaration(c_name, "{sig};") + end - v.add("{frame.returnlabel.as(not null)}:;") - if ret != null then - v.add("return {frame.returnvar.as(not null)};") + redef fun body_to_c(v) + do + var rta = v.compiler.as(SeparateCompiler).runtime_type_analysis + if rta != null and not rta.live_mmodules.has(mmethoddef.mclassdef.mmodule) then + v.add_abort("FATAL: Dead method executed.") + else + super end - v.add("\}") - if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})" end -end - -# The C function associated to a methoddef on a primitive type, stored into a VFT of a class -# The first parameter (the reciever) is always typed by val* in order to accept an object value -class VirtualRuntimeFunction - super AbstractRuntimeFunction - - redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}" - redef fun to_s do return self.mmethoddef.to_s + redef fun end_compile_to_c(v) + do + var compiler = v.compiler + compiler.names[self.c_name] = "{mmethoddef.full_name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})" + end - redef fun compile_to_c(compiler) + redef fun build_frame(v, arguments) do - var mmethoddef = self.mmethoddef + var recv = mmethoddef.mclassdef.bound_mtype + return new StaticFrame(v, mmethoddef, recv, arguments) + end + # Compile the trampolines used to implement late-binding. + # + # See `opt_trampoline_call`. + fun compile_trampolines(compiler: SeparateCompiler) + do var recv = self.mmethoddef.mclassdef.bound_mtype - var v = compiler.new_visitor - var selfvar = new RuntimeVariable("self", v.object_type, recv) - var arguments = new Array[RuntimeVariable] - var frame = new Frame(v, mmethoddef, recv, arguments) - v.frame = frame - - var sig = new FlatBuffer - var comment = new FlatBuffer - - # Because the function is virtual, the signature must match the one of the original class - var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef - var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) - var ret = msignature.return_mtype - if ret != null then - sig.append("{ret.ctype} ") - else - sig.append("void ") - end - sig.append(self.c_name) - sig.append("({selfvar.mtype.ctype} {selfvar}") - comment.append("({selfvar}: {selfvar.mtype}") - arguments.add(selfvar) - for i in [0..msignature.arity[ do - var mtype = msignature.mparameters[i].mtype - if i == msignature.vararg_rank then - mtype = v.get_class("Array").get_mtype([mtype]) + var selfvar = new RuntimeVariable("self", called_recv, recv) + var ret = called_signature.return_mtype + var arguments = ["self"] + for i in [0..called_signature.arity[ do arguments.add "p{i}" + + if mmethoddef.is_intro and not recv.is_c_primitive then + var m = mmethoddef.mproperty + var n2 = "CALL_" + m.const_color + compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};") + var v2 = compiler.new_visitor + v2.add "{c_ret} {n2}{c_sig} \{" + v2.require_declaration(m.const_color) + var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});" + if ret != null then + v2.add "return {call}" + else + v2.add call end - comment.append(", {mtype}") - sig.append(", {mtype.ctype} p{i}") - var argvar = new RuntimeVariable("p{i}", mtype, mtype) - arguments.add(argvar) - end - sig.append(")") - comment.append(")") - if ret != null then - comment.append(": {ret}") - end - compiler.provide_declaration(self.c_name, "{sig};") - v.add_decl("/* method {self} for {comment} */") - v.add_decl("{sig} \{") - if ret != null then - frame.returnvar = v.new_var(ret) - end - frame.returnlabel = v.get_name("RET_LABEL") + v2.add "\}" - var subret = v.call(mmethoddef, recv, arguments) - if ret != null then - assert subret != null - v.assign(frame.returnvar.as(not null), subret) end + if mmethoddef.has_supercall and not recv.is_c_primitive then + var m = mmethoddef + var n2 = "CALL_" + m.const_color + compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};") + var v2 = compiler.new_visitor + v2.add "{c_ret} {n2}{c_sig} \{" + v2.require_declaration(m.const_color) + var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});" + if ret != null then + v2.add "return {call}" + else + v2.add call + end - v.add("{frame.returnlabel.as(not null)}:;") - if ret != null then - v.add("return {frame.returnvar.as(not null)};") + v2.add "\}" end - v.add("\}") - if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})" end +end - # TODO ? - redef fun call(v, arguments) do abort +class SeparateThunkFunction + super ThunkFunction + super SeparateRuntimeFunction + redef var target_recv end redef class MType - fun const_color: String do return "COLOR_{c_name}" + # Are values of `self` tagged? + # If false, it means that the type is not primitive, or is boxed. + var is_tagged = false + + # The tag value of the type + # + # ENSURE `is_tagged == (tag_value > 0)` + # ENSURE `not is_tagged == (tag_value == 0)` + var tag_value = 0 +end + +redef class MEntity + var const_color: String is lazy do return "COLOR_{c_name}" end interface PropertyLayoutElement end redef class MProperty super PropertyLayoutElement - fun const_color: String do return "COLOR_{c_name}" end redef class MPropDef super PropertyLayoutElement - fun const_color: String do return "COLOR_{c_name}" end redef class AMethPropdef @@ -1964,3 +2585,14 @@ redef class AMethPropdef return super end end + +redef class AAttrPropdef + redef fun init_expr(v, recv) + do + super + if is_lazy and v.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then + var guard = self.mlazypropdef.mproperty + v.write_attribute(guard, recv, v.bool_instance(false)) + end + end +end