X-Git-Url: http://nitlanguage.org diff --git a/src/compiler/separate_compiler.nit b/src/compiler/separate_compiler.nit index 3645f54..dab4a79 100644 --- a/src/compiler/separate_compiler.nit +++ b/src/compiler/separate_compiler.nit @@ -29,12 +29,28 @@ redef class ToolContext var opt_no_union_attribute = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute") # --no-shortcut-equate var opt_no_shortcut_equate = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal") + # --no-tag-primitives + var opt_no_tag_primitives = new OptionBool("Use only boxes for primitive types", "--no-tag-primitives") + + # --colors-are-symbols + var opt_colors_are_symbols = new OptionBool("Store colors as symbols (link-boost)", "--colors-are-symbols") + # --trampoline-call + var opt_trampoline_call = new OptionBool("Use an indirection when calling", "--trampoline-call") + # --guard-call + var opt_guard_call = new OptionBool("Guard VFT calls with a direct call", "--guard-call") + # --substitute-monomorph + var opt_substitute_monomorph = new OptionBool("Replace monomorph trampoline with direct call (link-boost)", "--substitute-monomorph") + # --link-boost + var opt_link_boost = new OptionBool("Enable all link-boost optimizations", "--link-boost") + # --inline-coloring-numbers var opt_inline_coloring_numbers = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers") # --inline-some-methods var opt_inline_some_methods = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods") # --direct-call-monomorph var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph") + # --direct-call-monomorph0 + var opt_direct_call_monomorph0 = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph0") # --skip-dead-methods var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods") # --semi-global @@ -43,6 +59,8 @@ redef class ToolContext var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods") # --tables-metrics var opt_tables_metrics = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics") + # --type-poset + var opt_type_poset = new OptionBool("Build a poset of types to create more condensed tables.", "--type-poset") redef init do @@ -51,9 +69,12 @@ redef class ToolContext self.option_context.add_option(self.opt_no_inline_intern) self.option_context.add_option(self.opt_no_union_attribute) self.option_context.add_option(self.opt_no_shortcut_equate) + self.option_context.add_option(self.opt_no_tag_primitives) + self.option_context.add_option(opt_colors_are_symbols, opt_trampoline_call, opt_guard_call, opt_direct_call_monomorph0, opt_substitute_monomorph, opt_link_boost) self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global) self.option_context.add_option(self.opt_colo_dead_methods) self.option_context.add_option(self.opt_tables_metrics) + self.option_context.add_option(self.opt_type_poset) end redef fun process_options(args) @@ -67,6 +88,13 @@ redef class ToolContext tc.opt_direct_call_monomorph.value = true tc.opt_skip_dead_methods.value = true end + if tc.opt_link_boost.value then + tc.opt_colors_are_symbols.value = true + tc.opt_substitute_monomorph.value = true + end + if tc.opt_substitute_monomorph.value then + tc.opt_trampoline_call.value = true + end end var separate_compiler_phase = new SeparateCompilerPhase(self, null) @@ -90,45 +118,7 @@ redef class ModelBuilder self.toolcontext.info("*** GENERATING C ***", 1) var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis) - compiler.compile_header - - # compile class structures - self.toolcontext.info("Property coloring", 2) - compiler.new_file("{mainmodule.name}.classes") - compiler.do_property_coloring - for m in mainmodule.in_importation.greaters do - for mclass in m.intro_mclasses do - if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue - compiler.compile_class_to_c(mclass) - end - end - - # The main function of the C - compiler.new_file("{mainmodule.name}.main") - compiler.compile_nitni_global_ref_functions - compiler.compile_main_function - compiler.compile_finalizer_function - - # compile methods - for m in mainmodule.in_importation.greaters do - self.toolcontext.info("Generate C for module {m}", 2) - compiler.new_file("{m.name}.sep") - compiler.compile_module_to_c(m) - end - - # compile live & cast type structures - self.toolcontext.info("Type coloring", 2) - compiler.new_file("{mainmodule.name}.types") - var mtypes = compiler.do_type_coloring - for t in mtypes do - compiler.compile_type_to_c(t) - end - # compile remaining types structures (useless but needed for the symbol resolution at link-time) - for t in compiler.undead_types do - if mtypes.has(t) then continue - compiler.compile_type_to_c(t) - end - + compiler.do_compilation compiler.display_stats var time1 = get_time @@ -156,20 +146,72 @@ class SeparateCompiler private var undead_types: Set[MType] = new HashSet[MType] private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]] - private var type_ids: Map[MType, Int] - private var type_colors: Map[MType, Int] - private var opentype_colors: Map[MType, Int] - protected var method_colors: Map[PropertyLayoutElement, Int] - protected var attr_colors: Map[MAttribute, Int] + private var type_ids: Map[MType, Int] is noinit + private var type_colors: Map[MType, Int] is noinit + private var opentype_colors: Map[MType, Int] is noinit - init(mainmodule: MModule, mmbuilder: ModelBuilder, runtime_type_analysis: nullable RapidTypeAnalysis) do - super(mainmodule, mmbuilder) + init do var file = new_file("nit.common") self.header = new CodeWriter(file) - self.runtime_type_analysis = runtime_type_analysis self.compile_box_kinds end + redef fun do_compilation + do + var compiler = self + compiler.compile_header + + var c_name = mainmodule.c_name + + # compile class structures + modelbuilder.toolcontext.info("Property coloring", 2) + compiler.new_file("{c_name}.classes") + compiler.do_property_coloring + compiler.compile_class_infos + for m in mainmodule.in_importation.greaters do + for mclass in m.intro_mclasses do + #if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue + compiler.compile_class_to_c(mclass) + end + end + + # The main function of the C + compiler.new_file("{c_name}.main") + compiler.compile_nitni_global_ref_functions + compiler.compile_main_function + compiler.compile_finalizer_function + compiler.link_mmethods + + # compile methods + for m in mainmodule.in_importation.greaters do + modelbuilder.toolcontext.info("Generate C for module {m.full_name}", 2) + compiler.new_file("{m.c_name}.sep") + compiler.compile_module_to_c(m) + end + + # compile live & cast type structures + modelbuilder.toolcontext.info("Type coloring", 2) + compiler.new_file("{c_name}.types") + compiler.compile_types + end + + # Color and compile type structures and cast information + fun compile_types + do + var compiler = self + + var mtypes = compiler.do_type_coloring + for t in mtypes do + compiler.compile_type_to_c(t) + end + # compile remaining types structures (useless but needed for the symbol resolution at link-time) + for t in compiler.undead_types do + if mtypes.has(t) then continue + compiler.compile_type_to_c(t) + end + + end + redef fun compile_header_structs do self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */") self.compile_header_attribute_structs @@ -180,6 +222,11 @@ class SeparateCompiler self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */") self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */") self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */") + + if not modelbuilder.toolcontext.opt_no_tag_primitives.value then + self.header.add_decl("extern const struct class *class_info[];") + self.header.add_decl("extern const struct type *type_info[];") + end end fun compile_header_attribute_structs @@ -222,7 +269,7 @@ class SeparateCompiler if mclass.mclass_type.ctype_extern == "val*" then return 0 else if mclass.kind == extern_kind and mclass.name != "NativeString" then - return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")] + return self.box_kinds[self.mainmodule.pointer_type.mclass] else return self.box_kinds[mclass] end @@ -238,213 +285,201 @@ class SeparateCompiler fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do if color_consts_done.has(m) then return - if m isa MProperty then + if m isa MEntity then if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then self.provide_declaration(m.const_color, "#define {m.const_color} {color}") - else + else if not modelbuilder.toolcontext.opt_colors_are_symbols.value or not v.compiler.target_platform.supports_linker_script then self.provide_declaration(m.const_color, "extern const int {m.const_color};") v.add("const int {m.const_color} = {color};") - end - else if m isa MPropDef then - if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then - self.provide_declaration(m.const_color, "#define {m.const_color} {color}") else - self.provide_declaration(m.const_color, "extern const int {m.const_color};") - v.add("const int {m.const_color} = {color};") - end - else if m isa MType then - if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then - self.provide_declaration(m.const_color, "#define {m.const_color} {color}") - else - self.provide_declaration(m.const_color, "extern const int {m.const_color};") - v.add("const int {m.const_color} = {color};") + # The color 'C' is the ``address'' of a false static variable 'XC' + self.provide_declaration(m.const_color, "#define {m.const_color} ((long)&X{m.const_color})\nextern const void X{m.const_color};") + if color == -1 then color = 0 # Symbols cannot be negative, so just use 0 for dead things + # Teach the linker that the address of 'XC' is `color`. + linker_script.add("X{m.const_color} = {color};") end + else + abort end color_consts_done.add(m) end private var color_consts_done = new HashSet[Object] + # The conflict graph of classes used for coloration + var class_conflict_graph: POSetConflictGraph[MClass] is noinit + # colorize classe properties fun do_property_coloring do var rta = runtime_type_analysis - # Layouts - var poset = mainmodule.flatten_mclass_hierarchy - var mclasses = new HashSet[MClass].from(poset) - var colorer = new POSetColorer[MClass] - colorer.colorize(poset) - - # The dead methods, still need to provide a dead color symbol - var dead_methods = new Array[MMethod] + # Class graph + var mclasses = mainmodule.flatten_mclass_hierarchy + class_conflict_graph = mclasses.to_conflict_graph - # lookup properties to build layout with + # Prepare to collect elements to color and build layout with var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]] var mattributes = new HashMap[MClass, Set[MAttribute]] + + # The dead methods and super-call, still need to provide a dead color symbol + var dead_methods = new Array[PropertyLayoutElement] + for mclass in mclasses do mmethods[mclass] = new HashSet[PropertyLayoutElement] mattributes[mclass] = new HashSet[MAttribute] - for mprop in self.mainmodule.properties(mclass) do - if mprop isa MMethod then - if not modelbuilder.toolcontext.opt_colo_dead_methods.value and rta != null and not rta.live_methods.has(mprop) then - dead_methods.add(mprop) - continue - end - mmethods[mclass].add(mprop) - else if mprop isa MAttribute then - mattributes[mclass].add(mprop) - end + end + + # Pre-collect known live things + if rta != null then + for m in rta.live_methods do + mmethods[m.intro_mclassdef.mclass].add m + end + for m in rta.live_super_sends do + var mclass = m.mclassdef.mclass + mmethods[mclass].add m end end - # Collect all super calls (dead or not) - var all_super_calls = new HashSet[MMethodDef] - for mmodule in self.mainmodule.in_importation.greaters do - for mclassdef in mmodule.mclassdefs do - for mpropdef in mclassdef.mpropdefs do - if not mpropdef isa MMethodDef then continue - if mpropdef.has_supercall then - all_super_calls.add(mpropdef) + for m in mainmodule.in_importation.greaters do for cd in m.mclassdefs do + var mclass = cd.mclass + # Collect methods ad attributes + for p in cd.intro_mproperties do + if p isa MMethod then + if rta == null then + mmethods[mclass].add p + else if not rta.live_methods.has(p) then + dead_methods.add p end + else if p isa MAttribute then + mattributes[mclass].add p end end - end - - # lookup super calls and add it to the list of mmethods to build layout with - var super_calls - if rta != null then - super_calls = rta.live_super_sends - else - super_calls = all_super_calls - end - for mmethoddef in super_calls do - var mclass = mmethoddef.mclassdef.mclass - mmethods[mclass].add(mmethoddef) - for descendant in mclass.in_hierarchy(self.mainmodule).smallers do - mmethods[descendant].add(mmethoddef) + # Collect all super calls (dead or not) + for mpropdef in cd.mpropdefs do + if not mpropdef isa MMethodDef then continue + if mpropdef.has_supercall then + if rta == null then + mmethods[mclass].add mpropdef + else if not rta.live_super_sends.has(mpropdef) then + dead_methods.add mpropdef + end + end end end # methods coloration - var meth_colorer = new POSetBucketsColorer[MClass, PropertyLayoutElement](poset, colorer.conflicts) - method_colors = meth_colorer.colorize(mmethods) - method_tables = build_method_tables(mclasses, super_calls) + var meth_colorer = new POSetGroupColorer[MClass, PropertyLayoutElement](class_conflict_graph, mmethods) + var method_colors = meth_colorer.colors compile_color_consts(method_colors) - # attribute null color to dead methods and supercalls - for mproperty in dead_methods do - compile_color_const(new_visitor, mproperty, -1) - end - for mpropdef in all_super_calls do - if super_calls.has(mpropdef) then continue - compile_color_const(new_visitor, mpropdef, -1) - end + # give null color to dead methods and supercalls + for mproperty in dead_methods do compile_color_const(new_visitor, mproperty, -1) - # attributes coloration - var attr_colorer = new POSetBucketsColorer[MClass, MAttribute](poset, colorer.conflicts) - attr_colors = attr_colorer.colorize(mattributes) - attr_tables = build_attr_tables(mclasses) + # attribute coloration + var attr_colorer = new POSetGroupColorer[MClass, MAttribute](class_conflict_graph, mattributes) + var attr_colors = attr_colorer.colors#ize(poset, mattributes) compile_color_consts(attr_colors) - end - fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do - var tables = new HashMap[MClass, Array[nullable MPropDef]] + # Build method and attribute tables + method_tables = new HashMap[MClass, Array[nullable MPropDef]] + attr_tables = new HashMap[MClass, Array[nullable MProperty]] for mclass in mclasses do - var table = new Array[nullable MPropDef] - tables[mclass] = table + if not mclass.has_new_factory and (mclass.kind == abstract_kind or mclass.kind == interface_kind) then continue + if rta != null and not rta.live_classes.has(mclass) then continue - var mproperties = self.mainmodule.properties(mclass) var mtype = mclass.intro.bound_mtype - for mproperty in mproperties do - if not mproperty isa MMethod then continue - if not method_colors.has_key(mproperty) then continue - var color = method_colors[mproperty] - if table.length <= color then - for i in [table.length .. color[ do - table[i] = null - end - end - table[color] = mproperty.lookup_first_definition(mainmodule, mtype) - end - - for supercall in super_calls do - if not mtype.collect_mclassdefs(mainmodule).has(supercall.mclassdef) then continue - - var color = method_colors[supercall] - if table.length <= color then - for i in [table.length .. color[ do - table[i] = null - end + # Resolve elements in the layout to get the final table + var meth_layout = meth_colorer.build_layout(mclass) + var meth_table = new Array[nullable MPropDef].with_capacity(meth_layout.length) + method_tables[mclass] = meth_table + for e in meth_layout do + if e == null then + meth_table.add null + else if e isa MMethod then + # Standard method call of `e` + meth_table.add e.lookup_first_definition(mainmodule, mtype) + else if e isa MMethodDef then + # Super-call in the methoddef `e` + meth_table.add e.lookup_next_definition(mainmodule, mtype) + else + abort end - var mmethoddef = supercall.lookup_next_definition(mainmodule, mtype) - table[color] = mmethoddef end + # Do not need to resolve attributes as only the position is used + attr_tables[mclass] = attr_colorer.build_layout(mclass) end - return tables - end - fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do - var tables = new HashMap[MClass, Array[nullable MPropDef]] - for mclass in mclasses do - var table = new Array[nullable MPropDef] - tables[mclass] = table - - var mproperties = self.mainmodule.properties(mclass) - var mtype = mclass.intro.bound_mtype - for mproperty in mproperties do - if not mproperty isa MAttribute then continue - if not attr_colors.has_key(mproperty) then continue - var color = attr_colors[mproperty] - if table.length <= color then - for i in [table.length .. color[ do - table[i] = null - end - end - table[color] = mproperty.lookup_first_definition(mainmodule, mtype) - end - end - return tables end # colorize live types of the program - private fun do_type_coloring: POSet[MType] do + private fun do_type_coloring: Collection[MType] do # Collect types to colorize var live_types = runtime_type_analysis.live_types var live_cast_types = runtime_type_analysis.live_cast_types - var mtypes = new HashSet[MType] - mtypes.add_all(live_types) - mtypes.add_all(live_cast_types) - for c in self.box_kinds.keys do - mtypes.add(c.mclass_type) - end - - # Compute colors - var poset = poset_from_mtypes(mtypes) - var colorer = new POSetColorer[MType] - colorer.colorize(poset) - type_ids = colorer.ids - type_colors = colorer.colors - type_tables = build_type_tables(poset) + + var res = new HashSet[MType] + res.add_all live_types + res.add_all live_cast_types + + if modelbuilder.toolcontext.opt_type_poset.value then + # Compute colors with a type poset + var poset = poset_from_mtypes(live_types, live_cast_types) + var colorer = new POSetColorer[MType] + colorer.colorize(poset) + type_ids = colorer.ids + type_colors = colorer.colors + type_tables = build_type_tables(poset) + else + # Compute colors using the class poset + # Faster to compute but the number of holes can degenerate + compute_type_test_layouts(live_types, live_cast_types) + + type_ids = new HashMap[MType, Int] + for x in res do type_ids[x] = type_ids.length + 1 + end # VT and FT are stored with other unresolved types in the big resolution_tables - self.compile_resolution_tables(mtypes) + self.compute_resolution_tables(live_types) - return poset + return res end - private fun poset_from_mtypes(mtypes: Set[MType]): POSet[MType] do + private fun poset_from_mtypes(mtypes, cast_types: Set[MType]): POSet[MType] do var poset = new POSet[MType] + + # Instead of doing the full matrix mtypes X cast_types, + # a grouping is done by the base classes of the type so + # that we compare only types whose base classes are in inheritance. + + var mtypes_by_class = new MultiHashMap[MClass, MType] for e in mtypes do + var c = e.as_notnullable.as(MClassType).mclass + mtypes_by_class[c].add(e) poset.add_node(e) - for o in mtypes do - if e == o then continue - if e.is_subtype(mainmodule, null, o) then - poset.add_edge(e, o) + end + + var casttypes_by_class = new MultiHashMap[MClass, MType] + for e in cast_types do + var c = e.as_notnullable.as(MClassType).mclass + casttypes_by_class[c].add(e) + poset.add_node(e) + end + + for c1, ts1 in mtypes_by_class do + for c2 in c1.in_hierarchy(mainmodule).greaters do + var ts2 = casttypes_by_class[c2] + for e in ts1 do + for o in ts2 do + if e == o then continue + if e.is_subtype(mainmodule, null, o) then + poset.add_edge(e, o) + end + end end end end @@ -470,29 +505,75 @@ class SeparateCompiler return tables end - protected fun compile_resolution_tables(mtypes: Set[MType]) do - # resolution_tables is used to perform a type resolution at runtime in O(1) + private fun compute_type_test_layouts(mtypes: Set[MClassType], cast_types: Set[MType]) do + # Group cast_type by their classes + var bucklets = new HashMap[MClass, Set[MType]] + for e in cast_types do + var c = e.as_notnullable.as(MClassType).mclass + if not bucklets.has_key(c) then + bucklets[c] = new HashSet[MType] + end + bucklets[c].add(e) + end + + # Colorize cast_types from the class hierarchy + var colorer = new POSetGroupColorer[MClass, MType](class_conflict_graph, bucklets) + type_colors = colorer.colors + + var layouts = new HashMap[MClass, Array[nullable MType]] + for c in runtime_type_analysis.live_classes do + layouts[c] = colorer.build_layout(c) + end + + # Build the table for each live type + for t in mtypes do + # A live type use the layout of its class + var c = t.mclass + var layout = layouts[c] + var table = new Array[nullable MType].with_capacity(layout.length) + type_tables[t] = table + + # For each potential super-type in the layout + for sup in layout do + if sup == null then + table.add null + else if t.is_subtype(mainmodule, null, sup) then + table.add sup + else + table.add null + end + end + end + end + + # resolution_tables is used to perform a type resolution at runtime in O(1) + private fun compute_resolution_tables(mtypes: Set[MType]) do # During the visit of the body of classes, live_unresolved_types are collected # and associated to # Collect all live_unresolved_types (visited in the body of classes) # Determinate fo each livetype what are its possible requested anchored types - var mtype2unresolved = new HashMap[MClassType, Set[MType]] + var mtype2unresolved = new HashMap[MClass, Set[MType]] for mtype in self.runtime_type_analysis.live_types do - var set = new HashSet[MType] + var mclass = mtype.mclass + var set = mtype2unresolved.get_or_null(mclass) + if set == null then + set = new HashSet[MType] + mtype2unresolved[mclass] = set + end for cd in mtype.collect_mclassdefs(self.mainmodule) do if self.live_unresolved_types.has_key(cd) then set.add_all(self.live_unresolved_types[cd]) end end - mtype2unresolved[mtype] = set end # Compute the table layout with the prefered method - var colorer = new BucketsColorer[MType, MType] + var colorer = new BucketsColorer[MClass, MType] + opentype_colors = colorer.colorize(mtype2unresolved) - resolution_tables = self.build_resolution_tables(mtype2unresolved) + resolution_tables = self.build_resolution_tables(self.runtime_type_analysis.live_types, mtype2unresolved) # Compile a C constant for each collected unresolved type. # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it) @@ -517,9 +598,10 @@ class SeparateCompiler #print "" end - fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do + fun build_resolution_tables(elements: Set[MClassType], map: Map[MClass, Set[MType]]): Map[MClassType, Array[nullable MType]] do var tables = new HashMap[MClassType, Array[nullable MType]] - for mclasstype, mtypes in elements do + for mclasstype in elements do + var mtypes = map[mclasstype.mclass] var table = new Array[nullable MType] for mtype in mtypes do var color = opentype_colors[mtype] @@ -549,12 +631,75 @@ class SeparateCompiler var r = pd.separate_runtime_function r.compile_to_c(self) var r2 = pd.virtual_runtime_function - r2.compile_to_c(self) + if r2 != r then r2.compile_to_c(self) + + # Generate trampolines + if modelbuilder.toolcontext.opt_trampoline_call.value then + r2.compile_trampolines(self) + end end end self.mainmodule = old_module end + # Process all introduced methods and compile some linking information (if needed) + fun link_mmethods + do + if not modelbuilder.toolcontext.opt_substitute_monomorph.value and not modelbuilder.toolcontext.opt_guard_call.value then return + + for mmodule in mainmodule.in_importation.greaters do + for cd in mmodule.mclassdefs do + for m in cd.intro_mproperties do + if not m isa MMethod then continue + link_mmethod(m) + end + end + end + end + + # Compile some linking information (if needed) + fun link_mmethod(m: MMethod) + do + var n2 = "CALL_" + m.const_color + + # Replace monomorphic call by a direct call to the virtual implementation + var md = is_monomorphic(m) + if md != null then + linker_script.add("{n2} = {md.virtual_runtime_function.c_name};") + end + + # If opt_substitute_monomorph then a trampoline is used, else a weak symbol is used + if modelbuilder.toolcontext.opt_guard_call.value then + var r = m.intro.virtual_runtime_function + provide_declaration(n2, "{r.c_ret} {n2}{r.c_sig} __attribute__((weak));") + end + end + + # The single mmethodef called in case of monomorphism. + # Returns nul if dead or polymorphic. + fun is_monomorphic(m: MMethod): nullable MMethodDef + do + var rta = runtime_type_analysis + if rta == null then + # Without RTA, monomorphic means alone (uniq name) + if m.mpropdefs.length == 1 then + return m.mpropdefs.first + else + return null + end + else + # With RTA, monomorphic means only live methoddef + var res: nullable MMethodDef = null + for md in m.mpropdefs do + if rta.live_methoddefs.has(md) then + if res != null then return null + res = md + end + end + return res + end + end + # Globaly compile the type structure of a live type fun compile_type_to_c(mtype: MType) do @@ -669,12 +814,10 @@ class SeparateCompiler var mtype = mclass.intro.bound_mtype var c_name = mclass.c_name - var vft = self.method_tables[mclass] - var attrs = self.attr_tables[mclass] var v = new_visitor var rta = runtime_type_analysis - var is_dead = rta != null and not rta.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray" and mclass.name != "Pointer" + var is_dead = rta != null and not rta.live_classes.has(mclass) and not mtype.is_c_primitive and mclass.name != "NativeArray" and mclass.name != "Pointer" v.add_decl("/* runtime class {c_name} */") @@ -684,7 +827,8 @@ class SeparateCompiler v.add_decl("const struct class class_{c_name} = \{") v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */") v.add_decl("\{") - for i in [0 .. vft.length[ do + var vft = self.method_tables.get_or_null(mclass) + if vft != null then for i in [0 .. vft.length[ do var mpropdef = vft[i] if mpropdef == null then v.add_decl("NULL, /* empty */") @@ -703,9 +847,11 @@ class SeparateCompiler v.add_decl("\};") end - if mtype.ctype != "val*" or mtype.mclass.name == "Pointer" then + if mtype.is_c_primitive or mtype.mclass.name == "Pointer" then # Is a primitive type or the Pointer class, not any other extern class + if mtype.is_tagged then return + #Build instance struct self.header.add_decl("struct instance_{c_name} \{") self.header.add_decl("const struct type *type;") @@ -811,18 +957,78 @@ class SeparateCompiler else var res = v.new_named_var(mtype, "self") res.is_exact = true - v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));") + var attrs = self.attr_tables.get_or_null(mclass) + if attrs == null then + v.add("{res} = nit_alloc(sizeof(struct instance));") + else + v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));") + end v.add("{res}->type = type;") hardening_live_type(v, "type") v.require_declaration("class_{c_name}") v.add("{res}->class = &class_{c_name};") - self.generate_init_attr(v, res, mtype) - v.set_finalizer res + if attrs != null then + self.generate_init_attr(v, res, mtype) + v.set_finalizer res + end v.add("return {res};") end v.add("\}") end + # Compile structures used to map tagged primitive values to their classes and types. + # This method also determines which class will be tagged. + fun compile_class_infos + do + if modelbuilder.toolcontext.opt_no_tag_primitives.value then return + + # Note: if you change the tagging scheme, do not forget to update + # `autobox` and `extract_tag` + var class_info = new Array[nullable MClass].filled_with(null, 4) + for t in box_kinds.keys do + # Note: a same class can be associated to multiple slots if one want to + # use some Huffman coding. + if t.name == "Int" then + class_info[1] = t + else if t.name == "Char" then + class_info[2] = t + else if t.name == "Bool" then + class_info[3] = t + else + continue + end + t.mclass_type.is_tagged = true + end + + # Compile the table for classes. The tag is used as an index + var v = self.new_visitor + v.add_decl "const struct class *class_info[4] = \{" + for t in class_info do + if t == null then + v.add_decl("NULL,") + else + var s = "class_{t.c_name}" + v.require_declaration(s) + v.add_decl("&{s},") + end + end + v.add_decl("\};") + + # Compile the table for types. The tag is used as an index + v.add_decl "const struct type *type_info[4] = \{" + for t in class_info do + if t == null then + v.add_decl("NULL,") + else + var s = "type_{t.c_name}" + undead_types.add(t.mclass_type) + v.require_declaration(s) + v.add_decl("&{s},") + end + end + v.add_decl("\};") + end + # Add a dynamic test to ensure that the type referenced by `t` is a live type fun hardening_live_type(v: VISITOR, t: String) do @@ -843,7 +1049,7 @@ class SeparateCompiler private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]] private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]] protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] - protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] + protected var attr_tables: Map[MClass, Array[nullable MProperty]] = new HashMap[MClass, Array[nullable MProperty]] redef fun display_stats do @@ -979,11 +1185,33 @@ class SeparateCompilerVisitor do if value.mtype == mtype then return value - else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then + else if not value.mtype.is_c_primitive and not mtype.is_c_primitive then return value - else if value.mtype.ctype == "val*" then + else if not value.mtype.is_c_primitive then + if mtype.is_tagged then + if mtype.name == "Int" then + return self.new_expr("(long)({value})>>2", mtype) + else if mtype.name == "Char" then + return self.new_expr("(char)((long)({value})>>2)", mtype) + else if mtype.name == "Bool" then + return self.new_expr("(short int)((long)({value})>>2)", mtype) + else + abort + end + end return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype) - else if mtype.ctype == "val*" then + else if not mtype.is_c_primitive then + if value.mtype.is_tagged then + if value.mtype.name == "Int" then + return self.new_expr("(val*)({value}<<2|1)", mtype) + else if value.mtype.name == "Char" then + return self.new_expr("(val*)((long)({value})<<2|2)", mtype) + else if value.mtype.name == "Bool" then + return self.new_expr("(val*)((long)({value})<<2|3)", mtype) + else + abort + end + end var valtype = value.mtype.as(MClassType) if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then valtype = compiler.mainmodule.pointer_type @@ -991,7 +1219,7 @@ class SeparateCompilerVisitor var res = self.new_var(mtype) if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */") - self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);") + self.add("PRINT_ERROR(\"Dead code executed!\\n\"); fatal_exit(1);") return res end self.require_declaration("BOX_{valtype.c_name}") @@ -1005,7 +1233,7 @@ class SeparateCompilerVisitor # Bad things will appen! var res = self.new_var(mtype) self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */") - self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);") + self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); fatal_exit(1);") return res end end @@ -1031,7 +1259,7 @@ class SeparateCompilerVisitor var res = self.new_var(mtype) if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(value.mtype.as(MClassType)) then self.add("/*no boxing of {value.mtype}: {value.mtype} is not live! */") - self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);") + self.add("PRINT_ERROR(\"Dead code executed!\\n\"); fatal_exit(1);") return res end self.require_declaration("BOX_{valtype.c_name}") @@ -1046,11 +1274,42 @@ class SeparateCompilerVisitor end end - # Return a C expression returning the runtime type structure of the value - # The point of the method is to works also with primitives types. + # Returns a C expression containing the tag of the value as a long. + # + # If the C expression is evaluated to 0, it means there is no tag. + # Thus the expression can be used as a condition. + fun extract_tag(value: RuntimeVariable): String + do + assert not value.mtype.is_c_primitive + return "((long){value}&3)" # Get the two low bits + end + + # Returns a C expression of the runtime class structure of the value. + # The point of the method is to work also with primitive types. + fun class_info(value: RuntimeVariable): String + do + if not value.mtype.is_c_primitive then + if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then + var tag = extract_tag(value) + return "({tag}?class_info[{tag}]:{value}->class)" + end + return "{value}->class" + else + compiler.undead_types.add(value.mtype) + self.require_declaration("class_{value.mtype.c_name}") + return "(&class_{value.mtype.c_name})" + end + end + + # Returns a C expression of the runtime type structure of the value. + # The point of the method is to work also with primitive types. fun type_info(value: RuntimeVariable): String do - if value.mtype.ctype == "val*" then + if not value.mtype.is_c_primitive then + if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then + var tag = extract_tag(value) + return "({tag}?type_info[{tag}]:{value}->type)" + end return "{value}->type" else compiler.undead_types.add(value.mtype) @@ -1062,28 +1321,40 @@ class SeparateCompilerVisitor redef fun compile_callsite(callsite, args) do var rta = compiler.runtime_type_analysis - var mmethod = callsite.mproperty - # TODO: Inlining of new-style constructors - if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and not mmethod.is_root_init then + # TODO: Inlining of new-style constructors with initializers + if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and callsite.mpropdef.initializers.is_empty then var tgs = rta.live_targets(callsite) if tgs.length == 1 then - # DIRECT CALL - var res0 = before_send(mmethod, args) - var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args) - if res0 != null then - assert res != null - self.assign(res0, res) - res = res0 - end - add("\}") # close the before_send - return res + return direct_call(tgs.first, args) end end + # Shortcut intern methods as they are not usually redefinable + if callsite.mpropdef.is_intern and callsite.mproperty.name != "object_id" then + # `object_id` is the only redefined intern method, so it can not be directly called. + # TODO find a less ugly approach? + return direct_call(callsite.mpropdef, args) + end return super end + + # Fully and directly call a mpropdef + # + # This method is used by `compile_callsite` + private fun direct_call(mpropdef: MMethodDef, args: Array[RuntimeVariable]): nullable RuntimeVariable + do + var res0 = before_send(mpropdef.mproperty, args) + var res = call(mpropdef, mpropdef.mclassdef.bound_mtype, args) + if res0 != null then + assert res != null + self.assign(res0, res) + res = res0 + end + add("\}") # close the before_send + return res + end redef fun send(mmethod, arguments) do - if arguments.first.mcasttype.ctype != "val*" then + if arguments.first.mcasttype.is_c_primitive then # In order to shortcut the primitive, we need to find the most specific method # Howverr, because of performance (no flattening), we always work on the realmainmodule var m = self.compiler.mainmodule @@ -1093,7 +1364,7 @@ class SeparateCompilerVisitor return res end - return table_send(mmethod, arguments, mmethod.const_color) + return table_send(mmethod, arguments, mmethod) end # Handle common special cases before doing the effective method invocation @@ -1112,10 +1383,10 @@ class SeparateCompilerVisitor var res: nullable RuntimeVariable = null var recv = arguments.first var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_null.value or mmethod.name == "==" or mmethod.name == "!=" - var maybenull = recv.mcasttype isa MNullableType and consider_null + var maybenull = (recv.mcasttype isa MNullableType or recv.mcasttype isa MNullType) and consider_null if maybenull then self.add("if ({recv} == NULL) \{") - if mmethod.name == "==" then + if mmethod.name == "==" or mmethod.name == "is_same_instance" then res = self.new_var(bool_type) var arg = arguments[1] if arg.mcasttype isa MNullableType then @@ -1142,15 +1413,15 @@ class SeparateCompilerVisitor else self.add("\{") end - if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then - if res == null then res = self.new_var(bool_type) - # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants) + if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=" or mmethod.name == "is_same_instance") then + # Recv is not null, thus if arg is, it is easy to conclude (and respect the invariants) var arg = arguments[1] if arg.mcasttype isa MNullType then - if mmethod.name == "==" then - self.add("{res} = 0; /* arg is null but recv is not */") - else + if res == null then res = self.new_var(bool_type) + if mmethod.name == "!=" then self.add("{res} = 1; /* arg is null and recv is not */") + else # `==` and `is_same_instance` + self.add("{res} = 0; /* arg is null but recv is not */") end self.add("\}") # closes the null case self.add("if (0) \{") # what follow is useless, CC will drop it @@ -1159,7 +1430,7 @@ class SeparateCompilerVisitor return res end - private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable + private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], mentity: MEntity): nullable RuntimeVariable do compiler.modelbuilder.nb_invok_by_tables += 1 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;") @@ -1169,22 +1440,19 @@ class SeparateCompilerVisitor var res0 = before_send(mmethod, arguments) + var runtime_function = mmethod.intro.virtual_runtime_function + var msignature = runtime_function.called_signature + var res: nullable RuntimeVariable - var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true) var ret = msignature.return_mtype - if mmethod.is_new then - ret = arguments.first.mtype - res = self.new_var(ret) - else if ret == null then + if ret == null then res = null else res = self.new_var(ret) end - var s = new FlatBuffer var ss = new FlatBuffer - s.append("val*") ss.append("{recv}") for i in [0..msignature.arity[ do var a = arguments[i+1] @@ -1192,21 +1460,46 @@ class SeparateCompilerVisitor if i == msignature.vararg_rank then t = arguments[i+1].mcasttype end - s.append(", {t.ctype}") a = self.autobox(a, t) ss.append(", {a}") end - - var r - if ret == null then r = "void" else r = ret.ctype - self.require_declaration(const_color) - var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/" - + var const_color = mentity.const_color + var ress if res != null then - self.add("{res} = {call};") + ress = "{res} = " else - self.add("{call};") + ress = "" + end + if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_direct_call_monomorph0.value then + # opt_direct_call_monomorph0 is used to compare the efficiency of the alternative lookup implementation, ceteris paribus. + # The difference with the non-zero option is that the monomorphism is looked-at on the mmethod level and not at the callsite level. + # TODO: remove this mess and use per callsite service to detect monomorphism in a single place. + var md = compiler.is_monomorphic(mentity) + if md != null then + var callsym = md.virtual_runtime_function.c_name + self.require_declaration(callsym) + self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/" + else + self.require_declaration(const_color) + self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/" + end + else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_guard_call.value then + var callsym = "CALL_" + const_color + self.require_declaration(callsym) + self.add "if (!{callsym}) \{" + self.require_declaration(const_color) + self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/" + self.add "\} else \{" + self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/" + self.add "\}" + else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_trampoline_call.value then + var callsym = "CALL_" + const_color + self.require_declaration(callsym) + self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/" + else + self.require_declaration(const_color) + self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/" end if res0 != null then @@ -1226,10 +1519,7 @@ class SeparateCompilerVisitor var res: nullable RuntimeVariable var ret = mmethoddef.msignature.return_mtype - if mmethoddef.mproperty.is_new then - ret = arguments.first.mtype - res = self.new_var(ret) - else if ret == null then + if ret == null then res = null else ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) @@ -1240,7 +1530,7 @@ class SeparateCompilerVisitor (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then compiler.modelbuilder.nb_invok_by_inline += 1 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;") - var frame = new Frame(self, mmethoddef, recvtype, arguments) + var frame = new StaticFrame(self, mmethoddef, recvtype, arguments) frame.returnlabel = self.get_name("RET_LABEL") frame.returnvar = res var old_frame = self.frame @@ -1271,7 +1561,7 @@ class SeparateCompilerVisitor redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable do - if arguments.first.mcasttype.ctype != "val*" then + if arguments.first.mcasttype.is_c_primitive then # In order to shortcut the primitive, we need to find the most specific method # However, because of performance (no flattening), we always work on the realmainmodule var main = self.compiler.mainmodule @@ -1280,7 +1570,7 @@ class SeparateCompilerVisitor self.compiler.mainmodule = main return res end - return table_send(m.mproperty, arguments, m.const_color) + return table_send(m.mproperty, arguments, m) end redef fun vararg_instance(mpropdef, recv, varargs, elttype) @@ -1290,11 +1580,11 @@ class SeparateCompilerVisitor # of the method (ie recv) if the static type is unresolved # This is more complex than usual because the unresolved type must not be resolved # with the current receiver (ie self). - # Therefore to isolate the resolution from self, a local Frame is created. + # Therefore to isolate the resolution from self, a local StaticFrame is created. # One can see this implementation as an inlined method of the receiver whose only # job is to allocate the array var old_frame = self.frame - var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv]) + var frame = new StaticFrame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv]) self.frame = frame #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}" var res = self.array_instance(varargs, elttype) @@ -1322,7 +1612,7 @@ class SeparateCompilerVisitor self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/") else - if mtype.ctype == "val*" then + if not mtype.is_c_primitive and not mtype.is_tagged then self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */") else self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */") @@ -1374,7 +1664,7 @@ class SeparateCompilerVisitor self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */") # Check for Uninitialized attribute - if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then + if not ret.is_c_primitive and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then self.add("if (unlikely({res} == NULL)) \{") self.add_abort("Uninitialized attribute {a.name}") self.add("\}") @@ -1403,7 +1693,11 @@ class SeparateCompilerVisitor self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then var attr = "{recv}->attrs[{a.const_color}]" - if mtype.ctype != "val*" then + if mtype.is_tagged then + # The attribute is not primitive, thus store it as tagged + var tv = autobox(value, compiler.mainmodule.object_type) + self.add("{attr} = {tv}; /* {a} on {recv.inspect} */") + else if mtype.is_c_primitive then assert mtype isa MClassType # The attribute is primitive, thus we store it in a box # The trick is to create the box the first time then resuse the box @@ -1529,7 +1823,7 @@ class SeparateCompilerVisitor self.add("count_type_test_resolved_{tag}++;") end else - self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);") + self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); fatal_exit(1);") end # check color is in table @@ -1555,15 +1849,15 @@ class SeparateCompilerVisitor do var res = self.new_var(bool_type) # Swap values to be symetric - if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then + if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then var tmp = value1 value1 = value2 value2 = tmp end - if value1.mtype.ctype != "val*" then + if value1.mtype.is_c_primitive then if value2.mtype == value1.mtype then self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */") - else if value2.mtype.ctype != "val*" then + else if value2.mtype.is_c_primitive then self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) @@ -1571,7 +1865,7 @@ class SeparateCompilerVisitor self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */") end else - self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */") + self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {class_info(value1)} == {class_info(value2)}); /* is_same_type_test */") end return res end @@ -1580,8 +1874,8 @@ class SeparateCompilerVisitor do var res = self.get_name("var_class_name") self.add_decl("const char* {res};") - if value.mtype.ctype == "val*" then - self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;" + if not value.mtype.is_c_primitive then + self.add "{res} = {value} == NULL ? \"null\" : {type_info(value)}->name;" else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind and value.mtype.as(MClassType).name != "NativeString" then self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";" @@ -1595,16 +1889,18 @@ class SeparateCompilerVisitor redef fun equal_test(value1, value2) do var res = self.new_var(bool_type) - if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then + if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then var tmp = value1 value1 = value2 value2 = tmp end - if value1.mtype.ctype != "val*" then + if value1.mtype.is_c_primitive then if value2.mtype == value1.mtype then self.add("{res} = {value1} == {value2};") - else if value2.mtype.ctype != "val*" then + else if value2.mtype.is_c_primitive then self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/") + else if value1.mtype.is_tagged then + self.add("{res} = ({value2} != NULL) && ({self.autobox(value2, value1.mtype)} == {value1});") else var mtype1 = value1.mtype.as(MClassType) self.require_declaration("class_{mtype1.c_name}") @@ -1634,20 +1930,34 @@ class SeparateCompilerVisitor var incompatible = false var primitive - if t1.ctype != "val*" then + if t1.is_c_primitive then primitive = t1 if t1 == t2 then # No need to compare class - else if t2.ctype != "val*" then + else if t2.is_c_primitive then incompatible = true else if can_be_primitive(value2) then + if t1.is_tagged then + self.add("{res} = {value1} == {value2};") + return res + end + if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then + test.add("(!{extract_tag(value2)})") + end test.add("{value1}->class == {value2}->class") else incompatible = true end - else if t2.ctype != "val*" then + else if t2.is_c_primitive then primitive = t2 if can_be_primitive(value1) then + if t2.is_tagged then + self.add("{res} = {value1} == {value2};") + return res + end + if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then + test.add("(!{extract_tag(value1)})") + end test.add("{value1}->class == {value2}->class") else incompatible = true @@ -1666,13 +1976,25 @@ class SeparateCompilerVisitor end end if primitive != null then + if primitive.is_tagged then + self.add("{res} = {value1} == {value2};") + return res + end test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value") else if can_be_primitive(value1) and can_be_primitive(value2) then + if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then + test.add("(!{extract_tag(value1)}) && (!{extract_tag(value2)})") + end test.add("{value1}->class == {value2}->class") var s = new Array[String] for t, v in self.compiler.box_kinds do + if t.mclass_type.is_tagged then continue s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)" end + if s.is_empty then + self.add("{res} = {value1} == {value2};") + return res + end test.add("({s.join(" || ")})") else self.add("{res} = {value1} == {value2};") @@ -1687,7 +2009,7 @@ class SeparateCompilerVisitor var t = value.mcasttype.as_notnullable if not t isa MClassType then return false var k = t.mclass.kind - return k == interface_kind or t.ctype != "val*" + return k == interface_kind or t.is_c_primitive end fun maybe_null(value: RuntimeVariable): Bool @@ -1698,8 +2020,8 @@ class SeparateCompilerVisitor redef fun array_instance(array, elttype) do - var nclass = self.get_class("NativeArray") - var arrayclass = self.get_class("Array") + var nclass = mmodule.native_array_class + var arrayclass = mmodule.array_class var arraytype = arrayclass.get_mtype([elttype]) var res = self.init_instance(arraytype) self.add("\{ /* {res} = array_instance Array[{elttype}] */") @@ -1716,7 +2038,7 @@ class SeparateCompilerVisitor redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable do - var mtype = self.get_class("NativeArray").get_mtype([elttype]) + var mtype = mmodule.native_array_type(elttype) self.require_declaration("NEW_{mtype.mclass.c_name}") assert mtype isa MGenericType var compiler = self.compiler @@ -1736,10 +2058,13 @@ class SeparateCompilerVisitor redef fun native_array_def(pname, ret_type, arguments) do var elttype = arguments.first.mtype - var nclass = self.get_class("NativeArray") + var nclass = mmodule.native_array_class var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values" if pname == "[]" then - self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null))) + # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing + var res = self.new_expr("{recv}[{arguments[1]}]", compiler.mainmodule.object_type) + res.mcasttype = ret_type.as(not null) + self.ret(res) return else if pname == "[]=" then self.add("{recv}[{arguments[1]}]={arguments[2]};") @@ -1754,12 +2079,20 @@ class SeparateCompilerVisitor end end - redef fun calloc_array(ret_type, arguments) + redef fun native_array_get(nat, i) do - var mclass = self.get_class("ArrayCapable") - var ft = mclass.mparameters.first - var res = self.native_array_instance(ft, arguments[1]) - self.ret(res) + var nclass = mmodule.native_array_class + var recv = "((struct instance_{nclass.c_name}*){nat})->values" + # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing + var res = self.new_expr("{recv}[{i}]", compiler.mainmodule.object_type) + return res + end + + redef fun native_array_set(nat, i, val) + do + var nclass = mmodule.native_array_class + var recv = "((struct instance_{nclass.c_name}*){nat})->values" + self.add("{recv}[{i}]={val};") end fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do @@ -1773,111 +2106,118 @@ class SeparateCompilerVisitor end redef class MMethodDef - fun separate_runtime_function: AbstractRuntimeFunction + # The C function associated to a mmethoddef + fun separate_runtime_function: SeparateRuntimeFunction do var res = self.separate_runtime_function_cache if res == null then - res = new SeparateRuntimeFunction(self) + var recv = mclassdef.bound_mtype + var msignature = msignature.resolve_for(recv, recv, mclassdef.mmodule, true) + res = new SeparateRuntimeFunction(self, recv, msignature, c_name) self.separate_runtime_function_cache = res end return res end private var separate_runtime_function_cache: nullable SeparateRuntimeFunction - fun virtual_runtime_function: AbstractRuntimeFunction + # The C function associated to a mmethoddef, that can be stored into a VFT of a class + # The first parameter (the reciever) is always typed by val* in order to accept an object value + # The C-signature is always compatible with the intro + fun virtual_runtime_function: SeparateRuntimeFunction do var res = self.virtual_runtime_function_cache if res == null then - res = new VirtualRuntimeFunction(self) + # Because the function is virtual, the signature must match the one of the original class + var intromclassdef = mproperty.intro.mclassdef + var recv = intromclassdef.bound_mtype + + res = separate_runtime_function + if res.called_recv == recv then + self.virtual_runtime_function_cache = res + return res + end + + var msignature = mproperty.intro.msignature.resolve_for(recv, recv, intromclassdef.mmodule, true) + + if recv.ctype == res.called_recv.ctype and msignature.c_equiv(res.called_signature) then + self.virtual_runtime_function_cache = res + return res + end + + res = new SeparateRuntimeFunction(self, recv, msignature, "VIRTUAL_{c_name}") self.virtual_runtime_function_cache = res + res.is_thunk = true end return res end - private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction + private var virtual_runtime_function_cache: nullable SeparateRuntimeFunction +end + +redef class MSignature + # Does the C-version of `self` the same than the C-version of `other`? + fun c_equiv(other: MSignature): Bool + do + if self == other then return true + if arity != other.arity then return false + for i in [0..arity[ do + if mparameters[i].mtype.ctype != other.mparameters[i].mtype.ctype then return false + end + if return_mtype != other.return_mtype then + if return_mtype == null or other.return_mtype == null then return false + if return_mtype.ctype != other.return_mtype.ctype then return false + end + return true + end end # The C function associated to a methoddef separately compiled class SeparateRuntimeFunction super AbstractRuntimeFunction - redef fun build_c_name: String do return "{mmethoddef.c_name}" + # The call-side static receiver + var called_recv: MType - redef fun to_s do return self.mmethoddef.to_s + # The call-side static signature + var called_signature: MSignature - redef fun compile_to_c(compiler) - do - var mmethoddef = self.mmethoddef + # The name on the compiled method + redef var build_c_name: String - var recv = self.mmethoddef.mclassdef.bound_mtype - var v = compiler.new_visitor - var selfvar = new RuntimeVariable("self", recv, recv) - var arguments = new Array[RuntimeVariable] - var frame = new Frame(v, mmethoddef, recv, arguments) - v.frame = frame + # Statically call the original body instead + var is_thunk = false - var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) + redef fun to_s do return self.mmethoddef.to_s - var sig = new FlatBuffer - var comment = new FlatBuffer - var ret = msignature.return_mtype + # The C return type (something or `void`) + var c_ret: String is lazy do + var ret = called_signature.return_mtype if ret != null then - sig.append("{ret.ctype} ") - else if mmethoddef.mproperty.is_new then - ret = recv - sig.append("{ret.ctype} ") + return ret.ctype else - sig.append("void ") + return "void" end - sig.append(self.c_name) - sig.append("({selfvar.mtype.ctype} {selfvar}") - comment.append("({selfvar}: {selfvar.mtype}") - arguments.add(selfvar) - for i in [0..msignature.arity[ do - var mtype = msignature.mparameters[i].mtype - if i == msignature.vararg_rank then - mtype = v.get_class("Array").get_mtype([mtype]) + end + + # The C signature (only the parmeter part) + var c_sig: String is lazy do + var sig = new FlatBuffer + sig.append("({called_recv.ctype} self") + for i in [0..called_signature.arity[ do + var mtype = called_signature.mparameters[i].mtype + if i == called_signature.vararg_rank then + mtype = mmethoddef.mclassdef.mmodule.array_type(mtype) end - comment.append(", {mtype}") sig.append(", {mtype.ctype} p{i}") - var argvar = new RuntimeVariable("p{i}", mtype, mtype) - arguments.add(argvar) end sig.append(")") - comment.append(")") - if ret != null then - comment.append(": {ret}") - end - compiler.provide_declaration(self.c_name, "{sig};") - - v.add_decl("/* method {self} for {comment} */") - v.add_decl("{sig} \{") - if ret != null then - frame.returnvar = v.new_var(ret) - end - frame.returnlabel = v.get_name("RET_LABEL") - - if recv != arguments.first.mtype then - #print "{self} {recv} {arguments.first}" - end - mmethoddef.compile_inside_to_c(v, arguments) - - v.add("{frame.returnlabel.as(not null)}:;") - if ret != null then - v.add("return {frame.returnvar.as(not null)};") - end - v.add("\}") - if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})" + return sig.to_s end -end -# The C function associated to a methoddef on a primitive type, stored into a VFT of a class -# The first parameter (the reciever) is always typed by val* in order to accept an object value -class VirtualRuntimeFunction - super AbstractRuntimeFunction + # The C type for the function pointer. + var c_funptrtype: String is lazy do return "{c_ret}(*){c_sig}" - redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}" - - redef fun to_s do return self.mmethoddef.to_s + # The arguments, as generated by `compile_to_c` + private var arguments: Array[RuntimeVariable] is noinit redef fun compile_to_c(compiler) do @@ -1885,46 +2225,37 @@ class VirtualRuntimeFunction var recv = self.mmethoddef.mclassdef.bound_mtype var v = compiler.new_visitor - var selfvar = new RuntimeVariable("self", v.object_type, recv) + var selfvar = new RuntimeVariable("self", called_recv, recv) var arguments = new Array[RuntimeVariable] - var frame = new Frame(v, mmethoddef, recv, arguments) + var frame = new StaticFrame(v, mmethoddef, recv, arguments) v.frame = frame + var msignature = called_signature + var ret = called_signature.return_mtype + var sig = new FlatBuffer var comment = new FlatBuffer - - # Because the function is virtual, the signature must match the one of the original class - var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef - var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) - var ret = msignature.return_mtype - if ret != null then - sig.append("{ret.ctype} ") - else if mmethoddef.mproperty.is_new then - ret = recv - sig.append("{ret.ctype} ") - else - sig.append("void ") - end + sig.append(c_ret) + sig.append(" ") sig.append(self.c_name) - sig.append("({selfvar.mtype.ctype} {selfvar}") + sig.append(c_sig) comment.append("({selfvar}: {selfvar.mtype}") arguments.add(selfvar) for i in [0..msignature.arity[ do var mtype = msignature.mparameters[i].mtype if i == msignature.vararg_rank then - mtype = v.get_class("Array").get_mtype([mtype]) + mtype = v.mmodule.array_type(mtype) end comment.append(", {mtype}") - sig.append(", {mtype.ctype} p{i}") var argvar = new RuntimeVariable("p{i}", mtype, mtype) arguments.add(argvar) end - sig.append(")") comment.append(")") if ret != null then comment.append(": {ret}") end compiler.provide_declaration(self.c_name, "{sig};") + self.arguments = arguments.to_a v.add_decl("/* method {self} for {comment} */") v.add_decl("{sig} \{") @@ -1933,10 +2264,14 @@ class VirtualRuntimeFunction end frame.returnlabel = v.get_name("RET_LABEL") - var subret = v.call(mmethoddef, recv, arguments) - if ret != null then - assert subret != null - v.assign(frame.returnvar.as(not null), subret) + if is_thunk then + var subret = v.call(mmethoddef, recv, arguments) + if ret != null then + assert subret != null + v.assign(frame.returnvar.as(not null), subret) + end + else + mmethoddef.compile_inside_to_c(v, arguments) end v.add("{frame.returnlabel.as(not null)}:;") @@ -1944,27 +2279,72 @@ class VirtualRuntimeFunction v.add("return {frame.returnvar.as(not null)};") end v.add("\}") - if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})" + compiler.names[self.c_name] = "{mmethoddef.full_name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})" end - # TODO ? - redef fun call(v, arguments) do abort + # Compile the trampolines used to implement late-binding. + # + # See `opt_trampoline_call`. + fun compile_trampolines(compiler: SeparateCompiler) + do + var recv = self.mmethoddef.mclassdef.bound_mtype + var selfvar = arguments.first + var ret = called_signature.return_mtype + + if mmethoddef.is_intro and not recv.is_c_primitive then + var m = mmethoddef.mproperty + var n2 = "CALL_" + m.const_color + compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};") + var v2 = compiler.new_visitor + v2.add "{c_ret} {n2}{c_sig} \{" + v2.require_declaration(m.const_color) + var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});" + if ret != null then + v2.add "return {call}" + else + v2.add call + end + + v2.add "\}" + + end + if mmethoddef.has_supercall and not recv.is_c_primitive then + var m = mmethoddef + var n2 = "CALL_" + m.const_color + compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};") + var v2 = compiler.new_visitor + v2.add "{c_ret} {n2}{c_sig} \{" + v2.require_declaration(m.const_color) + var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});" + if ret != null then + v2.add "return {call}" + else + v2.add call + end + + v2.add "\}" + end + end end redef class MType - fun const_color: String do return "COLOR_{c_name}" + # Are values of `self` tagged? + # If false, it means that the type is not primitive, or is boxed. + var is_tagged = false +end + +redef class MEntity + var const_color: String is lazy do return "COLOR_{c_name}" end interface PropertyLayoutElement end redef class MProperty super PropertyLayoutElement - fun const_color: String do return "COLOR_{c_name}" end redef class MPropDef super PropertyLayoutElement - fun const_color: String do return "COLOR_{c_name}" end redef class AMethPropdef @@ -1976,3 +2356,14 @@ redef class AMethPropdef return super end end + +redef class AAttrPropdef + redef fun init_expr(v, recv) + do + super + if is_lazy and v.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then + var guard = self.mlazypropdef.mproperty + v.write_attribute(guard, recv, v.bool_instance(false)) + end + end +end