X-Git-Url: http://nitlanguage.org diff --git a/src/separate_compiler.nit b/src/separate_compiler.nit index 7303f64..92cd821 100644 --- a/src/separate_compiler.nit +++ b/src/separate_compiler.nit @@ -15,464 +15,727 @@ # Separate compilation of a Nit program module separate_compiler +import abstract_compiler +import layout_builders +import rapid_type_analysis +import compiler_ffi -import global_compiler # TODO better separation of concerns -intrude import coloring +# Add separate compiler specific options redef class ToolContext # --separate var opt_separate: OptionBool = new OptionBool("Use separate compilation", "--separate") + # --no-inline-intern + var opt_no_inline_intern: OptionBool = new OptionBool("Do not inline call to intern methods", "--no-inline-intern") + # --no-union-attribute + var opt_no_union_attribute: OptionBool = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute") + # --no-shortcut-equate + var opt_no_shortcut_equate: OptionBool = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal") + # --inline-coloring-numbers + var opt_inline_coloring_numbers: OptionBool = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers") + # --inline-some-methods + var opt_inline_some_methods: OptionBool = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods") + # --direct-call-monomorph + var opt_direct_call_monomorph: OptionBool = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph") + # --use-naive-coloring + var opt_bm_typing: OptionBool = new OptionBool("Colorize items incrementaly, used to simulate binary matrix typing", "--bm-typing") + # --use-mod-perfect-hashing + var opt_phmod_typing: OptionBool = new OptionBool("Replace coloration by perfect hashing (with mod operator)", "--phmod-typing") + # --use-and-perfect-hashing + var opt_phand_typing: OptionBool = new OptionBool("Replace coloration by perfect hashing (with and operator)", "--phand-typing") + # --tables-metrics + var opt_tables_metrics: OptionBool = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics") redef init do super self.option_context.add_option(self.opt_separate) + self.option_context.add_option(self.opt_no_inline_intern) + self.option_context.add_option(self.opt_no_union_attribute) + self.option_context.add_option(self.opt_no_shortcut_equate) + self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph) + self.option_context.add_option(self.opt_bm_typing) + self.option_context.add_option(self.opt_phmod_typing) + self.option_context.add_option(self.opt_phand_typing) + self.option_context.add_option(self.opt_tables_metrics) end end redef class ModelBuilder - redef fun run_global_compiler(mainmodule: MModule, runtime_type_analysis: RapidTypeAnalysis) - do - # Hijack the run_global_compiler to run the separate one if requested. - if self.toolcontext.opt_separate.value then - run_separate_compiler(mainmodule, runtime_type_analysis) - else - super - end - end - - fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: RapidTypeAnalysis) + fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis) do var time0 = get_time - self.toolcontext.info("*** COMPILING TO C ***", 1) - - var compiler = new SeparateCompiler(mainmodule, runtime_type_analysis, self) - var v = compiler.new_visitor - compiler.header = v - v.add_decl("#include ") - v.add_decl("#include ") - v.add_decl("#include ") - v.add_decl("#include ") - v.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */") - v.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */") - - # Class abstract representation - v.add_decl("struct class \{ nitmethod_t vft[1]; \}; /* general C type representing a Nit class. */") - # Type abstract representation - v.add_decl("struct type \{ int id; int color; struct vts_table *vts_table; struct fts_table *fts_table; int table_size; int type_table[1]; \}; /* general C type representing a Nit type. */") - v.add_decl("struct fts_table \{ struct type *fts[1]; \}; /* fts list of a C type representation. */") - v.add_decl("struct vts_table \{ struct type *vts[1]; \}; /* vts list of a C type representation. */") - # Instance abstract representation - v.add_decl("typedef struct \{ struct type *type; struct class *class; nitattribute_t attrs[1]; \} val; /* general C type representing a Nit instance. */") - - # Declare global instances - v.add_decl("extern int glob_argc;") - v.add_decl("extern char **glob_argv;") - v.add_decl("extern val *glob_sys;") + self.toolcontext.info("*** GENERATING C ***", 1) - # The main function of the C - compiler.compile_main_function + var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis) + compiler.compile_header # compile class structures + self.toolcontext.info("Property coloring", 2) + compiler.new_file("{mainmodule.name}.classes") + compiler.do_property_coloring for m in mainmodule.in_importation.greaters do for mclass in m.intro_mclasses do + if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue compiler.compile_class_to_c(mclass) end end + # The main function of the C + compiler.new_file("{mainmodule.name}.main") + compiler.compile_main_function + # compile methods for m in mainmodule.in_importation.greaters do + self.toolcontext.info("Generate C for module {m}", 2) + compiler.new_file("{m.name}.sep") compiler.compile_module_to_c(m) end # compile live & cast type structures - var mtypes = compiler.do_global_type_coloring + self.toolcontext.info("Type coloring", 2) + compiler.new_file("{mainmodule.name}.types") + var mtypes = compiler.do_type_coloring for t in mtypes do compiler.compile_type_to_c(t) end - - # compile live generic types selection structures - for mclass in model.mclasses do - compiler.compile_live_gentype_to_c(mclass) + # compile remaining types structures (useless but needed for the symbol resolution at link-time) + for t in compiler.undead_types do + if mtypes.has(t) then continue + compiler.compile_type_to_c(t) end - # for the class_name and output_class_name methods - compiler.compile_class_names + compiler.display_stats + var time1 = get_time + self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2) write_and_make(compiler) end + + # Count number of invocations by VFT + private var nb_invok_by_tables = 0 + # Count number of invocations by direct call + private var nb_invok_by_direct = 0 + # Count number of invocations by inlining + private var nb_invok_by_inline = 0 end # Singleton that store the knowledge about the separate compilation process class SeparateCompiler - super GlobalCompiler # TODO better separation of concerns + super AbstractCompiler - private var undead_types: Set[MClassType] = new HashSet[MClassType] - protected var typeids: HashMap[MClassType, Int] protected writable = new HashMap[MClassType, Int] + redef type VISITOR: SeparateCompilerVisitor - private var type_colors: Map[MClassType, Int] = typeids - private var type_tables: nullable Map[MClassType, Array[nullable MClassType]] = null - private var livetypes_tables: nullable Map[MClass, Array[nullable Object]] - private var livetypes_tables_sizes: nullable Map[MClass, Array[Int]] + # The result of the RTA (used to know live types and methods) + var runtime_type_analysis: nullable RapidTypeAnalysis - protected var class_colors: Map[MClass, Int] protected writable + private var undead_types: Set[MType] = new HashSet[MType] + private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]] - protected var method_colors: Map[MMethod, Int] protected writable - protected var method_tables: Map[MClass, Array[nullable MMethodDef]] protected writable + private var type_layout: nullable Layout[MType] + private var resolution_layout: nullable Layout[MType] + protected var method_layout: nullable Layout[PropertyLayoutElement] + protected var attr_layout: nullable Layout[MAttribute] - protected var attr_colors: Map[MAttribute, Int] protected writable - protected var attr_tables: Map[MClass, Array[nullable MAttributeDef]] protected writable + init(mainmodule: MModule, mmbuilder: ModelBuilder, runtime_type_analysis: nullable RapidTypeAnalysis) do + super(mainmodule, mmbuilder) + var file = new_file("nit.common") + self.header = new CodeWriter(file) + self.runtime_type_analysis = runtime_type_analysis + self.compile_box_kinds + end - private var vt_colors: Map[MVirtualTypeProp, Int] - private var vt_tables: Map[MClass, Array[nullable MVirtualTypeDef]] + redef fun compile_header_structs do + self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */") + self.compile_header_attribute_structs + self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */") - private var ft_colors: Map[MParameterType, Int] - private var ft_tables: Map[MClass, Array[nullable MParameterType]] + # With resolution_table_table, all live type resolution are stored in a big table: resolution_table + self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */") + self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */") - init(mainmodule: MModule, runtime_type_analysis: RapidTypeAnalysis, mmbuilder: ModelBuilder) do - # classes coloration - var class_coloring = new ClassColoring(mainmodule) - self.class_colors = class_coloring.colorize(mmbuilder.model.mclasses) + if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then + self.header.add_decl("struct types \{ int mask; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */") + else + self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */") + end - # methods coloration - var method_coloring = new MethodColoring(class_coloring) - self.method_colors = method_coloring.colorize - self.method_tables = method_coloring.build_property_tables + if modelbuilder.toolcontext.opt_phmod_typing.value then + self.header.add_decl("#define HASH(mask, id) ((mask)%(id))") + else if modelbuilder.toolcontext.opt_phand_typing.value then + self.header.add_decl("#define HASH(mask, id) ((mask)&(id))") + end - # attributes coloration - var attribute_coloring = new AttributeColoring(class_coloring) - self.attr_colors = attribute_coloring.colorize - self.attr_tables = attribute_coloring.build_property_tables - - # vt coloration - var vt_coloring = new VTColoring(class_coloring) - self.vt_colors = vt_coloring.colorize - self.vt_tables = vt_coloring.build_property_tables - - # fts coloration - var ft_coloring = new FTColoring(class_coloring) - self.ft_colors = ft_coloring.colorize - self.ft_tables = ft_coloring.build_ft_tables + self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */") end - protected fun compile_class_names do - - # Build type names table - var type_array = new Array[nullable MClassType] - for t, i in typeids do - if i >= type_array.length then - type_array[i] = null + fun compile_header_attribute_structs + do + if modelbuilder.toolcontext.opt_no_union_attribute.value then + self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */") + else + self.header.add_decl("typedef union \{") + self.header.add_decl("void* val;") + for c, v in self.box_kinds do + var t = c.mclass_type + self.header.add_decl("{t.ctype} {t.ctypename};") end - type_array[i] = t + self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */") end + end - var v = self.new_visitor - self.header.add_decl("extern const char const * class_names[];") - v.add("const char const * class_names[] = \{") - for t in type_array do - if t == null then - v.add("NULL,") + fun compile_box_kinds + do + # Collect all bas box class + # FIXME: this is not completely fine with a separate compilation scheme + for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do + var classes = self.mainmodule.model.get_mclasses_by_name(classname) + if classes == null then continue + assert classes.length == 1 else print classes.join(", ") + self.box_kinds[classes.first] = self.box_kinds.length + 1 + end + end + + var box_kinds = new HashMap[MClass, Int] + + fun box_kind_of(mclass: MClass): Int + do + if mclass.mclass_type.ctype == "val*" then + return 0 + else if mclass.kind == extern_kind then + return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")] + else + return self.box_kinds[mclass] + end + + end + + fun compile_color_consts(colors: Map[Object, Int]) do + var v = new_visitor + for m, c in colors do + compile_color_const(v, m, c) + end + end + + fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do + if color_consts_done.has(m) then return + if m isa MProperty then + if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then + self.provide_declaration(m.const_color, "#define {m.const_color} {color}") else - v.add("\"{t}\",") + self.provide_declaration(m.const_color, "extern const int {m.const_color};") + v.add("const int {m.const_color} = {color};") + end + else if m isa MPropDef then + if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then + self.provide_declaration(m.const_color, "#define {m.const_color} {color}") + else + self.provide_declaration(m.const_color, "extern const int {m.const_color};") + v.add("const int {m.const_color} = {color};") + end + else if m isa MType then + if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then + self.provide_declaration(m.const_color, "#define {m.const_color} {color}") + else + self.provide_declaration(m.const_color, "extern const int {m.const_color};") + v.add("const int {m.const_color} = {color};") end end - v.add("\};") + color_consts_done.add(m) end - # colorize live types of the program - private fun do_global_type_coloring: Set[MClassType] do - var mtypes = new HashSet[MClassType] - #print "undead types:" - #for t in self.undead_types do - # print t - #end - #print "live types:" - #for t in runtime_type_analysis.live_types do - # print t + private var color_consts_done = new HashSet[Object] + + # colorize classe properties + fun do_property_coloring do + var mclasses = new HashSet[MClass].from(modelbuilder.model.mclasses) + + # Layouts + var method_layout_builder: PropertyLayoutBuilder[PropertyLayoutElement] + var attribute_layout_builder: PropertyLayoutBuilder[MAttribute] + #FIXME PH and BM layouts too slow for large programs + #if modelbuilder.toolcontext.opt_bm_typing.value then + # method_layout_builder = new MMethodBMizer(self.mainmodule) + # attribute_layout_builder = new MAttributeBMizer(self.mainmodule) + #else if modelbuilder.toolcontext.opt_phmod_typing.value then + # method_layout_builder = new MMethodHasher(new PHModOperator, self.mainmodule) + # attribute_layout_builder = new MAttributeHasher(new PHModOperator, self.mainmodule) + #else if modelbuilder.toolcontext.opt_phand_typing.value then + # method_layout_builder = new MMethodHasher(new PHAndOperator, self.mainmodule) + # attribute_layout_builder = new MAttributeHasher(new PHAndOperator, self.mainmodule) + #else + + var class_layout_builder = new MClassColorer(self.mainmodule) + class_layout_builder.build_layout(mclasses) + method_layout_builder = new MPropertyColorer[PropertyLayoutElement](self.mainmodule, class_layout_builder) + attribute_layout_builder = new MPropertyColorer[MAttribute](self.mainmodule, class_layout_builder) #end - #print "cast types:" - #for t in runtime_type_analysis.live_cast_types do - # print t - #end - #print "--" - mtypes.add_all(self.runtime_type_analysis.live_types) - mtypes.add_all(self.runtime_type_analysis.live_cast_types) - mtypes.add_all(self.undead_types) - self.undead_types.clear - for mtype in mtypes do - # add formal types arguments to mtypes - if mtype isa MGenericType then - for ft in mtype.arguments do - if ft isa MNullableType then ft = ft.mtype - if ft.need_anchor then - print("Why do we need anchor here ?") - abort - end - self.undead_types.add(ft.as(MClassType)) + # lookup properties to build layout with + var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]] + var mattributes = new HashMap[MClass, Set[MAttribute]] + for mclass in mclasses do + mmethods[mclass] = new HashSet[PropertyLayoutElement] + mattributes[mclass] = new HashSet[MAttribute] + for mprop in self.mainmodule.properties(mclass) do + if mprop isa MMethod then + mmethods[mclass].add(mprop) + else if mprop isa MAttribute then + mattributes[mclass].add(mprop) end end - # add virtual types to mtypes - for vt in self.vt_tables[mtype.mclass] do - if vt != null then - var anchored = vt.bound.anchor_to(self.mainmodule, mtype) - if anchored isa MNullableType then anchored = anchored.mtype - self.undead_types.add(anchored.as(MClassType)) + end + + # Collect all super calls (dead or not) + var all_super_calls = new HashSet[MMethodDef] + for mmodule in self.mainmodule.in_importation.greaters do + for mclassdef in mmodule.mclassdefs do + for mpropdef in mclassdef.mpropdefs do + if not mpropdef isa MMethodDef then continue + if mpropdef.has_supercall then + all_super_calls.add(mpropdef) + end end end end - mtypes.add_all(self.undead_types) - # set type unique id - for mtype in mtypes do - self.typeids[mtype] = self.typeids.length - end - - # build livetypes tables - self.livetypes_tables = new HashMap[MClass, Array[nullable Object]] - self.livetypes_tables_sizes = new HashMap[MClass, Array[Int]] - - var livegentypes = new HashSet[MType] - livegentypes.add_all(self.runtime_type_analysis.live_types) - livegentypes.add_all(self.runtime_type_analysis.live_cast_types) - for mtype in livegentypes do - if mtype isa MGenericType then - var table: Array[nullable Object] - var sizes: Array[Int] - if livetypes_tables.has_key(mtype.mclass) then - table = livetypes_tables[mtype.mclass] - else - table = new Array[nullable Object] - self.livetypes_tables[mtype.mclass] = table - end - if livetypes_tables_sizes.has_key(mtype.mclass) then - sizes = livetypes_tables_sizes[mtype.mclass] - else - sizes = new Array[Int] - self.livetypes_tables_sizes[mtype.mclass] = sizes - end - build_livetype_table(mtype, 0, table, sizes) + # lookup super calls and add it to the list of mmethods to build layout with + var super_calls + if runtime_type_analysis != null then + super_calls = runtime_type_analysis.live_super_sends + else + super_calls = all_super_calls + end + + for mmethoddef in super_calls do + var mclass = mmethoddef.mclassdef.mclass + mmethods[mclass].add(mmethoddef) + for descendant in mclass.in_hierarchy(self.mainmodule).smallers do + mmethods[descendant].add(mmethoddef) end end - # colorize - var type_coloring = new TypeColoring(self.mainmodule, self.runtime_type_analysis) - self.type_colors = type_coloring.colorize(mtypes) - self.type_tables = type_coloring.build_type_tables(mtypes, type_colors) + # methods coloration + self.method_layout = method_layout_builder.build_layout(mmethods) + self.method_tables = build_method_tables(mclasses, super_calls) + self.compile_color_consts(method_layout.pos) + + # attribute null color to dead supercalls + for mpropdef in all_super_calls do + if super_calls.has(mpropdef) then continue + compile_color_const(new_visitor, mpropdef, -1) + end - return mtypes + # attributes coloration + self.attr_layout = attribute_layout_builder.build_layout(mattributes) + self.attr_tables = build_attr_tables(mclasses) + self.compile_color_consts(attr_layout.pos) end - # build live gentype table recursively - private fun build_livetype_table(mtype: MGenericType, current_rank: Int, table: Array[nullable Object], sizes: Array[Int]) do - var ft = mtype.arguments[current_rank] - if ft isa MNullableType then ft = ft.mtype - var id = self.typeids[ft.as(MClassType)] + fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do + var layout = self.method_layout + var tables = new HashMap[MClass, Array[nullable MPropDef]] + for mclass in mclasses do + var table = new Array[nullable MPropDef] + var supercalls = new List[MMethodDef] + + # first, fill table from parents by reverse linearization order + var parents = new Array[MClass] + if mainmodule.flatten_mclass_hierarchy.has(mclass) then + parents = mclass.in_hierarchy(mainmodule).greaters.to_a + self.mainmodule.linearize_mclasses(parents) + end - if current_rank >= sizes.length then - sizes[current_rank] = id + 1 - else if id >= sizes[current_rank] then - sizes[current_rank] = id + 1 - end + for parent in parents do + if parent == mclass then continue + for mproperty in self.mainmodule.properties(parent) do + if not mproperty isa MMethod then continue + var color = layout.pos[mproperty] + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + for mpropdef in mproperty.mpropdefs do + if mpropdef.mclassdef.mclass == parent then + table[color] = mpropdef + end + end + end + + # lookup for super calls in super classes + for mmethoddef in super_calls do + for mclassdef in parent.mclassdefs do + if mclassdef.mpropdefs.has(mmethoddef) then + supercalls.add(mmethoddef) + end + end + end + end + + # then override with local properties + for mproperty in self.mainmodule.properties(mclass) do + if not mproperty isa MMethod then continue + var color = layout.pos[mproperty] + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + for mpropdef in mproperty.mpropdefs do + if mpropdef.mclassdef.mclass == mclass then + table[color] = mpropdef + end + end + end - if id > table.length then - for i in [table.length .. id[ do table[i] = null + # lookup for super calls in local class + for mmethoddef in super_calls do + for mclassdef in mclass.mclassdefs do + if mclassdef.mpropdefs.has(mmethoddef) then + supercalls.add(mmethoddef) + end + end + end + # insert super calls in table according to receiver + for supercall in supercalls do + var color = layout.pos[supercall] + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + var mmethoddef = supercall.lookup_next_definition(self.mainmodule, mclass.intro.bound_mtype) + table[color] = mmethoddef + end + tables[mclass] = table end + return tables + end - if current_rank == mtype.arguments.length - 1 then - table[id] = mtype - else - var ft_table: Array[nullable Object] - if id < table.length and table[id] != null then - ft_table = table[id].as(Array[nullable Object]) - else - ft_table = new Array[nullable Object] + fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do + var layout = self.attr_layout + var tables = new HashMap[MClass, Array[nullable MPropDef]] + for mclass in mclasses do + var table = new Array[nullable MPropDef] + # first, fill table from parents by reverse linearization order + var parents = new Array[MClass] + if mainmodule.flatten_mclass_hierarchy.has(mclass) then + parents = mclass.in_hierarchy(mainmodule).greaters.to_a + self.mainmodule.linearize_mclasses(parents) + end + for parent in parents do + if parent == mclass then continue + for mproperty in self.mainmodule.properties(parent) do + if not mproperty isa MAttribute then continue + var color = layout.pos[mproperty] + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + for mpropdef in mproperty.mpropdefs do + if mpropdef.mclassdef.mclass == parent then + table[color] = mpropdef + end + end + end + end + + # then override with local properties + for mproperty in self.mainmodule.properties(mclass) do + if not mproperty isa MAttribute then continue + var color = layout.pos[mproperty] + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + for mpropdef in mproperty.mpropdefs do + if mpropdef.mclassdef.mclass == mclass then + table[color] = mpropdef + end + end end - table[id] = ft_table - build_livetype_table(mtype, current_rank + 1, ft_table, sizes) + tables[mclass] = table end + return tables end - private fun add_to_livetypes_table(table: Array[nullable Object], ft: MClassType) do - var id = self.typeids[ft] - for i in [table.length .. id[ do - table[i] = null + # colorize live types of the program + private fun do_type_coloring: POSet[MType] do + var mtypes = new HashSet[MType] + mtypes.add_all(self.runtime_type_analysis.live_types) + mtypes.add_all(self.runtime_type_analysis.live_cast_types) + for c in self.box_kinds.keys do + mtypes.add(c.mclass_type) + end + + # Typing Layout + var layout_builder: TypingLayoutBuilder[MType] + if modelbuilder.toolcontext.opt_bm_typing.value then + layout_builder = new MTypeBMizer(self.mainmodule) + else if modelbuilder.toolcontext.opt_phmod_typing.value then + layout_builder = new MTypeHasher(new PHModOperator, self.mainmodule) + else if modelbuilder.toolcontext.opt_phand_typing.value then + layout_builder = new MTypeHasher(new PHAndOperator, self.mainmodule) + else + layout_builder = new MTypeColorer(self.mainmodule) end - table[id] = ft + + # colorize types + self.type_layout = layout_builder.build_layout(mtypes) + var poset = layout_builder.poset.as(not null) + self.type_tables = self.build_type_tables(poset) + + # VT and FT are stored with other unresolved types in the big resolution_tables + self.compile_resolution_tables(mtypes) + + return poset end - private fun compile_livetype_table(table: Array[nullable Object], buffer: Buffer, depth: Int, max: Int) do - for obj in table do - if obj == null then - if depth == max then - buffer.append("NULL,\n") + # Build type tables + fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do + var tables = new HashMap[MType, Array[nullable MType]] + var layout = self.type_layout + for mtype in mtypes do + var table = new Array[nullable MType] + for sup in mtypes[mtype].greaters do + var color: Int + if layout isa PHLayout[MType, MType] then + color = layout.hashes[mtype][sup] else - buffer.append("\{\},\n") + color = layout.pos[sup] + end + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end end - else if obj isa MClassType then - buffer.append("(struct type*) &type_{obj.c_name}, /* {obj} */\n") - else if obj isa Array[nullable Object] then - buffer.append("\{\n") - compile_livetype_table(obj, buffer, depth + 1, max) - buffer.append("\},\n") + table[color] = sup end + tables[mtype] = table end + return tables end - # declare live generic types tables selection - private fun compile_live_gentype_to_c(mclass: MClass) do - if mclass.arity > 0 then - if self.livetypes_tables.has_key(mclass) then - var table = self.livetypes_tables[mclass] - var sign = self.livetypes_tables_sizes[mclass] - var table_buffer = new Buffer.from("const struct type *livetypes_{mclass.c_name}[{sign.join("][")}] = \{\n") - compile_livetype_table(table, table_buffer, 1, mclass.arity) - table_buffer.append("\};") - - var v = new SeparateCompilerVisitor(self) - self.header.add_decl("extern const struct type *livetypes_{mclass.c_name}[{sign.join("][")}];") - v.add_decl(table_buffer.to_s) + protected fun compile_resolution_tables(mtypes: Set[MType]) do + # resolution_tables is used to perform a type resolution at runtime in O(1) + + # During the visit of the body of classes, live_unresolved_types are collected + # and associated to + # Collect all live_unresolved_types (visited in the body of classes) + + # Determinate fo each livetype what are its possible requested anchored types + var mtype2unresolved = new HashMap[MClassType, Set[MType]] + for mtype in self.runtime_type_analysis.live_types do + var set = new HashSet[MType] + for cd in mtype.collect_mclassdefs(self.mainmodule) do + if self.live_unresolved_types.has_key(cd) then + set.add_all(self.live_unresolved_types[cd]) + end + end + mtype2unresolved[mtype] = set + end + + # Compute the table layout with the prefered method + var resolution_builder: ResolutionLayoutBuilder + if modelbuilder.toolcontext.opt_bm_typing.value then + resolution_builder = new ResolutionBMizer + else if modelbuilder.toolcontext.opt_phmod_typing.value then + resolution_builder = new ResolutionHasher(new PHModOperator) + else if modelbuilder.toolcontext.opt_phand_typing.value then + resolution_builder = new ResolutionHasher(new PHAndOperator) + else + resolution_builder = new ResolutionColorer + end + self.resolution_layout = resolution_builder.build_layout(mtype2unresolved) + self.resolution_tables = self.build_resolution_tables(mtype2unresolved) + + # Compile a C constant for each collected unresolved type. + # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it) + var all_unresolved = new HashSet[MType] + for t in self.live_unresolved_types.values do + all_unresolved.add_all(t) + end + var all_unresolved_types_colors = new HashMap[MType, Int] + for t in all_unresolved do + if self.resolution_layout.pos.has_key(t) then + all_unresolved_types_colors[t] = self.resolution_layout.pos[t] else - var sign = new Array[Int].filled_with(0, mclass.arity) - var v = new SeparateCompilerVisitor(self) - self.header.add_decl("extern const struct type *livetypes_{mclass.c_name}[{sign.join("][")}];") - v.add_decl("const struct type *livetypes_{mclass.c_name}[{sign.join("][")}];") + all_unresolved_types_colors[t] = -1 + end + end + self.compile_color_consts(all_unresolved_types_colors) + + #print "tables" + #for k, v in unresolved_types_tables.as(not null) do + # print "{k}: {v.join(", ")}" + #end + #print "" + end + + fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do + var tables = new HashMap[MClassType, Array[nullable MType]] + var layout = self.resolution_layout + for mclasstype, mtypes in elements do + var table = new Array[nullable MType] + for mtype in mtypes do + var color: Int + if layout isa PHLayout[MClassType, MType] then + color = layout.hashes[mclasstype][mtype] + else + color = layout.pos[mtype] + end + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + table[color] = mtype end + tables[mclasstype] = table end + return tables end # Separately compile all the method definitions of the module fun compile_module_to_c(mmodule: MModule) do + var old_module = self.mainmodule + self.mainmodule = mmodule for cd in mmodule.mclassdefs do for pd in cd.mpropdefs do if not pd isa MMethodDef then continue #print "compile {pd} @ {cd} @ {mmodule}" - var r = new SeparateRuntimeFunction(pd) + var r = pd.separate_runtime_function r.compile_to_c(self) - if true or cd.bound_mtype.ctype != "val*" then - var r2 = new VirtualRuntimeFunction(pd) - r2.compile_to_c(self) - end + var r2 = pd.virtual_runtime_function + r2.compile_to_c(self) end end + self.mainmodule = old_module end # Globaly compile the type structure of a live type - fun compile_type_to_c(mtype: MClassType) + fun compile_type_to_c(mtype: MType) do + assert not mtype.need_anchor + var layout = self.type_layout + var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype) + var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype) var c_name = mtype.c_name var v = new SeparateCompilerVisitor(self) v.add_decl("/* runtime type {mtype} */") # extern const struct type_X - self.header.add_decl("extern const struct type_{c_name} type_{c_name};") - self.header.add_decl("struct type_{c_name} \{") - self.header.add_decl("int id;") - self.header.add_decl("int color;") - self.header.add_decl("const struct vts_table_{c_name} *vts_table;") - self.header.add_decl("const struct fts_table_{c_name} *fts_table;") - self.header.add_decl("int table_size;") - self.header.add_decl("int type_table[{self.type_tables[mtype].length}];") - self.header.add_decl("\};") - - # extern const struct vts_table_X vts_table_X - self.header.add_decl("extern const struct vts_table_{c_name} vts_table_{c_name};") - self.header.add_decl("struct vts_table_{c_name} \{") - self.header.add_decl("struct type *vts[{self.vt_tables[mtype.mclass].length}];") - self.header.add_decl("\};") - - # extern const struct fst_table_X fst_table_X - self.header.add_decl("extern const struct fts_table_{c_name} fts_table_{c_name};") - self.header.add_decl("struct fts_table_{c_name} \{") - self.header.add_decl("struct type *fts[{self.ft_tables[mtype.mclass].length}];") - self.header.add_decl("\};") + self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};") # const struct type_X - v.add_decl("const struct type_{c_name} type_{c_name} = \{") - v.add_decl("{self.typeids[mtype]},") - v.add_decl("{self.type_colors[mtype]},") - v.add_decl("&vts_table_{c_name},") - v.add_decl("&fts_table_{c_name},") - v.add_decl("{self.type_tables[mtype].length},") - v.add_decl("\{") - for stype in self.type_tables[mtype] do - if stype == null then - v.add_decl("-1, /* empty */") + v.add_decl("const struct type type_{c_name} = \{") + + # type id (for cast target) + if is_cast_live then + v.add_decl("{layout.ids[mtype]},") + else + v.add_decl("-1, /*CAST DEAD*/") + end + + # type name + v.add_decl("\"{mtype}\", /* class_name_string */") + + # type color (for cast target) + if is_cast_live then + if layout isa PHLayout[MType, MType] then + v.add_decl("{layout.masks[mtype]},") else - v.add_decl("{self.typeids[stype]}, /* {stype} */") + v.add_decl("{layout.pos[mtype]},") end + else + v.add_decl("-1, /*CAST DEAD*/") end - v.add_decl("\},") - v.add_decl("\};") - build_fts_table(mtype, v) - build_vts_table(mtype, v) - end + # is_nullable bit + if mtype isa MNullableType then + v.add_decl("1,") + else + v.add_decl("0,") + end - # const struct fst_table_X fst_table_X - private fun build_fts_table(mtype: MClassType, v: SeparateCompilerVisitor) do - v.add_decl("const struct fts_table_{mtype.c_name} fts_table_{mtype.c_name} = \{") - v.add_decl("\{") - for ft in self.ft_tables[mtype.mclass] do - if ft == null then - v.add_decl("NULL, /* empty */") + # resolution table (for receiver) + if is_live then + var mclass_type = mtype + if mclass_type isa MNullableType then mclass_type = mclass_type.mtype + assert mclass_type isa MClassType + if resolution_tables[mclass_type].is_empty then + v.add_decl("NULL, /*NO RESOLUTIONS*/") else - var ntype: MType - if ft.mclass == mtype.mclass then - ntype = mtype.arguments[ft.rank] - else - ntype = ft.anchor_to(self.mainmodule, mtype) - end - if ntype isa MNullableType then ntype = ntype.mtype - var ftype = ntype.as(MClassType) - if self.typeids.has_key(ftype) then - v.add_decl("(struct type*)&type_{ftype.c_name}, /* {ft} ({ftype}) */") + compile_type_resolution_table(mtype) + v.require_declaration("resolution_table_{c_name}") + v.add_decl("&resolution_table_{c_name},") + end + else + v.add_decl("NULL, /*DEAD*/") + end + + # cast table (for receiver) + if is_live then + v.add_decl("{self.type_tables[mtype].length},") + v.add_decl("\{") + for stype in self.type_tables[mtype] do + if stype == null then + v.add_decl("-1, /* empty */") else - v.add_decl("NULL, /* empty ({ft} not a live type) */") + v.add_decl("{layout.ids[stype]}, /* {stype} */") end end + v.add_decl("\},") + else + v.add_decl("0, \{\}, /*DEAD TYPE*/") end - v.add_decl("\},") v.add_decl("\};") end - # const struct vts_table_X vts_table_X - private fun build_vts_table(mtype: MClassType, v: SeparateCompilerVisitor) do - v.add_decl("const struct vts_table_{mtype.c_name} vts_table_{mtype.c_name} = \{") + fun compile_type_resolution_table(mtype: MType) do + + var mclass_type: MClassType + if mtype isa MNullableType then + mclass_type = mtype.mtype.as(MClassType) + else + mclass_type = mtype.as(MClassType) + end + + var layout = self.resolution_layout + + # extern const struct resolution_table_X resolution_table_X + self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};") + + # const struct fts_table_X fts_table_X + var v = new_visitor + v.add_decl("const struct types resolution_table_{mtype.c_name} = \{") + if layout isa PHLayout[MClassType, MType] then + v.add_decl("{layout.masks[mclass_type]},") + else + v.add_decl("0, /* dummy */") + end v.add_decl("\{") - for vt in self.vt_tables[mtype.mclass] do - if vt == null then + for t in self.resolution_tables[mclass_type] do + if t == null then v.add_decl("NULL, /* empty */") else - var bound = vt.bound - if bound == null then - #FIXME how can a bound be null here ? - print "No bound found for virtual type {vt} ?" - abort + # The table stores the result of the type resolution + # Therefore, for a receiver `mclass_type`, and a unresolved type `t` + # the value stored is tv. + var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true) + # FIXME: What typeids means here? How can a tv not be live? + if self.type_layout.ids.has_key(tv) then + v.require_declaration("type_{tv.c_name}") + v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */") else - if bound isa MNullableType then bound = bound.mtype - - if bound isa MVirtualType then - bound = bound.anchor_to(self.mainmodule, mtype) - else if bound isa MParameterType then - bound = bound.anchor_to(self.mainmodule, mtype) - else if bound isa MGenericType and bound.need_anchor then - bound = bound.anchor_to(self.mainmodule, mtype) - else if bound isa MClassType then - else - print "NOT YET IMPLEMENTED: mtype_to_livetype with type: {bound}" - abort - end - - if self.typeids.has_key(bound.as(MClassType)) then - v.add_decl("(struct type*)&type_{bound.c_name}, /* {bound} */") - else - v.add_decl("NULL, /* dead type {bound} */") - end + v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */") end end end - v.add_decl("\},") + v.add_decl("\}") v.add_decl("\};") end @@ -483,365 +746,329 @@ class SeparateCompiler do var mtype = mclass.intro.bound_mtype var c_name = mclass.c_name + var c_instance_name = mclass.c_instance_name var vft = self.method_tables[mclass] var attrs = self.attr_tables[mclass] - var v = new SeparateCompilerVisitor(self) + var v = new_visitor - v.add_decl("/* runtime class {c_name} */") - var idnum = classids.length - var idname = "ID_" + c_name - self.classids[mtype] = idname - #self.header.add_decl("#define {idname} {idnum} /* {c_name} */") + var is_dead = runtime_type_analysis != null and not runtime_type_analysis.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray" - self.header.add_decl("struct class_{c_name} \{") - self.header.add_decl("nitmethod_t vft[{vft.length}];") - self.header.add_decl("\};") + v.add_decl("/* runtime class {c_name} */") # Build class vft - self.header.add_decl("extern const struct class_{c_name} class_{c_name};") - v.add_decl("const struct class_{c_name} class_{c_name} = \{") - v.add_decl("\{") - for i in [0 .. vft.length[ do - var mpropdef = vft[i] - if mpropdef == null then - v.add_decl("NULL, /* empty */") - else - if true or mpropdef.mclassdef.bound_mtype.ctype != "val*" then - v.add_decl("(nitmethod_t)VIRTUAL_{mpropdef.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */") + if not is_dead then + self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};") + v.add_decl("const struct class class_{c_name} = \{") + v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */") + v.add_decl("\{") + for i in [0 .. vft.length[ do + var mpropdef = vft[i] + if mpropdef == null then + v.add_decl("NULL, /* empty */") else - v.add_decl("(nitmethod_t){mpropdef.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */") + assert mpropdef isa MMethodDef + var rf = mpropdef.virtual_runtime_function + v.require_declaration(rf.c_name) + v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */") end end + v.add_decl("\}") + v.add_decl("\};") end - v.add_decl("\}") - v.add_decl("\};") if mtype.ctype != "val*" then - #Build instance struct - self.header.add_decl("struct instance_{c_name} \{") - self.header.add_decl("const struct type *type;") - self.header.add_decl("const struct class *class;") - self.header.add_decl("{mtype.ctype} value;") - self.header.add_decl("\};") + if mtype.mclass.name == "Pointer" or mtype.mclass.kind != extern_kind then + #Build instance struct + self.header.add_decl("struct instance_{c_instance_name} \{") + self.header.add_decl("const struct type *type;") + self.header.add_decl("const struct class *class;") + self.header.add_decl("{mtype.ctype} value;") + self.header.add_decl("\};") + end + + if not self.runtime_type_analysis.live_types.has(mtype) then return - self.header.add_decl("val* BOX_{c_name}({mtype.ctype}, struct type*);") + #Build BOX + self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype});") v.add_decl("/* allocate {mtype} */") - v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype} value, struct type* type) \{") - v.add("struct instance_{c_name}*res = GC_MALLOC(sizeof(struct instance_{c_name}));") - v.add("res->type = type;") - v.add("res->class = (struct class*) &class_{c_name};") + v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype} value) \{") + v.add("struct instance_{c_instance_name}*res = nit_alloc(sizeof(struct instance_{c_instance_name}));") + v.require_declaration("type_{c_name}") + v.add("res->type = &type_{c_name};") + v.require_declaration("class_{c_name}") + v.add("res->class = &class_{c_name};") v.add("res->value = value;") v.add("return (val*)res;") v.add("\}") return - end - - var is_native_array = mclass.name == "NativeArray" - - var sig - if is_native_array then - sig = "int length, struct type* type" - else - sig = "struct type* type" - end - - #Build instance struct - #extern const struct instance_array__NativeArray instance_array__NativeArray; - self.header.add_decl("struct instance_{c_name} \{") - self.header.add_decl("const struct type *type;") - self.header.add_decl("const struct class *class;") - self.header.add_decl("nitattribute_t attrs[{attrs.length}];") - if is_native_array then + else if mclass.name == "NativeArray" then + #Build instance struct + self.header.add_decl("struct instance_{c_instance_name} \{") + self.header.add_decl("const struct type *type;") + self.header.add_decl("const struct class *class;") # NativeArrays are just a instance header followed by an array of values self.header.add_decl("val* values[0];") - end - self.header.add_decl("\};") + self.header.add_decl("\};") + #Build NEW + self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);") + v.add_decl("/* allocate {mtype} */") + v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{") + var res = v.new_named_var(mtype, "self") + res.is_exact = true + var mtype_elt = mtype.arguments.first + v.add("{res} = nit_alloc(sizeof(struct instance_{c_instance_name}) + length*sizeof({mtype_elt.ctype}));") + v.add("{res}->type = type;") + hardening_live_type(v, "type") + v.require_declaration("class_{c_name}") + v.add("{res}->class = &class_{c_name};") + v.add("return {res};") + v.add("\}") + return + end - self.header.add_decl("{mtype.ctype} NEW_{c_name}({sig});") + #Build NEW + self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);") v.add_decl("/* allocate {mtype} */") - v.add_decl("{mtype.ctype} NEW_{c_name}({sig}) \{") - var res = v.new_named_var(mtype, "self") - res.is_exact = true - if is_native_array then - var mtype_elt = mtype.arguments.first - v.add("{res} = GC_MALLOC(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));") + v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{") + if is_dead then + v.add_abort("{mclass} is DEAD") else - v.add("{res} = GC_MALLOC(sizeof(struct instance_{c_name}));") - end - #v.add("{res} = calloc(sizeof(struct instance_{c_name}), 1);") - v.add("{res}->type = type;") - v.add("{res}->class = (struct class*) &class_{c_name};") - - for cd in mtype.collect_mclassdefs(self.mainmodule) - do - var n = self.modelbuilder.mclassdef2nclassdef[cd] - for npropdef in n.n_propdefs do - if npropdef isa AAttrPropdef then - npropdef.init_expr(v, res) - end - end + var res = v.new_named_var(mtype, "self") + res.is_exact = true + v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));") + v.add("{res}->type = type;") + hardening_live_type(v, "type") + v.require_declaration("class_{c_name}") + v.add("{res}->class = &class_{c_name};") + self.generate_init_attr(v, res, mtype) + v.add("return {res};") end - v.add("return {res};") + v.add("\}") + end + + # Add a dynamic test to ensure that the type referenced by `t` is a live type + fun hardening_live_type(v: VISITOR, t: String) + do + if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return + v.add("if({t} == NULL) \{") + v.add_abort("type null") + v.add("\}") + v.add("if({t}->table_size == 0) \{") + v.add("fprintf(stderr, \"Insantiation of a dead type: %s\\n\", {t}->name);") + v.add_abort("type dead") v.add("\}") end redef fun new_visitor do return new SeparateCompilerVisitor(self) -end -# The C function associated to a methoddef separately compiled -class SeparateRuntimeFunction - super AbstractRuntimeFunction + # Stats - redef fun build_c_name: String + private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]] + private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]] + protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] + protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] + + redef fun display_stats do - return "{mmethoddef.c_name}" + super + if self.modelbuilder.toolcontext.opt_tables_metrics.value then + display_sizes + end + + var tc = self.modelbuilder.toolcontext + tc.info("# implementation of method invocation",2) + var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline + tc.info("total number of invocations: {nb_invok_total}",2) + tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2) + tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2) + tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2) end - redef fun to_s do return self.mmethoddef.to_s + fun display_sizes + do + print "# size of subtyping tables" + print "\ttotal \tholes" + var total = 0 + var holes = 0 + for t, table in type_tables do + total += table.length + for e in table do if e == null then holes += 1 + end + print "\t{total}\t{holes}" + + print "# size of resolution tables" + print "\ttotal \tholes" + total = 0 + holes = 0 + for t, table in resolution_tables do + total += table.length + for e in table do if e == null then holes += 1 + end + print "\t{total}\t{holes}" + + print "# size of methods tables" + print "\ttotal \tholes" + total = 0 + holes = 0 + for t, table in method_tables do + total += table.length + for e in table do if e == null then holes += 1 + end + print "\t{total}\t{holes}" + + print "# size of attributes tables" + print "\ttotal \tholes" + total = 0 + holes = 0 + for t, table in attr_tables do + total += table.length + for e in table do if e == null then holes += 1 + end + print "\t{total}\t{holes}" + end - redef fun compile_to_c(compiler) + redef fun compile_nitni_structs do - var mmethoddef = self.mmethoddef + self.header.add_decl("struct nitni_instance \{struct instance *value;\};") + end + + redef fun finalize_ffi_for_module(nmodule) + do + var old_module = self.mainmodule + self.mainmodule = nmodule.mmodule.as(not null) + super + self.mainmodule = old_module + end +end - var recv = self.mmethoddef.mclassdef.bound_mtype - var v = compiler.new_visitor - var selfvar = new RuntimeVariable("self", recv, recv) - var arguments = new Array[RuntimeVariable] - var frame = new Frame(v, mmethoddef, recv, arguments) - v.frame = frame +# A visitor on the AST of property definition that generate the C code of a separate compilation process. +class SeparateCompilerVisitor + super AbstractCompilerVisitor - var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) + redef type COMPILER: SeparateCompiler - var sig = new Buffer - var comment = new Buffer - var ret = msignature.return_mtype - if ret != null then - sig.append("{ret.ctype} ") - else if mmethoddef.mproperty.is_new then - ret = recv - sig.append("{ret.ctype} ") - else - sig.append("void ") + redef fun adapt_signature(m, args) + do + var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true) + var recv = args.first + if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then + args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type) end - sig.append(self.c_name) - sig.append("({selfvar.mtype.ctype} {selfvar}") - comment.append("(self: {selfvar}") - arguments.add(selfvar) for i in [0..msignature.arity[ do - var mtype = msignature.mparameters[i].mtype + var t = msignature.mparameters[i].mtype if i == msignature.vararg_rank then - mtype = v.get_class("Array").get_mtype([mtype]) - end - comment.append(", {mtype}") - sig.append(", {mtype.ctype} p{i}") - var argvar = new RuntimeVariable("p{i}", mtype, mtype) - arguments.add(argvar) - end - sig.append(")") - comment.append(")") - if ret != null then - comment.append(": {ret}") - end - compiler.header.add_decl("{sig};") - - v.add_decl("/* method {self} for {comment} */") - v.add_decl("{sig} \{") - if ret != null then - frame.returnvar = v.new_var(ret) - end - frame.returnlabel = v.get_name("RET_LABEL") - - if recv != arguments.first.mtype then - #print "{self} {recv} {arguments.first}" - end - mmethoddef.compile_inside_to_c(v, arguments) - - v.add("{frame.returnlabel.as(not null)}:;") - if ret != null then - v.add("return {frame.returnvar.as(not null)};") - end - v.add("\}") - end -end - -# The C function associated to a methoddef on a primitive type, stored into a VFT of a class -# The first parameter (the reciever) is always typed by val* in order to accept an object value -class VirtualRuntimeFunction - super AbstractRuntimeFunction - - redef fun build_c_name: String - do - return "VIRTUAL_{mmethoddef.c_name}" - end - - redef fun to_s do return self.mmethoddef.to_s - - redef fun compile_to_c(compiler) - do - var mmethoddef = self.mmethoddef - - var recv = self.mmethoddef.mclassdef.bound_mtype - var v = compiler.new_visitor - var selfvar = new RuntimeVariable("self", v.object_type, recv) - var arguments = new Array[RuntimeVariable] - var frame = new Frame(v, mmethoddef, recv, arguments) - v.frame = frame - - var sig = new Buffer - var comment = new Buffer - - # Because the function is virtual, the signature must match the one of the original class - var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef - var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) - var ret = msignature.return_mtype - if ret != null then - sig.append("{ret.ctype} ") - else if mmethoddef.mproperty.is_new then - ret = recv - sig.append("{ret.ctype} ") - else - sig.append("void ") - end - sig.append(self.c_name) - sig.append("({selfvar.mtype.ctype} {selfvar}") - comment.append("(self: {selfvar}") - arguments.add(selfvar) - for i in [0..msignature.arity[ do - var mtype = msignature.mparameters[i].mtype - if i == msignature.vararg_rank then - mtype = v.get_class("Array").get_mtype([mtype]) - end - comment.append(", {mtype}") - sig.append(", {mtype.ctype} p{i}") - var argvar = new RuntimeVariable("p{i}", mtype, mtype) - arguments.add(argvar) - end - sig.append(")") - comment.append(")") - if ret != null then - comment.append(": {ret}") - end - compiler.header.add_decl("{sig};") - - v.add_decl("/* method {self} for {comment} */") - v.add_decl("{sig} \{") - if ret != null then - frame.returnvar = v.new_var(ret) - end - frame.returnlabel = v.get_name("RET_LABEL") - - if recv != arguments.first.mtype then - #print "{self} {recv} {arguments.first}" - end - mmethoddef.compile_inside_to_c(v, arguments) - - v.add("{frame.returnlabel.as(not null)}:;") - if ret != null then - v.add("return {frame.returnvar.as(not null)};") - end - v.add("\}") - end - - redef fun call(v, arguments) - do - abort - # TODO ? - end -end - -# A visitor on the AST of property definition that generate the C code of a separate compilation process. -class SeparateCompilerVisitor - super GlobalCompilerVisitor # TODO better separation of concerns - - redef fun adapt_signature(m: MMethodDef, args: Array[RuntimeVariable]) - do - var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true) - var recv = args.first - if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then - args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type) - end - for i in [0..msignature.arity[ do - var t = msignature.mparameters[i].mtype - if i == msignature.vararg_rank then - t = args[i+1].mtype + t = args[i+1].mtype end args[i+1] = self.autobox(args[i+1], t) end end - # Box or unbox a value to another type iff a C type conversion is needed - # ENSURE: result.mtype.ctype == mtype.ctype - redef fun autobox(value: RuntimeVariable, mtype: MType): RuntimeVariable + redef fun autobox(value, mtype) do - if value.mtype.ctype == mtype.ctype then + if value.mtype == mtype then + return value + else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then return value else if value.mtype.ctype == "val*" then - return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype) + return self.new_expr("((struct instance_{mtype.c_instance_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype) else if mtype.ctype == "val*" then var valtype = value.mtype.as(MClassType) var res = self.new_var(mtype) - if not compiler.runtime_type_analysis.live_types.has(valtype) then + if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */") - self.add("printf(\"Dead code executed!\\n\"); exit(1);") + self.add("printf(\"Dead code executed!\\n\"); show_backtrace(1);") return res end - var totype = value.mtype - if totype isa MNullableType then totype = totype.mtype - self.add("{res} = BOX_{valtype.c_name}({value}, (struct type*) &type_{totype.c_name}); /* autobox from {value.mtype} to {mtype} */") + self.require_declaration("BOX_{valtype.c_name}") + self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */") return res + else if value.mtype.cname_blind == "void*" and mtype.cname_blind == "void*" then + return value else # Bad things will appen! var res = self.new_var(mtype) self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */") - self.add("printf(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); exit(1);") + self.add("printf(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);") return res end end - redef fun send(mmethod, arguments) + # Return a C expression returning the runtime type structure of the value + # The point of the method is to works also with primitives types. + fun type_info(value: RuntimeVariable): String do - if arguments.first.mtype.ctype != "val*" then - assert arguments.first.mtype == arguments.first.mcasttype - return self.monomorphic_send(mmethod, arguments.first.mtype, arguments) - end - - var res: nullable RuntimeVariable - var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true) - var ret = msignature.return_mtype - if mmethod.is_new then - ret = arguments.first.mtype - res = self.new_var(ret) - else if ret == null then - res = null + if value.mtype.ctype == "val*" then + return "{value}->type" else - res = self.new_var(ret) + compiler.undead_types.add(value.mtype) + self.require_declaration("type_{value.mtype.c_name}") + return "(&type_{value.mtype.c_name})" end + end - var s = new Buffer - var ss = new Buffer - - var recv = arguments.first - s.append("val*") - ss.append("{recv}") - self.varargize(msignature, arguments) - for i in [0..msignature.arity[ do - var a = arguments[i+1] - var t = msignature.mparameters[i].mtype - if i == msignature.vararg_rank then - t = arguments[i+1].mcasttype + redef fun compile_callsite(callsite, args) + do + var rta = compiler.runtime_type_analysis + var recv = args.first.mtype + if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null then + var tgs = rta.live_targets(callsite) + if tgs.length == 1 then + # DIRECT CALL + var mmethod = callsite.mproperty + self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), args) + var res0 = before_send(mmethod, args) + var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args) + if res0 != null then + assert res != null + self.assign(res0, res) + res = res0 + end + add("\}") # close the before_send + return res end - s.append(", {t.ctype}") - a = self.autobox(a, t) - ss.append(", {a}") end + return super + end + redef fun send(mmethod, arguments) + do + self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), arguments) + + if arguments.first.mcasttype.ctype != "val*" then + # In order to shortcut the primitive, we need to find the most specific method + # Howverr, because of performance (no flattening), we always work on the realmainmodule + var m = self.compiler.mainmodule + self.compiler.mainmodule = self.compiler.realmainmodule + var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments) + self.compiler.mainmodule = m + return res + end + + return table_send(mmethod, arguments, mmethod.const_color) + end - var maybenull = recv.mcasttype isa MNullableType + # Handel common special cases before doing the effective method invocation + # This methods handle the `==` and `!=` methods and the case of the null receiver. + # Note: a { is open in the generated C, that enclose and protect the effective method invocation. + # Client must not forget to close the } after them. + # + # The value returned is the result of the common special cases. + # If not null, client must compine it with the result of their own effective method invocation. + # + # If `before_send` can shortcut the whole message sending, a dummy `if(0){` + # is generated to cancel the effective method invocation that will follow + # TODO: find a better approach + private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable + do + var res: nullable RuntimeVariable = null + var recv = arguments.first + var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_other.value or mmethod.name == "==" or mmethod.name == "!=" + var maybenull = recv.mcasttype isa MNullableType and consider_null if maybenull then self.add("if ({recv} == NULL) \{") if mmethod.name == "==" then - assert res != null + res = self.new_var(bool_type) var arg = arguments[1] if arg.mcasttype isa MNullableType then self.add("{res} = ({arg} == NULL);") @@ -851,7 +1078,7 @@ class SeparateCompilerVisitor self.add("{res} = 0; /* {arg.inspect} cannot be null */") end else if mmethod.name == "!=" then - assert res != null + res = self.new_var(bool_type) var arg = arguments[1] if arg.mcasttype isa MNullableType then self.add("{res} = ({arg} != NULL);") @@ -861,15 +1088,72 @@ class SeparateCompilerVisitor self.add("{res} = 1; /* {arg.inspect} cannot be null */") end else - self.add_abort("Reciever is null") + self.add_abort("Receiver is null") end self.add("\} else \{") + else + self.add("\{") + end + if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then + if res == null then res = self.new_var(bool_type) + # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants) + var arg = arguments[1] + if arg.mcasttype isa MNullType then + if mmethod.name == "==" then + self.add("{res} = 0; /* arg is null but recv is not */") + else + self.add("{res} = 1; /* arg is null and recv is not */") + end + self.add("\}") # closes the null case + self.add("if (0) \{") # what follow is useless, CC will drop it + end end + return res + end + + private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable + do + compiler.modelbuilder.nb_invok_by_tables += 1 + if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;") + + assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.") + var recv = arguments.first + + var res0 = before_send(mmethod, arguments) + + var res: nullable RuntimeVariable + var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true) + var ret = msignature.return_mtype + if mmethod.is_new then + ret = arguments.first.mtype + res = self.new_var(ret) + else if ret == null then + res = null + else + res = self.new_var(ret) + end + + var s = new FlatBuffer + var ss = new FlatBuffer + + s.append("val*") + ss.append("{recv}") + for i in [0..msignature.arity[ do + var a = arguments[i+1] + var t = msignature.mparameters[i].mtype + if i == msignature.vararg_rank then + t = arguments[i+1].mcasttype + end + s.append(", {t.ctype}") + a = self.autobox(a, t) + ss.append(", {a}") + end + - var color = self.compiler.as(SeparateCompiler).method_colors[mmethod] var r if ret == null then r = "void" else r = ret.ctype - var call = "(({r} (*)({s}))({arguments.first}->class->vft[{color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/" + self.require_declaration(const_color) + var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/" if res != null then self.add("{res} = {call};") @@ -877,15 +1161,21 @@ class SeparateCompilerVisitor self.add("{call};") end - if maybenull then - self.add("\}") + if res0 != null then + assert res != null + assign(res0,res) + res = res0 end + self.add("\}") # closes the null case + return res end redef fun call(mmethoddef, recvtype, arguments) do + assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.") + var res: nullable RuntimeVariable var ret = mmethoddef.msignature.return_mtype if mmethoddef.mproperty.is_new then @@ -898,11 +1188,31 @@ class SeparateCompilerVisitor res = self.new_var(ret) end + if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or + (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then + compiler.modelbuilder.nb_invok_by_inline += 1 + if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;") + var frame = new Frame(self, mmethoddef, recvtype, arguments) + frame.returnlabel = self.get_name("RET_LABEL") + frame.returnvar = res + var old_frame = self.frame + self.frame = frame + self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */") + mmethoddef.compile_inside_to_c(self, arguments) + self.add("{frame.returnlabel.as(not null)}:(void)0;") + self.add("\}") + self.frame = old_frame + return res + end + compiler.modelbuilder.nb_invok_by_direct += 1 + if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;") + # Autobox arguments self.adapt_signature(mmethoddef, arguments) + self.require_declaration(mmethoddef.c_name) if res == null then - self.add("{mmethoddef.c_name}({arguments.join(", ")});") + self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/") return null else self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});") @@ -911,93 +1221,198 @@ class SeparateCompilerVisitor return res end + redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable + do + if arguments.first.mcasttype.ctype != "val*" then + # In order to shortcut the primitive, we need to find the most specific method + # However, because of performance (no flattening), we always work on the realmainmodule + var main = self.compiler.mainmodule + self.compiler.mainmodule = self.compiler.realmainmodule + var res = self.monomorphic_super_send(m, recvtype, arguments) + self.compiler.mainmodule = main + return res + end + return table_send(m.mproperty, arguments, m.const_color) + end + + redef fun vararg_instance(mpropdef, recv, varargs, elttype) + do + # A vararg must be stored into an new array + # The trick is that the dymaic type of the array may depends on the receiver + # of the method (ie recv) if the static type is unresolved + # This is more complex than usual because the unresolved type must not be resolved + # with the current receiver (ie self). + # Therefore to isolate the resolution from self, a local Frame is created. + # One can see this implementation as an inlined method of the receiver whose only + # job is to allocate the array + var old_frame = self.frame + var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv]) + self.frame = frame + #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}" + var res = self.array_instance(varargs, elttype) + self.frame = old_frame + return res + end + redef fun isset_attribute(a, recv) do - # FIXME: Here we inconditionally return boxed primitive attributes self.check_recv_notnull(recv) var res = self.new_var(bool_type) - self.add("{res} = {recv}->attrs[{self.compiler.as(SeparateCompiler).attr_colors[a]}] != NULL; /* {a} on {recv.inspect}*/") + + # What is the declared type of the attribute? + var mtype = a.intro.static_mtype.as(not null) + var intromclassdef = a.intro.mclassdef + mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) + + if mtype isa MNullableType then + self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */") + return res + end + + self.require_declaration(a.const_color) + if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then + self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/") + else + + if mtype.ctype == "val*" then + self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */") + else + self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */") + end + end return res end redef fun read_attribute(a, recv) do - # FIXME: Here we inconditionally return boxed primitive attributes + self.check_recv_notnull(recv) + + # What is the declared type of the attribute? var ret = a.intro.static_mtype.as(not null) - ret = self.resolve_for(ret, recv) - var cret = self.object_type.as_nullable - var res = self.new_var(cret) - res.mcasttype = ret + var intromclassdef = a.intro.mclassdef + ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) + + self.require_declaration(a.const_color) + if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then + # Get the attribute or a box (ie. always a val*) + var cret = self.object_type.as_nullable + var res = self.new_var(cret) + res.mcasttype = ret + + self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */") + + # Check for Uninitialized attribute + if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_initialization.value then + self.add("if (unlikely({res} == NULL)) \{") + self.add_abort("Uninitialized attribute {a.name}") + self.add("\}") + end - self.check_recv_notnull(recv) + # Return the attribute or its unboxed version + # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes + return self.autobox(res, ret) + else + var res = self.new_var(ret) + self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */") - self.add("{res} = {recv}->attrs[{self.compiler.as(SeparateCompiler).attr_colors[a]}]; /* {a} on {recv.inspect} */") - if not ret isa MNullableType then - self.add("if ({res} == NULL) \{") - self.add_abort("Uninitialized attribute {a.name}") - self.add("\}") - end + # Check for Uninitialized attribute + if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_initialization.value then + self.add("if (unlikely({res} == NULL)) \{") + self.add_abort("Uninitialized attribute {a.name}") + self.add("\}") + end - return res + return res + end end redef fun write_attribute(a, recv, value) do - # FIXME: Here we inconditionally box primitive attributes self.check_recv_notnull(recv) - value = self.autobox(value, self.object_type.as_nullable) - self.add("{recv}->attrs[{self.compiler.as(SeparateCompiler).attr_colors[a]}] = {value}; /* {a} on {recv.inspect} */") - end - - # Build livetype structure retrieving - #ENSURE: mtype.need_anchor - fun retrieve_anchored_livetype(mtype: MGenericType, buffer: Buffer) do - assert mtype.need_anchor - var recv = self.frame.arguments.first - var recv_boxed = self.autobox(recv, self.object_type) - - var compiler = self.compiler.as(SeparateCompiler) - for ft in mtype.arguments do - if ft isa MParameterType then - var ftcolor = compiler.ft_colors[ft] - buffer.append("[{recv_boxed}->type->fts_table->fts[{ftcolor}]->id]") - else if ft isa MVirtualType then - var vtcolor = compiler.vt_colors[ft.mproperty.as(MVirtualTypeProp)] - buffer.append("[{recv_boxed}->type->vts_table->vts[{vtcolor}]->id]") - else if ft isa MGenericType and ft.need_anchor then - var bbuff = new Buffer - retrieve_anchored_livetype(ft, bbuff) - buffer.append("[livetypes_{ft.mclass.c_name}{bbuff.to_s}->id]") - else if ft isa MClassType then - compiler.undead_types.add(ft) - var typecolor = compiler.type_colors[ft] - buffer.append("[{typecolor}]") + # What is the declared type of the attribute? + var mtype = a.intro.static_mtype.as(not null) + var intromclassdef = a.intro.mclassdef + mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) + + # Adapt the value to the declared type + value = self.autobox(value, mtype) + + self.require_declaration(a.const_color) + if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then + var attr = "{recv}->attrs[{a.const_color}]" + if mtype.ctype != "val*" then + assert mtype isa MClassType + # The attribute is primitive, thus we store it in a box + # The trick is to create the box the first time then resuse the box + self.add("if ({attr} != NULL) \{") + self.add("((struct instance_{mtype.c_instance_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */") + self.add("\} else \{") + value = self.autobox(value, self.object_type.as_nullable) + self.add("{attr} = {value}; /* {a} on {recv.inspect} */") + self.add("\}") else - self.add("printf(\"NOT YET IMPLEMENTED: init_instance(%s, {mtype}).\\n\", \"{ft.inspect}\"); exit(1);") + # The attribute is not primitive, thus store it direclty + self.add("{attr} = {value}; /* {a} on {recv.inspect} */") end + else + self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */") end end + # Check that mtype is a live open type + fun hardening_live_open_type(mtype: MType) + do + if not compiler.modelbuilder.toolcontext.opt_hardening.value then return + self.require_declaration(mtype.const_color) + var col = mtype.const_color + self.add("if({col} == -1) \{") + self.add("fprintf(stderr, \"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");") + self.add_abort("open type dead") + self.add("\}") + end + + # Check that mtype it a pointer to a live cast type + fun hardening_cast_type(t: String) + do + if not compiler.modelbuilder.toolcontext.opt_hardening.value then return + add("if({t} == NULL) \{") + add_abort("cast type null") + add("\}") + add("if({t}->id == -1 || {t}->color == -1) \{") + add("fprintf(stderr, \"Try to cast on a dead cast type: %s\\n\", {t}->name);") + add_abort("cast type dead") + add("\}") + end + redef fun init_instance(mtype) do - var compiler = self.compiler.as(SeparateCompiler) + self.require_declaration("NEW_{mtype.mclass.c_name}") + var compiler = self.compiler if mtype isa MGenericType and mtype.need_anchor then - var buff = new Buffer - retrieve_anchored_livetype(mtype, buff) - mtype = self.anchor(mtype).as(MClassType) - return self.new_expr("NEW_{mtype.mclass.c_name}((struct type *) livetypes_{mtype.mclass.c_name}{buff.to_s})", mtype) + hardening_live_open_type(mtype) + link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) + var recv = self.frame.arguments.first + var recv_type_info = self.type_info(recv) + self.require_declaration(mtype.const_color) + if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then + return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {mtype.const_color})])", mtype) + else + return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) + end end compiler.undead_types.add(mtype) - return self.new_expr("NEW_{mtype.mclass.c_name}((struct type *) &type_{mtype.c_name})", mtype) + self.require_declaration("type_{mtype.c_name}") + return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype) end - redef fun type_test(value, mtype) + redef fun type_test(value, mtype, tag) do - var compiler = self.compiler.as(SeparateCompiler) + self.add("/* {value.inspect} isa {mtype} */") + var compiler = self.compiler var recv = self.frame.arguments.first - var recv_boxed = self.autobox(recv, self.object_type) + var recv_type_info = self.type_info(recv) var res = self.new_var(bool_type) @@ -1006,42 +1421,81 @@ class SeparateCompilerVisitor var idtype = self.get_name("idtype") self.add_decl("int {idtype};") - var boxed = self.autobox(value, self.object_type) + var maybe_null = self.maybe_null(value) + var accept_null = "0" + var ntype = mtype + if ntype isa MNullableType then + ntype = ntype.mtype + accept_null = "1" + end - var s: String - if mtype isa MNullableType then - mtype = mtype.mtype - s = "{boxed} == NULL ||" - else - s = "{boxed} != NULL &&" - end - if mtype isa MParameterType then - var ftcolor = compiler.ft_colors[mtype] - self.add("{cltype} = {recv_boxed}->type->fts_table->fts[{ftcolor}]->color;") - self.add("{idtype} = {recv_boxed}->type->fts_table->fts[{ftcolor}]->id;") - else if mtype isa MGenericType and mtype.need_anchor then - var buff = new Buffer - retrieve_anchored_livetype(mtype, buff) - self.add("{cltype} = livetypes_{mtype.mclass.c_name}{buff.to_s}->color;") - self.add("{idtype} = livetypes_{mtype.mclass.c_name}{buff.to_s}->id;") - else if mtype isa MClassType then + if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then + self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/") + if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then + self.compiler.count_type_test_skipped[tag] += 1 + self.add("count_type_test_skipped_{tag}++;") + end + return res + end + + if ntype.need_anchor then + var type_struct = self.get_name("type_struct") + self.add_decl("const struct type* {type_struct};") + + # Either with resolution_table with a direct resolution + hardening_live_open_type(mtype) + link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) + self.require_declaration(mtype.const_color) + if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then + self.add("{type_struct} = {recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {mtype.const_color})];") + else + self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];") + end + if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then + self.compiler.count_type_test_unresolved[tag] += 1 + self.add("count_type_test_unresolved_{tag}++;") + end + hardening_cast_type(type_struct) + self.add("{cltype} = {type_struct}->color;") + self.add("{idtype} = {type_struct}->id;") + if maybe_null and accept_null == "0" then + var is_nullable = self.get_name("is_nullable") + self.add_decl("short int {is_nullable};") + self.add("{is_nullable} = {type_struct}->is_nullable;") + accept_null = is_nullable.to_s + end + else if ntype isa MClassType then compiler.undead_types.add(mtype) + self.require_declaration("type_{mtype.c_name}") + hardening_cast_type("(&type_{mtype.c_name})") self.add("{cltype} = type_{mtype.c_name}.color;") self.add("{idtype} = type_{mtype.c_name}.id;") - else if mtype isa MVirtualType then - var vtcolor = compiler.vt_colors[mtype.mproperty.as(MVirtualTypeProp)] - self.add("{cltype} = {recv_boxed}->type->vts_table->vts[{vtcolor}]->color;") - self.add("{idtype} = {recv_boxed}->type->vts_table->vts[{vtcolor}]->id;") + if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then + self.compiler.count_type_test_resolved[tag] += 1 + self.add("count_type_test_resolved_{tag}++;") + end else - self.add("printf(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{boxed.inspect}\"); exit(1);") + self.add("printf(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);") end # check color is in table - self.add("if({boxed} != NULL && {cltype} >= {boxed}->type->table_size) \{") + if maybe_null then + self.add("if({value} == NULL) \{") + self.add("{res} = {accept_null};") + self.add("\} else \{") + end + var value_type_info = self.type_info(value) + if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then + self.add("{cltype} = HASH({value_type_info}->color, {idtype});") + end + self.add("if({cltype} >= {value_type_info}->table_size) \{") self.add("{res} = 0;") self.add("\} else \{") - self.add("{res} = {s} {boxed}->type->type_table[{cltype}] == {idtype};") + self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};") self.add("\}") + if maybe_null then + self.add("\}") + end return res end @@ -1056,13 +1510,14 @@ class SeparateCompilerVisitor value2 = tmp end if value1.mtype.ctype != "val*" then - if value2.mtype.ctype == value1.mtype.ctype then + if value2.mtype == value1.mtype then self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */") else if value2.mtype.ctype != "val*" then self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) - self.add("{res} = ({value2} != NULL) && ({value2}->class == (struct class*) &class_{mtype1.c_name}); /* is_same_type_test */") + self.require_declaration("class_{mtype1.c_name}") + self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */") end else self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */") @@ -1073,8 +1528,15 @@ class SeparateCompilerVisitor redef fun class_name_string(value) do var res = self.get_name("var_class_name") - self.add_decl("const char *{res};") - self.add("{res} = class_names[{value}->type->id];") + self.add_decl("const char* {res};") + if value.mtype.ctype == "val*" then + self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;" + else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind then + self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";" + else + self.require_declaration("type_{value.mtype.c_name}") + self.add "{res} = type_{value.mtype.c_name}.name;" + end return res end @@ -1087,62 +1549,148 @@ class SeparateCompilerVisitor value2 = tmp end if value1.mtype.ctype != "val*" then - if value2.mtype.ctype == value1.mtype.ctype then + if value2.mtype == value1.mtype then self.add("{res} = {value1} == {value2};") else if value2.mtype.ctype != "val*" then self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) - self.add("{res} = ({value2} != NULL) && ({value2}->class == (struct class*) &class_{mtype1.c_name});") + self.require_declaration("class_{mtype1.c_name}") + self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});") self.add("if ({res}) \{") self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});") self.add("\}") end + return res + end + var maybe_null = true + var test = new Array[String] + var t1 = value1.mcasttype + if t1 isa MNullableType then + test.add("{value1} != NULL") + t1 = t1.mtype else - var s = new Array[String] - # This is just ugly on so many level. this works but must be rewriten - for t in self.compiler.live_primitive_types do - if not t.is_subtype(self.compiler.mainmodule, null, value1.mcasttype) then continue - if not t.is_subtype(self.compiler.mainmodule, null, value2.mcasttype) then continue - s.add "({value1}->class == (struct class*)&class_{t.c_name} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)" + maybe_null = false + end + var t2 = value2.mcasttype + if t2 isa MNullableType then + test.add("{value2} != NULL") + t2 = t2.mtype + else + maybe_null = false + end + + var incompatible = false + var primitive + if t1.ctype != "val*" then + primitive = t1 + if t1 == t2 then + # No need to compare class + else if t2.ctype != "val*" then + incompatible = true + else if can_be_primitive(value2) then + test.add("{value1}->class == {value2}->class") + else + incompatible = true end - if s.is_empty then - self.add("{res} = {value1} == {value2};") + else if t2.ctype != "val*" then + primitive = t2 + if can_be_primitive(value1) then + test.add("{value1}->class == {value2}->class") else - self.add("{res} = {value1} == {value2} || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class && ({s.join(" || ")}));") + incompatible = true + end + else + primitive = null + end + + if incompatible then + if maybe_null then + self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/") + return res + else + self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */") + return res end end + if primitive != null then + test.add("((struct instance_{primitive.c_instance_name}*){value1})->value == ((struct instance_{primitive.c_instance_name}*){value2})->value") + else if can_be_primitive(value1) and can_be_primitive(value2) then + test.add("{value1}->class == {value2}->class") + var s = new Array[String] + for t, v in self.compiler.box_kinds do + s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_instance_name}*){value1})->value == ((struct instance_{t.c_instance_name}*){value2})->value)" + end + test.add("({s.join(" || ")})") + else + self.add("{res} = {value1} == {value2};") + return res + end + self.add("{res} = {value1} == {value2} || ({test.join(" && ")});") return res end + fun can_be_primitive(value: RuntimeVariable): Bool + do + var t = value.mcasttype + if t isa MNullableType then t = t.mtype + if not t isa MClassType then return false + var k = t.mclass.kind + return k == interface_kind or t.ctype != "val*" + end + + fun maybe_null(value: RuntimeVariable): Bool + do + var t = value.mcasttype + return t isa MNullableType or t isa MNullType + end + redef fun array_instance(array, elttype) do - var compiler = self.compiler.as(SeparateCompiler) var nclass = self.get_class("NativeArray") - elttype = self.anchor(elttype) - var arraytype = self.get_class("Array").get_mtype([elttype]) + var arrayclass = self.get_class("Array") + var arraytype = arrayclass.get_mtype([elttype]) var res = self.init_instance(arraytype) self.add("\{ /* {res} = array_instance Array[{elttype}] */") - var nat = self.new_var(self.get_class("NativeArray").get_mtype([elttype])) - nat.is_exact = true - compiler.undead_types.add(nat.mtype.as(MClassType)) - self.add("{nat} = NEW_{nclass.c_name}({array.length}, (struct type *) &type_{nat.mtype.c_name});") + var length = self.int_instance(array.length) + var nat = native_array_instance(elttype, length) for i in [0..array.length[ do var r = self.autobox(array[i], self.object_type) self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};") end - var length = self.int_instance(array.length) - self.send(self.get_property("with_native", arraytype), [res, nat, length]) - self.check_init_instance(res) + self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length]) self.add("\}") return res end + fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable + do + var mtype = self.get_class("NativeArray").get_mtype([elttype]) + self.require_declaration("NEW_{mtype.mclass.c_name}") + assert mtype isa MGenericType + var compiler = self.compiler + if mtype.need_anchor then + hardening_live_open_type(mtype) + link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) + var recv = self.frame.arguments.first + var recv_type_info = self.type_info(recv) + self.require_declaration(mtype.const_color) + if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then + return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {mtype.const_color})])", mtype) + else + return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) + end + end + compiler.undead_types.add(mtype) + self.require_declaration("type_{mtype.c_name}") + return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype) + end + redef fun native_array_def(pname, ret_type, arguments) do var elttype = arguments.first.mtype var nclass = self.get_class("NativeArray") - var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values" + var recv = "((struct instance_{nclass.c_instance_name}*){arguments[0]})->values" if pname == "[]" then self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null))) return @@ -1150,7 +1698,7 @@ class SeparateCompilerVisitor self.add("{recv}[{arguments[1]}]={arguments[2]};") return else if pname == "copy_to" then - var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values" + var recv1 = "((struct instance_{nclass.c_instance_name}*){arguments[1]})->values" self.add("memcpy({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));") return end @@ -1158,21 +1706,226 @@ class SeparateCompilerVisitor redef fun calloc_array(ret_type, arguments) do - var ret = ret_type.as(MClassType) - var compiler = self.compiler.as(SeparateCompiler) - compiler.undead_types.add(ret) - self.ret(self.new_expr("NEW_{ret.mclass.c_name}({arguments[1]}, (struct type*) &type_{ret_type.c_name})", ret_type)) + var mclass = self.get_class("ArrayCapable") + var ft = mclass.mclass_type.arguments.first.as(MParameterType) + var res = self.native_array_instance(ft, arguments[1]) + self.ret(res) + end + + fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do + assert mtype.need_anchor + var compiler = self.compiler + if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then + compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType] + end + compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype) end end -redef class MClass - # Return the name of the C structure associated to a Nit class - fun c_name: String do - var res = self.c_name_cache - if res != null then return res - res = "{intro_mmodule.name.to_cmangle}__{name.to_cmangle}" - self.c_name_cache = res +redef class MMethodDef + fun separate_runtime_function: AbstractRuntimeFunction + do + var res = self.separate_runtime_function_cache + if res == null then + res = new SeparateRuntimeFunction(self) + self.separate_runtime_function_cache = res + end return res end - private var c_name_cache: nullable String + private var separate_runtime_function_cache: nullable SeparateRuntimeFunction + + fun virtual_runtime_function: AbstractRuntimeFunction + do + var res = self.virtual_runtime_function_cache + if res == null then + res = new VirtualRuntimeFunction(self) + self.virtual_runtime_function_cache = res + end + return res + end + private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction +end + +# The C function associated to a methoddef separately compiled +class SeparateRuntimeFunction + super AbstractRuntimeFunction + + redef fun build_c_name: String do return "{mmethoddef.c_name}" + + redef fun to_s do return self.mmethoddef.to_s + + redef fun compile_to_c(compiler) + do + var mmethoddef = self.mmethoddef + + var recv = self.mmethoddef.mclassdef.bound_mtype + var v = compiler.new_visitor + var selfvar = new RuntimeVariable("self", recv, recv) + var arguments = new Array[RuntimeVariable] + var frame = new Frame(v, mmethoddef, recv, arguments) + v.frame = frame + + var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) + + var sig = new FlatBuffer + var comment = new FlatBuffer + var ret = msignature.return_mtype + if ret != null then + sig.append("{ret.ctype} ") + else if mmethoddef.mproperty.is_new then + ret = recv + sig.append("{ret.ctype} ") + else + sig.append("void ") + end + sig.append(self.c_name) + sig.append("({selfvar.mtype.ctype} {selfvar}") + comment.append("({selfvar}: {selfvar.mtype}") + arguments.add(selfvar) + for i in [0..msignature.arity[ do + var mtype = msignature.mparameters[i].mtype + if i == msignature.vararg_rank then + mtype = v.get_class("Array").get_mtype([mtype]) + end + comment.append(", {mtype}") + sig.append(", {mtype.ctype} p{i}") + var argvar = new RuntimeVariable("p{i}", mtype, mtype) + arguments.add(argvar) + end + sig.append(")") + comment.append(")") + if ret != null then + comment.append(": {ret}") + end + compiler.provide_declaration(self.c_name, "{sig};") + + v.add_decl("/* method {self} for {comment} */") + v.add_decl("{sig} \{") + if ret != null then + frame.returnvar = v.new_var(ret) + end + frame.returnlabel = v.get_name("RET_LABEL") + + if recv != arguments.first.mtype then + #print "{self} {recv} {arguments.first}" + end + mmethoddef.compile_inside_to_c(v, arguments) + + v.add("{frame.returnlabel.as(not null)}:;") + if ret != null then + v.add("return {frame.returnvar.as(not null)};") + end + v.add("\}") + if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})" + end +end + +# The C function associated to a methoddef on a primitive type, stored into a VFT of a class +# The first parameter (the reciever) is always typed by val* in order to accept an object value +class VirtualRuntimeFunction + super AbstractRuntimeFunction + + redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}" + + redef fun to_s do return self.mmethoddef.to_s + + redef fun compile_to_c(compiler) + do + var mmethoddef = self.mmethoddef + + var recv = self.mmethoddef.mclassdef.bound_mtype + var v = compiler.new_visitor + var selfvar = new RuntimeVariable("self", v.object_type, recv) + var arguments = new Array[RuntimeVariable] + var frame = new Frame(v, mmethoddef, recv, arguments) + v.frame = frame + + var sig = new FlatBuffer + var comment = new FlatBuffer + + # Because the function is virtual, the signature must match the one of the original class + var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef + var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) + var ret = msignature.return_mtype + if ret != null then + sig.append("{ret.ctype} ") + else if mmethoddef.mproperty.is_new then + ret = recv + sig.append("{ret.ctype} ") + else + sig.append("void ") + end + sig.append(self.c_name) + sig.append("({selfvar.mtype.ctype} {selfvar}") + comment.append("({selfvar}: {selfvar.mtype}") + arguments.add(selfvar) + for i in [0..msignature.arity[ do + var mtype = msignature.mparameters[i].mtype + if i == msignature.vararg_rank then + mtype = v.get_class("Array").get_mtype([mtype]) + end + comment.append(", {mtype}") + sig.append(", {mtype.ctype} p{i}") + var argvar = new RuntimeVariable("p{i}", mtype, mtype) + arguments.add(argvar) + end + sig.append(")") + comment.append(")") + if ret != null then + comment.append(": {ret}") + end + compiler.provide_declaration(self.c_name, "{sig};") + + v.add_decl("/* method {self} for {comment} */") + v.add_decl("{sig} \{") + if ret != null then + frame.returnvar = v.new_var(ret) + end + frame.returnlabel = v.get_name("RET_LABEL") + + var subret = v.call(mmethoddef, recv, arguments) + if ret != null then + assert subret != null + v.assign(frame.returnvar.as(not null), subret) + end + + v.add("{frame.returnlabel.as(not null)}:;") + if ret != null then + v.add("return {frame.returnvar.as(not null)};") + end + v.add("\}") + if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})" + end + + # TODO ? + redef fun call(v, arguments) do abort +end + +redef class MType + fun const_color: String do return "COLOR_{c_name}" + + # C name of the instance type to use + fun c_instance_name: String do return c_name +end + +redef class MClassType + redef fun c_instance_name do return mclass.c_instance_name +end + +redef class MClass + # Extern classes use the C instance of kernel::Pointer + fun c_instance_name: String + do + if kind == extern_kind then + return "kernel__Pointer" + else return c_name + end +end + +redef class MProperty + fun const_color: String do return "COLOR_{c_name}" +end + +redef class MPropDef + fun const_color: String do return "COLOR_{c_name}" end