X-Git-Url: http://nitlanguage.org diff --git a/src/separate_compiler.nit b/src/separate_compiler.nit index 4f5e920..f5dd05d 100644 --- a/src/separate_compiler.nit +++ b/src/separate_compiler.nit @@ -15,40 +15,31 @@ # Separate compilation of a Nit program module separate_compiler +import abstract_compiler +import layout_builders +import rapid_type_analysis +import compiler_ffi -import global_compiler # TODO better separation of concerns -import coloring - +# Add separate compiler specific options redef class ToolContext # --separate var opt_separate: OptionBool = new OptionBool("Use separate compilation", "--separate") - # --no-inline-intern var opt_no_inline_intern: OptionBool = new OptionBool("Do not inline call to intern methods", "--no-inline-intern") - # --no-union-attribute var opt_no_union_attribute: OptionBool = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute") - # --no-shortcut-equate var opt_no_shortcut_equate: OptionBool = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal") - # --inline-coloring-numbers var opt_inline_coloring_numbers: OptionBool = new OptionBool("Inline colors and ids", "--inline-coloring-numbers") - # --use-naive-coloring var opt_bm_typing: OptionBool = new OptionBool("Colorize items incrementaly, used to simulate binary matrix typing", "--bm-typing") - # --use-mod-perfect-hashing var opt_phmod_typing: OptionBool = new OptionBool("Replace coloration by perfect hashing (with mod operator)", "--phmod-typing") - # --use-and-perfect-hashing var opt_phand_typing: OptionBool = new OptionBool("Replace coloration by perfect hashing (with and operator)", "--phand-typing") - - # --generic-resolution-tree - var opt_generic_tree: OptionBool = new OptionBool("Use tree representation for live generic types instead of flattened representation", "--generic-resolution-tree") - - # --generic-resolution-tree - var opt_typing_table_metrics: OptionBool = new OptionBool("Enable static size measuring of tables used for typing and resolution", "--typing-table-metrics") + # --tables-metrics + var opt_tables_metrics: OptionBool = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics") redef init do @@ -61,119 +52,109 @@ redef class ToolContext self.option_context.add_option(self.opt_bm_typing) self.option_context.add_option(self.opt_phmod_typing) self.option_context.add_option(self.opt_phand_typing) - self.option_context.add_option(self.opt_generic_tree) - self.option_context.add_option(self.opt_typing_table_metrics) + self.option_context.add_option(self.opt_tables_metrics) end end redef class ModelBuilder - fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: RapidTypeAnalysis) + fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis) do var time0 = get_time - self.toolcontext.info("*** COMPILING TO C ***", 1) + self.toolcontext.info("*** GENERATING C ***", 1) - var compiler = new SeparateCompiler(mainmodule, runtime_type_analysis, self) + var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis) compiler.compile_header # compile class structures + self.toolcontext.info("Property coloring", 2) + compiler.new_file("{mainmodule.name}.classes") + compiler.do_property_coloring for m in mainmodule.in_importation.greaters do for mclass in m.intro_mclasses do + if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue compiler.compile_class_to_c(mclass) end end # The main function of the C - compiler.new_file + compiler.new_file("{mainmodule.name}.main") compiler.compile_main_function # compile methods for m in mainmodule.in_importation.greaters do - compiler.new_file + self.toolcontext.info("Generate C for module {m}", 2) + compiler.new_file("{m.name}.sep") compiler.compile_module_to_c(m) end # compile live & cast type structures - compiler.new_file + self.toolcontext.info("Type coloring", 2) + compiler.new_file("{mainmodule.name}.types") var mtypes = compiler.do_type_coloring for t in mtypes do compiler.compile_type_to_c(t) end - - if self.toolcontext.opt_generic_tree.value then - # compile live generic types selection structures - for mclass in model.mclasses do - compiler.compile_live_gentype_to_c(mclass) - end + # compile remaining types structures (useless but needed for the symbol resolution at link-time) + for t in compiler.undead_types do + if mtypes.has(t) then continue + compiler.compile_type_to_c(t) end compiler.display_stats + var time1 = get_time + self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2) write_and_make(compiler) end end # Singleton that store the knowledge about the separate compilation process class SeparateCompiler - super GlobalCompiler # TODO better separation of concerns + super AbstractCompiler - private var undead_types: Set[MType] = new HashSet[MType] - private var partial_types: Set[MType] = new HashSet[MType] - protected var typeids: HashMap[MType, Int] protected writable = new HashMap[MType, Int] - - private var type_colors: Map[MType, Int] = typeids - private var type_tables: nullable Map[MType, Array[nullable MType]] = null - - private var livetypes_colors: nullable Map[MType, Int] - private var livetypes_tables: nullable Map[MClass, Array[nullable Object]] - private var livetypes_tables_sizes: nullable Map[MClass, Array[Int]] - private var live_unanchored_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]] - - private var unanchored_types_colors: nullable Map[MType, Int] - private var unanchored_types_tables: nullable Map[MClassType, Array[nullable MType]] - private var unanchored_types_masks: nullable Map[MClassType, Int] - - protected var class_coloring: ClassColoring - - protected var method_colors: Map[MMethod, Int] - protected var method_tables: Map[MClass, Array[nullable MMethodDef]] - - protected var attr_colors: Map[MAttribute, Int] - protected var attr_tables: Map[MClass, Array[nullable MAttributeDef]] + redef type VISITOR: SeparateCompilerVisitor - protected var vt_colors: Map[MVirtualTypeProp, Int] - protected var vt_tables: Map[MClass, Array[nullable MVirtualTypeDef]] - protected var vt_masks: nullable Map[MClass, Int] + # The result of the RTA (used to know live types and methods) + var runtime_type_analysis: nullable RapidTypeAnalysis - private var ft_colors: nullable Map[MParameterType, Int] - private var ft_tables: nullable Map[MClass, Array[nullable MParameterType]] - private var ft_masks: nullable Map[MClass, Int] - - init(mainmodule: MModule, runtime_type_analysis: RapidTypeAnalysis, mmbuilder: ModelBuilder) do - self.do_property_coloring + private var undead_types: Set[MType] = new HashSet[MType] + private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]] + + private var type_layout: nullable Layout[MType] + private var resolution_layout: nullable Layout[MType] + protected var method_layout: nullable Layout[PropertyLayoutElement] + protected var attr_layout: nullable Layout[MAttribute] + + init(mainmodule: MModule, mmbuilder: ModelBuilder, runtime_type_analysis: nullable RapidTypeAnalysis) do + super(mainmodule, mmbuilder) + var file = new_file("nit.common") + self.header = new CodeWriter(file) + self.runtime_type_analysis = runtime_type_analysis self.compile_box_kinds end redef fun compile_header_structs do self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */") self.compile_header_attribute_structs - self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[1]; \}; /* general C type representing a Nit class. */") + self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */") - if modelbuilder.toolcontext.opt_generic_tree.value then - # With generic_tree, only ft and vt resolution is stored in the type - self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; int livecolor; struct types *vts_table; struct types *fts_table; int table_size; int type_table[1]; \}; /* general C type representing a Nit type. */") - else - # With unanchored_table, all live type resolution are stored in a big table: unanchored_table - self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; struct types *unanchored_table; int table_size; int type_table[1]; \}; /* general C type representing a Nit type. */") - end + # With resolution_table_table, all live type resolution are stored in a big table: resolution_table + self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */") + self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */") if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then - self.header.add_decl("struct types \{ int mask; struct type *types[1]; \}; /* a list types (used for vts, fts and unanchored lists). */") + self.header.add_decl("struct types \{ int mask; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */") else - self.header.add_decl("struct types \{ struct type *types[1]; \}; /* a list types (used for vts, fts and unanchored lists). */") + self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */") end + if modelbuilder.toolcontext.opt_phmod_typing.value then + self.header.add_decl("#define HASH(mask, id) ((mask)%(id))") + else if modelbuilder.toolcontext.opt_phand_typing.value then + self.header.add_decl("#define HASH(mask, id) ((mask)&(id))") + end - self.header.add_decl("typedef struct \{ struct type *type; struct class *class; nitattribute_t attrs[1]; \} val; /* general C type representing a Nit instance. */") + self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */") end fun compile_header_attribute_structs @@ -191,10 +172,6 @@ class SeparateCompiler end end - redef fun compile_class_names do - abort # There is no class name compilation since the name is stored in the type structure - end - fun compile_box_kinds do # Collect all bas box class @@ -222,292 +199,392 @@ class SeparateCompiler end fun compile_color_consts(colors: Map[Object, Int]) do + var v = new_visitor for m, c in colors do - if m isa MProperty then - if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then - self.header.add_decl("#define {m.const_color} {c}") - else - self.header.add_decl("extern const int {m.const_color};") - self.header.add("const int {m.const_color} = {c};") - end - else if m isa MType then - if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then - self.header.add_decl("#define {m.const_color} {c}") - else - self.header.add_decl("extern const int {m.const_color};") - self.header.add("const int {m.const_color} = {c};") - end + compile_color_const(v, m, c) + end + end + + fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do + if color_consts_done.has(m) then return + if m isa MProperty then + if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then + self.provide_declaration(m.const_color, "#define {m.const_color} {color}") + else + self.provide_declaration(m.const_color, "extern const int {m.const_color};") + v.add("const int {m.const_color} = {color};") + end + else if m isa MPropDef then + if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then + self.provide_declaration(m.const_color, "#define {m.const_color} {color}") + else + self.provide_declaration(m.const_color, "extern const int {m.const_color};") + v.add("const int {m.const_color} = {color};") + end + else if m isa MType then + if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then + self.provide_declaration(m.const_color, "#define {m.const_color} {color}") + else + self.provide_declaration(m.const_color, "extern const int {m.const_color};") + v.add("const int {m.const_color} = {color};") end end + color_consts_done.add(m) end + private var color_consts_done = new HashSet[Object] + # colorize classe properties fun do_property_coloring do + var mclasses = new HashSet[MClass].from(modelbuilder.model.mclasses) + + # Layouts + var method_layout_builder: PropertyLayoutBuilder[PropertyLayoutElement] + var attribute_layout_builder: PropertyLayoutBuilder[MAttribute] + #FIXME PH and BM layouts too slow for large programs + #if modelbuilder.toolcontext.opt_bm_typing.value then + # method_layout_builder = new MMethodBMizer(self.mainmodule) + # attribute_layout_builder = new MAttributeBMizer(self.mainmodule) + #else if modelbuilder.toolcontext.opt_phmod_typing.value then + # method_layout_builder = new MMethodHasher(new PHModOperator, self.mainmodule) + # attribute_layout_builder = new MAttributeHasher(new PHModOperator, self.mainmodule) + #else if modelbuilder.toolcontext.opt_phand_typing.value then + # method_layout_builder = new MMethodHasher(new PHAndOperator, self.mainmodule) + # attribute_layout_builder = new MAttributeHasher(new PHAndOperator, self.mainmodule) + #else + + var class_layout_builder = new MClassColorer(self.mainmodule) + class_layout_builder.build_layout(mclasses) + method_layout_builder = new MPropertyColorer[PropertyLayoutElement](self.mainmodule, class_layout_builder) + attribute_layout_builder = new MPropertyColorer[MAttribute](self.mainmodule, class_layout_builder) + #end - # classes coloration - self.class_coloring = new ClassColoring(mainmodule) - class_coloring.colorize(modelbuilder.model.mclasses) - - # methods coloration - var method_coloring = new MethodColoring(self.class_coloring) - self.method_colors = method_coloring.colorize - self.method_tables = method_coloring.build_property_tables - self.compile_color_consts(self.method_colors) - - # attributes coloration - var attribute_coloring = new AttributeColoring(self.class_coloring) - self.attr_colors = attribute_coloring.colorize - self.attr_tables = attribute_coloring.build_property_tables - self.compile_color_consts(self.attr_colors) + # lookup properties to build layout with + var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]] + var mattributes = new HashMap[MClass, Set[MAttribute]] + for mclass in mclasses do + mmethods[mclass] = new HashSet[PropertyLayoutElement] + mattributes[mclass] = new HashSet[MAttribute] + for mprop in self.mainmodule.properties(mclass) do + if mprop isa MMethod then + mmethods[mclass].add(mprop) + else if mprop isa MAttribute then + mattributes[mclass].add(mprop) + end + end + end - if modelbuilder.toolcontext.opt_bm_typing.value then - self.class_coloring = new NaiveClassColoring(mainmodule) - self.class_coloring.colorize(modelbuilder.model.mclasses) + # Collect all super calls (dead or not) + var all_super_calls = new HashSet[MMethodDef] + for mmodule in self.mainmodule.in_importation.greaters do + for mclassdef in mmodule.mclassdefs do + for mpropdef in mclassdef.mpropdefs do + if not mpropdef isa MMethodDef then continue + if mpropdef.has_supercall then + all_super_calls.add(mpropdef) + end + end + end end - # vt coloration - if modelbuilder.toolcontext.opt_bm_typing.value then - var vt_coloring = new NaiveVTColoring(self.class_coloring) - self.vt_colors = vt_coloring.colorize - self.vt_tables = vt_coloring.build_property_tables - else if modelbuilder.toolcontext.opt_phmod_typing.value then - var vt_coloring = new VTModPerfectHashing(self.class_coloring) - self.vt_colors = vt_coloring.colorize - self.vt_masks = vt_coloring.compute_masks - self.vt_tables = vt_coloring.build_property_tables - else if modelbuilder.toolcontext.opt_phand_typing.value then - var vt_coloring = new VTAndPerfectHashing(self.class_coloring) - self.vt_colors = vt_coloring.colorize - self.vt_masks = vt_coloring.compute_masks - self.vt_tables = vt_coloring.build_property_tables + # lookup super calls and add it to the list of mmethods to build layout with + var super_calls + if runtime_type_analysis != null then + super_calls = runtime_type_analysis.live_super_sends else - var vt_coloring = new VTColoring(self.class_coloring) - self.vt_colors = vt_coloring.colorize - self.vt_tables = vt_coloring.build_property_tables + super_calls = all_super_calls end - self.compile_color_consts(self.vt_colors) - end - # colorize live types of the program - private fun do_type_coloring: Set[MType] do - var mtypes = new HashSet[MType] - mtypes.add_all(self.runtime_type_analysis.live_types) - mtypes.add_all(self.runtime_type_analysis.live_cast_types) - mtypes.add_all(self.undead_types) - for c in self.box_kinds.keys do - mtypes.add(c.mclass_type) + for mmethoddef in super_calls do + var mclass = mmethoddef.mclassdef.mclass + mmethods[mclass].add(mmethoddef) + for descendant in mclass.in_hierarchy(self.mainmodule).smallers do + mmethods[descendant].add(mmethoddef) + end end - for mtype in mtypes do - retieve_live_partial_types(mtype) + # methods coloration + self.method_layout = method_layout_builder.build_layout(mmethods) + self.method_tables = build_method_tables(mclasses, super_calls) + self.compile_color_consts(method_layout.pos) + + # attribute null color to dead supercalls + for mpropdef in all_super_calls do + if super_calls.has(mpropdef) then continue + compile_color_const(new_visitor, mpropdef, -1) end - mtypes.add_all(self.partial_types) - # set type unique id - if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then - var sorted_mtypes = new OrderedSet[MType].from(mtypes) - sorted_mtypes.linearize(new ReverseTypeSorter(self.mainmodule)) - for mtype in sorted_mtypes do - self.typeids[mtype] = self.typeids.length + 1 + # attributes coloration + self.attr_layout = attribute_layout_builder.build_layout(mattributes) + self.attr_tables = build_attr_tables(mclasses) + self.compile_color_consts(attr_layout.pos) + end + + fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do + var layout = self.method_layout + var tables = new HashMap[MClass, Array[nullable MPropDef]] + for mclass in mclasses do + var table = new Array[nullable MPropDef] + var supercalls = new List[MMethodDef] + + # first, fill table from parents by reverse linearization order + var parents = new Array[MClass] + if mainmodule.flatten_mclass_hierarchy.has(mclass) then + parents = mclass.in_hierarchy(mainmodule).greaters.to_a + self.mainmodule.linearize_mclasses(parents) end - else - for mtype in mtypes do - self.typeids[mtype] = self.typeids.length + + for parent in parents do + if parent == mclass then continue + for mproperty in self.mainmodule.properties(parent) do + if not mproperty isa MMethod then continue + var color = layout.pos[mproperty] + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + for mpropdef in mproperty.mpropdefs do + if mpropdef.mclassdef.mclass == parent then + table[color] = mpropdef + end + end + end + + # lookup for super calls in super classes + for mmethoddef in super_calls do + for mclassdef in parent.mclassdefs do + if mclassdef.mpropdefs.has(mmethoddef) then + supercalls.add(mmethoddef) + end + end + end end + + # then override with local properties + for mproperty in self.mainmodule.properties(mclass) do + if not mproperty isa MMethod then continue + var color = layout.pos[mproperty] + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + for mpropdef in mproperty.mpropdefs do + if mpropdef.mclassdef.mclass == mclass then + table[color] = mpropdef + end + end + end + + # lookup for super calls in local class + for mmethoddef in super_calls do + for mclassdef in mclass.mclassdefs do + if mclassdef.mpropdefs.has(mmethoddef) then + supercalls.add(mmethoddef) + end + end + end + # insert super calls in table according to receiver + for supercall in supercalls do + var color = layout.pos[supercall] + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + var mmethoddef = supercall.lookup_next_definition(self.mainmodule, mclass.intro.bound_mtype) + table[color] = mmethoddef + end + tables[mclass] = table end + return tables + end - if modelbuilder.toolcontext.opt_generic_tree.value then - # fts coloration for non-erased compilation - if modelbuilder.toolcontext.opt_bm_typing.value then - var ft_coloring = new NaiveFTColoring(self.class_coloring) - self.ft_colors = ft_coloring.colorize - self.ft_tables = ft_coloring.build_ft_tables - else if modelbuilder.toolcontext.opt_phmod_typing.value then - var ft_coloring = new FTModPerfectHashing(self.class_coloring) - self.ft_colors = ft_coloring.colorize - self.ft_masks = ft_coloring.compute_masks - self.ft_tables = ft_coloring.build_ft_tables - else if modelbuilder.toolcontext.opt_phand_typing.value then - var ft_coloring = new FTAndPerfectHashing(self.class_coloring) - self.ft_colors = ft_coloring.colorize - self.ft_masks = ft_coloring.compute_masks - self.ft_tables = ft_coloring.build_ft_tables - else - var ft_coloring = new FTColoring(self.class_coloring) - self.ft_colors = ft_coloring.colorize - self.ft_tables = ft_coloring.build_ft_tables + fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do + var layout = self.attr_layout + var tables = new HashMap[MClass, Array[nullable MPropDef]] + for mclass in mclasses do + var table = new Array[nullable MPropDef] + # first, fill table from parents by reverse linearization order + var parents = new Array[MClass] + if mainmodule.flatten_mclass_hierarchy.has(mclass) then + parents = mclass.in_hierarchy(mainmodule).greaters.to_a + self.mainmodule.linearize_mclasses(parents) + end + for parent in parents do + if parent == mclass then continue + for mproperty in self.mainmodule.properties(parent) do + if not mproperty isa MAttribute then continue + var color = layout.pos[mproperty] + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + for mpropdef in mproperty.mpropdefs do + if mpropdef.mclassdef.mclass == parent then + table[color] = mpropdef + end + end + end end - self.compile_color_consts(self.ft_colors.as(not null)) - # colorize live entries - var entries_coloring - if modelbuilder.toolcontext.opt_bm_typing.value then - entries_coloring = new NaiveLiveEntryColoring - else - entries_coloring = new LiveEntryColoring + # then override with local properties + for mproperty in self.mainmodule.properties(mclass) do + if not mproperty isa MAttribute then continue + var color = layout.pos[mproperty] + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + for mpropdef in mproperty.mpropdefs do + if mpropdef.mclassdef.mclass == mclass then + table[color] = mpropdef + end + end end - self.livetypes_colors = entries_coloring.colorize(mtypes) - self.livetypes_tables = entries_coloring.build_livetype_tables(mtypes) - self.livetypes_tables_sizes = entries_coloring.livetypes_tables_sizes - else - # VT and FT are stored with other unresolved types in the big unanchored_tables - self.compile_unanchored_tables(mtypes) + tables[mclass] = table end + return tables + end - # colorize types + # colorize live types of the program + private fun do_type_coloring: POSet[MType] do + var mtypes = new HashSet[MType] + mtypes.add_all(self.runtime_type_analysis.live_types) + mtypes.add_all(self.runtime_type_analysis.live_cast_types) + for c in self.box_kinds.keys do + mtypes.add(c.mclass_type) + end + + # Typing Layout + var layout_builder: TypingLayoutBuilder[MType] if modelbuilder.toolcontext.opt_bm_typing.value then - var type_coloring = new NaiveTypeColoring(self.mainmodule, mtypes) - self.type_colors = type_coloring.colorize(mtypes) - self.type_tables = type_coloring.build_type_tables(mtypes, type_colors) + layout_builder = new MTypeBMizer(self.mainmodule) else if modelbuilder.toolcontext.opt_phmod_typing.value then - var type_coloring = new TypeModPerfectHashing(self.mainmodule, mtypes) - self.type_colors = type_coloring.compute_masks(mtypes, typeids) - self.type_tables = type_coloring.hash_type_tables(mtypes, typeids, type_colors) - self.header.add_decl("#define HASH(mask, id) ((mask)%(id))") + layout_builder = new MTypeHasher(new PHModOperator, self.mainmodule) else if modelbuilder.toolcontext.opt_phand_typing.value then - var type_coloring = new TypeAndPerfectHashing(self.mainmodule, mtypes) - self.type_colors = type_coloring.compute_masks(mtypes, typeids) - self.type_tables = type_coloring.hash_type_tables(mtypes, typeids, type_colors) - self.header.add_decl("#define HASH(mask, id) ((mask)&(id))") + layout_builder = new MTypeHasher(new PHAndOperator, self.mainmodule) else - var type_coloring = new TypeColoring(self.mainmodule, mtypes) - self.type_colors = type_coloring.colorize(mtypes) - self.type_tables = type_coloring.build_type_tables(mtypes, type_colors) + layout_builder = new MTypeColorer(self.mainmodule) end + # colorize types + self.type_layout = layout_builder.build_layout(mtypes) + var poset = layout_builder.poset.as(not null) + self.type_tables = self.build_type_tables(poset) + + # VT and FT are stored with other unresolved types in the big resolution_tables + self.compile_resolution_tables(mtypes) - return mtypes + return poset end - protected fun compile_unanchored_tables(mtypes: Set[MType]) do - # Unanchored_tables is used to perform a type resolution at runtime in O(1) + # Build type tables + fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do + var tables = new HashMap[MType, Array[nullable MType]] + var layout = self.type_layout + for mtype in mtypes do + var table = new Array[nullable MType] + for sup in mtypes[mtype].greaters do + var color: Int + if layout isa PHLayout[MType, MType] then + color = layout.hashes[mtype][sup] + else + color = layout.pos[sup] + end + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + table[color] = sup + end + tables[mtype] = table + end + return tables + end + + protected fun compile_resolution_tables(mtypes: Set[MType]) do + # resolution_tables is used to perform a type resolution at runtime in O(1) - # During the visit of the body of classes, live_unanchored_types are collected + # During the visit of the body of classes, live_unresolved_types are collected # and associated to - # Collect all live_unanchored_types (visited in the body of classes) + # Collect all live_unresolved_types (visited in the body of classes) # Determinate fo each livetype what are its possible requested anchored types - var mtype2unanchored = new HashMap[MClassType, Set[MType]] + var mtype2unresolved = new HashMap[MClassType, Set[MType]] for mtype in self.runtime_type_analysis.live_types do var set = new HashSet[MType] for cd in mtype.collect_mclassdefs(self.mainmodule) do - if self.live_unanchored_types.has_key(cd) then - set.add_all(self.live_unanchored_types[cd]) + if self.live_unresolved_types.has_key(cd) then + set.add_all(self.live_unresolved_types[cd]) end end - mtype2unanchored[mtype] = set + mtype2unresolved[mtype] = set end # Compute the table layout with the prefered method + var resolution_builder: ResolutionLayoutBuilder if modelbuilder.toolcontext.opt_bm_typing.value then - var unanchored_type_coloring = new NaiveUnanchoredTypeColoring - self.unanchored_types_colors = unanchored_type_coloring.colorize(mtype2unanchored) - self.unanchored_types_tables = unanchored_type_coloring.build_tables(mtype2unanchored) + resolution_builder = new ResolutionBMizer else if modelbuilder.toolcontext.opt_phmod_typing.value then - var unanchored_type_coloring = new UnanchoredTypeModPerfectHashing - self.unanchored_types_colors = unanchored_type_coloring.colorize(mtype2unanchored) - self.unanchored_types_masks = unanchored_type_coloring.compute_masks(mtype2unanchored) - self.unanchored_types_tables = unanchored_type_coloring.build_tables(mtype2unanchored) + resolution_builder = new ResolutionHasher(new PHModOperator) else if modelbuilder.toolcontext.opt_phand_typing.value then - var unanchored_type_coloring = new UnanchoredTypeAndPerfectHashing - self.unanchored_types_colors = unanchored_type_coloring.colorize(mtype2unanchored) - self.unanchored_types_masks = unanchored_type_coloring.compute_masks(mtype2unanchored) - self.unanchored_types_tables = unanchored_type_coloring.build_tables(mtype2unanchored) + resolution_builder = new ResolutionHasher(new PHAndOperator) else - var unanchored_type_coloring = new UnanchoredTypeColoring - self.unanchored_types_colors = unanchored_type_coloring.colorize(mtype2unanchored) - self.unanchored_types_tables = unanchored_type_coloring.build_tables(mtype2unanchored) + resolution_builder = new ResolutionColorer end + self.resolution_layout = resolution_builder.build_layout(mtype2unresolved) + self.resolution_tables = self.build_resolution_tables(mtype2unresolved) - # Compile a C constant for each collected unanchored type. - # Either to a color, or to -1 if the unanchored type is dead (no live receiver can require it) - var all_unanchored = new HashSet[MType] - for t in self.live_unanchored_types.values do - all_unanchored.add_all(t) + # Compile a C constant for each collected unresolved type. + # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it) + var all_unresolved = new HashSet[MType] + for t in self.live_unresolved_types.values do + all_unresolved.add_all(t) end - var all_unanchored_types_colors = new HashMap[MType, Int] - for t in all_unanchored do - if unanchored_types_colors.has_key(t) then - all_unanchored_types_colors[t] = unanchored_types_colors[t] + var all_unresolved_types_colors = new HashMap[MType, Int] + for t in all_unresolved do + if self.resolution_layout.pos.has_key(t) then + all_unresolved_types_colors[t] = self.resolution_layout.pos[t] else - all_unanchored_types_colors[t] = -1 + all_unresolved_types_colors[t] = -1 end end - self.compile_color_consts(all_unanchored_types_colors) + self.compile_color_consts(all_unresolved_types_colors) #print "tables" - #for k, v in unanchored_types_tables.as(not null) do + #for k, v in unresolved_types_tables.as(not null) do # print "{k}: {v.join(", ")}" #end #print "" end - fun retieve_live_partial_types(mtype: MType) do - # add formal types arguments to mtypes - if mtype isa MGenericType then - for ft in mtype.arguments do - if ft.need_anchor then - print("Why do we need anchor here ?") - abort - end - self.partial_types.add(ft) - retieve_live_partial_types(ft) - end - end - var mclass_type: MClassType - if mtype isa MNullableType then - mclass_type = mtype.mtype.as(MClassType) - else - mclass_type = mtype.as(MClassType) - end - - # add virtual types to mtypes - for vt in self.vt_tables[mclass_type.mclass] do - if vt != null then - var anchored = vt.bound.anchor_to(self.mainmodule, mclass_type) - self.partial_types.add(anchored) - end - end - end - - # declare live generic types tables selection - private fun compile_live_gentype_to_c(mclass: MClass) do - if mclass.arity > 0 then - if self.livetypes_tables.has_key(mclass) then - var table = self.livetypes_tables[mclass] - var sign = self.livetypes_tables_sizes[mclass] - var table_buffer = new Buffer.from("const struct type *livetypes_{mclass.c_name}[{sign.join("][")}] = \{\n") - compile_livetype_table(table, table_buffer, 1, mclass.arity) - table_buffer.append("\};") - - var v = new SeparateCompilerVisitor(self) - self.header.add_decl("extern const struct type *livetypes_{mclass.c_name}[{sign.join("][")}];") - v.add_decl(table_buffer.to_s) - else - var sign = new Array[Int].filled_with(0, mclass.arity) - var v = new SeparateCompilerVisitor(self) - self.header.add_decl("extern const struct type *livetypes_{mclass.c_name}[{sign.join("][")}];") - v.add_decl("const struct type *livetypes_{mclass.c_name}[{sign.join("][")}];") - end - end - end - - private fun compile_livetype_table(table: Array[nullable Object], buffer: Buffer, depth: Int, max: Int) do - for obj in table do - if obj == null then - if depth == max then - buffer.append("NULL,\n") + fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do + var tables = new HashMap[MClassType, Array[nullable MType]] + var layout = self.resolution_layout + for mclasstype, mtypes in elements do + var table = new Array[nullable MType] + for mtype in mtypes do + var color: Int + if layout isa PHLayout[MClassType, MType] then + color = layout.hashes[mclasstype][mtype] else - buffer.append("\{\},\n") + color = layout.pos[mtype] end - else if obj isa MClassType then - buffer.append("(struct type*) &type_{obj.c_name}, /* {obj} */\n") - else if obj isa Array[nullable Object] then - buffer.append("\{\n") - compile_livetype_table(obj, buffer, depth + 1, max) - buffer.append("\},\n") + if table.length <= color then + for i in [table.length .. color[ do + table[i] = null + end + end + table[color] = mtype end + tables[mclasstype] = table end + return tables end # Separately compile all the method definitions of the module @@ -519,12 +596,10 @@ class SeparateCompiler for pd in cd.mpropdefs do if not pd isa MMethodDef then continue #print "compile {pd} @ {cd} @ {mmodule}" - var r = new SeparateRuntimeFunction(pd) + var r = pd.separate_runtime_function r.compile_to_c(self) - if true or cd.bound_mtype.ctype != "val*" then - var r2 = new VirtualRuntimeFunction(pd) - r2.compile_to_c(self) - end + var r2 = pd.virtual_runtime_function + r2.compile_to_c(self) end end self.mainmodule = old_module @@ -533,186 +608,83 @@ class SeparateCompiler # Globaly compile the type structure of a live type fun compile_type_to_c(mtype: MType) do + assert not mtype.need_anchor + var layout = self.type_layout + var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype) + var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype) var c_name = mtype.c_name var v = new SeparateCompilerVisitor(self) v.add_decl("/* runtime type {mtype} */") # extern const struct type_X - self.header.add_decl("extern const struct type_{c_name} type_{c_name};") - self.header.add_decl("struct type_{c_name} \{") - self.header.add_decl("int id;") - self.header.add_decl("const char *name;") - self.header.add_decl("int color;") - self.header.add_decl("short int is_nullable;") - if modelbuilder.toolcontext.opt_generic_tree.value then - self.header.add_decl("int livecolor;") - self.header.add_decl("const struct vts_table_{c_name} *vts_table;") - self.header.add_decl("const struct fts_table_{c_name} *fts_table;") - else - self.header.add_decl("const struct types *unanchored_table;") - end - self.header.add_decl("int table_size;") - self.header.add_decl("int type_table[{self.type_tables[mtype].length}];") - self.header.add_decl("\};") + self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};") # const struct type_X - v.add_decl("const struct type_{c_name} type_{c_name} = \{") - v.add_decl("{self.typeids[mtype]},") - v.add_decl("\"{mtype}\", /* class_name_string */") - v.add_decl("{self.type_colors[mtype]},") - if mtype isa MNullableType then - v.add_decl("1,") + v.add_decl("const struct type type_{c_name} = \{") + + # type id (for cast target) + if is_cast_live then + v.add_decl("{layout.ids[mtype]},") else - v.add_decl("0,") + v.add_decl("-1, /*CAST DEAD*/") end - if modelbuilder.toolcontext.opt_generic_tree.value then - v.add_decl("{self.livetypes_colors[mtype]},") - if compile_type_vts_table(mtype) then - v.add_decl("&vts_table_{c_name},") - else - v.add_decl("NULL,") - end - if compile_type_fts_table(mtype) then - v.add_decl("&fts_table_{c_name},") + + # type name + v.add_decl("\"{mtype}\", /* class_name_string */") + + # type color (for cast target) + if is_cast_live then + if layout isa PHLayout[MType, MType] then + v.add_decl("{layout.masks[mtype]},") else - v.add_decl("NULL,") + v.add_decl("{layout.pos[mtype]},") end else - if compile_type_unanchored_table(mtype) then - v.add_decl("(struct types*) &unanchored_table_{c_name},") - else - v.add_decl("NULL,") - end + v.add_decl("-1, /*CAST DEAD*/") end - v.add_decl("{self.type_tables[mtype].length},") - v.add_decl("\{") - for stype in self.type_tables[mtype] do - if stype == null then - v.add_decl("-1, /* empty */") - else - v.add_decl("{self.typeids[stype]}, /* {stype} */") - end - end - v.add_decl("\},") - v.add_decl("\};") - end - protected fun compile_type_fts_table(mtype: MType): Bool do - - var mclass_type: MClassType + # is_nullable bit if mtype isa MNullableType then - mclass_type = mtype.mtype.as(MClassType) + v.add_decl("1,") else - mclass_type = mtype.as(MClassType) - end - if self.ft_tables[mclass_type.mclass].is_empty then return false - - # extern const struct fst_table_X fst_table_X - self.header.add_decl("extern const struct fts_table_{mtype.c_name} fts_table_{mtype.c_name};") - self.header.add_decl("struct fts_table_{mtype.c_name} \{") - if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then - self.header.add_decl("int mask;") + v.add_decl("0,") end - self.header.add_decl("struct type *types[{self.ft_tables[mclass_type.mclass].length}];") - self.header.add_decl("\};") - # const struct fts_table_X fts_table_X - var v = new_visitor - v.add_decl("const struct fts_table_{mtype.c_name} fts_table_{mtype.c_name} = \{") - if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then - v.add_decl("{self.ft_masks[mclass_type.mclass]},") - end - v.add_decl("\{") - for ft in self.ft_tables[mclass_type.mclass] do - if ft == null then - v.add_decl("NULL, /* empty */") + # resolution table (for receiver) + if is_live then + var mclass_type = mtype + if mclass_type isa MNullableType then mclass_type = mclass_type.mtype + assert mclass_type isa MClassType + if resolution_tables[mclass_type].is_empty then + v.add_decl("NULL, /*NO RESOLUTIONS*/") else - var ntype: MType - if ft.mclass == mclass_type.mclass then - ntype = mclass_type.arguments[ft.rank] - else - ntype = ft.anchor_to(self.mainmodule, mclass_type) - end - if self.typeids.has_key(ntype) then - v.add_decl("(struct type*)&type_{ntype.c_name}, /* {ft} ({ntype}) */") - else - v.add_decl("NULL, /* empty ({ft} not a live type) */") - end + compile_type_resolution_table(mtype) + v.require_declaration("resolution_table_{c_name}") + v.add_decl("&resolution_table_{c_name},") end - end - v.add_decl("\},") - v.add_decl("\};") - return true - end - - protected fun compile_type_vts_table(mtype: MType): Bool do - - var mclass_type: MClassType - if mtype isa MNullableType then - mclass_type = mtype.mtype.as(MClassType) else - mclass_type = mtype.as(MClassType) - end - if self.vt_tables[mclass_type.mclass].is_empty then return false - - # extern const struct vts_table_X vts_table_X - self.header.add_decl("extern const struct vts_table_{mtype.c_name} vts_table_{mtype.c_name};") - self.header.add_decl("struct vts_table_{mtype.c_name} \{") - if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then - self.header.add_decl("int mask;") + v.add_decl("NULL, /*DEAD*/") end - self.header.add_decl("struct type *types[{self.vt_tables[mclass_type.mclass].length}];") - self.header.add_decl("\};") - # const struct vts_table_X vts_table_X - var v = new_visitor - v.add_decl("const struct vts_table_{mtype.c_name} vts_table_{mtype.c_name} = \{") - if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then - v.add_decl("{vt_masks[mclass_type.mclass]},") - end - v.add_decl("\{") - - for vt in self.vt_tables[mclass_type.mclass] do - if vt == null then - v.add_decl("NULL, /* empty */") - else - var bound = vt.bound - if bound == null then - #FIXME how can a bound be null here ? - print "No bound found for virtual type {vt} ?" - abort + # cast table (for receiver) + if is_live then + v.add_decl("{self.type_tables[mtype].length},") + v.add_decl("\{") + for stype in self.type_tables[mtype] do + if stype == null then + v.add_decl("-1, /* empty */") else - var is_nullable = "" - if bound isa MNullableType then - bound = bound.mtype - is_nullable = "nullable_" - end - if bound isa MVirtualType then - bound = bound.anchor_to(self.mainmodule, mclass_type) - else if bound isa MParameterType then - bound = bound.anchor_to(self.mainmodule, mclass_type) - else if bound isa MGenericType and bound.need_anchor then - bound = bound.anchor_to(self.mainmodule, mclass_type) - else if bound isa MClassType then - else - print "NOT YET IMPLEMENTED: mtype_to_livetype with type: {bound}" - abort - end - - if self.typeids.has_key(bound) then - v.add_decl("(struct type*)&type_{is_nullable}{bound.c_name}, /* {bound} */") - else - v.add_decl("NULL, /* dead type {bound} */") - end + v.add_decl("{layout.ids[stype]}, /* {stype} */") end end + v.add_decl("\},") + else + v.add_decl("0, \{\}, /*DEAD TYPE*/") end - v.add_decl("\},") v.add_decl("\};") - return true end - fun compile_type_unanchored_table(mtype: MType): Bool do + fun compile_type_resolution_table(mtype: MType) do var mclass_type: MClassType if mtype isa MNullableType then @@ -720,26 +692,22 @@ class SeparateCompiler else mclass_type = mtype.as(MClassType) end - if not self.unanchored_types_tables.has_key(mclass_type) then return false - # extern const struct unanchored_table_X unanchored_table_X - self.header.add_decl("extern const struct unanchored_table_{mtype.c_name} unanchored_table_{mtype.c_name};") + var layout = self.resolution_layout - self.header.add_decl("struct unanchored_table_{mtype.c_name} \{") - if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then - self.header.add_decl("int mask;") - end - self.header.add_decl("struct type *types[{self.unanchored_types_tables[mclass_type].length}];") - self.header.add_decl("\};") + # extern const struct resolution_table_X resolution_table_X + self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};") # const struct fts_table_X fts_table_X var v = new_visitor - v.add_decl("const struct unanchored_table_{mtype.c_name} unanchored_table_{mtype.c_name} = \{") - if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then - v.add_decl("{self.unanchored_types_masks[mclass_type]},") + v.add_decl("const struct types resolution_table_{mtype.c_name} = \{") + if layout isa PHLayout[MClassType, MType] then + v.add_decl("{layout.masks[mclass_type]},") + else + v.add_decl("0, /* dummy */") end v.add_decl("\{") - for t in self.unanchored_types_tables[mclass_type] do + for t in self.resolution_tables[mclass_type] do if t == null then v.add_decl("NULL, /* empty */") else @@ -748,16 +716,16 @@ class SeparateCompiler # the value stored is tv. var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true) # FIXME: What typeids means here? How can a tv not be live? - if self.typeids.has_key(tv) then - v.add_decl("(struct type*)&type_{tv.c_name}, /* {t}: {tv} */") + if self.type_layout.ids.has_key(tv) then + v.require_declaration("type_{tv.c_name}") + v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */") else v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */") end end end - v.add_decl("\},") + v.add_decl("\}") v.add_decl("\};") - return true end # Globally compile the table of the class mclass @@ -767,335 +735,202 @@ class SeparateCompiler do var mtype = mclass.intro.bound_mtype var c_name = mclass.c_name + var c_instance_name = mclass.c_instance_name var vft = self.method_tables[mclass] var attrs = self.attr_tables[mclass] var v = new_visitor - v.add_decl("/* runtime class {c_name} */") - var idnum = classids.length - var idname = "ID_" + c_name - self.classids[mtype] = idname - #self.header.add_decl("#define {idname} {idnum} /* {c_name} */") + var is_dead = runtime_type_analysis != null and not runtime_type_analysis.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray" - self.header.add_decl("struct class_{c_name} \{") - self.header.add_decl("int box_kind;") - self.header.add_decl("nitmethod_t vft[{vft.length}];") - self.header.add_decl("\};") + v.add_decl("/* runtime class {c_name} */") # Build class vft - self.header.add_decl("extern const struct class_{c_name} class_{c_name};") - v.add_decl("const struct class_{c_name} class_{c_name} = \{") - v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */") - v.add_decl("\{") - for i in [0 .. vft.length[ do - var mpropdef = vft[i] - if mpropdef == null then - v.add_decl("NULL, /* empty */") - else - if true or mpropdef.mclassdef.bound_mtype.ctype != "val*" then - v.add_decl("(nitmethod_t)VIRTUAL_{mpropdef.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */") + if not is_dead then + self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};") + v.add_decl("const struct class class_{c_name} = \{") + v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */") + v.add_decl("\{") + for i in [0 .. vft.length[ do + var mpropdef = vft[i] + if mpropdef == null then + v.add_decl("NULL, /* empty */") else - v.add_decl("(nitmethod_t){mpropdef.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */") + assert mpropdef isa MMethodDef + var rf = mpropdef.virtual_runtime_function + v.require_declaration(rf.c_name) + v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */") end end + v.add_decl("\}") + v.add_decl("\};") end - v.add_decl("\}") - v.add_decl("\};") if mtype.ctype != "val*" then - #Build instance struct - self.header.add_decl("struct instance_{c_name} \{") - self.header.add_decl("const struct type *type;") - self.header.add_decl("const struct class *class;") - self.header.add_decl("{mtype.ctype} value;") - self.header.add_decl("\};") + if mtype.mclass.name == "Pointer" or mtype.mclass.kind != extern_kind then + #Build instance struct + self.header.add_decl("struct instance_{c_instance_name} \{") + self.header.add_decl("const struct type *type;") + self.header.add_decl("const struct class *class;") + self.header.add_decl("{mtype.ctype} value;") + self.header.add_decl("\};") + end if not self.runtime_type_analysis.live_types.has(mtype) then return - self.header.add_decl("val* BOX_{c_name}({mtype.ctype});") + #Build BOX + self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype});") v.add_decl("/* allocate {mtype} */") v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype} value) \{") - v.add("struct instance_{c_name}*res = GC_MALLOC(sizeof(struct instance_{c_name}));") - v.add("res->type = (struct type*) &type_{c_name};") - v.add("res->class = (struct class*) &class_{c_name};") + v.add("struct instance_{c_instance_name}*res = nit_alloc(sizeof(struct instance_{c_instance_name}));") + v.require_declaration("type_{c_name}") + v.add("res->type = &type_{c_name};") + v.require_declaration("class_{c_name}") + v.add("res->class = &class_{c_name};") v.add("res->value = value;") v.add("return (val*)res;") v.add("\}") return - end - - var is_native_array = mclass.name == "NativeArray" - - var sig - if is_native_array then - sig = "int length, struct type* type" - else - sig = "struct type* type" - end - - #Build instance struct - #extern const struct instance_array__NativeArray instance_array__NativeArray; - self.header.add_decl("struct instance_{c_name} \{") - self.header.add_decl("const struct type *type;") - self.header.add_decl("const struct class *class;") - self.header.add_decl("nitattribute_t attrs[{attrs.length}];") - if is_native_array then + else if mclass.name == "NativeArray" then + #Build instance struct + self.header.add_decl("struct instance_{c_instance_name} \{") + self.header.add_decl("const struct type *type;") + self.header.add_decl("const struct class *class;") # NativeArrays are just a instance header followed by an array of values self.header.add_decl("val* values[0];") - end - self.header.add_decl("\};") - - - self.header.add_decl("{mtype.ctype} NEW_{c_name}({sig});") - v.add_decl("/* allocate {mtype} */") - v.add_decl("{mtype.ctype} NEW_{c_name}({sig}) \{") - var res = v.new_named_var(mtype, "self") - res.is_exact = true - if is_native_array then - var mtype_elt = mtype.arguments.first - v.add("{res} = GC_MALLOC(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));") - else - v.add("{res} = GC_MALLOC(sizeof(struct instance_{c_name}));") - end - v.add("{res}->type = type;") - if v.compiler.modelbuilder.toolcontext.opt_hardening.value then - v.add("if(type == NULL) \{") - v.add_abort("type null") - v.add("\}") - if not v.compiler.modelbuilder.toolcontext.opt_generic_tree.value then - v.add("if(type->unanchored_table == NULL) \{") - v.add("fprintf(stderr, \"Insantiation of a dead type: %s\\n\", type->name);") - v.add_abort("type dead") - v.add("\}") - end - end - v.add("{res}->class = (struct class*) &class_{c_name};") - - self.generate_init_attr(v, res, mtype) - v.add("return {res};") - v.add("\}") - - generate_check_init_instance(mtype) - end - - redef fun generate_check_init_instance(mtype) - do - if self.modelbuilder.toolcontext.opt_no_check_initialization.value then return - - var v = self.new_visitor - var c_name = mtype.mclass.c_name - var res = new RuntimeVariable("self", mtype, mtype) - self.header.add_decl("void CHECK_NEW_{c_name}({mtype.ctype});") - v.add_decl("/* allocate {mtype} */") - v.add_decl("void CHECK_NEW_{c_name}({mtype.ctype} {res}) \{") - self.generate_check_attr(v, res, mtype) - v.add("\}") - end - - redef fun new_visitor do return new SeparateCompilerVisitor(self) - - redef fun display_stats - do - super - if self.modelbuilder.toolcontext.opt_typing_table_metrics.value then - display_sizes - end - end - - fun display_sizes - do - print "# size of tables" - print "\trs size\trs hole\tst size\tst hole" - var rt_table = 0 - var rt_holes = 0 - var st_table = 0 - var st_holes = 0 - var rtables = unanchored_types_tables - if rtables != null then - for unanch, table in rtables do - rt_table += table.length - for e in table do if e == null then rt_holes += 1 - end - end - - var ttables = type_tables - if ttables != null then - for t, table in ttables do - st_table += table.length - for e in table do if e == null then st_holes += 1 - end - end - print "\t{rt_table}\t{rt_holes}\t{st_table}\t{st_holes}" - end -end - -# The C function associated to a methoddef separately compiled -class SeparateRuntimeFunction - super AbstractRuntimeFunction - - redef fun build_c_name: String - do - return "{mmethoddef.c_name}" - end - - redef fun to_s do return self.mmethoddef.to_s - - redef fun compile_to_c(compiler) - do - var mmethoddef = self.mmethoddef - - var recv = self.mmethoddef.mclassdef.bound_mtype - var v = compiler.new_visitor - var selfvar = new RuntimeVariable("self", recv, recv) - var arguments = new Array[RuntimeVariable] - var frame = new Frame(v, mmethoddef, recv, arguments) - v.frame = frame - - var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) - - var sig = new Buffer - var comment = new Buffer - var ret = msignature.return_mtype - if ret != null then - sig.append("{ret.ctype} ") - else if mmethoddef.mproperty.is_new then - ret = recv - sig.append("{ret.ctype} ") - else - sig.append("void ") - end - sig.append(self.c_name) - sig.append("({selfvar.mtype.ctype} {selfvar}") - comment.append("(self: {selfvar}") - arguments.add(selfvar) - for i in [0..msignature.arity[ do - var mtype = msignature.mparameters[i].mtype - if i == msignature.vararg_rank then - mtype = v.get_class("Array").get_mtype([mtype]) - end - comment.append(", {mtype}") - sig.append(", {mtype.ctype} p{i}") - var argvar = new RuntimeVariable("p{i}", mtype, mtype) - arguments.add(argvar) - end - sig.append(")") - comment.append(")") - if ret != null then - comment.append(": {ret}") - end - compiler.header.add_decl("{sig};") - - v.add_decl("/* method {self} for {comment} */") - v.add_decl("{sig} \{") - if ret != null then - frame.returnvar = v.new_var(ret) - end - frame.returnlabel = v.get_name("RET_LABEL") - - if recv != arguments.first.mtype then - #print "{self} {recv} {arguments.first}" - end - mmethoddef.compile_inside_to_c(v, arguments) - - v.add("{frame.returnlabel.as(not null)}:;") - if ret != null then - v.add("return {frame.returnvar.as(not null)};") - end - v.add("\}") - end -end - -# The C function associated to a methoddef on a primitive type, stored into a VFT of a class -# The first parameter (the reciever) is always typed by val* in order to accept an object value -class VirtualRuntimeFunction - super AbstractRuntimeFunction - - redef fun build_c_name: String - do - return "VIRTUAL_{mmethoddef.c_name}" - end - - redef fun to_s do return self.mmethoddef.to_s - - redef fun compile_to_c(compiler) - do - var mmethoddef = self.mmethoddef - - var recv = self.mmethoddef.mclassdef.bound_mtype - var v = compiler.new_visitor - var selfvar = new RuntimeVariable("self", v.object_type, recv) - var arguments = new Array[RuntimeVariable] - var frame = new Frame(v, mmethoddef, recv, arguments) - v.frame = frame - - var sig = new Buffer - var comment = new Buffer + self.header.add_decl("\};") - # Because the function is virtual, the signature must match the one of the original class - var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef - var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) - var ret = msignature.return_mtype - if ret != null then - sig.append("{ret.ctype} ") - else if mmethoddef.mproperty.is_new then - ret = recv - sig.append("{ret.ctype} ") - else - sig.append("void ") - end - sig.append(self.c_name) - sig.append("({selfvar.mtype.ctype} {selfvar}") - comment.append("(self: {selfvar}") - arguments.add(selfvar) - for i in [0..msignature.arity[ do - var mtype = msignature.mparameters[i].mtype - if i == msignature.vararg_rank then - mtype = v.get_class("Array").get_mtype([mtype]) - end - comment.append(", {mtype}") - sig.append(", {mtype.ctype} p{i}") - var argvar = new RuntimeVariable("p{i}", mtype, mtype) - arguments.add(argvar) - end - sig.append(")") - comment.append(")") - if ret != null then - comment.append(": {ret}") + #Build NEW + self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);") + v.add_decl("/* allocate {mtype} */") + v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{") + var res = v.new_named_var(mtype, "self") + res.is_exact = true + var mtype_elt = mtype.arguments.first + v.add("{res} = nit_alloc(sizeof(struct instance_{c_instance_name}) + length*sizeof({mtype_elt.ctype}));") + v.add("{res}->type = type;") + hardening_live_type(v, "type") + v.require_declaration("class_{c_name}") + v.add("{res}->class = &class_{c_name};") + v.add("return {res};") + v.add("\}") + return end - compiler.header.add_decl("{sig};") - v.add_decl("/* method {self} for {comment} */") - v.add_decl("{sig} \{") - if ret != null then - frame.returnvar = v.new_var(ret) + #Build NEW + self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);") + v.add_decl("/* allocate {mtype} */") + v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{") + if is_dead then + v.add_abort("{mclass} is DEAD") + else + var res = v.new_named_var(mtype, "self") + res.is_exact = true + v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));") + v.add("{res}->type = type;") + hardening_live_type(v, "type") + v.require_declaration("class_{c_name}") + v.add("{res}->class = &class_{c_name};") + self.generate_init_attr(v, res, mtype) + v.add("return {res};") end - frame.returnlabel = v.get_name("RET_LABEL") + v.add("\}") + end - if recv != arguments.first.mtype then - #print "{self} {recv} {arguments.first}" - end - mmethoddef.compile_inside_to_c(v, arguments) + # Add a dynamic test to ensure that the type referenced by `t` is a live type + fun hardening_live_type(v: VISITOR, t: String) + do + if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return + v.add("if({t} == NULL) \{") + v.add_abort("type null") + v.add("\}") + v.add("if({t}->table_size == 0) \{") + v.add("fprintf(stderr, \"Insantiation of a dead type: %s\\n\", {t}->name);") + v.add_abort("type dead") + v.add("\}") + end - v.add("{frame.returnlabel.as(not null)}:;") - if ret != null then - v.add("return {frame.returnvar.as(not null)};") + redef fun new_visitor do return new SeparateCompilerVisitor(self) + + # Stats + + private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]] + private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]] + protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] + protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]] + + redef fun display_stats + do + super + if self.modelbuilder.toolcontext.opt_tables_metrics.value then + display_sizes end - v.add("\}") end - redef fun call(v, arguments) + fun display_sizes + do + print "# size of subtyping tables" + print "\ttotal \tholes" + var total = 0 + var holes = 0 + for t, table in type_tables do + total += table.length + for e in table do if e == null then holes += 1 + end + print "\t{total}\t{holes}" + + print "# size of resolution tables" + print "\ttotal \tholes" + total = 0 + holes = 0 + for t, table in resolution_tables do + total += table.length + for e in table do if e == null then holes += 1 + end + print "\t{total}\t{holes}" + + print "# size of methods tables" + print "\ttotal \tholes" + total = 0 + holes = 0 + for t, table in method_tables do + total += table.length + for e in table do if e == null then holes += 1 + end + print "\t{total}\t{holes}" + + print "# size of attributes tables" + print "\ttotal \tholes" + total = 0 + holes = 0 + for t, table in attr_tables do + total += table.length + for e in table do if e == null then holes += 1 + end + print "\t{total}\t{holes}" + end + + redef fun compile_nitni_structs do - abort - # TODO ? + self.header.add_decl("struct nitni_instance \{struct instance *value;\};") + end + + redef fun finalize_ffi_for_module(nmodule) + do + var old_module = self.mainmodule + self.mainmodule = nmodule.mmodule.as(not null) + super + self.mainmodule = old_module end end # A visitor on the AST of property definition that generate the C code of a separate compilation process. class SeparateCompilerVisitor - super GlobalCompilerVisitor # TODO better separation of concerns + super AbstractCompilerVisitor + + redef type COMPILER: SeparateCompiler - redef fun adapt_signature(m: MMethodDef, args: Array[RuntimeVariable]) + redef fun adapt_signature(m, args) do var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true) var recv = args.first @@ -1111,31 +946,32 @@ class SeparateCompilerVisitor end end - # Box or unbox a value to another type iff a C type conversion is needed - # ENSURE: result.mtype.ctype == mtype.ctype - redef fun autobox(value: RuntimeVariable, mtype: MType): RuntimeVariable + redef fun autobox(value, mtype) do if value.mtype == mtype then return value else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then return value else if value.mtype.ctype == "val*" then - return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype) + return self.new_expr("((struct instance_{mtype.c_instance_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype) else if mtype.ctype == "val*" then var valtype = value.mtype.as(MClassType) var res = self.new_var(mtype) - if not compiler.runtime_type_analysis.live_types.has(valtype) then + if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */") - self.add("printf(\"Dead code executed!\\n\"); exit(1);") + self.add("printf(\"Dead code executed!\\n\"); show_backtrace(1);") return res end + self.require_declaration("BOX_{valtype.c_name}") self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */") return res + else if value.mtype.cname_blind == "void*" and mtype.cname_blind == "void*" then + return value else # Bad things will appen! var res = self.new_var(mtype) self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */") - self.add("printf(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); exit(1);") + self.add("printf(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);") return res end end @@ -1147,16 +983,33 @@ class SeparateCompilerVisitor if value.mtype.ctype == "val*" then return "{value}->type" else + compiler.undead_types.add(value.mtype) + self.require_declaration("type_{value.mtype.c_name}") return "(&type_{value.mtype.c_name})" end end redef fun send(mmethod, arguments) do + self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), arguments) + if arguments.first.mcasttype.ctype != "val*" then - return self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments) + # In order to shortcut the primitive, we need to find the most specific method + # Howverr, because of performance (no flattening), we always work on the realmainmodule + var m = self.compiler.mainmodule + self.compiler.mainmodule = self.compiler.realmainmodule + var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments) + self.compiler.mainmodule = m + return res end + return table_send(mmethod, arguments, mmethod.const_color) + end + + private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable + do + assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.") + var res: nullable RuntimeVariable var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true) var ret = msignature.return_mtype @@ -1175,7 +1028,6 @@ class SeparateCompilerVisitor var recv = arguments.first s.append("val*") ss.append("{recv}") - self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), arguments) for i in [0..msignature.arity[ do var a = arguments[i+1] var t = msignature.mparameters[i].mtype @@ -1212,7 +1064,7 @@ class SeparateCompilerVisitor self.add("{res} = 1; /* {arg.inspect} cannot be null */") end else - self.add_abort("Reciever is null") + self.add_abort("Receiver is null") end self.add("\} else \{") end @@ -1235,7 +1087,8 @@ class SeparateCompilerVisitor var r if ret == null then r = "void" else r = ret.ctype - var call = "(({r} (*)({s}))({arguments.first}->class->vft[{mmethod.const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/" + self.require_declaration(const_color) + var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/" if res != null then self.add("{res} = {call};") @@ -1252,6 +1105,8 @@ class SeparateCompilerVisitor redef fun call(mmethoddef, recvtype, arguments) do + assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.") + var res: nullable RuntimeVariable var ret = mmethoddef.msignature.return_mtype if mmethoddef.mproperty.is_new then @@ -1283,6 +1138,7 @@ class SeparateCompilerVisitor # Autobox arguments self.adapt_signature(mmethoddef, arguments) + self.require_declaration(mmethoddef.c_name) if res == null then self.add("{mmethoddef.c_name}({arguments.join(", ")});") return null @@ -1293,12 +1149,26 @@ class SeparateCompilerVisitor return res end + redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable + do + if arguments.first.mcasttype.ctype != "val*" then + # In order to shortcut the primitive, we need to find the most specific method + # However, because of performance (no flattening), we always work on the realmainmodule + var main = self.compiler.mainmodule + self.compiler.mainmodule = self.compiler.realmainmodule + var res = self.monomorphic_super_send(m, recvtype, arguments) + self.compiler.mainmodule = main + return res + end + return table_send(m.mproperty, arguments, m.const_color) + end + redef fun vararg_instance(mpropdef, recv, varargs, elttype) do # A vararg must be stored into an new array # The trick is that the dymaic type of the array may depends on the receiver # of the method (ie recv) if the static type is unresolved - # This is more complex than usual because the unanchored type must not be resolved + # This is more complex than usual because the unresolved type must not be resolved # with the current receiver (ie self). # Therefore to isolate the resolution from self, a local Frame is created. # One can see this implementation as an inlined method of the receiver whose only @@ -1327,6 +1197,7 @@ class SeparateCompilerVisitor return res end + self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/") else @@ -1349,6 +1220,7 @@ class SeparateCompilerVisitor var intromclassdef = a.intro.mclassdef ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) + self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then # Get the attribute or a box (ie. always a val*) var cret = self.object_type.as_nullable @@ -1394,6 +1266,7 @@ class SeparateCompilerVisitor # Adapt the value to the declared type value = self.autobox(value, mtype) + self.require_declaration(a.const_color) if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then var attr = "{recv}->attrs[{a.const_color}]" if mtype.ctype != "val*" then @@ -1401,7 +1274,7 @@ class SeparateCompilerVisitor # The attribute is primitive, thus we store it in a box # The trick is to create the box the first time then resuse the box self.add("if ({attr} != NULL) \{") - self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */") + self.add("((struct instance_{mtype.c_instance_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */") self.add("\} else \{") value = self.autobox(value, self.object_type.as_nullable) self.add("{attr} = {value}; /* {a} on {recv.inspect} */") @@ -1415,82 +1288,56 @@ class SeparateCompilerVisitor end end - # Build livetype structure retrieving - #ENSURE: mtype.need_anchor - fun retrieve_anchored_livetype(mtype: MGenericType, buffer: Buffer) do - assert mtype.need_anchor - - var compiler = self.compiler.as(SeparateCompiler) - for ft in mtype.arguments do - - var ntype = ft - var s: String = "" - if ntype isa MNullableType then - ntype = ntype.mtype - end + # Check that mtype is a live open type + fun hardening_live_open_type(mtype: MType) + do + if not compiler.modelbuilder.toolcontext.opt_hardening.value then return + self.require_declaration(mtype.const_color) + var col = mtype.const_color + self.add("if({col} == -1) \{") + self.add("fprintf(stderr, \"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");") + self.add_abort("open type dead") + self.add("\}") + end - var recv = self.frame.arguments.first - var recv_type_info = self.type_info(recv) - if ntype isa MParameterType then - if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then - buffer.append("[{recv_type_info}->fts_table->types[HASH({recv_type_info}->fts_table->mask, {ntype.const_color})]->livecolor]") - else - buffer.append("[{recv_type_info}->fts_table->types[{ntype.const_color}]->livecolor]") - end - else if ntype isa MVirtualType then - if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then - buffer.append("[{recv_type_info}->vts_table->types[HASH({recv_type_info}->vts_table->mask, {ntype.mproperty.const_color})]->livecolor]") - else - buffer.append("[{recv_type_info}->vts_table->types[{ntype.mproperty.const_color}]->livecolor]") - end - else if ntype isa MGenericType and ntype.need_anchor then - var bbuff = new Buffer - retrieve_anchored_livetype(ntype, bbuff) - buffer.append("[livetypes_{ntype.mclass.c_name}{bbuff.to_s}->livecolor]") - else if ntype isa MClassType then - compiler.undead_types.add(ft) - buffer.append("[type_{ft.c_name}.livecolor]") - else - self.add("printf(\"NOT YET IMPLEMENTED: init_instance(%s, {mtype}).\\n\", \"{ft}\"); exit(1);") - end - end + # Check that mtype it a pointer to a live cast type + fun hardening_cast_type(t: String) + do + if not compiler.modelbuilder.toolcontext.opt_hardening.value then return + add("if({t} == NULL) \{") + add_abort("cast type null") + add("\}") + add("if({t}->id == -1 || {t}->color == -1) \{") + add("fprintf(stderr, \"Try to cast on a dead cast type: %s\\n\", {t}->name);") + add_abort("cast type dead") + add("\}") end redef fun init_instance(mtype) do - var compiler = self.compiler.as(SeparateCompiler) + self.require_declaration("NEW_{mtype.mclass.c_name}") + var compiler = self.compiler if mtype isa MGenericType and mtype.need_anchor then - if compiler.modelbuilder.toolcontext.opt_generic_tree.value then - var buff = new Buffer - retrieve_anchored_livetype(mtype, buff) - mtype = self.anchor(mtype).as(MClassType) - return self.new_expr("NEW_{mtype.mclass.c_name}((struct type *) livetypes_{mtype.mclass.c_name}{buff.to_s})", mtype) + hardening_live_open_type(mtype) + link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) + var recv = self.frame.arguments.first + var recv_type_info = self.type_info(recv) + self.require_declaration(mtype.const_color) + if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then + return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {mtype.const_color})])", mtype) else - link_unanchored_type(self.frame.mpropdef.mclassdef, mtype) - var recv = self.frame.arguments.first - var recv_type_info = self.type_info(recv) - if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then - return self.new_expr("NEW_{mtype.mclass.c_name}((struct type *) {recv_type_info}->unanchored_table->types[HASH({recv_type_info}->unanchored_table->mask, {mtype.const_color})])", mtype) - else - return self.new_expr("NEW_{mtype.mclass.c_name}((struct type *) {recv_type_info}->unanchored_table->types[{mtype.const_color}])", mtype) - end + return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) end end compiler.undead_types.add(mtype) - return self.new_expr("NEW_{mtype.mclass.c_name}((struct type *) &type_{mtype.c_name})", mtype) - end - - redef fun check_init_instance(value, mtype) - do - if self.compiler.modelbuilder.toolcontext.opt_no_check_initialization.value then return - self.add("CHECK_NEW_{mtype.mclass.c_name}({value});") + self.require_declaration("type_{mtype.c_name}") + return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype) end - redef fun type_test(value, mtype, tag) do self.add("/* {value.inspect} isa {mtype} */") - var compiler = self.compiler.as(SeparateCompiler) + var compiler = self.compiler var recv = self.frame.arguments.first var recv_type_info = self.type_info(recv) @@ -1521,42 +1368,22 @@ class SeparateCompilerVisitor if ntype.need_anchor then var type_struct = self.get_name("type_struct") - self.add_decl("struct type* {type_struct};") - - # For unresolved types, there is two implementations - if compiler.modelbuilder.toolcontext.opt_generic_tree.value then - # Either with the generic_tree and the construction of a type - if ntype isa MParameterType then - if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then - self.add("{type_struct} = {recv_type_info}->fts_table->types[HASH({recv_type_info}->fts_table->mask, {ntype.const_color})];") - else - self.add("{type_struct} = {recv_type_info}->fts_table->types[{ntype.const_color}];") - end - else if ntype isa MVirtualType then - var vtcolor = ntype.mproperty.const_color - if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then - self.add("{type_struct} = {recv_type_info}->vts_table->types[HASH({recv_type_info}->vts_table->mask, {vtcolor})];") - else - self.add("{type_struct} = {recv_type_info}->vts_table->types[{vtcolor}];") - end - else if ntype isa MGenericType then - var buff = new Buffer - retrieve_anchored_livetype(ntype, buff) - self.add("{type_struct} = (struct type*)livetypes_{ntype.mclass.c_name}{buff.to_s};") - end + self.add_decl("const struct type* {type_struct};") + + # Either with resolution_table with a direct resolution + hardening_live_open_type(mtype) + link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) + self.require_declaration(mtype.const_color) + if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then + self.add("{type_struct} = {recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {mtype.const_color})];") else - # Either with unanchored_table with a direct resolution - link_unanchored_type(self.frame.mpropdef.mclassdef, ntype) - if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then - self.add("{type_struct} = {recv_type_info}->unanchored_table->types[HASH({recv_type_info}->unanchored_table->mask, {ntype.const_color})];") - else - self.add("{type_struct} = {recv_type_info}->unanchored_table->types[{ntype.const_color}];") - end - if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then - self.compiler.count_type_test_unresolved[tag] += 1 - self.add("count_type_test_unresolved_{tag}++;") - end + self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];") + end + if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then + self.compiler.count_type_test_unresolved[tag] += 1 + self.add("count_type_test_unresolved_{tag}++;") end + hardening_cast_type(type_struct) self.add("{cltype} = {type_struct}->color;") self.add("{idtype} = {type_struct}->id;") if maybe_null and accept_null == "0" then @@ -1567,6 +1394,8 @@ class SeparateCompilerVisitor end else if ntype isa MClassType then compiler.undead_types.add(mtype) + self.require_declaration("type_{mtype.c_name}") + hardening_cast_type("(&type_{mtype.c_name})") self.add("{cltype} = type_{mtype.c_name}.color;") self.add("{idtype} = type_{mtype.c_name}.id;") if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then @@ -1574,7 +1403,7 @@ class SeparateCompilerVisitor self.add("count_type_test_resolved_{tag}++;") end else - self.add("printf(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); exit(1);") + self.add("printf(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);") end # check color is in table @@ -1615,7 +1444,8 @@ class SeparateCompilerVisitor self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) - self.add("{res} = ({value2} != NULL) && ({value2}->class == (struct class*) &class_{mtype1.c_name}); /* is_same_type_test */") + self.require_declaration("class_{mtype1.c_name}") + self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */") end else self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */") @@ -1629,7 +1459,10 @@ class SeparateCompilerVisitor self.add_decl("const char* {res};") if value.mtype.ctype == "val*" then self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;" + else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind then + self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";" else + self.require_declaration("type_{value.mtype.c_name}") self.add "{res} = type_{value.mtype.c_name}.name;" end return res @@ -1650,7 +1483,8 @@ class SeparateCompilerVisitor self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/") else var mtype1 = value1.mtype.as(MClassType) - self.add("{res} = ({value2} != NULL) && ({value2}->class == (struct class*) &class_{mtype1.c_name});") + self.require_declaration("class_{mtype1.c_name}") + self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});") self.add("if ({res}) \{") self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});") self.add("\}") @@ -1708,12 +1542,12 @@ class SeparateCompilerVisitor end end if primitive != null then - test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value") + test.add("((struct instance_{primitive.c_instance_name}*){value1})->value == ((struct instance_{primitive.c_instance_name}*){value2})->value") else if can_be_primitive(value1) and can_be_primitive(value2) then test.add("{value1}->class == {value2}->class") var s = new Array[String] - for t, v in self.compiler.as(SeparateCompiler).box_kinds do - s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)" + for t, v in self.compiler.box_kinds do + s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_instance_name}*){value1})->value == ((struct instance_{t.c_instance_name}*){value2})->value)" end test.add("({s.join(" || ")})") else @@ -1753,7 +1587,6 @@ class SeparateCompilerVisitor self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};") end self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length]) - self.check_init_instance(res, arraytype) self.add("\}") return res end @@ -1761,34 +1594,31 @@ class SeparateCompilerVisitor fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable do var mtype = self.get_class("NativeArray").get_mtype([elttype]) + self.require_declaration("NEW_{mtype.mclass.c_name}") assert mtype isa MGenericType - var compiler = self.compiler.as(SeparateCompiler) + var compiler = self.compiler if mtype.need_anchor then - if compiler.modelbuilder.toolcontext.opt_generic_tree.value then - var buff = new Buffer - retrieve_anchored_livetype(mtype, buff) - mtype = self.anchor(mtype).as(MClassType) - return self.new_expr("NEW_{mtype.mclass.c_name}({length}, (struct type *) livetypes_{mtype.mclass.c_name}{buff.to_s})", mtype) + hardening_live_open_type(mtype) + link_unresolved_type(self.frame.mpropdef.mclassdef, mtype) + var recv = self.frame.arguments.first + var recv_type_info = self.type_info(recv) + self.require_declaration(mtype.const_color) + if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then + return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {mtype.const_color})])", mtype) else - link_unanchored_type(self.frame.mpropdef.mclassdef, mtype) - var recv = self.frame.arguments.first - var recv_type_info = self.type_info(recv) - if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then - return self.new_expr("NEW_{mtype.mclass.c_name}({length}, (struct type *) {recv_type_info}->unanchored_table->types[HASH({recv_type_info}->unanchored_table->mask, {mtype.const_color})])", mtype) - else - return self.new_expr("NEW_{mtype.mclass.c_name}({length}, (struct type *) {recv_type_info}->unanchored_table->types[{mtype.const_color}])", mtype) - end + return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype) end end compiler.undead_types.add(mtype) - return self.new_expr("NEW_{mtype.mclass.c_name}({length}, (struct type *) &type_{mtype.c_name})", mtype) + self.require_declaration("type_{mtype.c_name}") + return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype) end redef fun native_array_def(pname, ret_type, arguments) do var elttype = arguments.first.mtype var nclass = self.get_class("NativeArray") - var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values" + var recv = "((struct instance_{nclass.c_instance_name}*){arguments[0]})->values" if pname == "[]" then self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null))) return @@ -1796,7 +1626,7 @@ class SeparateCompilerVisitor self.add("{recv}[{arguments[1]}]={arguments[2]};") return else if pname == "copy_to" then - var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values" + var recv1 = "((struct instance_{nclass.c_instance_name}*){arguments[1]})->values" self.add("memcpy({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));") return end @@ -1810,74 +1640,220 @@ class SeparateCompilerVisitor self.ret(res) end - fun link_unanchored_type(mclassdef: MClassDef, mtype: MType) do + fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do assert mtype.need_anchor - var compiler = self.compiler.as(SeparateCompiler) - if not compiler.live_unanchored_types.has_key(self.frame.mpropdef.mclassdef) then - compiler.live_unanchored_types[self.frame.mpropdef.mclassdef] = new HashSet[MType] + var compiler = self.compiler + if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then + compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType] end - compiler.live_unanchored_types[self.frame.mpropdef.mclassdef].add(mtype) + compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype) end end -redef class MClass - # Return the name of the C structure associated to a Nit class - fun c_name: String do - var res = self.c_name_cache - if res != null then return res - res = "{intro_mmodule.name.to_cmangle}__{name.to_cmangle}" - self.c_name_cache = res +redef class MMethodDef + fun separate_runtime_function: AbstractRuntimeFunction + do + var res = self.separate_runtime_function_cache + if res == null then + res = new SeparateRuntimeFunction(self) + self.separate_runtime_function_cache = res + end return res end - private var c_name_cache: nullable String -end + private var separate_runtime_function_cache: nullable SeparateRuntimeFunction -redef class MType - fun const_color: String do return "COLOR_{c_name}" + fun virtual_runtime_function: AbstractRuntimeFunction + do + var res = self.virtual_runtime_function_cache + if res == null then + res = new VirtualRuntimeFunction(self) + self.virtual_runtime_function_cache = res + end + return res + end + private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction end -redef class MParameterType - redef fun c_name +# The C function associated to a methoddef separately compiled +class SeparateRuntimeFunction + super AbstractRuntimeFunction + + redef fun build_c_name: String do return "{mmethoddef.c_name}" + + redef fun to_s do return self.mmethoddef.to_s + + redef fun compile_to_c(compiler) do - var res = self.c_name_cache - if res != null then return res - res = "{self.mclass.c_name}_FT{self.rank}" - self.c_name_cache = res - return res + var mmethoddef = self.mmethoddef + + var recv = self.mmethoddef.mclassdef.bound_mtype + var v = compiler.new_visitor + var selfvar = new RuntimeVariable("self", recv, recv) + var arguments = new Array[RuntimeVariable] + var frame = new Frame(v, mmethoddef, recv, arguments) + v.frame = frame + + var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true) + + var sig = new Buffer + var comment = new Buffer + var ret = msignature.return_mtype + if ret != null then + sig.append("{ret.ctype} ") + else if mmethoddef.mproperty.is_new then + ret = recv + sig.append("{ret.ctype} ") + else + sig.append("void ") + end + sig.append(self.c_name) + sig.append("({selfvar.mtype.ctype} {selfvar}") + comment.append("({selfvar}: {selfvar.mtype}") + arguments.add(selfvar) + for i in [0..msignature.arity[ do + var mtype = msignature.mparameters[i].mtype + if i == msignature.vararg_rank then + mtype = v.get_class("Array").get_mtype([mtype]) + end + comment.append(", {mtype}") + sig.append(", {mtype.ctype} p{i}") + var argvar = new RuntimeVariable("p{i}", mtype, mtype) + arguments.add(argvar) + end + sig.append(")") + comment.append(")") + if ret != null then + comment.append(": {ret}") + end + compiler.provide_declaration(self.c_name, "{sig};") + + v.add_decl("/* method {self} for {comment} */") + v.add_decl("{sig} \{") + if ret != null then + frame.returnvar = v.new_var(ret) + end + frame.returnlabel = v.get_name("RET_LABEL") + + if recv != arguments.first.mtype then + #print "{self} {recv} {arguments.first}" + end + mmethoddef.compile_inside_to_c(v, arguments) + + v.add("{frame.returnlabel.as(not null)}:;") + if ret != null then + v.add("return {frame.returnvar.as(not null)};") + end + v.add("\}") + if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})" end end -redef class MVirtualType - redef fun c_name +# The C function associated to a methoddef on a primitive type, stored into a VFT of a class +# The first parameter (the reciever) is always typed by val* in order to accept an object value +class VirtualRuntimeFunction + super AbstractRuntimeFunction + + redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}" + + redef fun to_s do return self.mmethoddef.to_s + + redef fun compile_to_c(compiler) do - var res = self.c_name_cache - if res != null then return res - res = "{self.mproperty.intro.mclassdef.mclass.c_name}_VT{self.mproperty.name}" - self.c_name_cache = res - return res + var mmethoddef = self.mmethoddef + + var recv = self.mmethoddef.mclassdef.bound_mtype + var v = compiler.new_visitor + var selfvar = new RuntimeVariable("self", v.object_type, recv) + var arguments = new Array[RuntimeVariable] + var frame = new Frame(v, mmethoddef, recv, arguments) + v.frame = frame + + var sig = new Buffer + var comment = new Buffer + + # Because the function is virtual, the signature must match the one of the original class + var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef + var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true) + var ret = msignature.return_mtype + if ret != null then + sig.append("{ret.ctype} ") + else if mmethoddef.mproperty.is_new then + ret = recv + sig.append("{ret.ctype} ") + else + sig.append("void ") + end + sig.append(self.c_name) + sig.append("({selfvar.mtype.ctype} {selfvar}") + comment.append("({selfvar}: {selfvar.mtype}") + arguments.add(selfvar) + for i in [0..msignature.arity[ do + var mtype = msignature.mparameters[i].mtype + if i == msignature.vararg_rank then + mtype = v.get_class("Array").get_mtype([mtype]) + end + comment.append(", {mtype}") + sig.append(", {mtype.ctype} p{i}") + var argvar = new RuntimeVariable("p{i}", mtype, mtype) + arguments.add(argvar) + end + sig.append(")") + comment.append(")") + if ret != null then + comment.append(": {ret}") + end + compiler.provide_declaration(self.c_name, "{sig};") + + v.add_decl("/* method {self} for {comment} */") + v.add_decl("{sig} \{") + if ret != null then + frame.returnvar = v.new_var(ret) + end + frame.returnlabel = v.get_name("RET_LABEL") + + var subret = v.call(mmethoddef, recv, arguments) + if ret != null then + assert subret != null + v.assign(frame.returnvar.as(not null), subret) + end + + v.add("{frame.returnlabel.as(not null)}:;") + if ret != null then + v.add("return {frame.returnvar.as(not null)};") + end + v.add("\}") + if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})" end + + # TODO ? + redef fun call(v, arguments) do abort +end + +redef class MType + fun const_color: String do return "COLOR_{c_name}" + + # C name of the instance type to use + fun c_instance_name: String do return c_name end -redef class MNullableType - redef fun c_name +redef class MClassType + redef fun c_instance_name do return mclass.c_instance_name +end + +redef class MClass + # Extern classes use the C instance of kernel::Pointer + fun c_instance_name: String do - var res = self.c_name_cache - if res != null then return res - res = "nullable_{self.mtype.c_name}" - self.c_name_cache = res - return res + if kind == extern_kind then + return "kernel__Pointer" + else return c_name end end redef class MProperty - fun c_name: String do - var res = self.c_name_cache - if res != null then return res - res = "{self.intro.c_name}" - self.c_name_cache = res - return res - end - private var c_name_cache: nullable String + fun const_color: String do return "COLOR_{c_name}" +end +redef class MPropDef fun const_color: String do return "COLOR_{c_name}" end