
A Concise Reference of the Nit Language
This document attempts to be as short as possible while covering

all features of the language in depth. It is not a real manual to learn
the language since concepts are covered when required.
1 Basic Syntax of Nit
The syntax of Nit follows the Pascal tradition and is inspired by various
script languages (especially Ruby). Its main objective is readability.

Indentation is not meaningful in Nit; blocks usually starts with a
specific keyword and finish with end. Newlines are only meaningful
at the end of declarations, at the end of statements, and after some
specific keywords. The philosophy is that the newline is ignored if
something (a statement, a declaration, or whatever) obviously needs
more input; while the newline terminates lines that seems completed.
See the complete Nit grammar for more details.
a first complete statement that outputs "2"
print 1 + 1
the second statement is not yet finished
print 2 +
the end of the second statement , outputs "4"
2

Nit aims to achieve some uniformity in its usage of the common
punctuation: equal (=) is for assignment, double equal (==) is for equal-
ity test, column (:) is for type declaration, dot (.) is for polymorphism,
comma (,) separates elements, and quad (::) is for explicit designation.
1.1 Identifiers
Identifiers of modules, variables, methods, attributes and labels must
begin with a lowercase letter and can be followed by letters, digits, or
underscores. However, the usage of uppercase letters (and camelcase)
is discouraged and the usage of underscore to separate words in
identifiers is preferred: some_identifier.

Identifiers of classes and types must begin with an uppercase letter
and can be followed by letters, digits, or underscores. However the
usage of camelcase is preferred for class identifiers while formal types
should be written in all uppercase: SomeClass and SOME_VIRTUAL_TYPE.
1.2 Style
While Nit does not enforce any kind of source code formatting, the
following is encouraged:
• indentation uses the tabulation character and is displayed as 8

spaces;
• lines are less than 80 characters long;
• binary operators have spaces around them: 4 + 5, x = 5;
• columns (:) and commas (,) have a space after them but not

before: var x: X, [1, 2, 3];
• parenthesis and brackets do not need spaces around them;
• superfluous parenthesis should be avoided;
• the do of methods and the single do is on its own line and not

indented;
• the other do are not on a newline.

1.3 Comments and Documentation
As in many script languages, comments begin with a sharp (#) and run
up to the end of the line. Currently, there is no multiline-comments.

A comment block right before any definition of module, class, or
property, is considered as its documentation and will be displayed
as such by the autodoc. At this point, documentation is displayed
verbatim (no special formatting or meta-information).
doc . of foo
module foo

doc . of Bar
class Bar

doc . of baz
fun baz do end

end

2 Basic Types
2.1 Object
Nit is a full object language. Every value is an instance of a class.
Even the basic types described in this section.

Object is the root of the class hierarchy. All other classes, including
the basic ones, are a specialization of Object.

Classes, methods and operators presented in this section are defined
in the standard Nit library that is implicitly imported by every module.
Many other classes and methods are also defined in the standard
library. Please look at the specific standard library documentation
for all details.
2.2 Int and Float
1, -1 are Int literals, and 1.0, -0.1 are Float literals. Standard arithmetic
operators are available with a common precedence rules: *, /, and %

(modulo) ; then + and -. Some operators can be composed with the
assignment (=).
var i = 5
i += 2
print i # outputs 7

Conversion from Int to Float and Float to Int must be done with the
to_f and to_i methods.
2.3 String
Literal strings are enclosed within quotes ("). To insert a value inside
a literal string, include the values inside braces ({}). Braces have to
be escaped. + is the concatenation operator, but is less efficient than
the brace form.
var j = 5
print "j={j}; j +1={ j+1}" # outputs "j =5; j +1=6"

Common escaping sequences are available (\", \n, \t, etc.) plus the
escaped brace \{.
print "hel \" lo\nwo \{ rld"
outputs ‘hel "lo ‘ on a first line
and ‘wo{rld ‘ on a second line

Multi-line strings are enclosed with triple quotes ("""). Values are
inserted with triple braces ({{{value}}}). The multi-line form thus
allows verbatim new-lines, quotes and braces
print """ some text
with line breaks
and characters like " and {
but {{{ 1+2 }}} is rendered as 3
"""

All objects have a to_s method that converts the object to a String.
print is a top-level method that takes any number of arguments and
prints them to the standard output. print always adds a newline to
the output, another top-level method, printn, does not add a newline.
var x: String
x = 5. to_s # -> the String "5"
print x # outputs "5"

2.4 Bool
true and false are the only two Bool values. Standard Boolean operators
are available with the standard precedence rule: not; then and; then or.

Common comparison operators are available: == and != on all
objects; <, >, <=, >= and <=> on Comparable objects (which include Int,
String and others).
• ==, <, >, <=, >= and <=> are standard Nit operators thus are redefin-

able.
• and, or and not are not standard Nit operators: they are not re-

definable, also they are lazy and have adaptive typing flow effects.
• == is not for reference equality but for value equality (like equals

in Java). There is a special reference equality operator, is, but it
cannot be redefined and its usage is not recommended. Note that
while == is redefinable, it has a special adaptive typing flow effect
when used with null.

July 19, 2024 A Concise Reference of the Nit Language 1

• != is not a standard Nit operator. In fact x != y is syntactically
equivalent to not x == y.

2.5 Array
Array is a generic class, thus Array[Int] denotes an array of integers and
Array[Array[Bool]] denotes an array of array of Booleans. Literal arrays
can be declared with the bracket notation ([]). Empty arrays can also
be instantiated with the new keyword and elements added with the add

method. Elements can be retrieved or stored with the bracket operator.
var a = [1, 2, 3, 4] # A literal array of integers
print a. join (":") # outputs "1:2:3:4"
var b = new Array [Int] # A new empty array of integers
b.add (10)
b. add_all (a)
b.add (20)
print b[0] # outputs "10"
print b. length # outputs "6"
b[1] = 30
print b. join (", ") # outputs "10 , 30, 2, 3, 4, 20"

Note that the type of literal arrays is deduced using the static type
combination rule.
2.6 Range
Range is also a generic class but accepts only Discrete types (Int is dis-
crete). There are two kinds of literal ranges, the open one [1..5[that
excludes the last element, and the closed one [1..5] that includes it.
print ([1..5[. join (":")) # outputs "1:2:3:4"
print ([1..5]. join (":")) # outputs "1:2:3:4:5"

Ranges are mainly used in for loops.
2.7 HashMap
HashMap is a generic class that associates keys with values. There is no
literal hashmap, therefore the new keyword is used to create an empty
HashMap and the bracket operators are used to store and retrieve values.
var h = new HashMap [String , Int]
h associates strings to integers
h["six"] = 6
print h["six"] + 1 # outputs "7"

3 Control Structures
Traditional procedural control structures exist in Nit. They also often
exist in two versions: a one-liner and a block version.
3.1 Control Flow
Control structures dictate the control flow of the program. Nit heavily
refers to the control flow in its specification:
• No unreachable statement;
• No usage of undefined variables;
• No function without a return with a value;
• Adaptive typing.

Some structures alter the control flow, but are not described in this
section: and, or, not, or else and return.

Note that the control flow is determined only from the position,
the order and the nesting of the control structures. The real value
of the expressions used has no effect on the control flow analyses.
i f true then

return
else

return
end
print 1 # Compile error : unreachable statement

i f true then
return

end
print 1 # OK , but never executed

3.2 if

var exp = true
...
i f exp then print 1
i f exp then print 2 else print 2
i f exp then

print 1
print 2

end

i f exp then
print 1
print 2

else i f exp then
print 10
print 20

else
print 100
print 200

end

Note that the following example is invalid since the first line is syn-
tactically complete thus the newline terminate the whole if structure;
then an error is signaled since a statement cannot begin with else.
i f exp then print 1 # OK: complete ’if ’ structure
else print 2 # Syntax error : unexpected ’else ’

3.3 while

var x = 0
while x < 10 do x += 1
print x # outputs 10

while x < 20 do
print x # outputs 10 11 ... 19
x += 1

end

3.4 for
for declares an automatic variable used to iterates on Collection (Array

and Range are both Collection).
for i in [1..5] do print i # outputs 1 2 3 4 5
for i in [1, 4, 6] do

print i # outputs 1 4 6
end

for can also be used with reversed ranges to iterate in reverse order.
Step can also be used to specify the size of each increment at the

end of a for cycle.
for i in [9 .. 4]. step (-1) do print i # outputs 9 8 7 6 5 4
for i in [9 .. 4[. step (-2) do print i # outputs 9 7 5

3.5 loop
Infinite loops are mainly used with breaks. They are useful to
implement until loops or to simulate the exit when control of Ada.
loop

print 1
i f exp then break
print 2

end

Note that loop is different from while true because the control flow
does not consider the values of expressions.

3.6 do
Single do are used to create scoped variables or to be attached with
labeled breaks.
do

var j = 5
print j

end
j is not defined here

July 19, 2024 A Concise Reference of the Nit Language 2

3.7 break, continue and label
Unlabeled break exits the current for, while, loop, Unlabeled continue
skips the current for, while, loop.

label can be used with break or continue to act on a specific control
structure (not necessary the current one). The corresponding label
must be defined after the end keyword of the designated control
structure.
for i in [0..10[do

for j in [0..10[do
i f i + j > 15 then break label outer_loop

print "{i},{j}"
The ’break ’ breaks the ’for i’ loop

end
end label outer_loop

label can also be used with break and single do structures.
do

print 1 # printed
i f exp then break label block
print 2 # not printed because exp is true

end label block

3.8 abort
abort stops the program with a fatal error and prints a stack trace.
Since there is currently no exception nor run-time-errors, abort is
somewhat used to simulate them.
3.9 assert
assert verifies that a given Boolean expression is true, or else it aborts.
An optional label can be precised, it will be displayed on the error
message. An optional else can also be added and will be executed
before the abort.
assert bla: exp else

‘bla ‘ is the label
‘exp ‘ is the expression to verify
print " Fatal error in module blablabla ."
print " Please contact the customer service ."

end

4 Local Variables and Static Typing
var declares local variables. In fact, there is no global variable in
Nit, so in this document variable always refers to a local variable. A
variable is visible up to the end of the current control structure. Two
variables with the same name cannot coexist: no nesting nor masking.

Variables are bound to values. A variable cannot be used unless
it has a value in all control flow paths (à la Java).
var exp = 10
...
var a
i f exp > 0 then

a = 5
else

a = 7
end
print a # OK

var b
i f exp > 0 then

b = 6
end
print b # Compile error : y is possibly not initialized

4.1 Adaptive Typing
Nit features adaptive typing, which means that the static type of a vari-
able can change according to: the assignments of variables, the control
flow, and some special operators (and, or, or else, ==, !=, and isa).
var c # a variable
c = 5
static type is Int
print c + 1 # outputs 6
c = [6, 7]
static type is Array [Int]
print c[0] # outputs "6"

...
var d
i f exp > 0 then

d = 5
else

d = 6
end
Static type is Int
print d + 1

4.2 Variable Upper Bound
An optional type information can be added to a variable declaration.
This type is used as an upper bound of the type of the variable. When
an initial value is given in a variable declaration without a specific
type information, the static type of the initial value is used as an
upper bound. If no type and no initial value are given, the upper
bound is set to nullable Object.
var e: Int # Upper bound is Int
e = " Hello " # Compile error : expected Int

var f = 5 # Upper bound is Int
f = " Hello " # Compile error : expected Int

var g: Object # Upper bound is Object
g = 5 # OK since Int specializes Object

var h: Object = 5 # Upper bound is Object
h = " Hello " # OK

The adaptive typing flow is straightforward, therefore loops (for,
while, loop) have a special requirement: on entry, the upper bound
is set to the current static type; on exit, the upper bound is reset to
its previous value.
var l: Object
static type is Object , upper bound is Object
l = 5
static type is Int , bound remains Object
while l > 0 do

static type remains Int , bound sets to Int
l -= 1 # OK
l = " Hello " # Compile error : expected Int

end
static type is Int , bound reset to Object
l = " Hello " # OK

4.3 Type Checks
isa tests if an object is an instance of a given type. If the expression
used in an isa is a variable, then its static type is automatically
adapted, therefore avoiding the need of a specific cast.
var m: Object = 5
...
i f m isa Int then

static type of m is Int
print m * 10 # OK

end

Remember that adaptive typing follows the control flow, including
the Boolean operators.
var n = new Array [Object]
n.add (1)
n.add(true)
n.add("one")
n.add (11)

for i in n do
the static type of i is Object
i f not i isa Int then continue
now the static type of i is Int
print i * 10 # OK

end

An interesting example:
var max = 0
for i in n do

i f i isa Int and i > max then max = i
the > is valid since , in the right part
of the " and ", the static type of i is Int

end
print max # outputs 11

Note that type adaptation occurs only in an isa if the target type
is more specific than the current type.

July 19, 2024 A Concise Reference of the Nit Language 3

var col: Collection [Int] = [1, 2, 3]
i f col isa Comparable then

the static type is still Collection [Int]
even if the dynamic type of a is a subclass
of both Collection [Int] and Comparable
...

end

4.4 Nullable Types
null is a literal value that is only accepted by some specific static types.
However, thanks to adaptive typing, the static type management can
be mainly automatic.

nullable annotates types that can accept null or an expression of
a compatible nullable static type.
var o: nullable Int
var p: Int
o = 1 # OK
p = 1 # OK
o = null # OK
o = p # OK

p = null # Compile error
p = o # Compile error

Adaptive typing works well with nullable types.
var q
i f exp > 0 then

q = 5
else

q = null
end
The static type of q is nullable Int

Moreover, like the isa keyword, the == and != operators can adapt
the static type of a variable when compared to null.
var r: nullable Int = 10
...
i f r != null then

The static type of r is Int (without nullable)
print r + 6

end
The static type of r is nullable Int

And another example:
var s: nullable Int = 10
...
loop

i f s == null then break
The static type of s is Int
print s + 1

s = null
The static type of s is null

end

or else can be used to compose a nullable expression with any other
expression. The value of x or else y is x if x is not null and is y if x is
null. The static type of x or else y is the combination of the type of
y and the not null version of the type of x.
var t: nullable Int = 10
...
var u = t or else 0
the static type of u is Int (without nullable)

Note that nullable types require a special management for attributes
[??] and constructors [??].
4.5 Explicit Cast
as casts an expression to a type. The expression is either casted
successfully or there is an abort.
var v: Object = 5 # static type of v is Object
print v.as(Int) * 10 # outputs 50

print v.as(String) # aborts : cast failed

Note that as does not change the object nor does perform conversion.
var w: Object = 5 # static type of w is Object
print w.as(Int) + 10 # outputs "15"
print w. to_s + "10" # outputs "510"

Because of type adaptation, as is rarely used on variables. isa
(sometime coupled with assert) is preferred.
var x: Object = 5 # static type of x is Object
assert x isa Int
static type of x is now Int
print x * 10 # outputs 50

as(not null) can be used to cast an expression typed by a nullable
type to its non nullable version. This form keeps the programmer
from writing explicit static types.
var y: nullable Int = 5 # static type of y is nullable Int
print y.as(not null) * 10 # cast , outputs 50
print y.as(Int) * 10 # same cast , outputs 50
assert y != null # same cast , but type of y is now Int
print y * 10 # outputs 50

4.6 Static Type Combination Rule
Adaptive typing, literal arrays, and or else need to determine a static
type by combining other static types. This is done by using the
following rule:
• The final type is nullable if at least one of the types is nullable.
• The final type is the static type that is more general than all the

other types.
• If there is no such a type, and the thing typed is a variable, then

the final type is the upper bound type of the variable; else there
is a compilation error.

var dis: Discrete = ’a’
Note : Int < Discrete < Object
var z
i f exp > 0 then z = 1 else z = dis
static type is Discrete
i f exp < 0 then z = 1 else z = "1"
static type is nullable Object (upper bound)
var a1 = [1, dis] # a1 is a Array [Discrete]

var a2 = [1, "1"] # Compile error :
incompatible types Int and String

5 Modules
module declares the name of a module. While optional, it is recom-
mended to use it, at least for documentation purposes. The basename
of the source file must match the name declared with module. The
extension of the source file must be nit.

A module is made of, in order:
• the module declaration;
• module importations;
• class definitions (and refinements) ;
• top-level function definitions (and redefinitions) ;
• main instructions .
5.1 Module Importation
import declares dependencies between modules. By default (that
is without any import declaration), a module publicly imports the
module standard. Dependencies must not produce cycles. By importing
a module, the importer module can see and use classes and properties
defined in the imported module.
• import indicates a public importation. Importers of a given module

will also import its publicly imported modules. An analogy is
using #include in a header file (.h) in C/C++.

• private import indicates a private importation. Importers of a
given module will not automatically import its privately imported
modules. An analogy is using #include in a body file (.c) in C/C++.

• intrude import indicates an intrusive importation. intrude import
bypasses the private visibility and gives to the importer module
full access on the imported module. Such an import may only
be considered when modules are strongly bounded and developed
together. The closest, but insufficient, analogy is something like
including a body file in a body file in C/C++.

July 19, 2024 A Concise Reference of the Nit Language 4

5.2 Visibility
By default, all classes, methods, constructors and virtual types are pub-
lic which means freely usable by any importer module. Once something
is public it belongs to the API of the module and should not be changed.

private indicates classes and methods that do not belong to the
API. They are still freely usable inside the module but are invisible
in other modules (except those that use intrude import).

protected indicates restricted methods and constructors. Such
methods belong to the API of the module but they can only be used
with the self receiver. Basically, protected methods are limited to the
current class and its subclasses. Note that inside the module (and
in intrude importers), there is still no restriction.

Visibility of attributes is more specific and is detailed in its own
section.
module m1
class Foo

fun pub do ...
protected fun pro
do ...
private fun pri
do ...

end
private class Bar

fun pri2 do ...
end
var x: Foo = ...
var y: Bar = ...
All OK , it is
inside the module
x.foo
x.pro
x.pro
y. pri2

module m2
import m1
class Baz

super Foo
fun derp
do

self .pro # OK
end

end
var x: Foo = ...
x.pub # OK
x.pro # Compile error :

pro is protected
x.pri # Compile error :

unknown method pri

var y: Bar
Compile error :
unknown class Bar

5.3 Visibility Coherence
In order to guarantee the coherence in the visibility, the following
rules apply:
• Classes and properties privately imported are considered private:

they are not exported and do not belong to the API of the importer.
• Properties defined in a private class are private.
• A static type is private if it contains a private class or a private

virtual type.
• Signatures of public and protected properties cannot contain a

private static type.
• Bounds of public generic class and public virtual types cannot

contain a private static type.
6 Classes
interface, abstract class, class and enum are the four kinds of classes. All
these classes can be in multiple inheritance, can define new methods
and redefine inherited method (yes, even interfaces).

Here are the differences:
• interfaces can only specialize other interfaces, cannot have attributes,

cannot have constructors, cannot be instantiated.
• abstract classes cannot specialize enums, can have attributes, must

have constructors, cannot be instantiated.

• concrete classes (i.e. class) cannot specialize enums, can have
attributes, must have constructors, can be instantiated.

• enums (e.g. Int or Bool) can only specialize interfaces, cannot have
attributes, cannot have constructors, have proper instances but
they are not instantiated by the programmer—it means no new Int.
Note that at this point there is no user-defined enums.
All kinds of classes must have a name, can have some superclasses

and can have some definitions of properties. Properties are methods,
attributes, constructors and virtual types. All kinds of classes can also
be generic. When documentation refers to “classes” , it generally refers
to all four kinds. The term “concrete classes” is used to designate
the classes declared with the class keyword alone.
6.1 Class Specialization
super declares superclasses. Classes inherit methods, attributes and
virtual-types defined in their superclasses. Currently, constructors are
inherited in a specific manner.

Object is the root of the class hierarchy. It is an interface and all
other kinds of classes are implicitly a subclass of Object.

There is no repeated inheritance nor private inheritance. The
specialization between classes is transitive, therefore super declarations
are superfluous (thus ignored).
6.2 Class Refinement
redef allows modules to refine imported classes (even basic ones).
Refining a class means:
• adding new properties: methods, attributes, constructors, virtual

types;
• redefining existing properties: methods and constructors;
• adding new superclasses.

Note that the kind or the visibility of a class cannot be changed
by a refinement. Therefore, it is allowed to just write redef class X

regardless of the kind or the visibility of X.
In programs, the real instantiated classes are always the combination

of all their refinements.
redef class Int

fun fib: Int
do

i f sel f < 2 then return self
return (self -1). fib + (self -2). fib

end
end
Now all integers have the fib method
print 15. fib # outputs 610

7 Methods
fun declares methods. Methods must have a name, may have param-
eters, and may have a return type. Parameters are typed; however,
a single type can be used for multiple parameters.
fun foo(x, y: Int , s: String): Bool # ...

do declares the body of methods. Alike control structures, a
one-liner version is available. Therefore, the two following methods
are equivalent.
fun next1 (i: Int): Int
do

return i + 1
end

fun next2 (i: Int): Int do return i + 1

Inside the method body, parameters are considered as variables.
They can be assigned and are subject to adaptive typing.

self, the current receiver, is a special parameter. It is not assignable
but is subject to adaptive typing.

return exits the method and returns to the caller. In a function, the
return value must be provided with a return in all control flow paths.

July 19, 2024 A Concise Reference of the Nit Language 5

7.1 Method Call
Calling a method is usually done with the dotted notation x.foo(y, z).
The dotted notation can be chained.

A method call with no argument does not need parentheses. More-
over, even with arguments, the parentheses are not required in the
principal method of a statement.
var a = [1]
a.add 5 # no () for add
print a. length # no () for length , no () for print

However, this last facility requires that the first argument does not
start with a parenthesis or a bracket.
foo (x). bar # will be interpreted as (foo (x)). bar
foo [x]. bar # will be interpreted as (foo [x]). bar

7.2 Method Redefinition
redef denotes methods that are redefined in subclasses or in class
refinements. The number and the types of the parameters must
be invariant. Thus, there is no need to reprecise the types of the
parameters, only names are mandatory.

The return type can be redefined to be a more precise type. If
same type is returned, there is no need to reprecise it.

The visibility, also, cannot be changed, thus there is also no need
to reprecise it.
class Foo

implicitly an Object
therefore inherit ’==’ and ’to_s ’
var i: Int
redef fun to_s do return "Foo{ self .i}"
redef fun ==(f) do return f isa Foo and f.i == sel f .i

end

7.3 Abstract Methods
is abstract indicates methods defined without a body. Subclasses and
refinements can then redefine it (the redef is still mandatory) with
a proper body.
interface Foo

fun derp (x: Int): Int is abstract
end
class Bar

super Foo
redef fun derp (x) do return x + 1

end

Concrete classes may have abstract methods. It is up to a refinement
to provide a body.
7.4 Call to Super
super calls the “previous” definition of the method. It is used in
a redefinition of a method in a subclass or in a refinement, It can
be used with or without arguments; in the latter case, the original
arguments are implicitly used.

The super of Nit behaves more like the call-next-method of CLOS
than the super of Java or Smalltalk. It permits the traversal of com-
plex class hierarchies and refinement. Basically, super is polymorphic:
the method called by super is not only determined by the class of
definition of the method, but also by the dynamic type of self.

The principle is to produce a strict order of the redefinitions of a
method (the linearization). Each call to super call the next method
definition in the linearization. From a technical point of view, the
linearization algorithm used is based on C3. It ensures that:
• A definition comes after its redefinition.
• A redefinition in a refinement comes before a redefnition in its

superclass.
• The order of the declaration of the superclasses is used as the

ultimate disambiguation.

class A
fun derp : String do return "A"

end
class B

super A
redef fun derp do return "B" + super

end
class C

super A
redef fun derp do return "C" + super

end
class D

super B
super C
redef fun derp do return "D" + super
Here the linearization order of the class D is DBCA
D before B because D specializes B
B before A because B specializes A
D before C because D specializes C
C before A because C specializes A
B before C because in D ’super B’ is before ’super C’

end
var b = new B
print b. derp # outputs "BA"
var d = new D
print d. derp # outputs " DBCA "

7.5 Operators and Setters
Operators and setters are methods that require a special syntax for
their definition and their invocation.

• binary operators: +, -, *, /, \%, ==, <, >, <=,>=, <<, >> and <=>. Their
definitions require exactly one parameter and a return value.
Their invocation is done with x + y where x is the receiver, + is the
operator, and y is the argument.

• unary operator: -. Its definition requires a return value but no
parameter. Its invocation is done with -x where x is the receiver.

• bracket operator: []. Its definition requires one parameter or more
and a return value. Its invocation is done with x[y, z] where x is
the receiver, y the first argument and z the second argument.

• setters: something= where something can be any valid method identifier.
Their definitions require one parameter or more and no return
value. If there is only one parameter, the invocation is done
with x.something = y where x is the receiver and y the argument. If
there is more that one parameter, the invocation is done with
x.something(y, z) = t where x is the receiver, y the first argument, z

the second argument and t the last argument.
• bracket setter: []=. Its definition requires two parameters or more

and no return value. Its invocation is done with x[y, z] = t where
x is the receiver, y the first argument, z the second argument and
t the last argument.

class Foo
fun +(a: Bar): Baz do ...
fun -: Baz do ...
fun [](a: Bar): Baz do ...
fun derp (a: Bar): Baz do ...
fun derp =(a: Bar , b: Baz) do ...
fun []= (a: Bar , b: Baz) do ...

end
var a: Foo = ...
var b: Bar = ...
var c: Baz = ...
c = a + b
c = -b
c = a[b] # The bracket operator ’[]’
c = a. derp (b) # A normal method ’derp ’
a. derp (b) = c # A setter ’derp =’
a[b] = c # The bracket setter ’[]= ’

+= and -= are combinations of the assignment (=) and a binary oper-
ator. These feature are extended to setters where a single += is in fact
three method calls: a function call, the operator call, then a setter call.
a += c # equiv . a = a + c
a[b] += c # equiv . a[b] = a[b] + c
a.foo += c # equiv . a. foo = a. foo + c
a.bar(b) += c # equiv . a. bar (b) = a. bar (b) + c

July 19, 2024 A Concise Reference of the Nit Language 6

7.6 Variable Number of Arguments
A method can accept a variable number of arguments using ellipsis
(...). The definition use x: Foo... where x is the name of the parameter
and Foo a type. Inside the body, the static type of x is Array[Foo]. The
caller can use 0, 1, or more arguments for the parameter x. Only one
ellipsis is allowed in a signature.
fun foo(x: Int , y: Int ... , z: Int)
do

print "{x};{y. join (",")};{ z}"
end
foo (1, 2, 3, 4, 5) # outputs "1;2 ,3 ,4;5"
foo (1, 2, 3) # outputs "1;2;3"

7.7 Top-level Methods and Main Body
Some functions, like print, are usable everywhere simply without
using a specific receiver. Such methods are just defined outside any
classes. In fact, these methods are implicitly defined in the Object

interface, therefore inherited by all classes, therefore usable everywhere.
However, this principle may change in a future version.

In a module, the main body is a bunch of statements at the end of
a file. The main body of the main module is the program entry point.
In fact, the main method of a program is implicitly defined as the
redefinition of the method main of the Sys class; and the start of the
program is the implicit statement (Sys.new).main. Note that because
it is a redefinition, the main part can use super to call the “previous”
main part in the imported modules. If there is no main part in a
module, it is inherited from imported modules.

Top-level methods coupled with the main body can be used to pro-
gram in a pseudo-procedural way. Therefore, the following programs
are valid:
print " Hello World !"

fun sum(i, j: Int): Int
do

return i + j
end
print sum (4, 5)

7.8 Intern and Extern Methods
intern and extern indicate concrete methods whose body is not written
in Nit.

The body of intern methods is provided by the compiler itself for
performance or bootstrap reasons. For the same reasons, some intern
methods, like + in Int are not redefinable.

The body of extern methods is provided by libraries written in C;
for instance, the system libraries required for input/output. Extern
methods are always redefinable. See FFI [??] for more information
on extern methods.
8 Attributes
var, used inside concrete and abstract classes, declares attributes.
Attributes require a static type and can possibly have an initial value
(it may be any kind of expression, even including self)
class Foo

var i: Int = 5
fun dec(x: Int)
do

var k = sel f .i
i f k > x then self .i = k - x else sel f .i = 0

end
end

Note that from an API point of view, there is no way to distinguish
the read access of an attribute with a normal method neither to
distinguish a write access of an attribute with a setter. Therefore, the
read access of an attribute is called a getter while the write access
is called a setter.
var x = foo.bar # Is bar an attribute or a method ?
foo.bar = y # Is bar an attribute or a setter ?
In fact , we do not need to know .

8.1 Visibility of Attributes
By default, a getter is public and a setter is private. The visibility of
getters can be precised with the private or protected keywords. The
visibility of setters can be specified with an additional writable keyword.
class Foo2

var pub_pri : Int
protected var pro_pri : Int
var pub_pub : Int is writable
private var pri_pro : Int is protected writable
var pub_pri2 : Int is private writable # the default

end

8.2 Redefinition of Attributes
Getters and setters of attributes behave like genuine methods that
can be inherited and redefined. Getters and setters can also redefine
inherited methods. redef var declares that the getter is a redefinition
while redef writable declares that the setter is a redefinition.
interface Foo3

fun derp : Int is abstract
fun derp =(o: Int) is abstract

end
class Bar3

super Foo3
redef var derp is redef writable

end
class Baz3

super Bar3
redef fun derp do return 1
redef fun derp =(o) do end

end

9 Constructors
Constructors in Nit behave differently.

Their objective is double :
• be compatible with full multiple-inheritance
• be simple enough to be KISS and compatible with the principle

of least surprise.
9.1 new construction and simple classes
Classes in OO models are often a simple aggregates of attributes and
methods.

By default, the new construction requires a value for each attribute
defined in a class without a default value.
class Product

var id: String
var description : String
var price : Float

end
var p = new Product ("ABC", "Bla bla", 15.95)
assert p.id == "ABC"

In subclasses, additional attributes are automatically collected.
class Product

var id: String
var description : String
var price : Float

end
class Book

super Product
var author : String

end

var book = new Book ("ABC", "Bla bla", 15.95 , " John Doe")

9.2 special init method
The special init method is automatically invoked after the end of a
new construction. It is used to perform additional systematic tasks.

Because the init is run at the end of the initialization sequence,
initialized attributes are usable in the body.
class Product

var id: String
var description : String
var price : Float

end
class OverpricedProduct

super Product
init
do

price = price * 10.0

July 19, 2024 A Concise Reference of the Nit Language 7

end
end
var op = new OverpricedProduct ("ABC", "Bla bla", 15.95)
assert op. price . is_approx (159.50 , 0.001)

9.3 Uncollected attributes
There are three cases for which an attribute is not collected in a new
construction.
• Attributes with a default value
• Attributes with the annotation noinit

• Attributes introduced in refinement of classes
class Product

var id: String
var description : String
var price : Float

end
class TaxedProduct

super Product
var tax_rate = 9.90
var total_price : Float is noinit
init
do

total_price = price * (1.0 + tax_rate /100.0)
end

end
var tp = new TaxedProduct ("ABC", "Bla bla", 15.95)
assert tp. total_price . is_approx (17.52905 , 0.00001)

Note: The orchestration here is important. In order, the following
is executed:
1. All defauts values are computed and set
2. Setters are invoked.
3. init is invoked.

Therefore, total_price cannot be initialised with a default value,
because at the time of the computation of the default values, the
attribute price in not yet initialised.
9.4 Generalized initializers
Initializers are methods that are automatically invoked by new. In
fact, by default, the setter of an attribute is used as an initializer.

autoinit is used to register a method as a setter.
class Product

var id: String
var description : String
var price : Float

end
class FooProduct

super Product
fun set_xy (x, y: Int) is autoinit do z = x * 10 + y
var z: Int is noinit

end
var fp = new FooProduct ("ABC", "Bla bla", 15.96 , 1, 3)
assert fp.z == 13

Generalized setters are a powerful tool, but only needed in rare
specific cases. In most cases, there is no reason for an argument of
a new construction to not be stored in the object as a real attribute.
9.5 Inheritance
As explained above, one of the main advantage of these constructors
is their compatibility with multiple inheritance.
class Product

var id: String
var description : String
var price : Float

end
class OverpricedProduct

super Product
init
do

price = price * 10.0
end

end
class TaxedProduct

super Product
var tax_rate = 9.90
var total_price : Float is noinit
init
do

total_price = price * (1.0 + tax_rate /100.0)
end

end
class FooProduct

super Product
fun set_xy (x, y: Int) is autoinit do z = x * 10 + y
var z: Int is noinit

end
class MultiProduct

super OverpricedProduct
super TaxedProduct
super FooProduct

end
var mp = new MultiProduct ("ABC", "Bla bla", 15.96 , 1, 3)
assert mp.id == "ABC"
assert mp. price . is_approx (159.6 , 0.001)
assert mp. total_price . is_approx (175.4 , 0.001)
assert mp.z == 13

9.6 Named init

Named init are less flexible trough inheritance, thus should no be
used. They allow to have additional constructor for classes and more
control in the construction mechanism.

class Point
var x: Float
var y: Float

init origin
do

init (0.0 , 0.0)
end

init polar (r, phi: Float)
do

var x = r * phi.cos
var y = r * phi.sin
init (x, y)

end

redef fun to_s do return "({x},{y})"
end
var p1 = new Point (1.0 , 2.0)
assert p1. to_s == " (1.0 ,2.0) "
var p2 = new Point . origin
assert p2. to_s == " (0.0 ,0.0) "
var p3 = new Point . polar (1.0 , 2.0)
assert p3. to_s == " (-0.416 ,0.909) "

9.7 Legacy init

nameless init defined with argument or with an explicit visibility are
still accepted as a fallback of the old-constructors. They should not
be used since they will be removed in a near future.

9.8 new factories

new factories allow to completely shortcut the class instantiation
mechanism. It could be used to provide new syntax on non-concrete
class (mainly extern class).

new factories behave like a top-level function that return the result
of the construction. It is basically some kind of syntactic sugar.

abstract class Person
var age: Int
new(age: Int)
do

i f age >= 18 then
return new Adult (age)

else
return new Child (age)

end
end

end
class Adult

super Person
...

end
class Child

super Person
...

end

July 19, 2024 A Concise Reference of the Nit Language 8

10 Generic Classes

Generic classes are defined with formal generic parameters declared
within brackets. Formal generic parameters can then be used as a
regular type inside the class. Generic classes must always be qualified
when used.
class Pair [E]

var first : E
var second : E
fun is_same : Bool
do

return self . first == sel f . second
end

end
var p1 = new Pair [Int](1 , 2)
print p1. second * 10 # outputs "20"
print p1. is_same # outputs " false "
var p2 = new Pair [String](" hello ", " world ")
p2. first = " world "
print p2. is_same # outputs " true "

Unlike many object-oriented languages, generic classes in Nit yield a
kind of sub-typing. For example, Pair[Int] is a subtype of Pair[Object].
11 Virtual Types
type declares a virtual types in a class. A bound type is mandatory.
Virtual types can then be used as regular types in the class and
its subclasses. Subclasses can also redefine it with a more specific
bound type. One can see a virtual type as an internal formal generic
parameter or as a redefinable typedef.
class Foo

type E: Object
var derp : E

end
class Bar

super Foo
redef type E: Int

end
var b = new Bar (5)
print b. derp + 1 # outputs 6

July 19, 2024 A Concise Reference of the Nit Language 9

