geometry :: points_and_lines $ Deserializer
Abstract deserialization servicegeometry :: points_and_lines $ Deserializer
Abstract deserialization serviceSerializable::inspect
to show more useful information
serialization :: serialization_core
Abstract services to serialize Nit objects to different formatscore :: union_find
union–find algorithm using an efficient disjoint-set data structureaccept_scroll_and_zoom
gamnit :: camera_control_android
Two fingers camera manipulation, pinch to zoom and slide to scrollgamnit :: camera_control_linux
Mouse wheel and middle mouse button to control cameraEulerCamera
and App::frame_core_draw
to get a stereoscopic view
# Interfaces and classes to represent basic geometry needs.
module points_and_lines is serialize
import serialization
# Abstract 2d point, strongly linked to its implementation `Point`
interface IPoint[N: Numeric]
# Horizontal coordinate
fun x: N is abstract
# Vertical coordinate
fun y: N is abstract
redef fun to_s do return "({x}, {y})"
# Distance with `other`
#
# ~~~
# var p0 = new Point[Float](0.0, 0.0)
# var p1 = new Point[Float](2.0, 3.0)
# assert p0.dist(p1).is_approx(3.6, 0.01)
# ~~~
#
# If `self` or `other` are in 3D, the distance takes into account the 3 axes.
# For a 2D point, the Z coordinate is considered to be 0.
#
# ~~~
# var p2 = new Point3d[Float](0.0, 0.0, 0.0)
# var p3 = new Point3d[Float](2.0, 3.0, 4.0)
# var p4 = new Point[Float](2.0, 3.0)
# assert p2.dist(p3).is_approx(5.385, 0.01)
# assert p2.dist(p4).is_approx(3.606, 0.01)
# ~~~
fun dist(other: Point[Numeric]): N
do
return x.value_of(dist2(other).to_f.sqrt)
end
# Square of the distance with `other`
#
# May be used as an approximation to compare distance between two points.
#
# ~~~
# var p0 = new Point[Float](0.0, 0.0)
# var p1 = new Point[Float](2.0, 3.0)
# assert p0.dist2(p1) == 13.0
# ~~~
#
# If `self` or `other` are in 3D, the distance takes into account the 3 axes.
# For a 2D point, the Z coordinate is considered to be 0.
#
# ~~~
# var p2 = new Point3d[Float](0.0, 0.0, 0.0)
# var p3 = new Point3d[Float](2.0, 3.0, 4.0)
# var p4 = new Point[Float](2.0, 3.0)
# assert p2.dist2(p3).is_approx(29.0, 0.01)
# assert p2.dist2(p4).is_approx(13.0, 0.01)
# assert p4.dist2(p2).is_approx(13.0, 0.01)
# ~~~
fun dist2(other: Point[Numeric]): N
do return x.value_of(other.dist2_with_2d(self))
private fun dist2_with_2d(other: IPoint[Numeric]): Numeric
do return dist2_xy(other)
private fun dist2_with_3d(other: IPoint3d[Numeric]): Numeric
do return dist2_xy(other).add(other.z.mul(other.z))
# Square of the distance with `other` on the X and Y axes
private fun dist2_xy(other: IPoint[N]): N
do
var dx = other.x.sub(x)
var dy = other.y.sub(y)
var s = (dx.mul(dx)).add(dy.mul(dy))
return x.value_of(s)
end
# Linear interpolation between `self` and `other` at `p` out of `1.0`
#
# ~~~
# var p0 = new Point[Float](0.0, 0.0)
# var p1 = new Point[Float](2.0, 3.0)
# assert p0.lerp(p1, 0.0) == p0
# assert p0.lerp(p1, 1.0) == p1
# assert p0.lerp(p1, 0.5) == new Point[Float](1.0, 1.5)
# ~~~
#
# TODO 3D implementation.
fun lerp(other: Point[Numeric], p: Float): Point[N]
do
var xx = x.to_f + (other.x.to_f - x.to_f).to_f * p
var yy = y.to_f + (other.y.to_f - y.to_f).to_f * p
return new Point[N](x.value_of(xx), y.value_of(yy))
end
redef fun ==(o) do return o isa IPoint[Numeric] and o.x == x and o.y == y
end
# 2D point with `x` and `z`
class Point[N: Numeric]
super IPoint[N]
redef var x: N = 0.0 is writable, optional
redef var y: N = 0.0 is writable, optional
end
# Abstract 3d point, strongly linked to its implementation `Point3d`
interface IPoint3d[N: Numeric]
super IPoint[N]
# Depth coordinate
fun z: N is abstract
redef fun to_s do return "({x}, {y}, {z})"
redef fun dist2(other)
do return x.value_of(other.dist2_with_3d(self))
redef fun dist2_with_2d(other)
do return dist2_xy(other).add(z.mul(z))
redef fun dist2_with_3d(other)
do
var dz = other.z.sub(z)
var s = dist2_xy(other).add(dz.mul(dz))
return x.value_of(s)
end
# Get a new `Point3d[Float]` at an offset of `x, y, z` from `self`
#
# ~~~
# var origin = new Point3d[Float](1.0, 1.0, 1.0)
# assert origin.offset(1.0, 2.0, 3.0).to_s == "(2.0, 3.0, 4.0)"
# ~~~
fun offset(x, y, z: Numeric): Point3d[Float]
do return new Point3d[Float](self.x.to_f+x.to_f,
self.y.to_f+y.to_f,
self.z.to_f+z.to_f)
end
# 3D point with `x`, `y` and `z`
class Point3d[N: Numeric]
super IPoint3d[N]
super Point[N]
redef var z: N = 0.0 is writable, optional
end
# Abstract 2D line segment between two ordered points
interface ILine[N: Numeric]
# The type of points that ends the segment
type P: IPoint[N]
# Point at the left-end of the segment
fun point_left: P is abstract
# Point at the right-end of the segment
fun point_right: P is abstract
redef fun to_s do return "{point_left}--{point_right}"
end
# 2D line segment between two ordered points
class Line[N: Numeric]
super ILine[N]
redef var point_left
redef var point_right
init
do
var a = point_left
var b = point_right
if a.x > b.x then
point_left = b
point_right = a
end
end
end
# Abstract 3D line segment between two ordered points
interface ILine3d[N: Numeric]
super ILine[N]
redef type P: IPoint3d[N]
end
# 3D line segment between two ordered points
class Line3d[N: Numeric]
super Line[N]
super ILine3d[N]
end
lib/geometry/points_and_lines.nit:17,1--209,3