poset :: POSet :: defaultinit
# Pre-order set graph.
# This class models an incremental pre-order graph where new nodes and edges can be added (but not removed).
# Pre-order graph has two characteristics:
# * reflexivity: an element is in relation with itself (ie `self.has(e) implies self.has_edge(e,e)`)
# * transitivity: `(self.has_edge(e,f) and self.has_edge(f,g)) implies self.has_edge(e,g)`
#
# Nodes and edges are added to the POSet.
#
# ~~~
# var pos = new POSet[String]
# pos.add_edge("A", "B") # add A->B
# pos.add_edge("B", "C") # add B->C
# pos.add_node("D") # add unconnected node "D"
#
# # A -> B -> C D
#
# assert pos.has_edge("A", "B") == true # direct
# ~~~
#
# Since a poset is transitive, direct and indirect edges are considered by default.
# Direct edges (transitive-reduction) can also be considered independently.
#
# ~~~
# assert pos.has_edge("A", "C") == true # indirect
# assert pos.has_edge("A", "D") == false # no edge
# assert pos.has_edge("B", "A") == false # edges are directed
#
# assert pos.has_direct_edge("A", "B") == true # direct
# assert pos.has_direct_edge("A", "C") == false # indirect
# ~~~
#
# POSet are dynamic.
# It means that the transitivity is updated while new nodes and edges are added.
# The transitive-reduction (*direct edges*)) is also updated,
# so adding new edges can make some direct edge to disappear.
#
# ~~~
# pos.add_edge("A","D")
# pos.add_edge("D","B")
# pos.add_edge("A","E")
# pos.add_edge("E","C")
#
# # A -> D -> B
# # | |
# # v v
# # E ------> C
#
# assert pos.has_edge("D", "C") == true # new indirect edge
# assert pos.has_edge("A", "B") == true # still an edge
# assert pos.has_direct_edge("A", "B") == false # but no-more a direct one
# ~~~
#
# Thanks to the `[]` method, elements can be considered relatively to the poset.
# SEE `POSetElement`
class POSet[E]
super Collection[E]
super Comparator
super Cloneable
super Serializable
redef type COMPARED: E is fixed
redef fun iterator do return elements.keys.iterator
# All the nodes
private var elements = new HashMap[E, POSetElement[E]]
redef fun has(e) do return self.elements.keys.has(e)
# Add a node (an element) to the posed
# The new element is added unconnected to any other nodes (it is both a new root and a new leaf).
# Return the POSetElement associated to `e`.
# If `e` is already present in the POSet then just return the POSetElement (usually you will prefer []) is this case.
fun add_node(e: E): POSetElement[E]
do
if elements.keys.has(e) then return self.elements[e]
var poe = new POSetElement[E](self, e, elements.length)
poe.tos.add(e)
poe.froms.add(e)
self.elements[e] = poe
return poe
end
# Return a view of `e` in the poset.
# This allows to view the elements in their relation with others elements.
#
# var poset = new POSet[String]
# poset.add_chain(["A", "B", "D"])
# poset.add_chain(["A", "C", "D"])
# var a = poset["A"]
# assert a.direct_greaters.has_exactly(["B", "C"])
# assert a.greaters.has_exactly(["A", "B", "C", "D"])
# assert a.direct_smallers.is_empty
#
# REQUIRE: has(e)
fun [](e: E): POSetElement[E]
do
assert elements.keys.has(e)
return self.elements[e]
end
# Add an edge from `f` to `t`.
# Because a POSet is transitive, all transitive edges are also added to the graph.
# If the edge already exists, the this function does nothing.
#
# ~~~
# var pos = new POSet[String]
# pos.add_edge("A", "B") # add A->B
# assert pos.has_edge("A", "C") == false
# pos.add_edge("B", "C") # add B->C
# assert pos.has_edge("A", "C") == true
# ~~~
#
# If a reverse edge (from `t` to `f`) already exists, a loop is created.
#
# FIXME: Do something clever to manage loops.
fun add_edge(f, t: E)
do
var fe = add_node(f)
var te = add_node(t)
# Skip if edge already present
if fe.tos.has(t) then return
# Add the edge and close the transitivity
for ff in fe.froms do
var ffe = self.elements[ff]
for tt in te.tos do
var tte = self.elements[tt]
tte.froms.add ff
ffe.tos.add tt
end
end
# Update the transitive reduction
if te.tos.has(f) then return # Skip the reduction if there is a loop
# Remove transitive edges.
# Because the sets of direct is iterated, the list of edges to remove
# is stored and is applied after the iteration.
# The usual case is that no direct edges need to be removed,
# so start with a `null` list of edges.
var to_remove: nullable Array[E] = null
for x in te.dfroms do
var xe = self.elements[x]
if xe.tos.has(f) then
if to_remove == null then to_remove = new Array[E]
to_remove.add x
xe.dtos.remove(t)
end
end
if to_remove != null then
for x in to_remove do te.dfroms.remove(x)
to_remove.clear
end
for x in fe.dtos do
var xe = self.elements[x]
if xe.froms.has(t) then
xe.dfroms.remove(f)
if to_remove == null then to_remove = new Array[E]
to_remove.add x
end
end
if to_remove != null then
for x in to_remove do fe.dtos.remove(x)
end
fe.dtos.add t
te.dfroms.add f
end
# Add an edge between all elements of `es` in order.
#
# ~~~~
# var pos = new POSet[String]
# pos.add_chain(["A", "B", "C", "D"])
# assert pos.has_direct_edge("A", "B")
# assert pos.has_direct_edge("B", "C")
# assert pos.has_direct_edge("C", "D")
# ~~~~
fun add_chain(es: SequenceRead[E])
do
if es.is_empty then return
var i = es.iterator
var e = i.item
i.next
for f in i do
add_edge(e, f)
e = f
end
end
# Is there an edge (transitive or not) from `f` to `t`?
#
# SEE: `add_edge`
#
# Since the POSet is reflexive, true is returned if `f == t`.
#
# ~~~
# var pos = new POSet[String]
# pos.add_node("A")
# assert pos.has_edge("A", "A") == true
# ~~~
fun has_edge(f,t: E): Bool
do
if not elements.keys.has(f) then return false
var fe = self.elements[f]
return fe.tos.has(t)
end
# Is there a direct edge from `f` to `t`?
#
# ~~~
# var pos = new POSet[String]
# pos.add_chain(["A", "B", "C"]) # add A->B->C
# assert pos.has_direct_edge("A", "B") == true
# assert pos.has_direct_edge("A", "C") == false
# assert pos.has_edge("A", "C") == true
# ~~~
#
# Note that because of loops, the result may not be the expected one.
fun has_direct_edge(f,t: E): Bool
do
if not elements.keys.has(f) then return false
var fe = self.elements[f]
return fe.dtos.has(t)
end
# Write the POSet as a graphviz digraph.
#
# Nodes are labeled with their `to_s` so homonymous nodes may appear.
# Edges are unlabeled.
fun write_dot(f: Writer)
do
f.write "digraph \{\n"
var ids = new HashMap[E, Int]
for x in elements.keys do
ids[x] = ids.length
end
for x in elements.keys do
var xstr = (x or else "null").to_s.escape_to_dot
var nx = "n{ids[x]}"
f.write "{nx}[label=\"{xstr}\"];\n"
var xe = self.elements[x]
for y in xe.dtos do
var ny = "n{ids[y]}"
if self.has_edge(y,x) then
f.write "{nx} -> {ny}[dir=both];\n"
else
f.write "{nx} -> {ny};\n"
end
end
end
f.write "\}\n"
end
# Display the POSet in a graphical windows.
# Graphviz with a working -Txlib is expected.
#
# See `write_dot` for details.
fun show_dot
do
var f = new ProcessWriter("dot", "-Txlib")
write_dot(f)
f.close
f.wait
end
# Compare two elements in an arbitrary total order.
#
# This function is mainly used to sort elements of the set in an coherent way.
#
# ~~~~
# var pos = new POSet[String]
# pos.add_chain(["A", "B", "C", "D", "E"])
# pos.add_chain(["A", "X", "C", "Y", "E"])
# var a = ["X", "C", "E", "A", "D"]
# pos.sort(a)
# assert a == ["E", "D", "C", "X", "A"]
# ~~~~
#
# POSet are not necessarily total orders because some distinct elements may be incomparable (neither greater or smaller).
# Therefore this method relies on arbitrary linear extension.
# This linear extension is a lawful total order (transitive, anti-symmetric, reflexive, and total), so can be used to compare the elements.
#
# The abstract behavior of the method is thus the following:
#
# ~~~~nitish
# if a == b then return 0
# if has_edge(b, a) then return -1
# if has_edge(a, b) then return 1
# return -1 or 1 # according to the linear extension.
# ~~~~
#
# Note that the linear extension is stable, unless a new node or a new edge is added.
redef fun compare(a, b)
do
var ae = self.elements[a]
var be = self.elements[b]
var res = ae.tos.length <=> be.tos.length
if res != 0 then return res
return elements[a].count <=> elements[b].count
end
# Filter elements to return only the smallest ones
#
# ~~~
# var s = new POSet[String]
# s.add_edge("B", "A")
# s.add_edge("C", "A")
# s.add_edge("D", "B")
# s.add_edge("D", "C")
# assert s.select_smallest(["A", "B"]) == ["B"]
# assert s.select_smallest(["A", "B", "C"]) == ["B", "C"]
# assert s.select_smallest(["B", "C", "D"]) == ["D"]
# ~~~
fun select_smallest(elements: Collection[E]): Array[E]
do
var res = new Array[E]
for e in elements do
for f in elements do
if e == f then continue
if has_edge(f, e) then continue label
end
res.add(e)
end label
return res
end
# Filter elements to return only the greatest ones
#
# ~~~
# var s = new POSet[String]
# s.add_edge("B", "A")
# s.add_edge("C", "A")
# s.add_edge("D", "B")
# s.add_edge("D", "C")
# assert s.select_greatest(["A", "B"]) == ["A"]
# assert s.select_greatest(["A", "B", "C"]) == ["A"]
# assert s.select_greatest(["B", "C", "D"]) == ["B", "C"]
# ~~~
fun select_greatest(elements: Collection[E]): Array[E]
do
var res = new Array[E]
for e in elements do
for f in elements do
if e == f then continue
if has_edge(e, f) then continue label
end
res.add(e)
end label
return res
end
# Sort a sorted array of poset elements using linearization order
# ~~~~
# var pos = new POSet[String]
# pos.add_chain(["A", "B", "C", "D", "E"])
# pos.add_chain(["A", "X", "C", "Y", "E"])
# var a = pos.linearize(["X", "C", "E", "A", "D"])
# assert a == ["E", "D", "C", "X", "A"]
# ~~~~
fun linearize(elements: Collection[E]): Array[E] do
var lin = elements.to_a
sort(lin)
return lin
end
redef fun clone do return sub(self)
# Return an induced sub-poset
#
# The elements of the result are those given in argument.
#
# ~~~
# var pos = new POSet[String]
# pos.add_chain(["A", "B", "C", "D", "E"])
# pos.add_chain(["A", "X", "C", "Y", "E"])
#
# var pos2 = pos.sub(["A", "B", "D", "Y", "E"])
# assert pos2.has_exactly(["A", "B", "D", "Y", "E"])
# ~~~
#
# The full relationship is preserved between the provided elements.
#
# ~~~
# for e1 in pos2 do for e2 in pos2 do
# assert pos2.has_edge(e1, e2) == pos.has_edge(e1, e2)
# end
# ~~~
#
# Not that by definition, the direct relationship is the transitive
# reduction of the full reduction. Thus, the direct relationship of the
# sub-poset may not be included in the direct relationship of self because an
# indirect edge becomes a direct one if all the intermediates elements
# are absent in the sub-poset.
#
# ~~~
# assert pos.has_direct_edge("B", "D") == false
# assert pos2.has_direct_edge("B", "D") == true
#
# assert pos2["B"].direct_greaters.has_exactly(["D", "Y"])
# ~~~
#
# If the `elements` contains all then the result is a clone of self.
#
# ~~~
# var pos3 = pos.sub(pos)
# assert pos3 == pos
# assert pos3 == pos.clone
# ~~~
fun sub(elements: Collection[E]): POSet[E]
do
var res = new POSet[E]
for e in self do
if not elements.has(e) then continue
res.add_node(e)
end
for e in res do
for f in self[e].greaters do
if not elements.has(f) then continue
res.add_edge(e, f)
end
end
return res
end
# Two posets are equal if they contain the same elements and edges.
#
# ~~~
# var pos1 = new POSet[String]
# pos1.add_chain(["A", "B", "C", "D", "E"])
# pos1.add_chain(["A", "X", "C", "Y", "E"])
#
# var pos2 = new POSet[Object]
# pos2.add_edge("Y", "E")
# pos2.add_chain(["A", "X", "C", "D", "E"])
# pos2.add_chain(["A", "B", "C", "Y"])
#
# assert pos1 == pos2
#
# pos1.add_edge("D", "Y")
# assert pos1 != pos2
#
# pos2.add_edge("D", "Y")
# assert pos1 == pos2
#
# pos1.add_node("Z")
# assert pos1 != pos2
# ~~~
redef fun ==(other) do
if not other isa POSet[nullable Object] then return false
if not self.elements.keys.has_exactly(other.elements.keys) then return false
for e, ee in elements do
if ee.direct_greaters != other[e].direct_greaters then return false
end
assert hash == other.hash
return true
end
redef fun hash
do
var res = 0
for e, ee in elements do
if e == null then continue
res += e.hash
res += ee.direct_greaters.length
end
return res
end
redef fun core_serialize_to(serializer)
do
# Optimize written data because this structure has duplicated data
# For example, serializing the class hierarchy of a simple program where E is String
# result is before: 200k, after: 56k.
serializer.serialize_attribute("elements", elements)
end
redef init from_deserializer(deserializer)
do
deserializer.notify_of_creation self
var elements = deserializer.deserialize_attribute("elements")
if elements isa HashMap[E, POSetElement[E]] then
self.elements = elements
end
end
end
lib/poset/poset.nit:22,1--507,3