273451f6f40c725533ec6a7dad5622c65c57f212
[nit.git] / src / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import coloring
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate: OptionBool = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern: OptionBool = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute: OptionBool = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate: OptionBool = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --inline-coloring-numbers
33 var opt_inline_coloring_numbers: OptionBool = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
34 # --inline-some-methods
35 var opt_inline_some_methods: OptionBool = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
36 # --direct-call-monomorph
37 var opt_direct_call_monomorph: OptionBool = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph")
38 # --skip-dead-methods
39 var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods")
40 # --semi-global
41 var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global")
42 # --no-colo-dead-methods
43 var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods")
44 # --tables-metrics
45 var opt_tables_metrics: OptionBool = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
46
47 redef init
48 do
49 super
50 self.option_context.add_option(self.opt_separate)
51 self.option_context.add_option(self.opt_no_inline_intern)
52 self.option_context.add_option(self.opt_no_union_attribute)
53 self.option_context.add_option(self.opt_no_shortcut_equate)
54 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global)
55 self.option_context.add_option(self.opt_colo_dead_methods)
56 self.option_context.add_option(self.opt_tables_metrics)
57 end
58
59 redef fun process_options(args)
60 do
61 super
62
63 var tc = self
64 if tc.opt_semi_global.value then
65 tc.opt_inline_coloring_numbers.value = true
66 tc.opt_inline_some_methods.value = true
67 tc.opt_direct_call_monomorph.value = true
68 tc.opt_skip_dead_methods.value = true
69 end
70 end
71
72 var separate_compiler_phase = new SeparateCompilerPhase(self, null)
73 end
74
75 class SeparateCompilerPhase
76 super Phase
77 redef fun process_mainmodule(mainmodule, given_mmodules) do
78 if not toolcontext.opt_separate.value then return
79
80 var modelbuilder = toolcontext.modelbuilder
81 var analysis = modelbuilder.do_rapid_type_analysis(mainmodule)
82 modelbuilder.run_separate_compiler(mainmodule, analysis)
83 end
84 end
85
86 redef class ModelBuilder
87 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
88 do
89 var time0 = get_time
90 self.toolcontext.info("*** GENERATING C ***", 1)
91
92 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
93 compiler.compile_header
94
95 # compile class structures
96 self.toolcontext.info("Property coloring", 2)
97 compiler.new_file("{mainmodule.name}.classes")
98 compiler.do_property_coloring
99 for m in mainmodule.in_importation.greaters do
100 for mclass in m.intro_mclasses do
101 if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
102 compiler.compile_class_to_c(mclass)
103 end
104 end
105
106 # The main function of the C
107 compiler.new_file("{mainmodule.name}.main")
108 compiler.compile_nitni_global_ref_functions
109 compiler.compile_main_function
110
111 # compile methods
112 for m in mainmodule.in_importation.greaters do
113 self.toolcontext.info("Generate C for module {m}", 2)
114 compiler.new_file("{m.name}.sep")
115 compiler.compile_module_to_c(m)
116 end
117
118 # compile live & cast type structures
119 self.toolcontext.info("Type coloring", 2)
120 compiler.new_file("{mainmodule.name}.types")
121 var mtypes = compiler.do_type_coloring
122 for t in mtypes do
123 compiler.compile_type_to_c(t)
124 end
125 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
126 for t in compiler.undead_types do
127 if mtypes.has(t) then continue
128 compiler.compile_type_to_c(t)
129 end
130
131 compiler.display_stats
132
133 var time1 = get_time
134 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
135 write_and_make(compiler)
136 end
137
138 # Count number of invocations by VFT
139 private var nb_invok_by_tables = 0
140 # Count number of invocations by direct call
141 private var nb_invok_by_direct = 0
142 # Count number of invocations by inlining
143 private var nb_invok_by_inline = 0
144 end
145
146 # Singleton that store the knowledge about the separate compilation process
147 class SeparateCompiler
148 super AbstractCompiler
149
150 redef type VISITOR: SeparateCompilerVisitor
151
152 # The result of the RTA (used to know live types and methods)
153 var runtime_type_analysis: nullable RapidTypeAnalysis
154
155 private var undead_types: Set[MType] = new HashSet[MType]
156 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
157
158 private var type_ids: Map[MType, Int]
159 private var type_colors: Map[MType, Int]
160 private var opentype_colors: Map[MType, Int]
161 protected var method_colors: Map[PropertyLayoutElement, Int]
162 protected var attr_colors: Map[MAttribute, Int]
163
164 init(mainmodule: MModule, mmbuilder: ModelBuilder, runtime_type_analysis: nullable RapidTypeAnalysis) do
165 super(mainmodule, mmbuilder)
166 var file = new_file("nit.common")
167 self.header = new CodeWriter(file)
168 self.runtime_type_analysis = runtime_type_analysis
169 self.compile_box_kinds
170 end
171
172 redef fun compile_header_structs do
173 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
174 self.compile_header_attribute_structs
175 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
176
177 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
178 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
179 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
180 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
181 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
182 end
183
184 fun compile_header_attribute_structs
185 do
186 if modelbuilder.toolcontext.opt_no_union_attribute.value then
187 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
188 else
189 self.header.add_decl("typedef union \{")
190 self.header.add_decl("void* val;")
191 for c, v in self.box_kinds do
192 var t = c.mclass_type
193 self.header.add_decl("{t.ctype} {t.ctypename};")
194 end
195 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
196 end
197 end
198
199 fun compile_box_kinds
200 do
201 # Collect all bas box class
202 # FIXME: this is not completely fine with a separate compilation scheme
203 for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do
204 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
205 if classes == null then continue
206 assert classes.length == 1 else print classes.join(", ")
207 self.box_kinds[classes.first] = self.box_kinds.length + 1
208 end
209 end
210
211 var box_kinds = new HashMap[MClass, Int]
212
213 fun box_kind_of(mclass: MClass): Int
214 do
215 if mclass.mclass_type.ctype == "val*" then
216 return 0
217 else if mclass.kind == extern_kind then
218 return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")]
219 else
220 return self.box_kinds[mclass]
221 end
222
223 end
224
225 fun compile_color_consts(colors: Map[Object, Int]) do
226 var v = new_visitor
227 for m, c in colors do
228 compile_color_const(v, m, c)
229 end
230 end
231
232 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
233 if color_consts_done.has(m) then return
234 if m isa MProperty then
235 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
236 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
237 else
238 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
239 v.add("const int {m.const_color} = {color};")
240 end
241 else if m isa MPropDef then
242 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
243 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
244 else
245 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
246 v.add("const int {m.const_color} = {color};")
247 end
248 else if m isa MType then
249 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
250 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
251 else
252 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
253 v.add("const int {m.const_color} = {color};")
254 end
255 end
256 color_consts_done.add(m)
257 end
258
259 private var color_consts_done = new HashSet[Object]
260
261 # colorize classe properties
262 fun do_property_coloring do
263
264 var rta = runtime_type_analysis
265
266 # Layouts
267 var poset = mainmodule.flatten_mclass_hierarchy
268 var mclasses = new HashSet[MClass].from(poset)
269 var colorer = new POSetColorer[MClass]
270 colorer.colorize(poset)
271
272 # The dead methods, still need to provide a dead color symbol
273 var dead_methods = new Array[MMethod]
274
275 # lookup properties to build layout with
276 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
277 var mattributes = new HashMap[MClass, Set[MAttribute]]
278 for mclass in mclasses do
279 mmethods[mclass] = new HashSet[PropertyLayoutElement]
280 mattributes[mclass] = new HashSet[MAttribute]
281 for mprop in self.mainmodule.properties(mclass) do
282 if mprop isa MMethod then
283 if not modelbuilder.toolcontext.opt_colo_dead_methods.value and rta != null and not rta.live_methods.has(mprop) then
284 dead_methods.add(mprop)
285 continue
286 end
287 mmethods[mclass].add(mprop)
288 else if mprop isa MAttribute then
289 mattributes[mclass].add(mprop)
290 end
291 end
292 end
293
294 # Collect all super calls (dead or not)
295 var all_super_calls = new HashSet[MMethodDef]
296 for mmodule in self.mainmodule.in_importation.greaters do
297 for mclassdef in mmodule.mclassdefs do
298 for mpropdef in mclassdef.mpropdefs do
299 if not mpropdef isa MMethodDef then continue
300 if mpropdef.has_supercall then
301 all_super_calls.add(mpropdef)
302 end
303 end
304 end
305 end
306
307 # lookup super calls and add it to the list of mmethods to build layout with
308 var super_calls
309 if rta != null then
310 super_calls = rta.live_super_sends
311 else
312 super_calls = all_super_calls
313 end
314
315 for mmethoddef in super_calls do
316 var mclass = mmethoddef.mclassdef.mclass
317 mmethods[mclass].add(mmethoddef)
318 for descendant in mclass.in_hierarchy(self.mainmodule).smallers do
319 mmethods[descendant].add(mmethoddef)
320 end
321 end
322
323 # methods coloration
324 var meth_colorer = new POSetBucketsColorer[MClass, PropertyLayoutElement](poset, colorer.conflicts)
325 method_colors = meth_colorer.colorize(mmethods)
326 method_tables = build_method_tables(mclasses, super_calls)
327 compile_color_consts(method_colors)
328
329 # attribute null color to dead methods and supercalls
330 for mproperty in dead_methods do
331 compile_color_const(new_visitor, mproperty, -1)
332 end
333 for mpropdef in all_super_calls do
334 if super_calls.has(mpropdef) then continue
335 compile_color_const(new_visitor, mpropdef, -1)
336 end
337
338 # attributes coloration
339 var attr_colorer = new POSetBucketsColorer[MClass, MAttribute](poset, colorer.conflicts)
340 attr_colors = attr_colorer.colorize(mattributes)
341 attr_tables = build_attr_tables(mclasses)
342 compile_color_consts(attr_colors)
343 end
344
345 fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do
346 var tables = new HashMap[MClass, Array[nullable MPropDef]]
347 for mclass in mclasses do
348 var table = new Array[nullable MPropDef]
349 tables[mclass] = table
350
351 var mproperties = self.mainmodule.properties(mclass)
352 var mtype = mclass.intro.bound_mtype
353
354 for mproperty in mproperties do
355 if not mproperty isa MMethod then continue
356 if not method_colors.has_key(mproperty) then continue
357 var color = method_colors[mproperty]
358 if table.length <= color then
359 for i in [table.length .. color[ do
360 table[i] = null
361 end
362 end
363 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
364 end
365
366 for supercall in super_calls do
367 if not mtype.collect_mclassdefs(mainmodule).has(supercall.mclassdef) then continue
368
369 var color = method_colors[supercall]
370 if table.length <= color then
371 for i in [table.length .. color[ do
372 table[i] = null
373 end
374 end
375 var mmethoddef = supercall.lookup_next_definition(mainmodule, mtype)
376 table[color] = mmethoddef
377 end
378
379 end
380 return tables
381 end
382
383 fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do
384 var tables = new HashMap[MClass, Array[nullable MPropDef]]
385 for mclass in mclasses do
386 var table = new Array[nullable MPropDef]
387 tables[mclass] = table
388
389 var mproperties = self.mainmodule.properties(mclass)
390 var mtype = mclass.intro.bound_mtype
391
392 for mproperty in mproperties do
393 if not mproperty isa MAttribute then continue
394 if not attr_colors.has_key(mproperty) then continue
395 var color = attr_colors[mproperty]
396 if table.length <= color then
397 for i in [table.length .. color[ do
398 table[i] = null
399 end
400 end
401 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
402 end
403 end
404 return tables
405 end
406
407 # colorize live types of the program
408 private fun do_type_coloring: POSet[MType] do
409 # Collect types to colorize
410 var live_types = runtime_type_analysis.live_types
411 var live_cast_types = runtime_type_analysis.live_cast_types
412 var mtypes = new HashSet[MType]
413 mtypes.add_all(live_types)
414 mtypes.add_all(live_cast_types)
415 for c in self.box_kinds.keys do
416 mtypes.add(c.mclass_type)
417 end
418
419 # Compute colors
420 var poset = poset_from_mtypes(mtypes)
421 var colorer = new POSetColorer[MType]
422 colorer.colorize(poset)
423 type_ids = colorer.ids
424 type_colors = colorer.colors
425 type_tables = build_type_tables(poset)
426
427 # VT and FT are stored with other unresolved types in the big resolution_tables
428 self.compile_resolution_tables(mtypes)
429
430 return poset
431 end
432
433 private fun poset_from_mtypes(mtypes: Set[MType]): POSet[MType] do
434 var poset = new POSet[MType]
435 for e in mtypes do
436 poset.add_node(e)
437 for o in mtypes do
438 if e == o then continue
439 if e.is_subtype(mainmodule, null, o) then
440 poset.add_edge(e, o)
441 end
442 end
443 end
444 return poset
445 end
446
447 # Build type tables
448 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
449 var tables = new HashMap[MType, Array[nullable MType]]
450 for mtype in mtypes do
451 var table = new Array[nullable MType]
452 for sup in mtypes[mtype].greaters do
453 var color = type_colors[sup]
454 if table.length <= color then
455 for i in [table.length .. color[ do
456 table[i] = null
457 end
458 end
459 table[color] = sup
460 end
461 tables[mtype] = table
462 end
463 return tables
464 end
465
466 protected fun compile_resolution_tables(mtypes: Set[MType]) do
467 # resolution_tables is used to perform a type resolution at runtime in O(1)
468
469 # During the visit of the body of classes, live_unresolved_types are collected
470 # and associated to
471 # Collect all live_unresolved_types (visited in the body of classes)
472
473 # Determinate fo each livetype what are its possible requested anchored types
474 var mtype2unresolved = new HashMap[MClassType, Set[MType]]
475 for mtype in self.runtime_type_analysis.live_types do
476 var set = new HashSet[MType]
477 for cd in mtype.collect_mclassdefs(self.mainmodule) do
478 if self.live_unresolved_types.has_key(cd) then
479 set.add_all(self.live_unresolved_types[cd])
480 end
481 end
482 mtype2unresolved[mtype] = set
483 end
484
485 # Compute the table layout with the prefered method
486 var colorer = new BucketsColorer[MType, MType]
487 opentype_colors = colorer.colorize(mtype2unresolved)
488 resolution_tables = self.build_resolution_tables(mtype2unresolved)
489
490 # Compile a C constant for each collected unresolved type.
491 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
492 var all_unresolved = new HashSet[MType]
493 for t in self.live_unresolved_types.values do
494 all_unresolved.add_all(t)
495 end
496 var all_unresolved_types_colors = new HashMap[MType, Int]
497 for t in all_unresolved do
498 if opentype_colors.has_key(t) then
499 all_unresolved_types_colors[t] = opentype_colors[t]
500 else
501 all_unresolved_types_colors[t] = -1
502 end
503 end
504 self.compile_color_consts(all_unresolved_types_colors)
505
506 #print "tables"
507 #for k, v in unresolved_types_tables.as(not null) do
508 # print "{k}: {v.join(", ")}"
509 #end
510 #print ""
511 end
512
513 fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do
514 var tables = new HashMap[MClassType, Array[nullable MType]]
515 for mclasstype, mtypes in elements do
516 var table = new Array[nullable MType]
517 for mtype in mtypes do
518 var color = opentype_colors[mtype]
519 if table.length <= color then
520 for i in [table.length .. color[ do
521 table[i] = null
522 end
523 end
524 table[color] = mtype
525 end
526 tables[mclasstype] = table
527 end
528 return tables
529 end
530
531 # Separately compile all the method definitions of the module
532 fun compile_module_to_c(mmodule: MModule)
533 do
534 var old_module = self.mainmodule
535 self.mainmodule = mmodule
536 for cd in mmodule.mclassdefs do
537 for pd in cd.mpropdefs do
538 if not pd isa MMethodDef then continue
539 var rta = runtime_type_analysis
540 if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue
541 #print "compile {pd} @ {cd} @ {mmodule}"
542 var r = pd.separate_runtime_function
543 r.compile_to_c(self)
544 var r2 = pd.virtual_runtime_function
545 r2.compile_to_c(self)
546 end
547 end
548 self.mainmodule = old_module
549 end
550
551 # Globaly compile the type structure of a live type
552 fun compile_type_to_c(mtype: MType)
553 do
554 assert not mtype.need_anchor
555 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
556 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
557 var c_name = mtype.c_name
558 var v = new SeparateCompilerVisitor(self)
559 v.add_decl("/* runtime type {mtype} */")
560
561 # extern const struct type_X
562 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
563
564 # const struct type_X
565 v.add_decl("const struct type type_{c_name} = \{")
566
567 # type id (for cast target)
568 if is_cast_live then
569 v.add_decl("{type_ids[mtype]},")
570 else
571 v.add_decl("-1, /*CAST DEAD*/")
572 end
573
574 # type name
575 v.add_decl("\"{mtype}\", /* class_name_string */")
576
577 # type color (for cast target)
578 if is_cast_live then
579 v.add_decl("{type_colors[mtype]},")
580 else
581 v.add_decl("-1, /*CAST DEAD*/")
582 end
583
584 # is_nullable bit
585 if mtype isa MNullableType then
586 v.add_decl("1,")
587 else
588 v.add_decl("0,")
589 end
590
591 # resolution table (for receiver)
592 if is_live then
593 var mclass_type = mtype.as_notnullable
594 assert mclass_type isa MClassType
595 if resolution_tables[mclass_type].is_empty then
596 v.add_decl("NULL, /*NO RESOLUTIONS*/")
597 else
598 compile_type_resolution_table(mtype)
599 v.require_declaration("resolution_table_{c_name}")
600 v.add_decl("&resolution_table_{c_name},")
601 end
602 else
603 v.add_decl("NULL, /*DEAD*/")
604 end
605
606 # cast table (for receiver)
607 if is_live then
608 v.add_decl("{self.type_tables[mtype].length},")
609 v.add_decl("\{")
610 for stype in self.type_tables[mtype] do
611 if stype == null then
612 v.add_decl("-1, /* empty */")
613 else
614 v.add_decl("{type_ids[stype]}, /* {stype} */")
615 end
616 end
617 v.add_decl("\},")
618 else
619 v.add_decl("0, \{\}, /*DEAD TYPE*/")
620 end
621 v.add_decl("\};")
622 end
623
624 fun compile_type_resolution_table(mtype: MType) do
625
626 var mclass_type = mtype.as_notnullable.as(MClassType)
627
628 # extern const struct resolution_table_X resolution_table_X
629 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
630
631 # const struct fts_table_X fts_table_X
632 var v = new_visitor
633 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
634 v.add_decl("0, /* dummy */")
635 v.add_decl("\{")
636 for t in self.resolution_tables[mclass_type] do
637 if t == null then
638 v.add_decl("NULL, /* empty */")
639 else
640 # The table stores the result of the type resolution
641 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
642 # the value stored is tv.
643 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
644 # FIXME: What typeids means here? How can a tv not be live?
645 if type_ids.has_key(tv) then
646 v.require_declaration("type_{tv.c_name}")
647 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
648 else
649 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
650 end
651 end
652 end
653 v.add_decl("\}")
654 v.add_decl("\};")
655 end
656
657 # Globally compile the table of the class mclass
658 # In a link-time optimisation compiler, tables are globally computed
659 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
660 fun compile_class_to_c(mclass: MClass)
661 do
662 var mtype = mclass.intro.bound_mtype
663 var c_name = mclass.c_name
664 var c_instance_name = mclass.c_instance_name
665
666 var vft = self.method_tables[mclass]
667 var attrs = self.attr_tables[mclass]
668 var v = new_visitor
669
670 var rta = runtime_type_analysis
671 var is_dead = rta != null and not rta.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray"
672
673 v.add_decl("/* runtime class {c_name} */")
674
675 # Build class vft
676 if not is_dead then
677 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
678 v.add_decl("const struct class class_{c_name} = \{")
679 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
680 v.add_decl("\{")
681 for i in [0 .. vft.length[ do
682 var mpropdef = vft[i]
683 if mpropdef == null then
684 v.add_decl("NULL, /* empty */")
685 else
686 assert mpropdef isa MMethodDef
687 if rta != null and not rta.live_methoddefs.has(mpropdef) then
688 v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
689 continue
690 end
691 var rf = mpropdef.virtual_runtime_function
692 v.require_declaration(rf.c_name)
693 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
694 end
695 end
696 v.add_decl("\}")
697 v.add_decl("\};")
698 end
699
700 if mtype.ctype != "val*" then
701 if mtype.mclass.name == "Pointer" or mtype.mclass.kind != extern_kind then
702 #Build instance struct
703 self.header.add_decl("struct instance_{c_instance_name} \{")
704 self.header.add_decl("const struct type *type;")
705 self.header.add_decl("const struct class *class;")
706 self.header.add_decl("{mtype.ctype} value;")
707 self.header.add_decl("\};")
708 end
709
710 if not rta.live_types.has(mtype) then return
711
712 #Build BOX
713 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype});")
714 v.add_decl("/* allocate {mtype} */")
715 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype} value) \{")
716 v.add("struct instance_{c_instance_name}*res = nit_alloc(sizeof(struct instance_{c_instance_name}));")
717 v.require_declaration("type_{c_name}")
718 v.add("res->type = &type_{c_name};")
719 v.require_declaration("class_{c_name}")
720 v.add("res->class = &class_{c_name};")
721 v.add("res->value = value;")
722 v.add("return (val*)res;")
723 v.add("\}")
724 return
725 else if mclass.name == "NativeArray" then
726 #Build instance struct
727 self.header.add_decl("struct instance_{c_instance_name} \{")
728 self.header.add_decl("const struct type *type;")
729 self.header.add_decl("const struct class *class;")
730 # NativeArrays are just a instance header followed by a length and an array of values
731 self.header.add_decl("int length;")
732 self.header.add_decl("val* values[0];")
733 self.header.add_decl("\};")
734
735 #Build NEW
736 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
737 v.add_decl("/* allocate {mtype} */")
738 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
739 var res = v.get_name("self")
740 v.add_decl("struct instance_{c_instance_name} *{res};")
741 var mtype_elt = mtype.arguments.first
742 v.add("{res} = nit_alloc(sizeof(struct instance_{c_instance_name}) + length*sizeof({mtype_elt.ctype}));")
743 v.add("{res}->type = type;")
744 hardening_live_type(v, "type")
745 v.require_declaration("class_{c_name}")
746 v.add("{res}->class = &class_{c_name};")
747 v.add("{res}->length = length;")
748 v.add("return (val*){res};")
749 v.add("\}")
750 return
751 end
752
753 #Build NEW
754 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
755 v.add_decl("/* allocate {mtype} */")
756 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
757 if is_dead then
758 v.add_abort("{mclass} is DEAD")
759 else
760 var res = v.new_named_var(mtype, "self")
761 res.is_exact = true
762 v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));")
763 v.add("{res}->type = type;")
764 hardening_live_type(v, "type")
765 v.require_declaration("class_{c_name}")
766 v.add("{res}->class = &class_{c_name};")
767 self.generate_init_attr(v, res, mtype)
768 v.add("return {res};")
769 end
770 v.add("\}")
771 end
772
773 # Add a dynamic test to ensure that the type referenced by `t` is a live type
774 fun hardening_live_type(v: VISITOR, t: String)
775 do
776 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
777 v.add("if({t} == NULL) \{")
778 v.add_abort("type null")
779 v.add("\}")
780 v.add("if({t}->table_size == 0) \{")
781 v.add("PRINT_ERROR(\"Insantiation of a dead type: %s\\n\", {t}->name);")
782 v.add_abort("type dead")
783 v.add("\}")
784 end
785
786 redef fun new_visitor do return new SeparateCompilerVisitor(self)
787
788 # Stats
789
790 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
791 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
792 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
793 protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
794
795 redef fun display_stats
796 do
797 super
798 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
799 display_sizes
800 end
801 if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
802 display_isset_checks
803 end
804 var tc = self.modelbuilder.toolcontext
805 tc.info("# implementation of method invocation",2)
806 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
807 tc.info("total number of invocations: {nb_invok_total}",2)
808 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
809 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
810 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
811 end
812
813 fun display_sizes
814 do
815 print "# size of subtyping tables"
816 print "\ttotal \tholes"
817 var total = 0
818 var holes = 0
819 for t, table in type_tables do
820 total += table.length
821 for e in table do if e == null then holes += 1
822 end
823 print "\t{total}\t{holes}"
824
825 print "# size of resolution tables"
826 print "\ttotal \tholes"
827 total = 0
828 holes = 0
829 for t, table in resolution_tables do
830 total += table.length
831 for e in table do if e == null then holes += 1
832 end
833 print "\t{total}\t{holes}"
834
835 print "# size of methods tables"
836 print "\ttotal \tholes"
837 total = 0
838 holes = 0
839 for t, table in method_tables do
840 total += table.length
841 for e in table do if e == null then holes += 1
842 end
843 print "\t{total}\t{holes}"
844
845 print "# size of attributes tables"
846 print "\ttotal \tholes"
847 total = 0
848 holes = 0
849 for t, table in attr_tables do
850 total += table.length
851 for e in table do if e == null then holes += 1
852 end
853 print "\t{total}\t{holes}"
854 end
855
856 protected var isset_checks_count = 0
857 protected var attr_read_count = 0
858
859 fun display_isset_checks do
860 print "# total number of compiled attribute reads"
861 print "\t{attr_read_count}"
862 print "# total number of compiled isset-checks"
863 print "\t{isset_checks_count}"
864 end
865
866 redef fun compile_nitni_structs
867 do
868 self.header.add_decl """
869 struct nitni_instance \{
870 struct nitni_instance *next,
871 *prev; /* adjacent global references in global list */
872 int count; /* number of time this global reference has been marked */
873 struct instance *value;
874 \};
875 """
876 super
877 end
878
879 redef fun finalize_ffi_for_module(mmodule)
880 do
881 var old_module = self.mainmodule
882 self.mainmodule = mmodule
883 super
884 self.mainmodule = old_module
885 end
886 end
887
888 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
889 class SeparateCompilerVisitor
890 super AbstractCompilerVisitor
891
892 redef type COMPILER: SeparateCompiler
893
894 redef fun adapt_signature(m, args)
895 do
896 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
897 var recv = args.first
898 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
899 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
900 end
901 for i in [0..msignature.arity[ do
902 var t = msignature.mparameters[i].mtype
903 if i == msignature.vararg_rank then
904 t = args[i+1].mtype
905 end
906 args[i+1] = self.autobox(args[i+1], t)
907 end
908 end
909
910 redef fun autobox(value, mtype)
911 do
912 if value.mtype == mtype then
913 return value
914 else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then
915 return value
916 else if value.mtype.ctype == "val*" then
917 return self.new_expr("((struct instance_{mtype.c_instance_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
918 else if mtype.ctype == "val*" then
919 var valtype = value.mtype.as(MClassType)
920 var res = self.new_var(mtype)
921 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then
922 self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */")
923 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);")
924 return res
925 end
926 self.require_declaration("BOX_{valtype.c_name}")
927 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
928 return res
929 else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or
930 (value.mtype.ctype == "char*" and mtype.ctype == "void*") or
931 (value.mtype.ctype == "void*" and mtype.ctype == "char*") then
932 return value
933 else
934 # Bad things will appen!
935 var res = self.new_var(mtype)
936 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
937 self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);")
938 return res
939 end
940 end
941
942 # Return a C expression returning the runtime type structure of the value
943 # The point of the method is to works also with primitives types.
944 fun type_info(value: RuntimeVariable): String
945 do
946 if value.mtype.ctype == "val*" then
947 return "{value}->type"
948 else
949 compiler.undead_types.add(value.mtype)
950 self.require_declaration("type_{value.mtype.c_name}")
951 return "(&type_{value.mtype.c_name})"
952 end
953 end
954
955 redef fun compile_callsite(callsite, args)
956 do
957 var rta = compiler.runtime_type_analysis
958 var recv = args.first.mtype
959 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null then
960 var tgs = rta.live_targets(callsite)
961 if tgs.length == 1 then
962 # DIRECT CALL
963 var mmethod = callsite.mproperty
964 self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), args)
965 var res0 = before_send(mmethod, args)
966 var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args)
967 if res0 != null then
968 assert res != null
969 self.assign(res0, res)
970 res = res0
971 end
972 add("\}") # close the before_send
973 return res
974 end
975 end
976 return super
977 end
978 redef fun send(mmethod, arguments)
979 do
980 self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), arguments)
981
982 if arguments.first.mcasttype.ctype != "val*" then
983 # In order to shortcut the primitive, we need to find the most specific method
984 # Howverr, because of performance (no flattening), we always work on the realmainmodule
985 var m = self.compiler.mainmodule
986 self.compiler.mainmodule = self.compiler.realmainmodule
987 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
988 self.compiler.mainmodule = m
989 return res
990 end
991
992 return table_send(mmethod, arguments, mmethod.const_color)
993 end
994
995 # Handel common special cases before doing the effective method invocation
996 # This methods handle the `==` and `!=` methods and the case of the null receiver.
997 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
998 # Client must not forget to close the } after them.
999 #
1000 # The value returned is the result of the common special cases.
1001 # If not null, client must compine it with the result of their own effective method invocation.
1002 #
1003 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1004 # is generated to cancel the effective method invocation that will follow
1005 # TODO: find a better approach
1006 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1007 do
1008 var res: nullable RuntimeVariable = null
1009 var recv = arguments.first
1010 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_other.value or mmethod.name == "==" or mmethod.name == "!="
1011 var maybenull = recv.mcasttype isa MNullableType and consider_null
1012 if maybenull then
1013 self.add("if ({recv} == NULL) \{")
1014 if mmethod.name == "==" then
1015 res = self.new_var(bool_type)
1016 var arg = arguments[1]
1017 if arg.mcasttype isa MNullableType then
1018 self.add("{res} = ({arg} == NULL);")
1019 else if arg.mcasttype isa MNullType then
1020 self.add("{res} = 1; /* is null */")
1021 else
1022 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1023 end
1024 else if mmethod.name == "!=" then
1025 res = self.new_var(bool_type)
1026 var arg = arguments[1]
1027 if arg.mcasttype isa MNullableType then
1028 self.add("{res} = ({arg} != NULL);")
1029 else if arg.mcasttype isa MNullType then
1030 self.add("{res} = 0; /* is null */")
1031 else
1032 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1033 end
1034 else
1035 self.add_abort("Receiver is null")
1036 end
1037 self.add("\} else \{")
1038 else
1039 self.add("\{")
1040 end
1041 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then
1042 if res == null then res = self.new_var(bool_type)
1043 # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants)
1044 var arg = arguments[1]
1045 if arg.mcasttype isa MNullType then
1046 if mmethod.name == "==" then
1047 self.add("{res} = 0; /* arg is null but recv is not */")
1048 else
1049 self.add("{res} = 1; /* arg is null and recv is not */")
1050 end
1051 self.add("\}") # closes the null case
1052 self.add("if (0) \{") # what follow is useless, CC will drop it
1053 end
1054 end
1055 return res
1056 end
1057
1058 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable
1059 do
1060 compiler.modelbuilder.nb_invok_by_tables += 1
1061 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1062
1063 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1064 var recv = arguments.first
1065
1066 var res0 = before_send(mmethod, arguments)
1067
1068 var res: nullable RuntimeVariable
1069 var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true)
1070 var ret = msignature.return_mtype
1071 if mmethod.is_new then
1072 ret = arguments.first.mtype
1073 res = self.new_var(ret)
1074 else if ret == null then
1075 res = null
1076 else
1077 res = self.new_var(ret)
1078 end
1079
1080 var s = new FlatBuffer
1081 var ss = new FlatBuffer
1082
1083 s.append("val*")
1084 ss.append("{recv}")
1085 for i in [0..msignature.arity[ do
1086 var a = arguments[i+1]
1087 var t = msignature.mparameters[i].mtype
1088 if i == msignature.vararg_rank then
1089 t = arguments[i+1].mcasttype
1090 end
1091 s.append(", {t.ctype}")
1092 a = self.autobox(a, t)
1093 ss.append(", {a}")
1094 end
1095
1096
1097 var r
1098 if ret == null then r = "void" else r = ret.ctype
1099 self.require_declaration(const_color)
1100 var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/"
1101
1102 if res != null then
1103 self.add("{res} = {call};")
1104 else
1105 self.add("{call};")
1106 end
1107
1108 if res0 != null then
1109 assert res != null
1110 assign(res0,res)
1111 res = res0
1112 end
1113
1114 self.add("\}") # closes the null case
1115
1116 return res
1117 end
1118
1119 redef fun call(mmethoddef, recvtype, arguments)
1120 do
1121 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1122
1123 var res: nullable RuntimeVariable
1124 var ret = mmethoddef.msignature.return_mtype
1125 if mmethoddef.mproperty.is_new then
1126 ret = arguments.first.mtype
1127 res = self.new_var(ret)
1128 else if ret == null then
1129 res = null
1130 else
1131 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1132 res = self.new_var(ret)
1133 end
1134
1135 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1136 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1137 compiler.modelbuilder.nb_invok_by_inline += 1
1138 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1139 var frame = new Frame(self, mmethoddef, recvtype, arguments)
1140 frame.returnlabel = self.get_name("RET_LABEL")
1141 frame.returnvar = res
1142 var old_frame = self.frame
1143 self.frame = frame
1144 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1145 mmethoddef.compile_inside_to_c(self, arguments)
1146 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1147 self.add("\}")
1148 self.frame = old_frame
1149 return res
1150 end
1151 compiler.modelbuilder.nb_invok_by_direct += 1
1152 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1153
1154 # Autobox arguments
1155 self.adapt_signature(mmethoddef, arguments)
1156
1157 self.require_declaration(mmethoddef.c_name)
1158 if res == null then
1159 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1160 return null
1161 else
1162 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1163 end
1164
1165 return res
1166 end
1167
1168 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1169 do
1170 if arguments.first.mcasttype.ctype != "val*" then
1171 # In order to shortcut the primitive, we need to find the most specific method
1172 # However, because of performance (no flattening), we always work on the realmainmodule
1173 var main = self.compiler.mainmodule
1174 self.compiler.mainmodule = self.compiler.realmainmodule
1175 var res = self.monomorphic_super_send(m, recvtype, arguments)
1176 self.compiler.mainmodule = main
1177 return res
1178 end
1179 return table_send(m.mproperty, arguments, m.const_color)
1180 end
1181
1182 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1183 do
1184 # A vararg must be stored into an new array
1185 # The trick is that the dymaic type of the array may depends on the receiver
1186 # of the method (ie recv) if the static type is unresolved
1187 # This is more complex than usual because the unresolved type must not be resolved
1188 # with the current receiver (ie self).
1189 # Therefore to isolate the resolution from self, a local Frame is created.
1190 # One can see this implementation as an inlined method of the receiver whose only
1191 # job is to allocate the array
1192 var old_frame = self.frame
1193 var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1194 self.frame = frame
1195 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1196 var res = self.array_instance(varargs, elttype)
1197 self.frame = old_frame
1198 return res
1199 end
1200
1201 redef fun isset_attribute(a, recv)
1202 do
1203 self.check_recv_notnull(recv)
1204 var res = self.new_var(bool_type)
1205
1206 # What is the declared type of the attribute?
1207 var mtype = a.intro.static_mtype.as(not null)
1208 var intromclassdef = a.intro.mclassdef
1209 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1210
1211 if mtype isa MNullableType then
1212 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1213 return res
1214 end
1215
1216 self.require_declaration(a.const_color)
1217 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1218 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1219 else
1220
1221 if mtype.ctype == "val*" then
1222 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1223 else
1224 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1225 end
1226 end
1227 return res
1228 end
1229
1230 redef fun read_attribute(a, recv)
1231 do
1232 self.check_recv_notnull(recv)
1233
1234 # What is the declared type of the attribute?
1235 var ret = a.intro.static_mtype.as(not null)
1236 var intromclassdef = a.intro.mclassdef
1237 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1238
1239 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1240 self.compiler.attr_read_count += 1
1241 self.add("count_attr_reads++;")
1242 end
1243
1244 self.require_declaration(a.const_color)
1245 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1246 # Get the attribute or a box (ie. always a val*)
1247 var cret = self.object_type.as_nullable
1248 var res = self.new_var(cret)
1249 res.mcasttype = ret
1250
1251 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1252
1253 # Check for Uninitialized attribute
1254 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1255 self.add("if (unlikely({res} == NULL)) \{")
1256 self.add_abort("Uninitialized attribute {a.name}")
1257 self.add("\}")
1258
1259 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1260 self.compiler.isset_checks_count += 1
1261 self.add("count_isset_checks++;")
1262 end
1263 end
1264
1265 # Return the attribute or its unboxed version
1266 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1267 return self.autobox(res, ret)
1268 else
1269 var res = self.new_var(ret)
1270 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1271
1272 # Check for Uninitialized attribute
1273 if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1274 self.add("if (unlikely({res} == NULL)) \{")
1275 self.add_abort("Uninitialized attribute {a.name}")
1276 self.add("\}")
1277 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1278 self.compiler.isset_checks_count += 1
1279 self.add("count_isset_checks++;")
1280 end
1281 end
1282
1283 return res
1284 end
1285 end
1286
1287 redef fun write_attribute(a, recv, value)
1288 do
1289 self.check_recv_notnull(recv)
1290
1291 # What is the declared type of the attribute?
1292 var mtype = a.intro.static_mtype.as(not null)
1293 var intromclassdef = a.intro.mclassdef
1294 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1295
1296 # Adapt the value to the declared type
1297 value = self.autobox(value, mtype)
1298
1299 self.require_declaration(a.const_color)
1300 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1301 var attr = "{recv}->attrs[{a.const_color}]"
1302 if mtype.ctype != "val*" then
1303 assert mtype isa MClassType
1304 # The attribute is primitive, thus we store it in a box
1305 # The trick is to create the box the first time then resuse the box
1306 self.add("if ({attr} != NULL) \{")
1307 self.add("((struct instance_{mtype.c_instance_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1308 self.add("\} else \{")
1309 value = self.autobox(value, self.object_type.as_nullable)
1310 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1311 self.add("\}")
1312 else
1313 # The attribute is not primitive, thus store it direclty
1314 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1315 end
1316 else
1317 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1318 end
1319 end
1320
1321 # Check that mtype is a live open type
1322 fun hardening_live_open_type(mtype: MType)
1323 do
1324 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1325 self.require_declaration(mtype.const_color)
1326 var col = mtype.const_color
1327 self.add("if({col} == -1) \{")
1328 self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1329 self.add_abort("open type dead")
1330 self.add("\}")
1331 end
1332
1333 # Check that mtype it a pointer to a live cast type
1334 fun hardening_cast_type(t: String)
1335 do
1336 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1337 add("if({t} == NULL) \{")
1338 add_abort("cast type null")
1339 add("\}")
1340 add("if({t}->id == -1 || {t}->color == -1) \{")
1341 add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1342 add_abort("cast type dead")
1343 add("\}")
1344 end
1345
1346 redef fun init_instance(mtype)
1347 do
1348 self.require_declaration("NEW_{mtype.mclass.c_name}")
1349 var compiler = self.compiler
1350 if mtype isa MGenericType and mtype.need_anchor then
1351 hardening_live_open_type(mtype)
1352 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1353 var recv = self.frame.arguments.first
1354 var recv_type_info = self.type_info(recv)
1355 self.require_declaration(mtype.const_color)
1356 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1357 end
1358 compiler.undead_types.add(mtype)
1359 self.require_declaration("type_{mtype.c_name}")
1360 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1361 end
1362
1363 redef fun type_test(value, mtype, tag)
1364 do
1365 self.add("/* {value.inspect} isa {mtype} */")
1366 var compiler = self.compiler
1367
1368 var recv = self.frame.arguments.first
1369 var recv_type_info = self.type_info(recv)
1370
1371 var res = self.new_var(bool_type)
1372
1373 var cltype = self.get_name("cltype")
1374 self.add_decl("int {cltype};")
1375 var idtype = self.get_name("idtype")
1376 self.add_decl("int {idtype};")
1377
1378 var maybe_null = self.maybe_null(value)
1379 var accept_null = "0"
1380 var ntype = mtype
1381 if ntype isa MNullableType then
1382 ntype = ntype.mtype
1383 accept_null = "1"
1384 end
1385
1386 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1387 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1388 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1389 self.compiler.count_type_test_skipped[tag] += 1
1390 self.add("count_type_test_skipped_{tag}++;")
1391 end
1392 return res
1393 end
1394
1395 if ntype.need_anchor then
1396 var type_struct = self.get_name("type_struct")
1397 self.add_decl("const struct type* {type_struct};")
1398
1399 # Either with resolution_table with a direct resolution
1400 hardening_live_open_type(mtype)
1401 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1402 self.require_declaration(mtype.const_color)
1403 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1404 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1405 self.compiler.count_type_test_unresolved[tag] += 1
1406 self.add("count_type_test_unresolved_{tag}++;")
1407 end
1408 hardening_cast_type(type_struct)
1409 self.add("{cltype} = {type_struct}->color;")
1410 self.add("{idtype} = {type_struct}->id;")
1411 if maybe_null and accept_null == "0" then
1412 var is_nullable = self.get_name("is_nullable")
1413 self.add_decl("short int {is_nullable};")
1414 self.add("{is_nullable} = {type_struct}->is_nullable;")
1415 accept_null = is_nullable.to_s
1416 end
1417 else if ntype isa MClassType then
1418 compiler.undead_types.add(mtype)
1419 self.require_declaration("type_{mtype.c_name}")
1420 hardening_cast_type("(&type_{mtype.c_name})")
1421 self.add("{cltype} = type_{mtype.c_name}.color;")
1422 self.add("{idtype} = type_{mtype.c_name}.id;")
1423 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1424 self.compiler.count_type_test_resolved[tag] += 1
1425 self.add("count_type_test_resolved_{tag}++;")
1426 end
1427 else
1428 self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);")
1429 end
1430
1431 # check color is in table
1432 if maybe_null then
1433 self.add("if({value} == NULL) \{")
1434 self.add("{res} = {accept_null};")
1435 self.add("\} else \{")
1436 end
1437 var value_type_info = self.type_info(value)
1438 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1439 self.add("{res} = 0;")
1440 self.add("\} else \{")
1441 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1442 self.add("\}")
1443 if maybe_null then
1444 self.add("\}")
1445 end
1446
1447 return res
1448 end
1449
1450 redef fun is_same_type_test(value1, value2)
1451 do
1452 var res = self.new_var(bool_type)
1453 # Swap values to be symetric
1454 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1455 var tmp = value1
1456 value1 = value2
1457 value2 = tmp
1458 end
1459 if value1.mtype.ctype != "val*" then
1460 if value2.mtype == value1.mtype then
1461 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1462 else if value2.mtype.ctype != "val*" then
1463 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1464 else
1465 var mtype1 = value1.mtype.as(MClassType)
1466 self.require_declaration("class_{mtype1.c_name}")
1467 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */")
1468 end
1469 else
1470 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */")
1471 end
1472 return res
1473 end
1474
1475 redef fun class_name_string(value)
1476 do
1477 var res = self.get_name("var_class_name")
1478 self.add_decl("const char* {res};")
1479 if value.mtype.ctype == "val*" then
1480 self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;"
1481 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind then
1482 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1483 else
1484 self.require_declaration("type_{value.mtype.c_name}")
1485 self.add "{res} = type_{value.mtype.c_name}.name;"
1486 end
1487 return res
1488 end
1489
1490 redef fun equal_test(value1, value2)
1491 do
1492 var res = self.new_var(bool_type)
1493 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1494 var tmp = value1
1495 value1 = value2
1496 value2 = tmp
1497 end
1498 if value1.mtype.ctype != "val*" then
1499 if value2.mtype == value1.mtype then
1500 self.add("{res} = {value1} == {value2};")
1501 else if value2.mtype.ctype != "val*" then
1502 self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/")
1503 else
1504 var mtype1 = value1.mtype.as(MClassType)
1505 self.require_declaration("class_{mtype1.c_name}")
1506 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});")
1507 self.add("if ({res}) \{")
1508 self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});")
1509 self.add("\}")
1510 end
1511 return res
1512 end
1513 var maybe_null = true
1514 var test = new Array[String]
1515 var t1 = value1.mcasttype
1516 if t1 isa MNullableType then
1517 test.add("{value1} != NULL")
1518 t1 = t1.mtype
1519 else
1520 maybe_null = false
1521 end
1522 var t2 = value2.mcasttype
1523 if t2 isa MNullableType then
1524 test.add("{value2} != NULL")
1525 t2 = t2.mtype
1526 else
1527 maybe_null = false
1528 end
1529
1530 var incompatible = false
1531 var primitive
1532 if t1.ctype != "val*" then
1533 primitive = t1
1534 if t1 == t2 then
1535 # No need to compare class
1536 else if t2.ctype != "val*" then
1537 incompatible = true
1538 else if can_be_primitive(value2) then
1539 test.add("{value1}->class == {value2}->class")
1540 else
1541 incompatible = true
1542 end
1543 else if t2.ctype != "val*" then
1544 primitive = t2
1545 if can_be_primitive(value1) then
1546 test.add("{value1}->class == {value2}->class")
1547 else
1548 incompatible = true
1549 end
1550 else
1551 primitive = null
1552 end
1553
1554 if incompatible then
1555 if maybe_null then
1556 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
1557 return res
1558 else
1559 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
1560 return res
1561 end
1562 end
1563 if primitive != null then
1564 test.add("((struct instance_{primitive.c_instance_name}*){value1})->value == ((struct instance_{primitive.c_instance_name}*){value2})->value")
1565 else if can_be_primitive(value1) and can_be_primitive(value2) then
1566 test.add("{value1}->class == {value2}->class")
1567 var s = new Array[String]
1568 for t, v in self.compiler.box_kinds do
1569 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_instance_name}*){value1})->value == ((struct instance_{t.c_instance_name}*){value2})->value)"
1570 end
1571 test.add("({s.join(" || ")})")
1572 else
1573 self.add("{res} = {value1} == {value2};")
1574 return res
1575 end
1576 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
1577 return res
1578 end
1579
1580 fun can_be_primitive(value: RuntimeVariable): Bool
1581 do
1582 var t = value.mcasttype.as_notnullable
1583 if not t isa MClassType then return false
1584 var k = t.mclass.kind
1585 return k == interface_kind or t.ctype != "val*"
1586 end
1587
1588 fun maybe_null(value: RuntimeVariable): Bool
1589 do
1590 var t = value.mcasttype
1591 return t isa MNullableType or t isa MNullType
1592 end
1593
1594 redef fun array_instance(array, elttype)
1595 do
1596 var nclass = self.get_class("NativeArray")
1597 var arrayclass = self.get_class("Array")
1598 var arraytype = arrayclass.get_mtype([elttype])
1599 var res = self.init_instance(arraytype)
1600 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
1601 var length = self.int_instance(array.length)
1602 var nat = native_array_instance(elttype, length)
1603 for i in [0..array.length[ do
1604 var r = self.autobox(array[i], self.object_type)
1605 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
1606 end
1607 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
1608 self.add("\}")
1609 return res
1610 end
1611
1612 redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable
1613 do
1614 var mtype = self.get_class("NativeArray").get_mtype([elttype])
1615 self.require_declaration("NEW_{mtype.mclass.c_name}")
1616 assert mtype isa MGenericType
1617 var compiler = self.compiler
1618 if mtype.need_anchor then
1619 hardening_live_open_type(mtype)
1620 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1621 var recv = self.frame.arguments.first
1622 var recv_type_info = self.type_info(recv)
1623 self.require_declaration(mtype.const_color)
1624 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1625 end
1626 compiler.undead_types.add(mtype)
1627 self.require_declaration("type_{mtype.c_name}")
1628 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype)
1629 end
1630
1631 redef fun native_array_def(pname, ret_type, arguments)
1632 do
1633 var elttype = arguments.first.mtype
1634 var nclass = self.get_class("NativeArray")
1635 var recv = "((struct instance_{nclass.c_instance_name}*){arguments[0]})->values"
1636 if pname == "[]" then
1637 self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null)))
1638 return
1639 else if pname == "[]=" then
1640 self.add("{recv}[{arguments[1]}]={arguments[2]};")
1641 return
1642 else if pname == "length" then
1643 self.ret(self.new_expr("((struct instance_{nclass.c_instance_name}*){arguments[0]})->length", ret_type.as(not null)))
1644 return
1645 else if pname == "copy_to" then
1646 var recv1 = "((struct instance_{nclass.c_instance_name}*){arguments[1]})->values"
1647 self.add("memcpy({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
1648 return
1649 end
1650 end
1651
1652 redef fun calloc_array(ret_type, arguments)
1653 do
1654 var mclass = self.get_class("ArrayCapable")
1655 var ft = mclass.mclass_type.arguments.first.as(MParameterType)
1656 var res = self.native_array_instance(ft, arguments[1])
1657 self.ret(res)
1658 end
1659
1660 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
1661 assert mtype.need_anchor
1662 var compiler = self.compiler
1663 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
1664 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
1665 end
1666 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
1667 end
1668 end
1669
1670 redef class MMethodDef
1671 fun separate_runtime_function: AbstractRuntimeFunction
1672 do
1673 var res = self.separate_runtime_function_cache
1674 if res == null then
1675 res = new SeparateRuntimeFunction(self)
1676 self.separate_runtime_function_cache = res
1677 end
1678 return res
1679 end
1680 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
1681
1682 fun virtual_runtime_function: AbstractRuntimeFunction
1683 do
1684 var res = self.virtual_runtime_function_cache
1685 if res == null then
1686 res = new VirtualRuntimeFunction(self)
1687 self.virtual_runtime_function_cache = res
1688 end
1689 return res
1690 end
1691 private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction
1692 end
1693
1694 # The C function associated to a methoddef separately compiled
1695 class SeparateRuntimeFunction
1696 super AbstractRuntimeFunction
1697
1698 redef fun build_c_name: String do return "{mmethoddef.c_name}"
1699
1700 redef fun to_s do return self.mmethoddef.to_s
1701
1702 redef fun compile_to_c(compiler)
1703 do
1704 var mmethoddef = self.mmethoddef
1705
1706 var recv = self.mmethoddef.mclassdef.bound_mtype
1707 var v = compiler.new_visitor
1708 var selfvar = new RuntimeVariable("self", recv, recv)
1709 var arguments = new Array[RuntimeVariable]
1710 var frame = new Frame(v, mmethoddef, recv, arguments)
1711 v.frame = frame
1712
1713 var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1714
1715 var sig = new FlatBuffer
1716 var comment = new FlatBuffer
1717 var ret = msignature.return_mtype
1718 if ret != null then
1719 sig.append("{ret.ctype} ")
1720 else if mmethoddef.mproperty.is_new then
1721 ret = recv
1722 sig.append("{ret.ctype} ")
1723 else
1724 sig.append("void ")
1725 end
1726 sig.append(self.c_name)
1727 sig.append("({selfvar.mtype.ctype} {selfvar}")
1728 comment.append("({selfvar}: {selfvar.mtype}")
1729 arguments.add(selfvar)
1730 for i in [0..msignature.arity[ do
1731 var mtype = msignature.mparameters[i].mtype
1732 if i == msignature.vararg_rank then
1733 mtype = v.get_class("Array").get_mtype([mtype])
1734 end
1735 comment.append(", {mtype}")
1736 sig.append(", {mtype.ctype} p{i}")
1737 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1738 arguments.add(argvar)
1739 end
1740 sig.append(")")
1741 comment.append(")")
1742 if ret != null then
1743 comment.append(": {ret}")
1744 end
1745 compiler.provide_declaration(self.c_name, "{sig};")
1746
1747 v.add_decl("/* method {self} for {comment} */")
1748 v.add_decl("{sig} \{")
1749 if ret != null then
1750 frame.returnvar = v.new_var(ret)
1751 end
1752 frame.returnlabel = v.get_name("RET_LABEL")
1753
1754 if recv != arguments.first.mtype then
1755 #print "{self} {recv} {arguments.first}"
1756 end
1757 mmethoddef.compile_inside_to_c(v, arguments)
1758
1759 v.add("{frame.returnlabel.as(not null)}:;")
1760 if ret != null then
1761 v.add("return {frame.returnvar.as(not null)};")
1762 end
1763 v.add("\}")
1764 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
1765 end
1766 end
1767
1768 # The C function associated to a methoddef on a primitive type, stored into a VFT of a class
1769 # The first parameter (the reciever) is always typed by val* in order to accept an object value
1770 class VirtualRuntimeFunction
1771 super AbstractRuntimeFunction
1772
1773 redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}"
1774
1775 redef fun to_s do return self.mmethoddef.to_s
1776
1777 redef fun compile_to_c(compiler)
1778 do
1779 var mmethoddef = self.mmethoddef
1780
1781 var recv = self.mmethoddef.mclassdef.bound_mtype
1782 var v = compiler.new_visitor
1783 var selfvar = new RuntimeVariable("self", v.object_type, recv)
1784 var arguments = new Array[RuntimeVariable]
1785 var frame = new Frame(v, mmethoddef, recv, arguments)
1786 v.frame = frame
1787
1788 var sig = new FlatBuffer
1789 var comment = new FlatBuffer
1790
1791 # Because the function is virtual, the signature must match the one of the original class
1792 var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef
1793 var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1794 var ret = msignature.return_mtype
1795 if ret != null then
1796 sig.append("{ret.ctype} ")
1797 else if mmethoddef.mproperty.is_new then
1798 ret = recv
1799 sig.append("{ret.ctype} ")
1800 else
1801 sig.append("void ")
1802 end
1803 sig.append(self.c_name)
1804 sig.append("({selfvar.mtype.ctype} {selfvar}")
1805 comment.append("({selfvar}: {selfvar.mtype}")
1806 arguments.add(selfvar)
1807 for i in [0..msignature.arity[ do
1808 var mtype = msignature.mparameters[i].mtype
1809 if i == msignature.vararg_rank then
1810 mtype = v.get_class("Array").get_mtype([mtype])
1811 end
1812 comment.append(", {mtype}")
1813 sig.append(", {mtype.ctype} p{i}")
1814 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1815 arguments.add(argvar)
1816 end
1817 sig.append(")")
1818 comment.append(")")
1819 if ret != null then
1820 comment.append(": {ret}")
1821 end
1822 compiler.provide_declaration(self.c_name, "{sig};")
1823
1824 v.add_decl("/* method {self} for {comment} */")
1825 v.add_decl("{sig} \{")
1826 if ret != null then
1827 frame.returnvar = v.new_var(ret)
1828 end
1829 frame.returnlabel = v.get_name("RET_LABEL")
1830
1831 var subret = v.call(mmethoddef, recv, arguments)
1832 if ret != null then
1833 assert subret != null
1834 v.assign(frame.returnvar.as(not null), subret)
1835 end
1836
1837 v.add("{frame.returnlabel.as(not null)}:;")
1838 if ret != null then
1839 v.add("return {frame.returnvar.as(not null)};")
1840 end
1841 v.add("\}")
1842 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})"
1843 end
1844
1845 # TODO ?
1846 redef fun call(v, arguments) do abort
1847 end
1848
1849 redef class MType
1850 fun const_color: String do return "COLOR_{c_name}"
1851
1852 # C name of the instance type to use
1853 fun c_instance_name: String do return c_name
1854 end
1855
1856 redef class MClassType
1857 redef fun c_instance_name do return mclass.c_instance_name
1858 end
1859
1860 redef class MClass
1861 # Extern classes use the C instance of kernel::Pointer
1862 fun c_instance_name: String
1863 do
1864 if kind == extern_kind then
1865 return "kernel__Pointer"
1866 else return c_name
1867 end
1868 end
1869
1870 interface PropertyLayoutElement end
1871
1872 redef class MProperty
1873 super PropertyLayoutElement
1874 fun const_color: String do return "COLOR_{c_name}"
1875 end
1876
1877 redef class MPropDef
1878 super PropertyLayoutElement
1879 fun const_color: String do return "COLOR_{c_name}"
1880 end