35910d34177d53c8075670918dd769318e2bff58
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 var mclassdef_hierarchy = new POSet[MClassDef]
54
55 # Class-type hierarchy restricted to the introduction.
56 #
57 # The idea is that what is true on introduction is always true whatever
58 # the module considered.
59 # Therefore, this hierarchy is used for a fast positive subtype check.
60 #
61 # This poset will evolve in a monotonous way:
62 # * Two non connected nodes will remain unconnected
63 # * New nodes can appear with new edges
64 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Global overlapped class-type hierarchy.
67 # The hierarchy when all modules are combined.
68 # Therefore, this hierarchy is used for a fast negative subtype check.
69 #
70 # This poset will evolve in an anarchic way. Loops can even be created.
71 #
72 # FIXME decide what to do on loops
73 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
74
75 # Collections of classes grouped by their short name
76 private var mclasses_by_name = new MultiHashMap[String, MClass]
77
78 # Return all classes named `name`.
79 #
80 # If such a class does not exist, null is returned
81 # (instead of an empty array)
82 #
83 # Visibility or modules are not considered
84 fun get_mclasses_by_name(name: String): nullable Array[MClass]
85 do
86 return mclasses_by_name.get_or_null(name)
87 end
88
89 # Collections of properties grouped by their short name
90 private var mproperties_by_name = new MultiHashMap[String, MProperty]
91
92 # Return all properties named `name`.
93 #
94 # If such a property does not exist, null is returned
95 # (instead of an empty array)
96 #
97 # Visibility or modules are not considered
98 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
99 do
100 return mproperties_by_name.get_or_null(name)
101 end
102
103 # The only null type
104 var null_type = new MNullType(self)
105
106 # The only bottom type
107 var bottom_type: MBottomType = null_type.as_notnull
108
109 # Build an ordered tree with from `concerns`
110 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
111 var seen = new HashSet[MConcern]
112 var res = new ConcernsTree
113
114 var todo = new Array[MConcern]
115 todo.add_all mconcerns
116
117 while not todo.is_empty do
118 var c = todo.pop
119 if seen.has(c) then continue
120 var pc = c.parent_concern
121 if pc == null then
122 res.add(null, c)
123 else
124 res.add(pc, c)
125 todo.add(pc)
126 end
127 seen.add(c)
128 end
129
130 return res
131 end
132 end
133
134 # An OrderedTree bound to MEntity.
135 #
136 # We introduce a new class so it can be easily refined by tools working
137 # with a Model.
138 class MEntityTree
139 super OrderedTree[MEntity]
140 end
141
142 # A MEntityTree borned to MConcern.
143 #
144 # TODO remove when nitdoc is fully merged with model_collect
145 class ConcernsTree
146 super OrderedTree[MConcern]
147 end
148
149 redef class MModule
150 # All the classes introduced in the module
151 var intro_mclasses = new Array[MClass]
152
153 # All the class definitions of the module
154 # (introduction and refinement)
155 var mclassdefs = new Array[MClassDef]
156
157 # Does the current module has a given class `mclass`?
158 # Return true if the mmodule introduces, refines or imports a class.
159 # Visibility is not considered.
160 fun has_mclass(mclass: MClass): Bool
161 do
162 return self.in_importation <= mclass.intro_mmodule
163 end
164
165 # Full hierarchy of introduced and imported classes.
166 #
167 # Create a new hierarchy got by flattening the classes for the module
168 # and its imported modules.
169 # Visibility is not considered.
170 #
171 # Note: this function is expensive and is usually used for the main
172 # module of a program only. Do not use it to do you own subtype
173 # functions.
174 fun flatten_mclass_hierarchy: POSet[MClass]
175 do
176 var res = self.flatten_mclass_hierarchy_cache
177 if res != null then return res
178 res = new POSet[MClass]
179 for m in self.in_importation.greaters do
180 for cd in m.mclassdefs do
181 var c = cd.mclass
182 res.add_node(c)
183 for s in cd.supertypes do
184 res.add_edge(c, s.mclass)
185 end
186 end
187 end
188 self.flatten_mclass_hierarchy_cache = res
189 return res
190 end
191
192 # Sort a given array of classes using the linearization order of the module
193 # The most general is first, the most specific is last
194 fun linearize_mclasses(mclasses: Array[MClass])
195 do
196 self.flatten_mclass_hierarchy.sort(mclasses)
197 end
198
199 # Sort a given array of class definitions using the linearization order of the module
200 # the refinement link is stronger than the specialisation link
201 # The most general is first, the most specific is last
202 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
203 do
204 var sorter = new MClassDefSorter(self)
205 sorter.sort(mclassdefs)
206 end
207
208 # Sort a given array of property definitions using the linearization order of the module
209 # the refinement link is stronger than the specialisation link
210 # The most general is first, the most specific is last
211 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
212 do
213 var sorter = new MPropDefSorter(self)
214 sorter.sort(mpropdefs)
215 end
216
217 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
218
219 # The primitive type `Object`, the root of the class hierarchy
220 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
221
222 # The type `Pointer`, super class to all extern classes
223 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
224
225 # The primitive type `Bool`
226 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
227
228 # The primitive type `Int`
229 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
230
231 # The primitive type `Byte`
232 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
233
234 # The primitive type `Int8`
235 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
236
237 # The primitive type `Int16`
238 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
239
240 # The primitive type `UInt16`
241 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
242
243 # The primitive type `Int32`
244 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
245
246 # The primitive type `UInt32`
247 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
248
249 # The primitive type `Char`
250 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
251
252 # The primitive type `Float`
253 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
254
255 # The primitive type `String`
256 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
257
258 # The primitive type `CString`
259 var c_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy
260
261 # A primitive type of `Array`
262 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
263
264 # The primitive class `Array`
265 var array_class: MClass = self.get_primitive_class("Array") is lazy
266
267 # A primitive type of `NativeArray`
268 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
269
270 # The primitive class `NativeArray`
271 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
272
273 # The primitive type `Sys`, the main type of the program, if any
274 fun sys_type: nullable MClassType
275 do
276 var clas = self.model.get_mclasses_by_name("Sys")
277 if clas == null then return null
278 return get_primitive_class("Sys").mclass_type
279 end
280
281 # The primitive type `Finalizable`
282 # Used to tag classes that need to be finalized.
283 fun finalizable_type: nullable MClassType
284 do
285 var clas = self.model.get_mclasses_by_name("Finalizable")
286 if clas == null then return null
287 return get_primitive_class("Finalizable").mclass_type
288 end
289
290 # Force to get the primitive class named `name` or abort
291 fun get_primitive_class(name: String): MClass
292 do
293 var cla = self.model.get_mclasses_by_name(name)
294 # Filter classes by introducing module
295 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
296 if cla == null or cla.is_empty then
297 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
298 # Bool is injected because it is needed by engine to code the result
299 # of the implicit casts.
300 var loc = model.no_location
301 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
302 var cladef = new MClassDef(self, c.mclass_type, loc)
303 cladef.set_supertypes([object_type])
304 cladef.add_in_hierarchy
305 return c
306 end
307 print_error("Fatal Error: no primitive class {name} in {self}")
308 exit(1)
309 abort
310 end
311 if cla.length != 1 then
312 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
313 for c in cla do msg += " {c.full_name}"
314 print_error msg
315 #exit(1)
316 end
317 return cla.first
318 end
319
320 # Try to get the primitive method named `name` on the type `recv`
321 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
322 do
323 var props = self.model.get_mproperties_by_name(name)
324 if props == null then return null
325 var res: nullable MMethod = null
326 var recvtype = recv.intro.bound_mtype
327 for mprop in props do
328 assert mprop isa MMethod
329 if not recvtype.has_mproperty(self, mprop) then continue
330 if res == null then
331 res = mprop
332 else if res != mprop then
333 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
334 abort
335 end
336 end
337 return res
338 end
339 end
340
341 private class MClassDefSorter
342 super Comparator
343 redef type COMPARED: MClassDef
344 var mmodule: MModule
345 redef fun compare(a, b)
346 do
347 var ca = a.mclass
348 var cb = b.mclass
349 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
350 return mmodule.model.mclassdef_hierarchy.compare(a, b)
351 end
352 end
353
354 private class MPropDefSorter
355 super Comparator
356 redef type COMPARED: MPropDef
357 var mmodule: MModule
358 redef fun compare(pa, pb)
359 do
360 var a = pa.mclassdef
361 var b = pb.mclassdef
362 var ca = a.mclass
363 var cb = b.mclass
364 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
365 return mmodule.model.mclassdef_hierarchy.compare(a, b)
366 end
367 end
368
369 # A named class
370 #
371 # `MClass` are global to the model; it means that a `MClass` is not bound to a
372 # specific `MModule`.
373 #
374 # This characteristic helps the reasoning about classes in a program since a
375 # single `MClass` object always denote the same class.
376 #
377 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
378 # These do not really have properties nor belong to a hierarchy since the property and the
379 # hierarchy of a class depends of the refinement in the modules.
380 #
381 # Most services on classes require the precision of a module, and no one can asks what are
382 # the super-classes of a class nor what are properties of a class without precising what is
383 # the module considered.
384 #
385 # For instance, during the typing of a source-file, the module considered is the module of the file.
386 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
387 # *is the method `foo` exists in the class `Bar` in the current module?*
388 #
389 # During some global analysis, the module considered may be the main module of the program.
390 class MClass
391 super MEntity
392
393 # The module that introduce the class
394 #
395 # While classes are not bound to a specific module,
396 # the introducing module is used for naming and visibility.
397 var intro_mmodule: MModule
398
399 # The short name of the class
400 # In Nit, the name of a class cannot evolve in refinements
401 redef var name
402
403 redef var location
404
405 # The canonical name of the class
406 #
407 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
408 # Example: `"owner::module::MyClass"`
409 redef var full_name is lazy do
410 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
411 end
412
413 redef var c_name is lazy do
414 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
415 end
416
417 # The number of generic formal parameters
418 # 0 if the class is not generic
419 var arity: Int is noinit
420
421 # Each generic formal parameters in order.
422 # is empty if the class is not generic
423 var mparameters = new Array[MParameterType]
424
425 # A string version of the signature a generic class.
426 #
427 # eg. `Map[K: nullable Object, V: nullable Object]`
428 #
429 # If the class in non generic the name is just given.
430 #
431 # eg. `Object`
432 fun signature_to_s: String
433 do
434 if arity == 0 then return name
435 var res = new FlatBuffer
436 res.append name
437 res.append "["
438 for i in [0..arity[ do
439 if i > 0 then res.append ", "
440 res.append mparameters[i].name
441 res.append ": "
442 res.append intro.bound_mtype.arguments[i].to_s
443 end
444 res.append "]"
445 return res.to_s
446 end
447
448 # Initialize `mparameters` from their names.
449 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
450 autoinit
451 do
452 if parameter_names == null then
453 self.arity = 0
454 else
455 self.arity = parameter_names.length
456 end
457
458 # Create the formal parameter types
459 if arity > 0 then
460 assert parameter_names != null
461 var mparametertypes = new Array[MParameterType]
462 for i in [0..arity[ do
463 var mparametertype = new MParameterType(self, i, parameter_names[i])
464 mparametertypes.add(mparametertype)
465 end
466 self.mparameters = mparametertypes
467 var mclass_type = new MGenericType(self, mparametertypes)
468 self.mclass_type = mclass_type
469 self.get_mtype_cache[mparametertypes] = mclass_type
470 else
471 self.mclass_type = new MClassType(self)
472 end
473 end
474
475 # The kind of the class (interface, abstract class, etc.)
476 # In Nit, the kind of a class cannot evolve in refinements
477 var kind: MClassKind
478
479 # The visibility of the class
480 # In Nit, the visibility of a class cannot evolve in refinements
481 redef var visibility
482
483 init
484 do
485 intro_mmodule.intro_mclasses.add(self)
486 var model = intro_mmodule.model
487 model.mclasses_by_name.add_one(name, self)
488 model.mclasses.add(self)
489 end
490
491 redef fun model do return intro_mmodule.model
492
493 # All class definitions (introduction and refinements)
494 var mclassdefs = new Array[MClassDef]
495
496 # Alias for `name`
497 redef fun to_s do return self.name
498
499 # The definition that introduces the class.
500 #
501 # Warning: such a definition may not exist in the early life of the object.
502 # In this case, the method will abort.
503 #
504 # Use `try_intro` instead
505 var intro: MClassDef is noinit
506
507 # The definition that introduces the class or null if not yet known.
508 #
509 # See `intro`
510 fun try_intro: nullable MClassDef do
511 if isset _intro then return _intro else return null
512 end
513
514 # Return the class `self` in the class hierarchy of the module `mmodule`.
515 #
516 # SEE: `MModule::flatten_mclass_hierarchy`
517 # REQUIRE: `mmodule.has_mclass(self)`
518 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
519 do
520 return mmodule.flatten_mclass_hierarchy[self]
521 end
522
523 # The principal static type of the class.
524 #
525 # For non-generic class, `mclass_type` is the only `MClassType` based
526 # on self.
527 #
528 # For a generic class, the arguments are the formal parameters.
529 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
530 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
531 #
532 # For generic classes, the mclass_type is also the way to get a formal
533 # generic parameter type.
534 #
535 # To get other types based on a generic class, see `get_mtype`.
536 #
537 # ENSURE: `mclass_type.mclass == self`
538 var mclass_type: MClassType is noinit
539
540 # Return a generic type based on the class
541 # Is the class is not generic, then the result is `mclass_type`
542 #
543 # REQUIRE: `mtype_arguments.length == self.arity`
544 fun get_mtype(mtype_arguments: Array[MType]): MClassType
545 do
546 assert mtype_arguments.length == self.arity
547 if self.arity == 0 then return self.mclass_type
548 var res = get_mtype_cache.get_or_null(mtype_arguments)
549 if res != null then return res
550 res = new MGenericType(self, mtype_arguments)
551 self.get_mtype_cache[mtype_arguments.to_a] = res
552 return res
553 end
554
555 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
556
557 # Is there a `new` factory to allow the pseudo instantiation?
558 var has_new_factory = false is writable
559
560 # Is `self` a standard or abstract class kind?
561 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
562
563 # Is `self` an interface kind?
564 var is_interface: Bool is lazy do return kind == interface_kind
565
566 # Is `self` an enum kind?
567 var is_enum: Bool is lazy do return kind == enum_kind
568
569 # Is `self` and abstract class?
570 var is_abstract: Bool is lazy do return kind == abstract_kind
571
572 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
573 end
574
575
576 # A definition (an introduction or a refinement) of a class in a module
577 #
578 # A `MClassDef` is associated with an explicit (or almost) definition of a
579 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
580 # a specific class and a specific module, and contains declarations like super-classes
581 # or properties.
582 #
583 # It is the class definitions that are the backbone of most things in the model:
584 # ClassDefs are defined with regard with other classdefs.
585 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
586 #
587 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
588 class MClassDef
589 super MEntity
590
591 # The module where the definition is
592 var mmodule: MModule
593
594 # The associated `MClass`
595 var mclass: MClass is noinit
596
597 # The bounded type associated to the mclassdef
598 #
599 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
600 # are the same type.
601 #
602 # Example:
603 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
604 # If you want Array[E], then see `mclass.mclass_type`
605 #
606 # ENSURE: `bound_mtype.mclass == self.mclass`
607 var bound_mtype: MClassType
608
609 redef var location
610
611 redef fun visibility do return mclass.visibility
612
613 # Internal name combining the module and the class
614 # Example: "mymodule$MyClass"
615 redef var to_s is noinit
616
617 init
618 do
619 self.mclass = bound_mtype.mclass
620 mmodule.mclassdefs.add(self)
621 mclass.mclassdefs.add(self)
622 if mclass.intro_mmodule == mmodule then
623 assert not isset mclass._intro
624 mclass.intro = self
625 end
626 self.to_s = "{mmodule}${mclass}"
627 end
628
629 # Actually the name of the `mclass`
630 redef fun name do return mclass.name
631
632 # The module and class name separated by a '$'.
633 #
634 # The short-name of the class is used for introduction.
635 # Example: "my_module$MyClass"
636 #
637 # The full-name of the class is used for refinement.
638 # Example: "my_module$intro_module::MyClass"
639 redef var full_name is lazy do
640 if is_intro then
641 # public gives 'p$A'
642 # private gives 'p::m$A'
643 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
644 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
645 # public gives 'q::n$p::A'
646 # private gives 'q::n$p::m::A'
647 return "{mmodule.full_name}${mclass.full_name}"
648 else if mclass.visibility > private_visibility then
649 # public gives 'p::n$A'
650 return "{mmodule.full_name}${mclass.name}"
651 else
652 # private gives 'p::n$::m::A' (redundant p is omitted)
653 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
654 end
655 end
656
657 redef var c_name is lazy do
658 if is_intro then
659 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
660 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
661 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
662 else
663 return "{mmodule.c_name}___{mclass.c_name}"
664 end
665 end
666
667 redef fun model do return mmodule.model
668
669 # All declared super-types
670 # FIXME: quite ugly but not better idea yet
671 var supertypes = new Array[MClassType]
672
673 # Register some super-types for the class (ie "super SomeType")
674 #
675 # The hierarchy must not already be set
676 # REQUIRE: `self.in_hierarchy == null`
677 fun set_supertypes(supertypes: Array[MClassType])
678 do
679 assert unique_invocation: self.in_hierarchy == null
680 var mmodule = self.mmodule
681 var model = mmodule.model
682 var mtype = self.bound_mtype
683
684 for supertype in supertypes do
685 self.supertypes.add(supertype)
686
687 # Register in full_type_specialization_hierarchy
688 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
689 # Register in intro_type_specialization_hierarchy
690 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
691 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
692 end
693 end
694
695 end
696
697 # Collect the super-types (set by set_supertypes) to build the hierarchy
698 #
699 # This function can only invoked once by class
700 # REQUIRE: `self.in_hierarchy == null`
701 # ENSURE: `self.in_hierarchy != null`
702 fun add_in_hierarchy
703 do
704 assert unique_invocation: self.in_hierarchy == null
705 var model = mmodule.model
706 var res = model.mclassdef_hierarchy.add_node(self)
707 self.in_hierarchy = res
708 var mtype = self.bound_mtype
709
710 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
711 # The simpliest way is to attach it to collect_mclassdefs
712 for mclassdef in mtype.collect_mclassdefs(mmodule) do
713 res.poset.add_edge(self, mclassdef)
714 end
715 end
716
717 # The view of the class definition in `mclassdef_hierarchy`
718 var in_hierarchy: nullable POSetElement[MClassDef] = null
719
720 # Is the definition the one that introduced `mclass`?
721 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
722
723 # All properties introduced by the classdef
724 var intro_mproperties = new Array[MProperty]
725
726 # All property introductions and redefinitions in `self` (not inheritance).
727 var mpropdefs = new Array[MPropDef]
728
729 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
730 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
731 end
732
733 # A global static type
734 #
735 # MType are global to the model; it means that a `MType` is not bound to a
736 # specific `MModule`.
737 # This characteristic helps the reasoning about static types in a program
738 # since a single `MType` object always denote the same type.
739 #
740 # However, because a `MType` is global, it does not really have properties
741 # nor have subtypes to a hierarchy since the property and the class hierarchy
742 # depends of a module.
743 # Moreover, virtual types an formal generic parameter types also depends on
744 # a receiver to have sense.
745 #
746 # Therefore, most method of the types require a module and an anchor.
747 # The module is used to know what are the classes and the specialization
748 # links.
749 # The anchor is used to know what is the bound of the virtual types and formal
750 # generic parameter types.
751 #
752 # MType are not directly usable to get properties. See the `anchor_to` method
753 # and the `MClassType` class.
754 #
755 # FIXME: the order of the parameters is not the best. We mus pick on from:
756 # * foo(mmodule, anchor, othertype)
757 # * foo(othertype, anchor, mmodule)
758 # * foo(anchor, mmodule, othertype)
759 # * foo(othertype, mmodule, anchor)
760 abstract class MType
761 super MEntity
762
763 redef fun name do return to_s
764
765 # Return true if `self` is an subtype of `sup`.
766 # The typing is done using the standard typing policy of Nit.
767 #
768 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
769 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
770 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
771 do
772 var sub = self
773 if sub == sup then return true
774
775 #print "1.is {sub} a {sup}? ===="
776
777 if anchor == null then
778 assert not sub.need_anchor
779 assert not sup.need_anchor
780 else
781 # First, resolve the formal types to the simplest equivalent forms in the receiver
782 assert sub.can_resolve_for(anchor, null, mmodule)
783 sub = sub.lookup_fixed(mmodule, anchor)
784 assert sup.can_resolve_for(anchor, null, mmodule)
785 sup = sup.lookup_fixed(mmodule, anchor)
786 end
787
788 # Does `sup` accept null or not?
789 # Discard the nullable marker if it exists
790 var sup_accept_null = false
791 if sup isa MNullableType then
792 sup_accept_null = true
793 sup = sup.mtype
794 else if sup isa MNotNullType then
795 sup = sup.mtype
796 else if sup isa MNullType then
797 sup_accept_null = true
798 end
799
800 # Can `sub` provide null or not?
801 # Thus we can match with `sup_accept_null`
802 # Also discard the nullable marker if it exists
803 var sub_reject_null = false
804 if sub isa MNullableType then
805 if not sup_accept_null then return false
806 sub = sub.mtype
807 else if sub isa MNotNullType then
808 sub_reject_null = true
809 sub = sub.mtype
810 else if sub isa MNullType then
811 return sup_accept_null
812 end
813 # Now the case of direct null and nullable is over.
814
815 # If `sub` is a formal type, then it is accepted if its bound is accepted
816 while sub isa MFormalType do
817 #print "3.is {sub} a {sup}?"
818
819 # A unfixed formal type can only accept itself
820 if sub == sup then return true
821
822 assert anchor != null
823 sub = sub.lookup_bound(mmodule, anchor)
824 if sub_reject_null then sub = sub.as_notnull
825
826 #print "3.is {sub} a {sup}?"
827
828 # Manage the second layer of null/nullable
829 if sub isa MNullableType then
830 if not sup_accept_null and not sub_reject_null then return false
831 sub = sub.mtype
832 else if sub isa MNotNullType then
833 sub_reject_null = true
834 sub = sub.mtype
835 else if sub isa MNullType then
836 return sup_accept_null
837 end
838 end
839 #print "4.is {sub} a {sup}? <- no more resolution"
840
841 if sub isa MBottomType or sub isa MErrorType then
842 return true
843 end
844
845 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
846
847 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
848 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
849 # These types are not super-types of Class-based types.
850 return false
851 end
852
853 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
854
855 # Now both are MClassType, we need to dig
856
857 if sub == sup then return true
858
859 if anchor == null then anchor = sub # UGLY: any anchor will work
860 var resolved_sub = sub.anchor_to(mmodule, anchor)
861 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
862 if res == false then return false
863 if not sup isa MGenericType then return true
864 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
865 assert sub2.mclass == sup.mclass
866 for i in [0..sup.mclass.arity[ do
867 var sub_arg = sub2.arguments[i]
868 var sup_arg = sup.arguments[i]
869 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
870 if res == false then return false
871 end
872 return true
873 end
874
875 # The base class type on which self is based
876 #
877 # This base type is used to get property (an internally to perform
878 # unsafe type comparison).
879 #
880 # Beware: some types (like null) are not based on a class thus this
881 # method will crash
882 #
883 # Basically, this function transform the virtual types and parameter
884 # types to their bounds.
885 #
886 # Example
887 #
888 # class A end
889 # class B super A end
890 # class X end
891 # class Y super X end
892 # class G[T: A]
893 # type U: X
894 # end
895 # class H
896 # super G[B]
897 # redef type U: Y
898 # end
899 #
900 # Map[T,U] anchor_to H #-> Map[B,Y]
901 #
902 # Explanation of the example:
903 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
904 # because "redef type U: Y". Therefore, Map[T, U] is bound to
905 # Map[B, Y]
906 #
907 # ENSURE: `not self.need_anchor implies result == self`
908 # ENSURE: `not result.need_anchor`
909 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
910 do
911 if not need_anchor then return self
912 assert not anchor.need_anchor
913 # Just resolve to the anchor and clear all the virtual types
914 var res = self.resolve_for(anchor, null, mmodule, true)
915 assert not res.need_anchor
916 return res
917 end
918
919 # Does `self` contain a virtual type or a formal generic parameter type?
920 # In order to remove those types, you usually want to use `anchor_to`.
921 fun need_anchor: Bool do return true
922
923 # Return the supertype when adapted to a class.
924 #
925 # In Nit, for each super-class of a type, there is a equivalent super-type.
926 #
927 # Example:
928 #
929 # ~~~nitish
930 # class G[T, U] end
931 # class H[V] super G[V, Bool] end
932 #
933 # H[Int] supertype_to G #-> G[Int, Bool]
934 # ~~~
935 #
936 # REQUIRE: `super_mclass` is a super-class of `self`
937 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
938 # ENSURE: `result.mclass = super_mclass`
939 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
940 do
941 if super_mclass.arity == 0 then return super_mclass.mclass_type
942 if self isa MClassType and self.mclass == super_mclass then return self
943 var resolved_self
944 if self.need_anchor then
945 assert anchor != null
946 resolved_self = self.anchor_to(mmodule, anchor)
947 else
948 resolved_self = self
949 end
950 var supertypes = resolved_self.collect_mtypes(mmodule)
951 for supertype in supertypes do
952 if supertype.mclass == super_mclass then
953 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
954 return supertype.resolve_for(self, anchor, mmodule, false)
955 end
956 end
957 abort
958 end
959
960 # Replace formals generic types in self with resolved values in `mtype`
961 # If `cleanup_virtual` is true, then virtual types are also replaced
962 # with their bounds.
963 #
964 # This function returns self if `need_anchor` is false.
965 #
966 # ## Example 1
967 #
968 # ~~~
969 # class G[E] end
970 # class H[F] super G[F] end
971 # class X[Z] end
972 # ~~~
973 #
974 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
975 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
976 #
977 # Explanation of the example:
978 # * Array[E].need_anchor is true because there is a formal generic parameter type E
979 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
980 # * Since "H[F] super G[F]", E is in fact F for H
981 # * More specifically, in H[Int], E is Int
982 # * So, in H[Int], Array[E] is Array[Int]
983 #
984 # This function is mainly used to inherit a signature.
985 # Because, unlike `anchor_to`, we do not want a full resolution of
986 # a type but only an adapted version of it.
987 #
988 # ## Example 2
989 #
990 # ~~~
991 # class A[E]
992 # fun foo(e:E):E is abstract
993 # end
994 # class B super A[Int] end
995 # ~~~
996 #
997 # The signature on foo is (e: E): E
998 # If we resolve the signature for B, we get (e:Int):Int
999 #
1000 # ## Example 3
1001 #
1002 # ~~~nitish
1003 # class A[E]
1004 # fun foo(e:E):E is abstract
1005 # end
1006 # class C[F]
1007 # var a: A[Array[F]]
1008 # fun bar do a.foo(x) # <- x is here
1009 # end
1010 # ~~~
1011 #
1012 # The first question is: is foo available on `a`?
1013 #
1014 # The static type of a is `A[Array[F]]`, that is an open type.
1015 # in order to find a method `foo`, whe must look at a resolved type.
1016 #
1017 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1018 #
1019 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1020 #
1021 # The next question is: what is the accepted types for `x`?
1022 #
1023 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1024 #
1025 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1026 #
1027 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1028 #
1029 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1030 # two function instead of one seems also to be a bad idea.
1031 #
1032 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1033 # ENSURE: `not self.need_anchor implies result == self`
1034 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1035
1036 # Resolve formal type to its verbatim bound.
1037 # If the type is not formal, just return self
1038 #
1039 # The result is returned exactly as declared in the "type" property (verbatim).
1040 # So it could be another formal type.
1041 #
1042 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1043 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1044
1045 # Resolve the formal type to its simplest equivalent form.
1046 #
1047 # Formal types are either free or fixed.
1048 # When it is fixed, it means that it is equivalent with a simpler type.
1049 # When a formal type is free, it means that it is only equivalent with itself.
1050 # This method return the most simple equivalent type of `self`.
1051 #
1052 # This method is mainly used for subtype test in order to sanely compare fixed.
1053 #
1054 # By default, return self.
1055 # See the redefinitions for specific behavior in each kind of type.
1056 #
1057 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1058 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1059
1060 # Is the type a `MErrorType` or contains an `MErrorType`?
1061 #
1062 # `MErrorType` are used in result with conflict or inconsistencies.
1063 #
1064 # See `is_legal_in` to check conformity with generic bounds.
1065 fun is_ok: Bool do return true
1066
1067 # Is the type legal in a given `mmodule` (with an optional `anchor`)?
1068 #
1069 # A type is valid if:
1070 #
1071 # * it does not contain a `MErrorType` (see `is_ok`).
1072 # * its generic formal arguments are within their bounds.
1073 fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok
1074
1075 # Can the type be resolved?
1076 #
1077 # In order to resolve open types, the formal types must make sence.
1078 #
1079 # ## Example
1080 #
1081 # class A[E]
1082 # end
1083 # class B[F]
1084 # end
1085 #
1086 # ~~~nitish
1087 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1088 #
1089 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1090 #
1091 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1092 # # B[E] is a red hearing only the E is important,
1093 # # E make sense in A
1094 # ~~~
1095 #
1096 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1097 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1098 # ENSURE: `not self.need_anchor implies result == true`
1099 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1100
1101 # Return the nullable version of the type
1102 # If the type is already nullable then self is returned
1103 fun as_nullable: MType
1104 do
1105 var res = self.as_nullable_cache
1106 if res != null then return res
1107 res = new MNullableType(self)
1108 self.as_nullable_cache = res
1109 return res
1110 end
1111
1112 # Remove the base type of a decorated (proxy) type.
1113 # Is the type is not decorated, then self is returned.
1114 #
1115 # Most of the time it is used to return the not nullable version of a nullable type.
1116 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1117 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1118 # If you really want to exclude the `null` value, then use `as_notnull`
1119 fun undecorate: MType
1120 do
1121 return self
1122 end
1123
1124 # Returns the not null version of the type.
1125 # That is `self` minus the `null` value.
1126 #
1127 # For most types, this return `self`.
1128 # For formal types, this returns a special `MNotNullType`
1129 fun as_notnull: MType do return self
1130
1131 private var as_nullable_cache: nullable MType = null
1132
1133
1134 # The depth of the type seen as a tree.
1135 #
1136 # * A -> 1
1137 # * G[A] -> 2
1138 # * H[A, B] -> 2
1139 # * H[G[A], B] -> 3
1140 #
1141 # Formal types have a depth of 1.
1142 # Only `MClassType` and `MFormalType` nodes are counted.
1143 fun depth: Int
1144 do
1145 return 1
1146 end
1147
1148 # The length of the type seen as a tree.
1149 #
1150 # * A -> 1
1151 # * G[A] -> 2
1152 # * H[A, B] -> 3
1153 # * H[G[A], B] -> 4
1154 #
1155 # Formal types have a length of 1.
1156 # Only `MClassType` and `MFormalType` nodes are counted.
1157 fun length: Int
1158 do
1159 return 1
1160 end
1161
1162 # Compute all the classdefs inherited/imported.
1163 # The returned set contains:
1164 # * the class definitions from `mmodule` and its imported modules
1165 # * the class definitions of this type and its super-types
1166 #
1167 # This function is used mainly internally.
1168 #
1169 # REQUIRE: `not self.need_anchor`
1170 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1171
1172 # Compute all the super-classes.
1173 # This function is used mainly internally.
1174 #
1175 # REQUIRE: `not self.need_anchor`
1176 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1177
1178 # Compute all the declared super-types.
1179 # Super-types are returned as declared in the classdefs (verbatim).
1180 # This function is used mainly internally.
1181 #
1182 # REQUIRE: `not self.need_anchor`
1183 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1184
1185 # Is the property in self for a given module
1186 # This method does not filter visibility or whatever
1187 #
1188 # REQUIRE: `not self.need_anchor`
1189 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1190 do
1191 assert not self.need_anchor
1192 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1193 end
1194 end
1195
1196 # A type based on a class.
1197 #
1198 # `MClassType` have properties (see `has_mproperty`).
1199 class MClassType
1200 super MType
1201
1202 # The associated class
1203 var mclass: MClass
1204
1205 redef fun model do return self.mclass.intro_mmodule.model
1206
1207 redef fun location do return mclass.location
1208
1209 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1210
1211 # The formal arguments of the type
1212 # ENSURE: `result.length == self.mclass.arity`
1213 var arguments = new Array[MType]
1214
1215 redef fun to_s do return mclass.to_s
1216
1217 redef fun full_name do return mclass.full_name
1218
1219 redef fun c_name do return mclass.c_name
1220
1221 redef fun need_anchor do return false
1222
1223 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1224 do
1225 return super.as(MClassType)
1226 end
1227
1228 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1229
1230 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1231
1232 redef fun collect_mclassdefs(mmodule)
1233 do
1234 assert not self.need_anchor
1235 var cache = self.collect_mclassdefs_cache
1236 if not cache.has_key(mmodule) then
1237 self.collect_things(mmodule)
1238 end
1239 return cache[mmodule]
1240 end
1241
1242 redef fun collect_mclasses(mmodule)
1243 do
1244 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1245 assert not self.need_anchor
1246 var cache = self.collect_mclasses_cache
1247 if not cache.has_key(mmodule) then
1248 self.collect_things(mmodule)
1249 end
1250 var res = cache[mmodule]
1251 collect_mclasses_last_module = mmodule
1252 collect_mclasses_last_module_cache = res
1253 return res
1254 end
1255
1256 private var collect_mclasses_last_module: nullable MModule = null
1257 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1258
1259 redef fun collect_mtypes(mmodule)
1260 do
1261 assert not self.need_anchor
1262 var cache = self.collect_mtypes_cache
1263 if not cache.has_key(mmodule) then
1264 self.collect_things(mmodule)
1265 end
1266 return cache[mmodule]
1267 end
1268
1269 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1270 private fun collect_things(mmodule: MModule)
1271 do
1272 var res = new HashSet[MClassDef]
1273 var seen = new HashSet[MClass]
1274 var types = new HashSet[MClassType]
1275 seen.add(self.mclass)
1276 var todo = [self.mclass]
1277 while not todo.is_empty do
1278 var mclass = todo.pop
1279 #print "process {mclass}"
1280 for mclassdef in mclass.mclassdefs do
1281 if not mmodule.in_importation <= mclassdef.mmodule then continue
1282 #print " process {mclassdef}"
1283 res.add(mclassdef)
1284 for supertype in mclassdef.supertypes do
1285 types.add(supertype)
1286 var superclass = supertype.mclass
1287 if seen.has(superclass) then continue
1288 #print " add {superclass}"
1289 seen.add(superclass)
1290 todo.add(superclass)
1291 end
1292 end
1293 end
1294 collect_mclassdefs_cache[mmodule] = res
1295 collect_mclasses_cache[mmodule] = seen
1296 collect_mtypes_cache[mmodule] = types
1297 end
1298
1299 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1300 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1301 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1302
1303 end
1304
1305 # A type based on a generic class.
1306 # A generic type a just a class with additional formal generic arguments.
1307 class MGenericType
1308 super MClassType
1309
1310 redef var arguments
1311
1312 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1313
1314 init
1315 do
1316 assert self.mclass.arity == arguments.length
1317
1318 self.need_anchor = false
1319 for t in arguments do
1320 if t.need_anchor then
1321 self.need_anchor = true
1322 break
1323 end
1324 end
1325
1326 self.to_s = "{mclass}[{arguments.join(", ")}]"
1327 end
1328
1329 # The short-name of the class, then the full-name of each type arguments within brackets.
1330 # Example: `"Map[String, List[Int]]"`
1331 redef var to_s is noinit
1332
1333 # The full-name of the class, then the full-name of each type arguments within brackets.
1334 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1335 redef var full_name is lazy do
1336 var args = new Array[String]
1337 for t in arguments do
1338 args.add t.full_name
1339 end
1340 return "{mclass.full_name}[{args.join(", ")}]"
1341 end
1342
1343 redef var c_name is lazy do
1344 var res = mclass.c_name
1345 # Note: because the arity is known, a prefix notation is enough
1346 for t in arguments do
1347 res += "__"
1348 res += t.c_name
1349 end
1350 return res.to_s
1351 end
1352
1353 redef var need_anchor is noinit
1354
1355 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1356 do
1357 if not need_anchor then return self
1358 assert can_resolve_for(mtype, anchor, mmodule)
1359 var types = new Array[MType]
1360 for t in arguments do
1361 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1362 end
1363 return mclass.get_mtype(types)
1364 end
1365
1366 redef fun can_resolve_for(mtype, anchor, mmodule)
1367 do
1368 if not need_anchor then return true
1369 for t in arguments do
1370 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1371 end
1372 return true
1373 end
1374
1375 redef fun is_ok
1376 do
1377 for t in arguments do if not t.is_ok then return false
1378 return super
1379 end
1380
1381 redef fun is_legal_in(mmodule, anchor)
1382 do
1383 var mtype
1384 if need_anchor then
1385 assert anchor != null
1386 mtype = anchor_to(mmodule, anchor)
1387 else
1388 mtype = self
1389 end
1390 if not mtype.is_ok then return false
1391 return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype)
1392 end
1393
1394 redef fun depth
1395 do
1396 var dmax = 0
1397 for a in self.arguments do
1398 var d = a.depth
1399 if d > dmax then dmax = d
1400 end
1401 return dmax + 1
1402 end
1403
1404 redef fun length
1405 do
1406 var res = 1
1407 for a in self.arguments do
1408 res += a.length
1409 end
1410 return res
1411 end
1412 end
1413
1414 # A formal type (either virtual of parametric).
1415 #
1416 # The main issue with formal types is that they offer very little information on their own
1417 # and need a context (anchor and mmodule) to be useful.
1418 abstract class MFormalType
1419 super MType
1420
1421 redef var as_notnull = new MNotNullType(self) is lazy
1422 end
1423
1424 # A virtual formal type.
1425 class MVirtualType
1426 super MFormalType
1427
1428 # The property associated with the type.
1429 # Its the definitions of this property that determine the bound or the virtual type.
1430 var mproperty: MVirtualTypeProp
1431
1432 redef fun location do return mproperty.location
1433
1434 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1435
1436 redef fun lookup_bound(mmodule, resolved_receiver)
1437 do
1438 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1439 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1440 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1441 end
1442
1443 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1444 do
1445 assert not resolved_receiver.need_anchor
1446 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1447 if props.is_empty then
1448 abort
1449 else if props.length == 1 then
1450 return props.first
1451 end
1452 var types = new ArraySet[MType]
1453 var res = props.first
1454 for p in props do
1455 types.add(p.bound.as(not null))
1456 if not res.is_fixed then res = p
1457 end
1458 if types.length == 1 then
1459 return res
1460 end
1461 abort
1462 end
1463
1464 # A VT is fixed when:
1465 # * the VT is (re-)defined with the annotation `is fixed`
1466 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1467 # * the receiver is an enum class since there is no subtype possible
1468 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1469 do
1470 assert not resolved_receiver.need_anchor
1471 resolved_receiver = resolved_receiver.undecorate
1472 assert resolved_receiver isa MClassType # It is the only remaining type
1473
1474 var prop = lookup_single_definition(mmodule, resolved_receiver)
1475 var res = prop.bound
1476 if res == null then return new MErrorType(model)
1477
1478 # Recursively lookup the fixed result
1479 res = res.lookup_fixed(mmodule, resolved_receiver)
1480
1481 # 1. For a fixed VT, return the resolved bound
1482 if prop.is_fixed then return res
1483
1484 # 2. For a enum boud, return the bound
1485 if res isa MClassType and res.mclass.kind == enum_kind then return res
1486
1487 # 3. for a enum receiver return the bound
1488 if resolved_receiver.mclass.kind == enum_kind then return res
1489
1490 return self
1491 end
1492
1493 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1494 do
1495 if not cleanup_virtual then return self
1496 assert can_resolve_for(mtype, anchor, mmodule)
1497
1498 if mproperty.is_selftype then return mtype
1499
1500 # self is a virtual type declared (or inherited) in mtype
1501 # The point of the function it to get the bound of the virtual type that make sense for mtype
1502 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1503 #print "{class_name}: {self}/{mtype}/{anchor}?"
1504 var resolved_receiver
1505 if mtype.need_anchor then
1506 assert anchor != null
1507 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1508 else
1509 resolved_receiver = mtype
1510 end
1511 # Now, we can get the bound
1512 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1513 # The bound is exactly as declared in the "type" property, so we must resolve it again
1514 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1515
1516 return res
1517 end
1518
1519 redef fun can_resolve_for(mtype, anchor, mmodule)
1520 do
1521 if mtype.need_anchor then
1522 assert anchor != null
1523 mtype = mtype.anchor_to(mmodule, anchor)
1524 end
1525 return mtype.has_mproperty(mmodule, mproperty)
1526 end
1527
1528 redef fun to_s do return self.mproperty.to_s
1529
1530 redef fun full_name do return self.mproperty.full_name
1531
1532 redef fun c_name do return self.mproperty.c_name
1533 end
1534
1535 # The type associated to a formal parameter generic type of a class
1536 #
1537 # Each parameter type is associated to a specific class.
1538 # It means that all refinements of a same class "share" the parameter type,
1539 # but that a generic subclass has its own parameter types.
1540 #
1541 # However, in the sense of the meta-model, a parameter type of a class is
1542 # a valid type in a subclass. The "in the sense of the meta-model" is
1543 # important because, in the Nit language, the programmer cannot refers
1544 # directly to the parameter types of the super-classes.
1545 #
1546 # Example:
1547 #
1548 # class A[E]
1549 # fun e: E is abstract
1550 # end
1551 # class B[F]
1552 # super A[Array[F]]
1553 # end
1554 #
1555 # In the class definition B[F], `F` is a valid type but `E` is not.
1556 # However, `self.e` is a valid method call, and the signature of `e` is
1557 # declared `e: E`.
1558 #
1559 # Note that parameter types are shared among class refinements.
1560 # Therefore parameter only have an internal name (see `to_s` for details).
1561 class MParameterType
1562 super MFormalType
1563
1564 # The generic class where the parameter belong
1565 var mclass: MClass
1566
1567 redef fun model do return self.mclass.intro_mmodule.model
1568
1569 redef fun location do return mclass.location
1570
1571 # The position of the parameter (0 for the first parameter)
1572 # FIXME: is `position` a better name?
1573 var rank: Int
1574
1575 redef var name
1576
1577 redef fun to_s do return name
1578
1579 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1580
1581 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1582
1583 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1584 do
1585 assert not resolved_receiver.need_anchor
1586 resolved_receiver = resolved_receiver.undecorate
1587 assert resolved_receiver isa MClassType # It is the only remaining type
1588 var goalclass = self.mclass
1589 if resolved_receiver.mclass == goalclass then
1590 return resolved_receiver.arguments[self.rank]
1591 end
1592 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1593 for t in supertypes do
1594 if t.mclass == goalclass then
1595 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1596 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1597 var res = t.arguments[self.rank]
1598 return res
1599 end
1600 end
1601 # Cannot found `self` in `resolved_receiver`
1602 return new MErrorType(model)
1603 end
1604
1605 # A PT is fixed when:
1606 # * Its bound is a enum class (see `enum_kind`).
1607 # The PT is just useless, but it is still a case.
1608 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1609 # so it is necessarily fixed in a `super` clause, either with a normal type
1610 # or with another PT.
1611 # See `resolve_for` for examples about related issues.
1612 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1613 do
1614 assert not resolved_receiver.need_anchor
1615 resolved_receiver = resolved_receiver.undecorate
1616 assert resolved_receiver isa MClassType # It is the only remaining type
1617 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1618 return res
1619 end
1620
1621 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1622 do
1623 assert can_resolve_for(mtype, anchor, mmodule)
1624 #print "{class_name}: {self}/{mtype}/{anchor}?"
1625
1626 if mtype isa MGenericType and mtype.mclass == self.mclass then
1627 var res = mtype.arguments[self.rank]
1628 if anchor != null and res.need_anchor then
1629 # Maybe the result can be resolved more if are bound to a final class
1630 var r2 = res.anchor_to(mmodule, anchor)
1631 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1632 end
1633 return res
1634 end
1635
1636 # self is a parameter type of mtype (or of a super-class of mtype)
1637 # The point of the function it to get the bound of the virtual type that make sense for mtype
1638 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1639 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1640 var resolved_receiver
1641 if mtype.need_anchor then
1642 assert anchor != null
1643 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1644 else
1645 resolved_receiver = mtype
1646 end
1647 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1648 if resolved_receiver isa MParameterType then
1649 assert anchor != null
1650 assert resolved_receiver.mclass == anchor.mclass
1651 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1652 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1653 end
1654 assert resolved_receiver isa MClassType # It is the only remaining type
1655
1656 # Eh! The parameter is in the current class.
1657 # So we return the corresponding argument, no mater what!
1658 if resolved_receiver.mclass == self.mclass then
1659 var res = resolved_receiver.arguments[self.rank]
1660 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1661 return res
1662 end
1663
1664 if resolved_receiver.need_anchor then
1665 assert anchor != null
1666 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1667 end
1668 # Now, we can get the bound
1669 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1670 # The bound is exactly as declared in the "type" property, so we must resolve it again
1671 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1672
1673 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1674
1675 return res
1676 end
1677
1678 redef fun can_resolve_for(mtype, anchor, mmodule)
1679 do
1680 if mtype.need_anchor then
1681 assert anchor != null
1682 mtype = mtype.anchor_to(mmodule, anchor)
1683 end
1684 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1685 end
1686 end
1687
1688 # A type that decorates another type.
1689 #
1690 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1691 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1692 abstract class MProxyType
1693 super MType
1694 # The base type
1695 var mtype: MType
1696
1697 redef fun location do return mtype.location
1698
1699 redef fun model do return self.mtype.model
1700 redef fun need_anchor do return mtype.need_anchor
1701 redef fun as_nullable do return mtype.as_nullable
1702 redef fun as_notnull do return mtype.as_notnull
1703 redef fun undecorate do return mtype.undecorate
1704 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1705 do
1706 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1707 return res
1708 end
1709
1710 redef fun can_resolve_for(mtype, anchor, mmodule)
1711 do
1712 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1713 end
1714
1715 redef fun is_ok do return mtype.is_ok
1716
1717 redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor)
1718
1719 redef fun lookup_fixed(mmodule, resolved_receiver)
1720 do
1721 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1722 return t
1723 end
1724
1725 redef fun depth do return self.mtype.depth
1726
1727 redef fun length do return self.mtype.length
1728
1729 redef fun collect_mclassdefs(mmodule)
1730 do
1731 assert not self.need_anchor
1732 return self.mtype.collect_mclassdefs(mmodule)
1733 end
1734
1735 redef fun collect_mclasses(mmodule)
1736 do
1737 assert not self.need_anchor
1738 return self.mtype.collect_mclasses(mmodule)
1739 end
1740
1741 redef fun collect_mtypes(mmodule)
1742 do
1743 assert not self.need_anchor
1744 return self.mtype.collect_mtypes(mmodule)
1745 end
1746 end
1747
1748 # A type prefixed with "nullable"
1749 class MNullableType
1750 super MProxyType
1751
1752 init
1753 do
1754 self.to_s = "nullable {mtype}"
1755 end
1756
1757 redef var to_s is noinit
1758
1759 redef var full_name is lazy do return "nullable {mtype.full_name}"
1760
1761 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1762
1763 redef fun as_nullable do return self
1764 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1765 do
1766 var res = super
1767 return res.as_nullable
1768 end
1769
1770 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1771 redef fun lookup_fixed(mmodule, resolved_receiver)
1772 do
1773 var t = super
1774 if t == mtype then return self
1775 return t.as_nullable
1776 end
1777 end
1778
1779 # A non-null version of a formal type.
1780 #
1781 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1782 class MNotNullType
1783 super MProxyType
1784
1785 redef fun to_s do return "not null {mtype}"
1786 redef var full_name is lazy do return "not null {mtype.full_name}"
1787 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1788
1789 redef fun as_notnull do return self
1790
1791 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1792 do
1793 var res = super
1794 return res.as_notnull
1795 end
1796
1797 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1798 redef fun lookup_fixed(mmodule, resolved_receiver)
1799 do
1800 var t = super
1801 if t == mtype then return self
1802 return t.as_notnull
1803 end
1804 end
1805
1806 # The type of the only value null
1807 #
1808 # The is only one null type per model, see `MModel::null_type`.
1809 class MNullType
1810 super MType
1811 redef var model
1812 redef fun to_s do return "null"
1813 redef fun full_name do return "null"
1814 redef fun c_name do return "null"
1815 redef fun as_nullable do return self
1816
1817 redef var as_notnull: MBottomType = new MBottomType(model) is lazy
1818 redef fun need_anchor do return false
1819 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1820 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1821
1822 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1823
1824 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1825
1826 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1827 end
1828
1829 # The special universal most specific type.
1830 #
1831 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1832 # The bottom type can de used to denote things that are dead (no instance).
1833 #
1834 # Semantically it is the singleton `null.as_notnull`.
1835 # Is also means that `self.as_nullable == null`.
1836 class MBottomType
1837 super MType
1838 redef var model
1839 redef fun to_s do return "bottom"
1840 redef fun full_name do return "bottom"
1841 redef fun c_name do return "bottom"
1842 redef fun as_nullable do return model.null_type
1843 redef fun as_notnull do return self
1844 redef fun need_anchor do return false
1845 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1846 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1847
1848 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1849
1850 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1851
1852 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1853 end
1854
1855 # A special type used as a silent error marker when building types.
1856 #
1857 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1858 # The error type can de used to denote things that are conflicting or inconsistent.
1859 #
1860 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1861 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1862 class MErrorType
1863 super MType
1864 redef var model
1865 redef fun to_s do return "error"
1866 redef fun full_name do return "error"
1867 redef fun c_name do return "error"
1868 redef fun need_anchor do return false
1869 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1870 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1871 redef fun is_ok do return false
1872
1873 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1874
1875 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1876
1877 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1878 end
1879
1880 # A signature of a method
1881 class MSignature
1882 super MType
1883
1884 # The each parameter (in order)
1885 var mparameters: Array[MParameter]
1886
1887 # Returns a parameter named `name`, if any.
1888 fun mparameter_by_name(name: String): nullable MParameter
1889 do
1890 for p in mparameters do
1891 if p.name == name then return p
1892 end
1893 return null
1894 end
1895
1896 # The return type (null for a procedure)
1897 var return_mtype: nullable MType
1898
1899 redef fun depth
1900 do
1901 var dmax = 0
1902 var t = self.return_mtype
1903 if t != null then dmax = t.depth
1904 for p in mparameters do
1905 var d = p.mtype.depth
1906 if d > dmax then dmax = d
1907 end
1908 return dmax + 1
1909 end
1910
1911 redef fun length
1912 do
1913 var res = 1
1914 var t = self.return_mtype
1915 if t != null then res += t.length
1916 for p in mparameters do
1917 res += p.mtype.length
1918 end
1919 return res
1920 end
1921
1922 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1923 init
1924 do
1925 var vararg_rank = -1
1926 for i in [0..mparameters.length[ do
1927 var parameter = mparameters[i]
1928 if parameter.is_vararg then
1929 if vararg_rank >= 0 then
1930 # If there is more than one vararg,
1931 # consider that additional arguments cannot be mapped.
1932 vararg_rank = -1
1933 break
1934 end
1935 vararg_rank = i
1936 end
1937 end
1938 self.vararg_rank = vararg_rank
1939 end
1940
1941 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1942 # value is -1 if there is no vararg.
1943 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1944 #
1945 # From a model POV, a signature can contain more than one vararg parameter,
1946 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1947 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1948 # and additional arguments will be refused.
1949 var vararg_rank: Int is noinit
1950
1951 # The number of parameters
1952 fun arity: Int do return mparameters.length
1953
1954 redef fun to_s
1955 do
1956 var b = new FlatBuffer
1957 if not mparameters.is_empty then
1958 b.append("(")
1959 for i in [0..mparameters.length[ do
1960 var mparameter = mparameters[i]
1961 if i > 0 then b.append(", ")
1962 b.append(mparameter.name)
1963 b.append(": ")
1964 b.append(mparameter.mtype.to_s)
1965 if mparameter.is_vararg then
1966 b.append("...")
1967 end
1968 end
1969 b.append(")")
1970 end
1971 var ret = self.return_mtype
1972 if ret != null then
1973 b.append(": ")
1974 b.append(ret.to_s)
1975 end
1976 return b.to_s
1977 end
1978
1979 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1980 do
1981 var params = new Array[MParameter]
1982 for p in self.mparameters do
1983 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1984 end
1985 var ret = self.return_mtype
1986 if ret != null then
1987 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1988 end
1989 var res = new MSignature(params, ret)
1990 return res
1991 end
1992 end
1993
1994 # A parameter in a signature
1995 class MParameter
1996 super MEntity
1997
1998 # The name of the parameter
1999 redef var name
2000
2001 # The static type of the parameter
2002 var mtype: MType
2003
2004 # Is the parameter a vararg?
2005 var is_vararg: Bool
2006
2007 redef fun to_s
2008 do
2009 if is_vararg then
2010 return "{name}: {mtype}..."
2011 else
2012 return "{name}: {mtype}"
2013 end
2014 end
2015
2016 # Returns a new parameter with the `mtype` resolved.
2017 # See `MType::resolve_for` for details.
2018 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
2019 do
2020 if not self.mtype.need_anchor then return self
2021 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2022 var res = new MParameter(self.name, newtype, self.is_vararg)
2023 return res
2024 end
2025
2026 redef fun model do return mtype.model
2027 end
2028
2029 # A service (global property) that generalize method, attribute, etc.
2030 #
2031 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2032 # to a specific `MModule` nor a specific `MClass`.
2033 #
2034 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2035 # and the other in subclasses and in refinements.
2036 #
2037 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2038 # of any dynamic type).
2039 # For instance, a call site "x.foo" is associated to a `MProperty`.
2040 abstract class MProperty
2041 super MEntity
2042
2043 # The associated MPropDef subclass.
2044 # The two specialization hierarchy are symmetric.
2045 type MPROPDEF: MPropDef
2046
2047 # The classdef that introduce the property
2048 # While a property is not bound to a specific module, or class,
2049 # the introducing mclassdef is used for naming and visibility
2050 var intro_mclassdef: MClassDef
2051
2052 # The (short) name of the property
2053 redef var name
2054
2055 redef var location
2056
2057 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
2058
2059 # The canonical name of the property.
2060 #
2061 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2062 # Example: "my_package::my_module::MyClass::my_method"
2063 #
2064 # The full-name of the module is needed because two distinct modules of the same package can
2065 # still refine the same class and introduce homonym properties.
2066 #
2067 # For public properties not introduced by refinement, the module name is not used.
2068 #
2069 # Example: `my_package::MyClass::My_method`
2070 redef var full_name is lazy do
2071 if intro_mclassdef.is_intro then
2072 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2073 else
2074 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2075 end
2076 end
2077
2078 redef var c_name is lazy do
2079 # FIXME use `namespace_for`
2080 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2081 end
2082
2083 # The visibility of the property
2084 redef var visibility
2085
2086 # Is the property usable as an initializer?
2087 var is_autoinit = false is writable
2088
2089 init
2090 do
2091 intro_mclassdef.intro_mproperties.add(self)
2092 var model = intro_mclassdef.mmodule.model
2093 model.mproperties_by_name.add_one(name, self)
2094 model.mproperties.add(self)
2095 end
2096
2097 # All definitions of the property.
2098 # The first is the introduction,
2099 # The other are redefinitions (in refinements and in subclasses)
2100 var mpropdefs = new Array[MPROPDEF]
2101
2102 # The definition that introduces the property.
2103 #
2104 # Warning: such a definition may not exist in the early life of the object.
2105 # In this case, the method will abort.
2106 var intro: MPROPDEF is noinit
2107
2108 redef fun model do return intro.model
2109
2110 # Alias for `name`
2111 redef fun to_s do return name
2112
2113 # Return the most specific property definitions defined or inherited by a type.
2114 # The selection knows that refinement is stronger than specialization;
2115 # however, in case of conflict more than one property are returned.
2116 # If mtype does not know mproperty then an empty array is returned.
2117 #
2118 # If you want the really most specific property, then look at `lookup_first_definition`
2119 #
2120 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2121 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2122 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2123 do
2124 assert not mtype.need_anchor
2125 mtype = mtype.undecorate
2126
2127 var cache = self.lookup_definitions_cache[mmodule, mtype]
2128 if cache != null then return cache
2129
2130 #print "select prop {mproperty} for {mtype} in {self}"
2131 # First, select all candidates
2132 var candidates = new Array[MPROPDEF]
2133
2134 # Here we have two strategies: iterate propdefs or iterate classdefs.
2135 var mpropdefs = self.mpropdefs
2136 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2137 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2138 for mpropdef in mpropdefs do
2139 # If the definition is not imported by the module, then skip
2140 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2141 # If the definition is not inherited by the type, then skip
2142 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2143 # Else, we keep it
2144 candidates.add(mpropdef)
2145 end
2146 else
2147 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2148 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2149 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2150 if p != null then candidates.add p
2151 end
2152 end
2153
2154 # Fast track for only one candidate
2155 if candidates.length <= 1 then
2156 self.lookup_definitions_cache[mmodule, mtype] = candidates
2157 return candidates
2158 end
2159
2160 # Second, filter the most specific ones
2161 return select_most_specific(mmodule, candidates)
2162 end
2163
2164 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2165
2166 # Return the most specific property definitions inherited by a type.
2167 # The selection knows that refinement is stronger than specialization;
2168 # however, in case of conflict more than one property are returned.
2169 # If mtype does not know mproperty then an empty array is returned.
2170 #
2171 # If you want the really most specific property, then look at `lookup_next_definition`
2172 #
2173 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2174 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2175 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2176 do
2177 assert not mtype.need_anchor
2178 mtype = mtype.undecorate
2179
2180 # First, select all candidates
2181 var candidates = new Array[MPROPDEF]
2182 for mpropdef in self.mpropdefs do
2183 # If the definition is not imported by the module, then skip
2184 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2185 # If the definition is not inherited by the type, then skip
2186 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2187 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2188 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2189 # Else, we keep it
2190 candidates.add(mpropdef)
2191 end
2192 # Fast track for only one candidate
2193 if candidates.length <= 1 then return candidates
2194
2195 # Second, filter the most specific ones
2196 return select_most_specific(mmodule, candidates)
2197 end
2198
2199 # Return an array containing olny the most specific property definitions
2200 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2201 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2202 do
2203 var res = new Array[MPROPDEF]
2204 for pd1 in candidates do
2205 var cd1 = pd1.mclassdef
2206 var c1 = cd1.mclass
2207 var keep = true
2208 for pd2 in candidates do
2209 if pd2 == pd1 then continue # do not compare with self!
2210 var cd2 = pd2.mclassdef
2211 var c2 = cd2.mclass
2212 if c2.mclass_type == c1.mclass_type then
2213 if cd2.mmodule.in_importation < cd1.mmodule then
2214 # cd2 refines cd1; therefore we skip pd1
2215 keep = false
2216 break
2217 end
2218 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2219 # cd2 < cd1; therefore we skip pd1
2220 keep = false
2221 break
2222 end
2223 end
2224 if keep then
2225 res.add(pd1)
2226 end
2227 end
2228 if res.is_empty then
2229 print_error "All lost! {candidates.join(", ")}"
2230 # FIXME: should be abort!
2231 end
2232 return res
2233 end
2234
2235 # Return the most specific definition in the linearization of `mtype`.
2236 #
2237 # If you want to know the next properties in the linearization,
2238 # look at `MPropDef::lookup_next_definition`.
2239 #
2240 # FIXME: the linearization is still unspecified
2241 #
2242 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2243 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2244 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2245 do
2246 return lookup_all_definitions(mmodule, mtype).first
2247 end
2248
2249 # Return all definitions in a linearization order
2250 # Most specific first, most general last
2251 #
2252 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2253 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2254 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2255 do
2256 mtype = mtype.undecorate
2257
2258 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2259 if cache != null then return cache
2260
2261 assert not mtype.need_anchor
2262 assert mtype.has_mproperty(mmodule, self)
2263
2264 #print "select prop {mproperty} for {mtype} in {self}"
2265 # First, select all candidates
2266 var candidates = new Array[MPROPDEF]
2267 for mpropdef in self.mpropdefs do
2268 # If the definition is not imported by the module, then skip
2269 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2270 # If the definition is not inherited by the type, then skip
2271 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2272 # Else, we keep it
2273 candidates.add(mpropdef)
2274 end
2275 # Fast track for only one candidate
2276 if candidates.length <= 1 then
2277 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2278 return candidates
2279 end
2280
2281 mmodule.linearize_mpropdefs(candidates)
2282 candidates = candidates.reversed
2283 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2284 return candidates
2285 end
2286
2287 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2288 end
2289
2290 # A global method
2291 class MMethod
2292 super MProperty
2293
2294 redef type MPROPDEF: MMethodDef
2295
2296 # Is the property defined at the top_level of the module?
2297 # Currently such a property are stored in `Object`
2298 var is_toplevel: Bool = false is writable
2299
2300 # Is the property a constructor?
2301 # Warning, this property can be inherited by subclasses with or without being a constructor
2302 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2303 var is_init: Bool = false is writable
2304
2305 # The constructor is a (the) root init with empty signature but a set of initializers
2306 var is_root_init: Bool = false is writable
2307
2308 # Is the property a 'new' constructor?
2309 var is_new: Bool = false is writable
2310
2311 # Is the property a legal constructor for a given class?
2312 # As usual, visibility is not considered.
2313 # FIXME not implemented
2314 fun is_init_for(mclass: MClass): Bool
2315 do
2316 return self.is_init
2317 end
2318
2319 # A specific method that is safe to call on null.
2320 # Currently, only `==`, `!=` and `is_same_instance` are safe
2321 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2322 end
2323
2324 # A global attribute
2325 class MAttribute
2326 super MProperty
2327
2328 redef type MPROPDEF: MAttributeDef
2329
2330 end
2331
2332 # A global virtual type
2333 class MVirtualTypeProp
2334 super MProperty
2335
2336 redef type MPROPDEF: MVirtualTypeDef
2337
2338 # The formal type associated to the virtual type property
2339 var mvirtualtype = new MVirtualType(self)
2340
2341 # Is `self` the special virtual type `SELF`?
2342 var is_selftype: Bool is lazy do return name == "SELF"
2343 end
2344
2345 # A definition of a property (local property)
2346 #
2347 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2348 # specific class definition (which belong to a specific module)
2349 abstract class MPropDef
2350 super MEntity
2351
2352 # The associated `MProperty` subclass.
2353 # the two specialization hierarchy are symmetric
2354 type MPROPERTY: MProperty
2355
2356 # Self class
2357 type MPROPDEF: MPropDef
2358
2359 # The class definition where the property definition is
2360 var mclassdef: MClassDef
2361
2362 # The associated global property
2363 var mproperty: MPROPERTY
2364
2365 redef var location: Location
2366
2367 redef fun visibility do return mproperty.visibility
2368
2369 init
2370 do
2371 mclassdef.mpropdefs.add(self)
2372 mproperty.mpropdefs.add(self)
2373 mclassdef.mpropdefs_by_property[mproperty] = self
2374 if mproperty.intro_mclassdef == mclassdef then
2375 assert not isset mproperty._intro
2376 mproperty.intro = self
2377 end
2378 self.to_s = "{mclassdef}${mproperty}"
2379 end
2380
2381 # Actually the name of the `mproperty`
2382 redef fun name do return mproperty.name
2383
2384 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2385 #
2386 # Therefore the combination of identifiers is awful,
2387 # the worst case being
2388 #
2389 # * a property "p::m::A::x"
2390 # * redefined in a refinement of a class "q::n::B"
2391 # * in a module "r::o"
2392 # * so "r::o$q::n::B$p::m::A::x"
2393 #
2394 # Fortunately, the full-name is simplified when entities are repeated.
2395 # For the previous case, the simplest form is "p$A$x".
2396 redef var full_name is lazy do
2397 var res = new FlatBuffer
2398
2399 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2400 res.append mclassdef.full_name
2401
2402 res.append "$"
2403
2404 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2405 # intro are unambiguous in a class
2406 res.append name
2407 else
2408 # Just try to simplify each part
2409 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2410 # precise "p::m" only if "p" != "r"
2411 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2412 res.append "::"
2413 else if mproperty.visibility <= private_visibility then
2414 # Same package ("p"=="q"), but private visibility,
2415 # does the module part ("::m") need to be displayed
2416 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2417 res.append "::"
2418 res.append mproperty.intro_mclassdef.mmodule.name
2419 res.append "::"
2420 end
2421 end
2422 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2423 # precise "B" only if not the same class than "A"
2424 res.append mproperty.intro_mclassdef.name
2425 res.append "::"
2426 end
2427 # Always use the property name "x"
2428 res.append mproperty.name
2429 end
2430 return res.to_s
2431 end
2432
2433 redef var c_name is lazy do
2434 var res = new FlatBuffer
2435 res.append mclassdef.c_name
2436 res.append "___"
2437 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2438 res.append name.to_cmangle
2439 else
2440 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2441 res.append mproperty.intro_mclassdef.mmodule.c_name
2442 res.append "__"
2443 end
2444 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2445 res.append mproperty.intro_mclassdef.name.to_cmangle
2446 res.append "__"
2447 end
2448 res.append mproperty.name.to_cmangle
2449 end
2450 return res.to_s
2451 end
2452
2453 redef fun model do return mclassdef.model
2454
2455 # Internal name combining the module, the class and the property
2456 # Example: "mymodule$MyClass$mymethod"
2457 redef var to_s is noinit
2458
2459 # Is self the definition that introduce the property?
2460 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2461
2462 # Return the next definition in linearization of `mtype`.
2463 #
2464 # This method is used to determine what method is called by a super.
2465 #
2466 # REQUIRE: `not mtype.need_anchor`
2467 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2468 do
2469 assert not mtype.need_anchor
2470
2471 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2472 var i = mpropdefs.iterator
2473 while i.is_ok and i.item != self do i.next
2474 assert has_property: i.is_ok
2475 i.next
2476 assert has_next_property: i.is_ok
2477 return i.item
2478 end
2479 end
2480
2481 # A local definition of a method
2482 class MMethodDef
2483 super MPropDef
2484
2485 redef type MPROPERTY: MMethod
2486 redef type MPROPDEF: MMethodDef
2487
2488 # The signature attached to the property definition
2489 var msignature: nullable MSignature = null is writable
2490
2491 # The signature attached to the `new` call on a root-init
2492 # This is a concatenation of the signatures of the initializers
2493 #
2494 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2495 var new_msignature: nullable MSignature = null is writable
2496
2497 # List of initialisers to call in root-inits
2498 #
2499 # They could be setters or attributes
2500 #
2501 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2502 var initializers = new Array[MProperty]
2503
2504 # Is the method definition abstract?
2505 var is_abstract: Bool = false is writable
2506
2507 # Is the method definition intern?
2508 var is_intern = false is writable
2509
2510 # Is the method definition extern?
2511 var is_extern = false is writable
2512
2513 # An optional constant value returned in functions.
2514 #
2515 # Only some specific primitife value are accepted by engines.
2516 # Is used when there is no better implementation available.
2517 #
2518 # Currently used only for the implementation of the `--define`
2519 # command-line option.
2520 # SEE: module `mixin`.
2521 var constant_value: nullable Object = null is writable
2522 end
2523
2524 # A local definition of an attribute
2525 class MAttributeDef
2526 super MPropDef
2527
2528 redef type MPROPERTY: MAttribute
2529 redef type MPROPDEF: MAttributeDef
2530
2531 # The static type of the attribute
2532 var static_mtype: nullable MType = null is writable
2533 end
2534
2535 # A local definition of a virtual type
2536 class MVirtualTypeDef
2537 super MPropDef
2538
2539 redef type MPROPERTY: MVirtualTypeProp
2540 redef type MPROPDEF: MVirtualTypeDef
2541
2542 # The bound of the virtual type
2543 var bound: nullable MType = null is writable
2544
2545 # Is the bound fixed?
2546 var is_fixed = false is writable
2547 end
2548
2549 # A kind of class.
2550 #
2551 # * `abstract_kind`
2552 # * `concrete_kind`
2553 # * `interface_kind`
2554 # * `enum_kind`
2555 # * `extern_kind`
2556 #
2557 # Note this class is basically an enum.
2558 # FIXME: use a real enum once user-defined enums are available
2559 class MClassKind
2560 redef var to_s
2561
2562 # Is a constructor required?
2563 var need_init: Bool
2564
2565 # TODO: private init because enumeration.
2566
2567 # Can a class of kind `self` specializes a class of kine `other`?
2568 fun can_specialize(other: MClassKind): Bool
2569 do
2570 if other == interface_kind then return true # everybody can specialize interfaces
2571 if self == interface_kind or self == enum_kind then
2572 # no other case for interfaces
2573 return false
2574 else if self == extern_kind then
2575 # only compatible with themselves
2576 return self == other
2577 else if other == enum_kind or other == extern_kind then
2578 # abstract_kind and concrete_kind are incompatible
2579 return false
2580 end
2581 # remain only abstract_kind and concrete_kind
2582 return true
2583 end
2584 end
2585
2586 # The class kind `abstract`
2587 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2588 # The class kind `concrete`
2589 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2590 # The class kind `interface`
2591 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2592 # The class kind `enum`
2593 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2594 # The class kind `extern`
2595 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)