6c8798b8cd95daab8dc678c85109c9e3fa6dbce0
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree bound to MEntity.
123 #
124 # We introduce a new class so it can be easily refined by tools working
125 # with a Model.
126 class MEntityTree
127 super OrderedTree[MEntity]
128 end
129
130 # A MEntityTree borned to MConcern.
131 #
132 # TODO remove when nitdoc is fully merged with model_collect
133 class ConcernsTree
134 super OrderedTree[MConcern]
135 end
136
137 redef class MModule
138 # All the classes introduced in the module
139 var intro_mclasses = new Array[MClass]
140
141 # All the class definitions of the module
142 # (introduction and refinement)
143 var mclassdefs = new Array[MClassDef]
144
145 # Does the current module has a given class `mclass`?
146 # Return true if the mmodule introduces, refines or imports a class.
147 # Visibility is not considered.
148 fun has_mclass(mclass: MClass): Bool
149 do
150 return self.in_importation <= mclass.intro_mmodule
151 end
152
153 # Full hierarchy of introduced ans imported classes.
154 #
155 # Create a new hierarchy got by flattening the classes for the module
156 # and its imported modules.
157 # Visibility is not considered.
158 #
159 # Note: this function is expensive and is usually used for the main
160 # module of a program only. Do not use it to do you own subtype
161 # functions.
162 fun flatten_mclass_hierarchy: POSet[MClass]
163 do
164 var res = self.flatten_mclass_hierarchy_cache
165 if res != null then return res
166 res = new POSet[MClass]
167 for m in self.in_importation.greaters do
168 for cd in m.mclassdefs do
169 var c = cd.mclass
170 res.add_node(c)
171 for s in cd.supertypes do
172 res.add_edge(c, s.mclass)
173 end
174 end
175 end
176 self.flatten_mclass_hierarchy_cache = res
177 return res
178 end
179
180 # Sort a given array of classes using the linearization order of the module
181 # The most general is first, the most specific is last
182 fun linearize_mclasses(mclasses: Array[MClass])
183 do
184 self.flatten_mclass_hierarchy.sort(mclasses)
185 end
186
187 # Sort a given array of class definitions using the linearization order of the module
188 # the refinement link is stronger than the specialisation link
189 # The most general is first, the most specific is last
190 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
191 do
192 var sorter = new MClassDefSorter(self)
193 sorter.sort(mclassdefs)
194 end
195
196 # Sort a given array of property definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
200 do
201 var sorter = new MPropDefSorter(self)
202 sorter.sort(mpropdefs)
203 end
204
205 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
206
207 # The primitive type `Object`, the root of the class hierarchy
208 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
209
210 # The type `Pointer`, super class to all extern classes
211 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
212
213 # The primitive type `Bool`
214 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
215
216 # The primitive type `Int`
217 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
218
219 # The primitive type `Byte`
220 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
221
222 # The primitive type `Int8`
223 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
224
225 # The primitive type `Int16`
226 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
227
228 # The primitive type `UInt16`
229 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
230
231 # The primitive type `Int32`
232 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
233
234 # The primitive type `UInt32`
235 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
236
237 # The primitive type `Char`
238 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
239
240 # The primitive type `Float`
241 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
242
243 # The primitive type `String`
244 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
245
246 # The primitive type `NativeString`
247 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
248
249 # A primitive type of `Array`
250 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
251
252 # The primitive class `Array`
253 var array_class: MClass = self.get_primitive_class("Array") is lazy
254
255 # A primitive type of `NativeArray`
256 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
257
258 # The primitive class `NativeArray`
259 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
260
261 # The primitive type `Sys`, the main type of the program, if any
262 fun sys_type: nullable MClassType
263 do
264 var clas = self.model.get_mclasses_by_name("Sys")
265 if clas == null then return null
266 return get_primitive_class("Sys").mclass_type
267 end
268
269 # The primitive type `Finalizable`
270 # Used to tag classes that need to be finalized.
271 fun finalizable_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Finalizable")
274 if clas == null then return null
275 return get_primitive_class("Finalizable").mclass_type
276 end
277
278 # Force to get the primitive class named `name` or abort
279 fun get_primitive_class(name: String): MClass
280 do
281 var cla = self.model.get_mclasses_by_name(name)
282 # Filter classes by introducing module
283 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
284 if cla == null or cla.is_empty then
285 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
286 # Bool is injected because it is needed by engine to code the result
287 # of the implicit casts.
288 var c = new MClass(self, name, null, enum_kind, public_visibility)
289 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
290 cladef.set_supertypes([object_type])
291 cladef.add_in_hierarchy
292 return c
293 end
294 print("Fatal Error: no primitive class {name} in {self}")
295 exit(1)
296 abort
297 end
298 if cla.length != 1 then
299 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
300 for c in cla do msg += " {c.full_name}"
301 print msg
302 #exit(1)
303 end
304 return cla.first
305 end
306
307 # Try to get the primitive method named `name` on the type `recv`
308 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
309 do
310 var props = self.model.get_mproperties_by_name(name)
311 if props == null then return null
312 var res: nullable MMethod = null
313 var recvtype = recv.intro.bound_mtype
314 for mprop in props do
315 assert mprop isa MMethod
316 if not recvtype.has_mproperty(self, mprop) then continue
317 if res == null then
318 res = mprop
319 else if res != mprop then
320 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
321 abort
322 end
323 end
324 return res
325 end
326 end
327
328 private class MClassDefSorter
329 super Comparator
330 redef type COMPARED: MClassDef
331 var mmodule: MModule
332 redef fun compare(a, b)
333 do
334 var ca = a.mclass
335 var cb = b.mclass
336 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
337 return mmodule.model.mclassdef_hierarchy.compare(a, b)
338 end
339 end
340
341 private class MPropDefSorter
342 super Comparator
343 redef type COMPARED: MPropDef
344 var mmodule: MModule
345 redef fun compare(pa, pb)
346 do
347 var a = pa.mclassdef
348 var b = pb.mclassdef
349 var ca = a.mclass
350 var cb = b.mclass
351 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
352 return mmodule.model.mclassdef_hierarchy.compare(a, b)
353 end
354 end
355
356 # A named class
357 #
358 # `MClass` are global to the model; it means that a `MClass` is not bound to a
359 # specific `MModule`.
360 #
361 # This characteristic helps the reasoning about classes in a program since a
362 # single `MClass` object always denote the same class.
363 #
364 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
365 # These do not really have properties nor belong to a hierarchy since the property and the
366 # hierarchy of a class depends of the refinement in the modules.
367 #
368 # Most services on classes require the precision of a module, and no one can asks what are
369 # the super-classes of a class nor what are properties of a class without precising what is
370 # the module considered.
371 #
372 # For instance, during the typing of a source-file, the module considered is the module of the file.
373 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
374 # *is the method `foo` exists in the class `Bar` in the current module?*
375 #
376 # During some global analysis, the module considered may be the main module of the program.
377 class MClass
378 super MEntity
379
380 # The module that introduce the class
381 # While classes are not bound to a specific module,
382 # the introducing module is used for naming an visibility
383 var intro_mmodule: MModule
384
385 # The short name of the class
386 # In Nit, the name of a class cannot evolve in refinements
387 redef var name
388
389 # The canonical name of the class
390 #
391 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
392 # Example: `"owner::module::MyClass"`
393 redef var full_name is lazy do
394 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
395 end
396
397 redef var c_name is lazy do
398 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
399 end
400
401 # The number of generic formal parameters
402 # 0 if the class is not generic
403 var arity: Int is noinit
404
405 # Each generic formal parameters in order.
406 # is empty if the class is not generic
407 var mparameters = new Array[MParameterType]
408
409 # A string version of the signature a generic class.
410 #
411 # eg. `Map[K: nullable Object, V: nullable Object]`
412 #
413 # If the class in non generic the name is just given.
414 #
415 # eg. `Object`
416 fun signature_to_s: String
417 do
418 if arity == 0 then return name
419 var res = new FlatBuffer
420 res.append name
421 res.append "["
422 for i in [0..arity[ do
423 if i > 0 then res.append ", "
424 res.append mparameters[i].name
425 res.append ": "
426 res.append intro.bound_mtype.arguments[i].to_s
427 end
428 res.append "]"
429 return res.to_s
430 end
431
432 # Initialize `mparameters` from their names.
433 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
434 autoinit
435 do
436 if parameter_names == null then
437 self.arity = 0
438 else
439 self.arity = parameter_names.length
440 end
441
442 # Create the formal parameter types
443 if arity > 0 then
444 assert parameter_names != null
445 var mparametertypes = new Array[MParameterType]
446 for i in [0..arity[ do
447 var mparametertype = new MParameterType(self, i, parameter_names[i])
448 mparametertypes.add(mparametertype)
449 end
450 self.mparameters = mparametertypes
451 var mclass_type = new MGenericType(self, mparametertypes)
452 self.mclass_type = mclass_type
453 self.get_mtype_cache[mparametertypes] = mclass_type
454 else
455 self.mclass_type = new MClassType(self)
456 end
457 end
458
459 # The kind of the class (interface, abstract class, etc.)
460 # In Nit, the kind of a class cannot evolve in refinements
461 var kind: MClassKind
462
463 # The visibility of the class
464 # In Nit, the visibility of a class cannot evolve in refinements
465 var visibility: MVisibility
466
467 init
468 do
469 intro_mmodule.intro_mclasses.add(self)
470 var model = intro_mmodule.model
471 model.mclasses_by_name.add_one(name, self)
472 model.mclasses.add(self)
473 end
474
475 redef fun model do return intro_mmodule.model
476
477 # All class definitions (introduction and refinements)
478 var mclassdefs = new Array[MClassDef]
479
480 # Alias for `name`
481 redef fun to_s do return self.name
482
483 # The definition that introduces the class.
484 #
485 # Warning: such a definition may not exist in the early life of the object.
486 # In this case, the method will abort.
487 #
488 # Use `try_intro` instead
489 var intro: MClassDef is noinit
490
491 # The definition that introduces the class or null if not yet known.
492 #
493 # See `intro`
494 fun try_intro: nullable MClassDef do
495 if isset _intro then return _intro else return null
496 end
497
498 # Return the class `self` in the class hierarchy of the module `mmodule`.
499 #
500 # SEE: `MModule::flatten_mclass_hierarchy`
501 # REQUIRE: `mmodule.has_mclass(self)`
502 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
503 do
504 return mmodule.flatten_mclass_hierarchy[self]
505 end
506
507 # The principal static type of the class.
508 #
509 # For non-generic class, mclass_type is the only `MClassType` based
510 # on self.
511 #
512 # For a generic class, the arguments are the formal parameters.
513 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
514 # If you want Array[Object] the see `MClassDef::bound_mtype`
515 #
516 # For generic classes, the mclass_type is also the way to get a formal
517 # generic parameter type.
518 #
519 # To get other types based on a generic class, see `get_mtype`.
520 #
521 # ENSURE: `mclass_type.mclass == self`
522 var mclass_type: MClassType is noinit
523
524 # Return a generic type based on the class
525 # Is the class is not generic, then the result is `mclass_type`
526 #
527 # REQUIRE: `mtype_arguments.length == self.arity`
528 fun get_mtype(mtype_arguments: Array[MType]): MClassType
529 do
530 assert mtype_arguments.length == self.arity
531 if self.arity == 0 then return self.mclass_type
532 var res = get_mtype_cache.get_or_null(mtype_arguments)
533 if res != null then return res
534 res = new MGenericType(self, mtype_arguments)
535 self.get_mtype_cache[mtype_arguments.to_a] = res
536 return res
537 end
538
539 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
540
541 # Is there a `new` factory to allow the pseudo instantiation?
542 var has_new_factory = false is writable
543
544 # Is `self` a standard or abstract class kind?
545 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
546
547 # Is `self` an interface kind?
548 var is_interface: Bool is lazy do return kind == interface_kind
549
550 # Is `self` an enum kind?
551 var is_enum: Bool is lazy do return kind == enum_kind
552
553 # Is `self` and abstract class?
554 var is_abstract: Bool is lazy do return kind == abstract_kind
555 end
556
557
558 # A definition (an introduction or a refinement) of a class in a module
559 #
560 # A `MClassDef` is associated with an explicit (or almost) definition of a
561 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
562 # a specific class and a specific module, and contains declarations like super-classes
563 # or properties.
564 #
565 # It is the class definitions that are the backbone of most things in the model:
566 # ClassDefs are defined with regard with other classdefs.
567 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
568 #
569 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
570 class MClassDef
571 super MEntity
572
573 # The module where the definition is
574 var mmodule: MModule
575
576 # The associated `MClass`
577 var mclass: MClass is noinit
578
579 # The bounded type associated to the mclassdef
580 #
581 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
582 # are the same type.
583 #
584 # Example:
585 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
586 # If you want Array[E], then see `mclass.mclass_type`
587 #
588 # ENSURE: `bound_mtype.mclass == self.mclass`
589 var bound_mtype: MClassType
590
591 # The origin of the definition
592 var location: Location
593
594 # Internal name combining the module and the class
595 # Example: "mymodule$MyClass"
596 redef var to_s is noinit
597
598 init
599 do
600 self.mclass = bound_mtype.mclass
601 mmodule.mclassdefs.add(self)
602 mclass.mclassdefs.add(self)
603 if mclass.intro_mmodule == mmodule then
604 assert not isset mclass._intro
605 mclass.intro = self
606 end
607 self.to_s = "{mmodule}${mclass}"
608 end
609
610 # Actually the name of the `mclass`
611 redef fun name do return mclass.name
612
613 # The module and class name separated by a '$'.
614 #
615 # The short-name of the class is used for introduction.
616 # Example: "my_module$MyClass"
617 #
618 # The full-name of the class is used for refinement.
619 # Example: "my_module$intro_module::MyClass"
620 redef var full_name is lazy do
621 if is_intro then
622 # public gives 'p$A'
623 # private gives 'p::m$A'
624 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
625 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
626 # public gives 'q::n$p::A'
627 # private gives 'q::n$p::m::A'
628 return "{mmodule.full_name}${mclass.full_name}"
629 else if mclass.visibility > private_visibility then
630 # public gives 'p::n$A'
631 return "{mmodule.full_name}${mclass.name}"
632 else
633 # private gives 'p::n$::m::A' (redundant p is omitted)
634 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
635 end
636 end
637
638 redef var c_name is lazy do
639 if is_intro then
640 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
641 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
642 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
643 else
644 return "{mmodule.c_name}___{mclass.c_name}"
645 end
646 end
647
648 redef fun model do return mmodule.model
649
650 # All declared super-types
651 # FIXME: quite ugly but not better idea yet
652 var supertypes = new Array[MClassType]
653
654 # Register some super-types for the class (ie "super SomeType")
655 #
656 # The hierarchy must not already be set
657 # REQUIRE: `self.in_hierarchy == null`
658 fun set_supertypes(supertypes: Array[MClassType])
659 do
660 assert unique_invocation: self.in_hierarchy == null
661 var mmodule = self.mmodule
662 var model = mmodule.model
663 var mtype = self.bound_mtype
664
665 for supertype in supertypes do
666 self.supertypes.add(supertype)
667
668 # Register in full_type_specialization_hierarchy
669 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
670 # Register in intro_type_specialization_hierarchy
671 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
672 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
673 end
674 end
675
676 end
677
678 # Collect the super-types (set by set_supertypes) to build the hierarchy
679 #
680 # This function can only invoked once by class
681 # REQUIRE: `self.in_hierarchy == null`
682 # ENSURE: `self.in_hierarchy != null`
683 fun add_in_hierarchy
684 do
685 assert unique_invocation: self.in_hierarchy == null
686 var model = mmodule.model
687 var res = model.mclassdef_hierarchy.add_node(self)
688 self.in_hierarchy = res
689 var mtype = self.bound_mtype
690
691 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
692 # The simpliest way is to attach it to collect_mclassdefs
693 for mclassdef in mtype.collect_mclassdefs(mmodule) do
694 res.poset.add_edge(self, mclassdef)
695 end
696 end
697
698 # The view of the class definition in `mclassdef_hierarchy`
699 var in_hierarchy: nullable POSetElement[MClassDef] = null
700
701 # Is the definition the one that introduced `mclass`?
702 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
703
704 # All properties introduced by the classdef
705 var intro_mproperties = new Array[MProperty]
706
707 # All property definitions in the class (introductions and redefinitions)
708 var mpropdefs = new Array[MPropDef]
709 end
710
711 # A global static type
712 #
713 # MType are global to the model; it means that a `MType` is not bound to a
714 # specific `MModule`.
715 # This characteristic helps the reasoning about static types in a program
716 # since a single `MType` object always denote the same type.
717 #
718 # However, because a `MType` is global, it does not really have properties
719 # nor have subtypes to a hierarchy since the property and the class hierarchy
720 # depends of a module.
721 # Moreover, virtual types an formal generic parameter types also depends on
722 # a receiver to have sense.
723 #
724 # Therefore, most method of the types require a module and an anchor.
725 # The module is used to know what are the classes and the specialization
726 # links.
727 # The anchor is used to know what is the bound of the virtual types and formal
728 # generic parameter types.
729 #
730 # MType are not directly usable to get properties. See the `anchor_to` method
731 # and the `MClassType` class.
732 #
733 # FIXME: the order of the parameters is not the best. We mus pick on from:
734 # * foo(mmodule, anchor, othertype)
735 # * foo(othertype, anchor, mmodule)
736 # * foo(anchor, mmodule, othertype)
737 # * foo(othertype, mmodule, anchor)
738 abstract class MType
739 super MEntity
740
741 redef fun name do return to_s
742
743 # Return true if `self` is an subtype of `sup`.
744 # The typing is done using the standard typing policy of Nit.
745 #
746 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
747 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
748 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
749 do
750 var sub = self
751 if sub == sup then return true
752
753 #print "1.is {sub} a {sup}? ===="
754
755 if anchor == null then
756 assert not sub.need_anchor
757 assert not sup.need_anchor
758 else
759 # First, resolve the formal types to the simplest equivalent forms in the receiver
760 assert sub.can_resolve_for(anchor, null, mmodule)
761 sub = sub.lookup_fixed(mmodule, anchor)
762 assert sup.can_resolve_for(anchor, null, mmodule)
763 sup = sup.lookup_fixed(mmodule, anchor)
764 end
765
766 # Does `sup` accept null or not?
767 # Discard the nullable marker if it exists
768 var sup_accept_null = false
769 if sup isa MNullableType then
770 sup_accept_null = true
771 sup = sup.mtype
772 else if sup isa MNotNullType then
773 sup = sup.mtype
774 else if sup isa MNullType then
775 sup_accept_null = true
776 end
777
778 # Can `sub` provide null or not?
779 # Thus we can match with `sup_accept_null`
780 # Also discard the nullable marker if it exists
781 var sub_reject_null = false
782 if sub isa MNullableType then
783 if not sup_accept_null then return false
784 sub = sub.mtype
785 else if sub isa MNotNullType then
786 sub_reject_null = true
787 sub = sub.mtype
788 else if sub isa MNullType then
789 return sup_accept_null
790 end
791 # Now the case of direct null and nullable is over.
792
793 # If `sub` is a formal type, then it is accepted if its bound is accepted
794 while sub isa MFormalType do
795 #print "3.is {sub} a {sup}?"
796
797 # A unfixed formal type can only accept itself
798 if sub == sup then return true
799
800 assert anchor != null
801 sub = sub.lookup_bound(mmodule, anchor)
802 if sub_reject_null then sub = sub.as_notnull
803
804 #print "3.is {sub} a {sup}?"
805
806 # Manage the second layer of null/nullable
807 if sub isa MNullableType then
808 if not sup_accept_null and not sub_reject_null then return false
809 sub = sub.mtype
810 else if sub isa MNotNullType then
811 sub_reject_null = true
812 sub = sub.mtype
813 else if sub isa MNullType then
814 return sup_accept_null
815 end
816 end
817 #print "4.is {sub} a {sup}? <- no more resolution"
818
819 if sub isa MBottomType then
820 return true
821 end
822
823 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
824
825 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
826 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType then
827 # These types are not super-types of Class-based types.
828 return false
829 end
830
831 assert sup isa MClassType else print "got {sup} {sub.inspect}" # It is the only remaining type
832
833 # Now both are MClassType, we need to dig
834
835 if sub == sup then return true
836
837 if anchor == null then anchor = sub # UGLY: any anchor will work
838 var resolved_sub = sub.anchor_to(mmodule, anchor)
839 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
840 if res == false then return false
841 if not sup isa MGenericType then return true
842 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
843 assert sub2.mclass == sup.mclass
844 for i in [0..sup.mclass.arity[ do
845 var sub_arg = sub2.arguments[i]
846 var sup_arg = sup.arguments[i]
847 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
848 if res == false then return false
849 end
850 return true
851 end
852
853 # The base class type on which self is based
854 #
855 # This base type is used to get property (an internally to perform
856 # unsafe type comparison).
857 #
858 # Beware: some types (like null) are not based on a class thus this
859 # method will crash
860 #
861 # Basically, this function transform the virtual types and parameter
862 # types to their bounds.
863 #
864 # Example
865 #
866 # class A end
867 # class B super A end
868 # class X end
869 # class Y super X end
870 # class G[T: A]
871 # type U: X
872 # end
873 # class H
874 # super G[B]
875 # redef type U: Y
876 # end
877 #
878 # Map[T,U] anchor_to H #-> Map[B,Y]
879 #
880 # Explanation of the example:
881 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
882 # because "redef type U: Y". Therefore, Map[T, U] is bound to
883 # Map[B, Y]
884 #
885 # ENSURE: `not self.need_anchor implies result == self`
886 # ENSURE: `not result.need_anchor`
887 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
888 do
889 if not need_anchor then return self
890 assert not anchor.need_anchor
891 # Just resolve to the anchor and clear all the virtual types
892 var res = self.resolve_for(anchor, null, mmodule, true)
893 assert not res.need_anchor
894 return res
895 end
896
897 # Does `self` contain a virtual type or a formal generic parameter type?
898 # In order to remove those types, you usually want to use `anchor_to`.
899 fun need_anchor: Bool do return true
900
901 # Return the supertype when adapted to a class.
902 #
903 # In Nit, for each super-class of a type, there is a equivalent super-type.
904 #
905 # Example:
906 #
907 # ~~~nitish
908 # class G[T, U] end
909 # class H[V] super G[V, Bool] end
910 #
911 # H[Int] supertype_to G #-> G[Int, Bool]
912 # ~~~
913 #
914 # REQUIRE: `super_mclass` is a super-class of `self`
915 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
916 # ENSURE: `result.mclass = super_mclass`
917 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
918 do
919 if super_mclass.arity == 0 then return super_mclass.mclass_type
920 if self isa MClassType and self.mclass == super_mclass then return self
921 var resolved_self
922 if self.need_anchor then
923 assert anchor != null
924 resolved_self = self.anchor_to(mmodule, anchor)
925 else
926 resolved_self = self
927 end
928 var supertypes = resolved_self.collect_mtypes(mmodule)
929 for supertype in supertypes do
930 if supertype.mclass == super_mclass then
931 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
932 return supertype.resolve_for(self, anchor, mmodule, false)
933 end
934 end
935 abort
936 end
937
938 # Replace formals generic types in self with resolved values in `mtype`
939 # If `cleanup_virtual` is true, then virtual types are also replaced
940 # with their bounds.
941 #
942 # This function returns self if `need_anchor` is false.
943 #
944 # ## Example 1
945 #
946 # ~~~
947 # class G[E] end
948 # class H[F] super G[F] end
949 # class X[Z] end
950 # ~~~
951 #
952 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
953 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
954 #
955 # Explanation of the example:
956 # * Array[E].need_anchor is true because there is a formal generic parameter type E
957 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
958 # * Since "H[F] super G[F]", E is in fact F for H
959 # * More specifically, in H[Int], E is Int
960 # * So, in H[Int], Array[E] is Array[Int]
961 #
962 # This function is mainly used to inherit a signature.
963 # Because, unlike `anchor_to`, we do not want a full resolution of
964 # a type but only an adapted version of it.
965 #
966 # ## Example 2
967 #
968 # ~~~
969 # class A[E]
970 # fun foo(e:E):E is abstract
971 # end
972 # class B super A[Int] end
973 # ~~~
974 #
975 # The signature on foo is (e: E): E
976 # If we resolve the signature for B, we get (e:Int):Int
977 #
978 # ## Example 3
979 #
980 # ~~~nitish
981 # class A[E]
982 # fun foo(e:E):E is abstract
983 # end
984 # class C[F]
985 # var a: A[Array[F]]
986 # fun bar do a.foo(x) # <- x is here
987 # end
988 # ~~~
989 #
990 # The first question is: is foo available on `a`?
991 #
992 # The static type of a is `A[Array[F]]`, that is an open type.
993 # in order to find a method `foo`, whe must look at a resolved type.
994 #
995 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
996 #
997 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
998 #
999 # The next question is: what is the accepted types for `x`?
1000 #
1001 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1002 #
1003 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1004 #
1005 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1006 #
1007 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1008 # two function instead of one seems also to be a bad idea.
1009 #
1010 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1011 # ENSURE: `not self.need_anchor implies result == self`
1012 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1013
1014 # Resolve formal type to its verbatim bound.
1015 # If the type is not formal, just return self
1016 #
1017 # The result is returned exactly as declared in the "type" property (verbatim).
1018 # So it could be another formal type.
1019 #
1020 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1021 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1022
1023 # Resolve the formal type to its simplest equivalent form.
1024 #
1025 # Formal types are either free or fixed.
1026 # When it is fixed, it means that it is equivalent with a simpler type.
1027 # When a formal type is free, it means that it is only equivalent with itself.
1028 # This method return the most simple equivalent type of `self`.
1029 #
1030 # This method is mainly used for subtype test in order to sanely compare fixed.
1031 #
1032 # By default, return self.
1033 # See the redefinitions for specific behavior in each kind of type.
1034 #
1035 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1036 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1037
1038 # Can the type be resolved?
1039 #
1040 # In order to resolve open types, the formal types must make sence.
1041 #
1042 # ## Example
1043 #
1044 # class A[E]
1045 # end
1046 # class B[F]
1047 # end
1048 #
1049 # ~~~nitish
1050 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1051 #
1052 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1053 #
1054 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1055 # # B[E] is a red hearing only the E is important,
1056 # # E make sense in A
1057 # ~~~
1058 #
1059 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1060 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1061 # ENSURE: `not self.need_anchor implies result == true`
1062 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1063
1064 # Return the nullable version of the type
1065 # If the type is already nullable then self is returned
1066 fun as_nullable: MType
1067 do
1068 var res = self.as_nullable_cache
1069 if res != null then return res
1070 res = new MNullableType(self)
1071 self.as_nullable_cache = res
1072 return res
1073 end
1074
1075 # Remove the base type of a decorated (proxy) type.
1076 # Is the type is not decorated, then self is returned.
1077 #
1078 # Most of the time it is used to return the not nullable version of a nullable type.
1079 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1080 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1081 # If you really want to exclude the `null` value, then use `as_notnull`
1082 fun undecorate: MType
1083 do
1084 return self
1085 end
1086
1087 # Returns the not null version of the type.
1088 # That is `self` minus the `null` value.
1089 #
1090 # For most types, this return `self`.
1091 # For formal types, this returns a special `MNotNullType`
1092 fun as_notnull: MType do return self
1093
1094 private var as_nullable_cache: nullable MType = null
1095
1096
1097 # The depth of the type seen as a tree.
1098 #
1099 # * A -> 1
1100 # * G[A] -> 2
1101 # * H[A, B] -> 2
1102 # * H[G[A], B] -> 3
1103 #
1104 # Formal types have a depth of 1.
1105 fun depth: Int
1106 do
1107 return 1
1108 end
1109
1110 # The length of the type seen as a tree.
1111 #
1112 # * A -> 1
1113 # * G[A] -> 2
1114 # * H[A, B] -> 3
1115 # * H[G[A], B] -> 4
1116 #
1117 # Formal types have a length of 1.
1118 fun length: Int
1119 do
1120 return 1
1121 end
1122
1123 # Compute all the classdefs inherited/imported.
1124 # The returned set contains:
1125 # * the class definitions from `mmodule` and its imported modules
1126 # * the class definitions of this type and its super-types
1127 #
1128 # This function is used mainly internally.
1129 #
1130 # REQUIRE: `not self.need_anchor`
1131 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1132
1133 # Compute all the super-classes.
1134 # This function is used mainly internally.
1135 #
1136 # REQUIRE: `not self.need_anchor`
1137 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1138
1139 # Compute all the declared super-types.
1140 # Super-types are returned as declared in the classdefs (verbatim).
1141 # This function is used mainly internally.
1142 #
1143 # REQUIRE: `not self.need_anchor`
1144 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1145
1146 # Is the property in self for a given module
1147 # This method does not filter visibility or whatever
1148 #
1149 # REQUIRE: `not self.need_anchor`
1150 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1151 do
1152 assert not self.need_anchor
1153 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1154 end
1155 end
1156
1157 # A type based on a class.
1158 #
1159 # `MClassType` have properties (see `has_mproperty`).
1160 class MClassType
1161 super MType
1162
1163 # The associated class
1164 var mclass: MClass
1165
1166 redef fun model do return self.mclass.intro_mmodule.model
1167
1168 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1169
1170 # The formal arguments of the type
1171 # ENSURE: `result.length == self.mclass.arity`
1172 var arguments = new Array[MType]
1173
1174 redef fun to_s do return mclass.to_s
1175
1176 redef fun full_name do return mclass.full_name
1177
1178 redef fun c_name do return mclass.c_name
1179
1180 redef fun need_anchor do return false
1181
1182 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1183 do
1184 return super.as(MClassType)
1185 end
1186
1187 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1188
1189 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1190
1191 redef fun collect_mclassdefs(mmodule)
1192 do
1193 assert not self.need_anchor
1194 var cache = self.collect_mclassdefs_cache
1195 if not cache.has_key(mmodule) then
1196 self.collect_things(mmodule)
1197 end
1198 return cache[mmodule]
1199 end
1200
1201 redef fun collect_mclasses(mmodule)
1202 do
1203 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1204 assert not self.need_anchor
1205 var cache = self.collect_mclasses_cache
1206 if not cache.has_key(mmodule) then
1207 self.collect_things(mmodule)
1208 end
1209 var res = cache[mmodule]
1210 collect_mclasses_last_module = mmodule
1211 collect_mclasses_last_module_cache = res
1212 return res
1213 end
1214
1215 private var collect_mclasses_last_module: nullable MModule = null
1216 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1217
1218 redef fun collect_mtypes(mmodule)
1219 do
1220 assert not self.need_anchor
1221 var cache = self.collect_mtypes_cache
1222 if not cache.has_key(mmodule) then
1223 self.collect_things(mmodule)
1224 end
1225 return cache[mmodule]
1226 end
1227
1228 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1229 private fun collect_things(mmodule: MModule)
1230 do
1231 var res = new HashSet[MClassDef]
1232 var seen = new HashSet[MClass]
1233 var types = new HashSet[MClassType]
1234 seen.add(self.mclass)
1235 var todo = [self.mclass]
1236 while not todo.is_empty do
1237 var mclass = todo.pop
1238 #print "process {mclass}"
1239 for mclassdef in mclass.mclassdefs do
1240 if not mmodule.in_importation <= mclassdef.mmodule then continue
1241 #print " process {mclassdef}"
1242 res.add(mclassdef)
1243 for supertype in mclassdef.supertypes do
1244 types.add(supertype)
1245 var superclass = supertype.mclass
1246 if seen.has(superclass) then continue
1247 #print " add {superclass}"
1248 seen.add(superclass)
1249 todo.add(superclass)
1250 end
1251 end
1252 end
1253 collect_mclassdefs_cache[mmodule] = res
1254 collect_mclasses_cache[mmodule] = seen
1255 collect_mtypes_cache[mmodule] = types
1256 end
1257
1258 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1259 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1260 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1261
1262 end
1263
1264 # A type based on a generic class.
1265 # A generic type a just a class with additional formal generic arguments.
1266 class MGenericType
1267 super MClassType
1268
1269 redef var arguments
1270
1271 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1272
1273 init
1274 do
1275 assert self.mclass.arity == arguments.length
1276
1277 self.need_anchor = false
1278 for t in arguments do
1279 if t.need_anchor then
1280 self.need_anchor = true
1281 break
1282 end
1283 end
1284
1285 self.to_s = "{mclass}[{arguments.join(", ")}]"
1286 end
1287
1288 # The short-name of the class, then the full-name of each type arguments within brackets.
1289 # Example: `"Map[String, List[Int]]"`
1290 redef var to_s is noinit
1291
1292 # The full-name of the class, then the full-name of each type arguments within brackets.
1293 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1294 redef var full_name is lazy do
1295 var args = new Array[String]
1296 for t in arguments do
1297 args.add t.full_name
1298 end
1299 return "{mclass.full_name}[{args.join(", ")}]"
1300 end
1301
1302 redef var c_name is lazy do
1303 var res = mclass.c_name
1304 # Note: because the arity is known, a prefix notation is enough
1305 for t in arguments do
1306 res += "__"
1307 res += t.c_name
1308 end
1309 return res.to_s
1310 end
1311
1312 redef var need_anchor is noinit
1313
1314 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1315 do
1316 if not need_anchor then return self
1317 assert can_resolve_for(mtype, anchor, mmodule)
1318 var types = new Array[MType]
1319 for t in arguments do
1320 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1321 end
1322 return mclass.get_mtype(types)
1323 end
1324
1325 redef fun can_resolve_for(mtype, anchor, mmodule)
1326 do
1327 if not need_anchor then return true
1328 for t in arguments do
1329 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1330 end
1331 return true
1332 end
1333
1334
1335 redef fun depth
1336 do
1337 var dmax = 0
1338 for a in self.arguments do
1339 var d = a.depth
1340 if d > dmax then dmax = d
1341 end
1342 return dmax + 1
1343 end
1344
1345 redef fun length
1346 do
1347 var res = 1
1348 for a in self.arguments do
1349 res += a.length
1350 end
1351 return res
1352 end
1353 end
1354
1355 # A formal type (either virtual of parametric).
1356 #
1357 # The main issue with formal types is that they offer very little information on their own
1358 # and need a context (anchor and mmodule) to be useful.
1359 abstract class MFormalType
1360 super MType
1361
1362 redef var as_notnull = new MNotNullType(self) is lazy
1363 end
1364
1365 # A virtual formal type.
1366 class MVirtualType
1367 super MFormalType
1368
1369 # The property associated with the type.
1370 # Its the definitions of this property that determine the bound or the virtual type.
1371 var mproperty: MVirtualTypeProp
1372
1373 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1374
1375 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1376 do
1377 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MBottomType(model)
1378 end
1379
1380 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1381 do
1382 assert not resolved_receiver.need_anchor
1383 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1384 if props.is_empty then
1385 abort
1386 else if props.length == 1 then
1387 return props.first
1388 end
1389 var types = new ArraySet[MType]
1390 var res = props.first
1391 for p in props do
1392 types.add(p.bound.as(not null))
1393 if not res.is_fixed then res = p
1394 end
1395 if types.length == 1 then
1396 return res
1397 end
1398 abort
1399 end
1400
1401 # A VT is fixed when:
1402 # * the VT is (re-)defined with the annotation `is fixed`
1403 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1404 # * the receiver is an enum class since there is no subtype possible
1405 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1406 do
1407 assert not resolved_receiver.need_anchor
1408 resolved_receiver = resolved_receiver.undecorate
1409 assert resolved_receiver isa MClassType # It is the only remaining type
1410
1411 var prop = lookup_single_definition(mmodule, resolved_receiver)
1412 var res = prop.bound
1413 if res == null then return new MBottomType(model)
1414
1415 # Recursively lookup the fixed result
1416 res = res.lookup_fixed(mmodule, resolved_receiver)
1417
1418 # 1. For a fixed VT, return the resolved bound
1419 if prop.is_fixed then return res
1420
1421 # 2. For a enum boud, return the bound
1422 if res isa MClassType and res.mclass.kind == enum_kind then return res
1423
1424 # 3. for a enum receiver return the bound
1425 if resolved_receiver.mclass.kind == enum_kind then return res
1426
1427 return self
1428 end
1429
1430 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1431 do
1432 if not cleanup_virtual then return self
1433 assert can_resolve_for(mtype, anchor, mmodule)
1434 # self is a virtual type declared (or inherited) in mtype
1435 # The point of the function it to get the bound of the virtual type that make sense for mtype
1436 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1437 #print "{class_name}: {self}/{mtype}/{anchor}?"
1438 var resolved_receiver
1439 if mtype.need_anchor then
1440 assert anchor != null
1441 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1442 else
1443 resolved_receiver = mtype
1444 end
1445 # Now, we can get the bound
1446 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1447 # The bound is exactly as declared in the "type" property, so we must resolve it again
1448 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1449
1450 return res
1451 end
1452
1453 redef fun can_resolve_for(mtype, anchor, mmodule)
1454 do
1455 if mtype.need_anchor then
1456 assert anchor != null
1457 mtype = mtype.anchor_to(mmodule, anchor)
1458 end
1459 return mtype.has_mproperty(mmodule, mproperty)
1460 end
1461
1462 redef fun to_s do return self.mproperty.to_s
1463
1464 redef fun full_name do return self.mproperty.full_name
1465
1466 redef fun c_name do return self.mproperty.c_name
1467 end
1468
1469 # The type associated to a formal parameter generic type of a class
1470 #
1471 # Each parameter type is associated to a specific class.
1472 # It means that all refinements of a same class "share" the parameter type,
1473 # but that a generic subclass has its own parameter types.
1474 #
1475 # However, in the sense of the meta-model, a parameter type of a class is
1476 # a valid type in a subclass. The "in the sense of the meta-model" is
1477 # important because, in the Nit language, the programmer cannot refers
1478 # directly to the parameter types of the super-classes.
1479 #
1480 # Example:
1481 #
1482 # class A[E]
1483 # fun e: E is abstract
1484 # end
1485 # class B[F]
1486 # super A[Array[F]]
1487 # end
1488 #
1489 # In the class definition B[F], `F` is a valid type but `E` is not.
1490 # However, `self.e` is a valid method call, and the signature of `e` is
1491 # declared `e: E`.
1492 #
1493 # Note that parameter types are shared among class refinements.
1494 # Therefore parameter only have an internal name (see `to_s` for details).
1495 class MParameterType
1496 super MFormalType
1497
1498 # The generic class where the parameter belong
1499 var mclass: MClass
1500
1501 redef fun model do return self.mclass.intro_mmodule.model
1502
1503 # The position of the parameter (0 for the first parameter)
1504 # FIXME: is `position` a better name?
1505 var rank: Int
1506
1507 redef var name
1508
1509 redef fun to_s do return name
1510
1511 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1512
1513 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1514
1515 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1516 do
1517 assert not resolved_receiver.need_anchor
1518 resolved_receiver = resolved_receiver.undecorate
1519 assert resolved_receiver isa MClassType # It is the only remaining type
1520 var goalclass = self.mclass
1521 if resolved_receiver.mclass == goalclass then
1522 return resolved_receiver.arguments[self.rank]
1523 end
1524 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1525 for t in supertypes do
1526 if t.mclass == goalclass then
1527 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1528 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1529 var res = t.arguments[self.rank]
1530 return res
1531 end
1532 end
1533 abort
1534 end
1535
1536 # A PT is fixed when:
1537 # * Its bound is a enum class (see `enum_kind`).
1538 # The PT is just useless, but it is still a case.
1539 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1540 # so it is necessarily fixed in a `super` clause, either with a normal type
1541 # or with another PT.
1542 # See `resolve_for` for examples about related issues.
1543 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1544 do
1545 assert not resolved_receiver.need_anchor
1546 resolved_receiver = resolved_receiver.undecorate
1547 assert resolved_receiver isa MClassType # It is the only remaining type
1548 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1549 return res
1550 end
1551
1552 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1553 do
1554 assert can_resolve_for(mtype, anchor, mmodule)
1555 #print "{class_name}: {self}/{mtype}/{anchor}?"
1556
1557 if mtype isa MGenericType and mtype.mclass == self.mclass then
1558 var res = mtype.arguments[self.rank]
1559 if anchor != null and res.need_anchor then
1560 # Maybe the result can be resolved more if are bound to a final class
1561 var r2 = res.anchor_to(mmodule, anchor)
1562 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1563 end
1564 return res
1565 end
1566
1567 # self is a parameter type of mtype (or of a super-class of mtype)
1568 # The point of the function it to get the bound of the virtual type that make sense for mtype
1569 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1570 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1571 var resolved_receiver
1572 if mtype.need_anchor then
1573 assert anchor != null
1574 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1575 else
1576 resolved_receiver = mtype
1577 end
1578 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1579 if resolved_receiver isa MParameterType then
1580 assert anchor != null
1581 assert resolved_receiver.mclass == anchor.mclass
1582 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1583 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1584 end
1585 assert resolved_receiver isa MClassType # It is the only remaining type
1586
1587 # Eh! The parameter is in the current class.
1588 # So we return the corresponding argument, no mater what!
1589 if resolved_receiver.mclass == self.mclass then
1590 var res = resolved_receiver.arguments[self.rank]
1591 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1592 return res
1593 end
1594
1595 if resolved_receiver.need_anchor then
1596 assert anchor != null
1597 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1598 end
1599 # Now, we can get the bound
1600 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1601 # The bound is exactly as declared in the "type" property, so we must resolve it again
1602 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1603
1604 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1605
1606 return res
1607 end
1608
1609 redef fun can_resolve_for(mtype, anchor, mmodule)
1610 do
1611 if mtype.need_anchor then
1612 assert anchor != null
1613 mtype = mtype.anchor_to(mmodule, anchor)
1614 end
1615 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1616 end
1617 end
1618
1619 # A type that decorates another type.
1620 #
1621 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1622 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1623 abstract class MProxyType
1624 super MType
1625 # The base type
1626 var mtype: MType
1627
1628 redef fun model do return self.mtype.model
1629 redef fun need_anchor do return mtype.need_anchor
1630 redef fun as_nullable do return mtype.as_nullable
1631 redef fun as_notnull do return mtype.as_notnull
1632 redef fun undecorate do return mtype.undecorate
1633 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1634 do
1635 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1636 return res
1637 end
1638
1639 redef fun can_resolve_for(mtype, anchor, mmodule)
1640 do
1641 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1642 end
1643
1644 redef fun lookup_fixed(mmodule, resolved_receiver)
1645 do
1646 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1647 return t
1648 end
1649
1650 redef fun depth do return self.mtype.depth
1651
1652 redef fun length do return self.mtype.length
1653
1654 redef fun collect_mclassdefs(mmodule)
1655 do
1656 assert not self.need_anchor
1657 return self.mtype.collect_mclassdefs(mmodule)
1658 end
1659
1660 redef fun collect_mclasses(mmodule)
1661 do
1662 assert not self.need_anchor
1663 return self.mtype.collect_mclasses(mmodule)
1664 end
1665
1666 redef fun collect_mtypes(mmodule)
1667 do
1668 assert not self.need_anchor
1669 return self.mtype.collect_mtypes(mmodule)
1670 end
1671 end
1672
1673 # A type prefixed with "nullable"
1674 class MNullableType
1675 super MProxyType
1676
1677 init
1678 do
1679 self.to_s = "nullable {mtype}"
1680 end
1681
1682 redef var to_s is noinit
1683
1684 redef var full_name is lazy do return "nullable {mtype.full_name}"
1685
1686 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1687
1688 redef fun as_nullable do return self
1689 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1690 do
1691 var res = super
1692 return res.as_nullable
1693 end
1694
1695 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1696 redef fun lookup_fixed(mmodule, resolved_receiver)
1697 do
1698 var t = super
1699 if t == mtype then return self
1700 return t.as_nullable
1701 end
1702 end
1703
1704 # A non-null version of a formal type.
1705 #
1706 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1707 class MNotNullType
1708 super MProxyType
1709
1710 redef fun to_s do return "not null {mtype}"
1711 redef var full_name is lazy do return "not null {mtype.full_name}"
1712 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1713
1714 redef fun as_notnull do return self
1715
1716 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1717 do
1718 var res = super
1719 return res.as_notnull
1720 end
1721
1722 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1723 redef fun lookup_fixed(mmodule, resolved_receiver)
1724 do
1725 var t = super
1726 if t == mtype then return self
1727 return t.as_notnull
1728 end
1729 end
1730
1731 # The type of the only value null
1732 #
1733 # The is only one null type per model, see `MModel::null_type`.
1734 class MNullType
1735 super MType
1736 redef var model
1737 redef fun to_s do return "null"
1738 redef fun full_name do return "null"
1739 redef fun c_name do return "null"
1740 redef fun as_nullable do return self
1741
1742 redef var as_notnull = new MBottomType(model) is lazy
1743 redef fun need_anchor do return false
1744 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1745 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1746
1747 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1748
1749 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1750
1751 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1752 end
1753
1754 # The special universal most specific type.
1755 #
1756 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1757 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1758 #
1759 # Semantically it is the singleton `null.as_notnull`.
1760 class MBottomType
1761 super MType
1762 redef var model
1763 redef fun to_s do return "bottom"
1764 redef fun full_name do return "bottom"
1765 redef fun c_name do return "bottom"
1766 redef fun as_nullable do return model.null_type
1767 redef fun as_notnull do return self
1768 redef fun need_anchor do return false
1769 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1770 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1771
1772 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1773
1774 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1775
1776 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1777 end
1778
1779 # A signature of a method
1780 class MSignature
1781 super MType
1782
1783 # The each parameter (in order)
1784 var mparameters: Array[MParameter]
1785
1786 # Returns a parameter named `name`, if any.
1787 fun mparameter_by_name(name: String): nullable MParameter
1788 do
1789 for p in mparameters do
1790 if p.name == name then return p
1791 end
1792 return null
1793 end
1794
1795 # The return type (null for a procedure)
1796 var return_mtype: nullable MType
1797
1798 redef fun depth
1799 do
1800 var dmax = 0
1801 var t = self.return_mtype
1802 if t != null then dmax = t.depth
1803 for p in mparameters do
1804 var d = p.mtype.depth
1805 if d > dmax then dmax = d
1806 end
1807 return dmax + 1
1808 end
1809
1810 redef fun length
1811 do
1812 var res = 1
1813 var t = self.return_mtype
1814 if t != null then res += t.length
1815 for p in mparameters do
1816 res += p.mtype.length
1817 end
1818 return res
1819 end
1820
1821 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1822 init
1823 do
1824 var vararg_rank = -1
1825 for i in [0..mparameters.length[ do
1826 var parameter = mparameters[i]
1827 if parameter.is_vararg then
1828 if vararg_rank >= 0 then
1829 # If there is more than one vararg,
1830 # consider that additional arguments cannot be mapped.
1831 vararg_rank = -1
1832 break
1833 end
1834 vararg_rank = i
1835 end
1836 end
1837 self.vararg_rank = vararg_rank
1838 end
1839
1840 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1841 # value is -1 if there is no vararg.
1842 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1843 #
1844 # From a model POV, a signature can contain more than one vararg parameter,
1845 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1846 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1847 # and additional arguments will be refused.
1848 var vararg_rank: Int is noinit
1849
1850 # The number of parameters
1851 fun arity: Int do return mparameters.length
1852
1853 redef fun to_s
1854 do
1855 var b = new FlatBuffer
1856 if not mparameters.is_empty then
1857 b.append("(")
1858 for i in [0..mparameters.length[ do
1859 var mparameter = mparameters[i]
1860 if i > 0 then b.append(", ")
1861 b.append(mparameter.name)
1862 b.append(": ")
1863 b.append(mparameter.mtype.to_s)
1864 if mparameter.is_vararg then
1865 b.append("...")
1866 end
1867 end
1868 b.append(")")
1869 end
1870 var ret = self.return_mtype
1871 if ret != null then
1872 b.append(": ")
1873 b.append(ret.to_s)
1874 end
1875 return b.to_s
1876 end
1877
1878 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1879 do
1880 var params = new Array[MParameter]
1881 for p in self.mparameters do
1882 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1883 end
1884 var ret = self.return_mtype
1885 if ret != null then
1886 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1887 end
1888 var res = new MSignature(params, ret)
1889 return res
1890 end
1891 end
1892
1893 # A parameter in a signature
1894 class MParameter
1895 super MEntity
1896
1897 # The name of the parameter
1898 redef var name
1899
1900 # The static type of the parameter
1901 var mtype: MType
1902
1903 # Is the parameter a vararg?
1904 var is_vararg: Bool
1905
1906 redef fun to_s
1907 do
1908 if is_vararg then
1909 return "{name}: {mtype}..."
1910 else
1911 return "{name}: {mtype}"
1912 end
1913 end
1914
1915 # Returns a new parameter with the `mtype` resolved.
1916 # See `MType::resolve_for` for details.
1917 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1918 do
1919 if not self.mtype.need_anchor then return self
1920 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1921 var res = new MParameter(self.name, newtype, self.is_vararg)
1922 return res
1923 end
1924
1925 redef fun model do return mtype.model
1926 end
1927
1928 # A service (global property) that generalize method, attribute, etc.
1929 #
1930 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1931 # to a specific `MModule` nor a specific `MClass`.
1932 #
1933 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1934 # and the other in subclasses and in refinements.
1935 #
1936 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1937 # of any dynamic type).
1938 # For instance, a call site "x.foo" is associated to a `MProperty`.
1939 abstract class MProperty
1940 super MEntity
1941
1942 # The associated MPropDef subclass.
1943 # The two specialization hierarchy are symmetric.
1944 type MPROPDEF: MPropDef
1945
1946 # The classdef that introduce the property
1947 # While a property is not bound to a specific module, or class,
1948 # the introducing mclassdef is used for naming and visibility
1949 var intro_mclassdef: MClassDef
1950
1951 # The (short) name of the property
1952 redef var name
1953
1954 # The canonical name of the property.
1955 #
1956 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
1957 # Example: "my_package::my_module::MyClass::my_method"
1958 #
1959 # The full-name of the module is needed because two distinct modules of the same package can
1960 # still refine the same class and introduce homonym properties.
1961 #
1962 # For public properties not introduced by refinement, the module name is not used.
1963 #
1964 # Example: `my_package::MyClass::My_method`
1965 redef var full_name is lazy do
1966 if intro_mclassdef.is_intro then
1967 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1968 else
1969 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
1970 end
1971 end
1972
1973 redef var c_name is lazy do
1974 # FIXME use `namespace_for`
1975 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1976 end
1977
1978 # The visibility of the property
1979 var visibility: MVisibility
1980
1981 # Is the property usable as an initializer?
1982 var is_autoinit = false is writable
1983
1984 init
1985 do
1986 intro_mclassdef.intro_mproperties.add(self)
1987 var model = intro_mclassdef.mmodule.model
1988 model.mproperties_by_name.add_one(name, self)
1989 model.mproperties.add(self)
1990 end
1991
1992 # All definitions of the property.
1993 # The first is the introduction,
1994 # The other are redefinitions (in refinements and in subclasses)
1995 var mpropdefs = new Array[MPROPDEF]
1996
1997 # The definition that introduces the property.
1998 #
1999 # Warning: such a definition may not exist in the early life of the object.
2000 # In this case, the method will abort.
2001 var intro: MPROPDEF is noinit
2002
2003 redef fun model do return intro.model
2004
2005 # Alias for `name`
2006 redef fun to_s do return name
2007
2008 # Return the most specific property definitions defined or inherited by a type.
2009 # The selection knows that refinement is stronger than specialization;
2010 # however, in case of conflict more than one property are returned.
2011 # If mtype does not know mproperty then an empty array is returned.
2012 #
2013 # If you want the really most specific property, then look at `lookup_first_definition`
2014 #
2015 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2016 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2017 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2018 do
2019 assert not mtype.need_anchor
2020 mtype = mtype.undecorate
2021
2022 var cache = self.lookup_definitions_cache[mmodule, mtype]
2023 if cache != null then return cache
2024
2025 #print "select prop {mproperty} for {mtype} in {self}"
2026 # First, select all candidates
2027 var candidates = new Array[MPROPDEF]
2028 for mpropdef in self.mpropdefs do
2029 # If the definition is not imported by the module, then skip
2030 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2031 # If the definition is not inherited by the type, then skip
2032 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2033 # Else, we keep it
2034 candidates.add(mpropdef)
2035 end
2036 # Fast track for only one candidate
2037 if candidates.length <= 1 then
2038 self.lookup_definitions_cache[mmodule, mtype] = candidates
2039 return candidates
2040 end
2041
2042 # Second, filter the most specific ones
2043 return select_most_specific(mmodule, candidates)
2044 end
2045
2046 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2047
2048 # Return the most specific property definitions inherited by a type.
2049 # The selection knows that refinement is stronger than specialization;
2050 # however, in case of conflict more than one property are returned.
2051 # If mtype does not know mproperty then an empty array is returned.
2052 #
2053 # If you want the really most specific property, then look at `lookup_next_definition`
2054 #
2055 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2056 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2057 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2058 do
2059 assert not mtype.need_anchor
2060 mtype = mtype.undecorate
2061
2062 # First, select all candidates
2063 var candidates = new Array[MPROPDEF]
2064 for mpropdef in self.mpropdefs do
2065 # If the definition is not imported by the module, then skip
2066 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2067 # If the definition is not inherited by the type, then skip
2068 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2069 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2070 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2071 # Else, we keep it
2072 candidates.add(mpropdef)
2073 end
2074 # Fast track for only one candidate
2075 if candidates.length <= 1 then return candidates
2076
2077 # Second, filter the most specific ones
2078 return select_most_specific(mmodule, candidates)
2079 end
2080
2081 # Return an array containing olny the most specific property definitions
2082 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2083 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2084 do
2085 var res = new Array[MPROPDEF]
2086 for pd1 in candidates do
2087 var cd1 = pd1.mclassdef
2088 var c1 = cd1.mclass
2089 var keep = true
2090 for pd2 in candidates do
2091 if pd2 == pd1 then continue # do not compare with self!
2092 var cd2 = pd2.mclassdef
2093 var c2 = cd2.mclass
2094 if c2.mclass_type == c1.mclass_type then
2095 if cd2.mmodule.in_importation < cd1.mmodule then
2096 # cd2 refines cd1; therefore we skip pd1
2097 keep = false
2098 break
2099 end
2100 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2101 # cd2 < cd1; therefore we skip pd1
2102 keep = false
2103 break
2104 end
2105 end
2106 if keep then
2107 res.add(pd1)
2108 end
2109 end
2110 if res.is_empty then
2111 print "All lost! {candidates.join(", ")}"
2112 # FIXME: should be abort!
2113 end
2114 return res
2115 end
2116
2117 # Return the most specific definition in the linearization of `mtype`.
2118 #
2119 # If you want to know the next properties in the linearization,
2120 # look at `MPropDef::lookup_next_definition`.
2121 #
2122 # FIXME: the linearization is still unspecified
2123 #
2124 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2125 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2126 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2127 do
2128 return lookup_all_definitions(mmodule, mtype).first
2129 end
2130
2131 # Return all definitions in a linearization order
2132 # Most specific first, most general last
2133 #
2134 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2135 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2136 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2137 do
2138 mtype = mtype.undecorate
2139
2140 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2141 if cache != null then return cache
2142
2143 assert not mtype.need_anchor
2144 assert mtype.has_mproperty(mmodule, self)
2145
2146 #print "select prop {mproperty} for {mtype} in {self}"
2147 # First, select all candidates
2148 var candidates = new Array[MPROPDEF]
2149 for mpropdef in self.mpropdefs do
2150 # If the definition is not imported by the module, then skip
2151 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2152 # If the definition is not inherited by the type, then skip
2153 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2154 # Else, we keep it
2155 candidates.add(mpropdef)
2156 end
2157 # Fast track for only one candidate
2158 if candidates.length <= 1 then
2159 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2160 return candidates
2161 end
2162
2163 mmodule.linearize_mpropdefs(candidates)
2164 candidates = candidates.reversed
2165 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2166 return candidates
2167 end
2168
2169 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2170 end
2171
2172 # A global method
2173 class MMethod
2174 super MProperty
2175
2176 redef type MPROPDEF: MMethodDef
2177
2178 # Is the property defined at the top_level of the module?
2179 # Currently such a property are stored in `Object`
2180 var is_toplevel: Bool = false is writable
2181
2182 # Is the property a constructor?
2183 # Warning, this property can be inherited by subclasses with or without being a constructor
2184 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2185 var is_init: Bool = false is writable
2186
2187 # The constructor is a (the) root init with empty signature but a set of initializers
2188 var is_root_init: Bool = false is writable
2189
2190 # Is the property a 'new' constructor?
2191 var is_new: Bool = false is writable
2192
2193 # Is the property a legal constructor for a given class?
2194 # As usual, visibility is not considered.
2195 # FIXME not implemented
2196 fun is_init_for(mclass: MClass): Bool
2197 do
2198 return self.is_init
2199 end
2200
2201 # A specific method that is safe to call on null.
2202 # Currently, only `==`, `!=` and `is_same_instance` are safe
2203 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2204 end
2205
2206 # A global attribute
2207 class MAttribute
2208 super MProperty
2209
2210 redef type MPROPDEF: MAttributeDef
2211
2212 end
2213
2214 # A global virtual type
2215 class MVirtualTypeProp
2216 super MProperty
2217
2218 redef type MPROPDEF: MVirtualTypeDef
2219
2220 # The formal type associated to the virtual type property
2221 var mvirtualtype = new MVirtualType(self)
2222 end
2223
2224 # A definition of a property (local property)
2225 #
2226 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2227 # specific class definition (which belong to a specific module)
2228 abstract class MPropDef
2229 super MEntity
2230
2231 # The associated `MProperty` subclass.
2232 # the two specialization hierarchy are symmetric
2233 type MPROPERTY: MProperty
2234
2235 # Self class
2236 type MPROPDEF: MPropDef
2237
2238 # The class definition where the property definition is
2239 var mclassdef: MClassDef
2240
2241 # The associated global property
2242 var mproperty: MPROPERTY
2243
2244 # The origin of the definition
2245 var location: Location
2246
2247 init
2248 do
2249 mclassdef.mpropdefs.add(self)
2250 mproperty.mpropdefs.add(self)
2251 if mproperty.intro_mclassdef == mclassdef then
2252 assert not isset mproperty._intro
2253 mproperty.intro = self
2254 end
2255 self.to_s = "{mclassdef}${mproperty}"
2256 end
2257
2258 # Actually the name of the `mproperty`
2259 redef fun name do return mproperty.name
2260
2261 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2262 #
2263 # Therefore the combination of identifiers is awful,
2264 # the worst case being
2265 #
2266 # * a property "p::m::A::x"
2267 # * redefined in a refinement of a class "q::n::B"
2268 # * in a module "r::o"
2269 # * so "r::o$q::n::B$p::m::A::x"
2270 #
2271 # Fortunately, the full-name is simplified when entities are repeated.
2272 # For the previous case, the simplest form is "p$A$x".
2273 redef var full_name is lazy do
2274 var res = new FlatBuffer
2275
2276 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2277 res.append mclassdef.full_name
2278
2279 res.append "$"
2280
2281 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2282 # intro are unambiguous in a class
2283 res.append name
2284 else
2285 # Just try to simplify each part
2286 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2287 # precise "p::m" only if "p" != "r"
2288 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2289 res.append "::"
2290 else if mproperty.visibility <= private_visibility then
2291 # Same package ("p"=="q"), but private visibility,
2292 # does the module part ("::m") need to be displayed
2293 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2294 res.append "::"
2295 res.append mproperty.intro_mclassdef.mmodule.name
2296 res.append "::"
2297 end
2298 end
2299 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2300 # precise "B" only if not the same class than "A"
2301 res.append mproperty.intro_mclassdef.name
2302 res.append "::"
2303 end
2304 # Always use the property name "x"
2305 res.append mproperty.name
2306 end
2307 return res.to_s
2308 end
2309
2310 redef var c_name is lazy do
2311 var res = new FlatBuffer
2312 res.append mclassdef.c_name
2313 res.append "___"
2314 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2315 res.append name.to_cmangle
2316 else
2317 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2318 res.append mproperty.intro_mclassdef.mmodule.c_name
2319 res.append "__"
2320 end
2321 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2322 res.append mproperty.intro_mclassdef.name.to_cmangle
2323 res.append "__"
2324 end
2325 res.append mproperty.name.to_cmangle
2326 end
2327 return res.to_s
2328 end
2329
2330 redef fun model do return mclassdef.model
2331
2332 # Internal name combining the module, the class and the property
2333 # Example: "mymodule$MyClass$mymethod"
2334 redef var to_s is noinit
2335
2336 # Is self the definition that introduce the property?
2337 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2338
2339 # Return the next definition in linearization of `mtype`.
2340 #
2341 # This method is used to determine what method is called by a super.
2342 #
2343 # REQUIRE: `not mtype.need_anchor`
2344 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2345 do
2346 assert not mtype.need_anchor
2347
2348 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2349 var i = mpropdefs.iterator
2350 while i.is_ok and i.item != self do i.next
2351 assert has_property: i.is_ok
2352 i.next
2353 assert has_next_property: i.is_ok
2354 return i.item
2355 end
2356 end
2357
2358 # A local definition of a method
2359 class MMethodDef
2360 super MPropDef
2361
2362 redef type MPROPERTY: MMethod
2363 redef type MPROPDEF: MMethodDef
2364
2365 # The signature attached to the property definition
2366 var msignature: nullable MSignature = null is writable
2367
2368 # The signature attached to the `new` call on a root-init
2369 # This is a concatenation of the signatures of the initializers
2370 #
2371 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2372 var new_msignature: nullable MSignature = null is writable
2373
2374 # List of initialisers to call in root-inits
2375 #
2376 # They could be setters or attributes
2377 #
2378 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2379 var initializers = new Array[MProperty]
2380
2381 # Is the method definition abstract?
2382 var is_abstract: Bool = false is writable
2383
2384 # Is the method definition intern?
2385 var is_intern = false is writable
2386
2387 # Is the method definition extern?
2388 var is_extern = false is writable
2389
2390 # An optional constant value returned in functions.
2391 #
2392 # Only some specific primitife value are accepted by engines.
2393 # Is used when there is no better implementation available.
2394 #
2395 # Currently used only for the implementation of the `--define`
2396 # command-line option.
2397 # SEE: module `mixin`.
2398 var constant_value: nullable Object = null is writable
2399 end
2400
2401 # A local definition of an attribute
2402 class MAttributeDef
2403 super MPropDef
2404
2405 redef type MPROPERTY: MAttribute
2406 redef type MPROPDEF: MAttributeDef
2407
2408 # The static type of the attribute
2409 var static_mtype: nullable MType = null is writable
2410 end
2411
2412 # A local definition of a virtual type
2413 class MVirtualTypeDef
2414 super MPropDef
2415
2416 redef type MPROPERTY: MVirtualTypeProp
2417 redef type MPROPDEF: MVirtualTypeDef
2418
2419 # The bound of the virtual type
2420 var bound: nullable MType = null is writable
2421
2422 # Is the bound fixed?
2423 var is_fixed = false is writable
2424 end
2425
2426 # A kind of class.
2427 #
2428 # * `abstract_kind`
2429 # * `concrete_kind`
2430 # * `interface_kind`
2431 # * `enum_kind`
2432 # * `extern_kind`
2433 #
2434 # Note this class is basically an enum.
2435 # FIXME: use a real enum once user-defined enums are available
2436 class MClassKind
2437 redef var to_s
2438
2439 # Is a constructor required?
2440 var need_init: Bool
2441
2442 # TODO: private init because enumeration.
2443
2444 # Can a class of kind `self` specializes a class of kine `other`?
2445 fun can_specialize(other: MClassKind): Bool
2446 do
2447 if other == interface_kind then return true # everybody can specialize interfaces
2448 if self == interface_kind or self == enum_kind then
2449 # no other case for interfaces
2450 return false
2451 else if self == extern_kind then
2452 # only compatible with themselves
2453 return self == other
2454 else if other == enum_kind or other == extern_kind then
2455 # abstract_kind and concrete_kind are incompatible
2456 return false
2457 end
2458 # remain only abstract_kind and concrete_kind
2459 return true
2460 end
2461 end
2462
2463 # The class kind `abstract`
2464 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2465 # The class kind `concrete`
2466 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2467 # The class kind `interface`
2468 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2469 # The class kind `enum`
2470 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2471 # The class kind `extern`
2472 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)