8d5cb805b8d07b37db9be3b64b928f4c7343511d
[nit.git] / lib / standard / collection / abstract_collection.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2004-2008 Jean Privat <jean@pryen.org>
4 #
5 # This file is free software, which comes along with NIT. This software is
6 # distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
7 # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
8 # PARTICULAR PURPOSE. You can modify it is you want, provided this header
9 # is kept unaltered, and a notification of the changes is added.
10 # You are allowed to redistribute it and sell it, alone or is a part of
11 # another product.
12
13 # This module define several abstract collection classes.
14 module abstract_collection
15
16 import kernel
17
18 # The root of the collection hierarchy.
19 #
20 # Collections modelize finite groups of objects, called elements.
21 #
22 # The specific behavior and representation of collections is determined
23 # by the subclasses of the hierarchy.
24 #
25 # The main service of Collection is to provide a stable `iterator`
26 # method usable to retrieve all the elements of the collection.
27 #
28 # Additional services are provided.
29 # For an implementation point of view, Collection provide a basic
30 # implementation of these services using the `iterator` method.
31 # Subclasses often provide a more efficient implementation.
32 #
33 # Because of the `iterator` method, Collections instances can use
34 # the `for` control structure:
35 #
36 # var x: Collection[U]
37 # # ...
38 # for u in x do
39 # # u is a U
40 # # ...
41 # end
42 #
43 # that is equivalent with
44 #
45 # var x: Collection[U]
46 # # ...
47 # var i = x.iterator
48 # while i.is_ok do
49 # var u = i.item # u is a U
50 # # ...
51 # i.next
52 # end
53 interface Collection[E]
54 # Get a new iterator on the collection.
55 fun iterator: Iterator[E] is abstract
56
57 # Is there no item in the collection?
58 #
59 # assert [1,2,3].is_empty == false
60 # assert [1..1[.is_empty == true
61 fun is_empty: Bool do return length == 0
62
63 # Number of items in the collection.
64 #
65 # assert [10,20,30].length == 3
66 # assert [20..30[.length == 10
67 fun length: Int
68 do
69 var nb = 0
70 for i in self do nb += 1
71 return nb
72 end
73
74
75 # Is `item` in the collection ?
76 # Comparisons are done with ==
77 #
78 # assert [1,2,3].has(2) == true
79 # assert [1,2,3].has(9) == false
80 # assert [1..5[.has(2) == true
81 # assert [1..5[.has(9) == false
82 fun has(item: E): Bool
83 do
84 for i in self do if i == item then return true
85 return false
86 end
87
88 # Is the collection contain only `item`?
89 # Comparisons are done with ==
90 # Return true if the collection is empty.
91 #
92 # assert [1,1,1].has_only(1) == true
93 # assert [1,2,3].has_only(1) == false
94 # assert [1..1].has_only(1) == true
95 # assert [1..3].has_only(1) == false
96 # assert [3..3[.has_only(1) == true # empty collection
97 #
98 # ENSURE `is_empty implies result == true`
99 fun has_only(item: E): Bool
100 do
101 for i in self do if i != item then return false
102 return true
103 end
104
105 # How many occurrences of `item` are in the collection?
106 # Comparisons are done with ==
107 #
108 # assert [10,20,10].count(10) == 2
109 fun count(item: E): Int
110 do
111 var nb = 0
112 for i in self do if i == item then nb += 1
113 return nb
114 end
115
116 # Return one the item of the collection
117 #
118 # assert [1,2,3].first == 1
119 fun first: E
120 do
121 assert length > 0
122 return iterator.item
123 end
124
125 # Is the collection contains all the elements of `other`?
126 #
127 # assert [1,1,1].has_all([1]) == true
128 # assert [1,1,1].has_all([1,2]) == false
129 # assert [1,3,4,2].has_all([1..2]) == true
130 # assert [1,3,4,2].has_all([1..5]) == false
131 fun has_all(other: Collection[E]): Bool
132 do
133 for x in other do if not has(x) then return false
134 return true
135 end
136 end
137
138 # Instances of the Iterator class generates a series of elements, one at a time.
139 # They are mainly used with collections.
140 interface Iterator[E]
141 # The current item.
142 # Require `is_ok`.
143 fun item: E is abstract
144
145 # Jump to the next item.
146 # Require `is_ok`.
147 fun next is abstract
148
149 # Is there a current item ?
150 fun is_ok: Bool is abstract
151 end
152
153 # A collection that contains only one item.
154 class Container[E]
155 super Collection[E]
156
157 redef fun first do return _item
158
159 redef fun is_empty do return false
160
161 redef fun length do return 1
162
163 redef fun has(an_item) do return _item == an_item
164
165 redef fun has_only(an_item) do return _item == an_item
166
167 redef fun count(an_item)
168 do
169 if _item == an_item then
170 return 1
171 else
172 return 0
173 end
174 end
175
176 redef fun iterator do return new ContainerIterator[E](self)
177
178 # Create a new instance with a given initial value.
179 init(e: E) do _item = e
180
181 # The stored item
182 readable writable var _item: E
183 end
184
185 # This iterator is quite stupid since it is used for only one item.
186 class ContainerIterator[E]
187 super Iterator[E]
188 redef fun item do return _container.item
189
190 redef fun next do _is_ok = false
191
192 init(c: Container[E]) do _container = c
193
194 redef readable var _is_ok: Bool = true
195
196 var _container: Container[E]
197 end
198
199 # Items can be removed from this collection
200 interface RemovableCollection[E]
201 super Collection[E]
202 # Remove all items
203 fun clear is abstract
204
205 # Remove an occucence of `item`
206 fun remove(item: E) is abstract
207
208 # Remove all occurences of `item`
209 fun remove_all(item: E) do while has(item) do remove(item)
210 end
211
212 # Items can be added to these collections.
213 interface SimpleCollection[E]
214 super RemovableCollection[E]
215 # Add an item in a collection.
216 # Ensure col.has(item)
217 fun add(item: E) is abstract
218
219 # Add each item of `coll`.
220 fun add_all(coll: Collection[E]) do for i in coll do add(i)
221 end
222
223 # Abstract sets.
224 #
225 # Set contains contains only one element with the same value (according to ==).
226 # var s: Set[String] = new ArraySet[String]
227 # var a = "Hello"
228 # var b = "Hel" + "lo"
229 # # ...
230 # s.add(a)
231 # assert s.has(b) == true
232 interface Set[E: Object]
233 super SimpleCollection[E]
234
235 redef fun has_only(item)
236 do
237 var l = length
238 if l == 1 then
239 return has(item)
240 else if l == 0 then
241 return true
242 else
243 return false
244 end
245 end
246
247 # Only 0 or 1
248 redef fun count(item)
249 do
250 if has(item) then
251 return 1
252 else
253 return 0
254 end
255 end
256
257 # Synonym of remove since there is only one item
258 redef fun remove_all(item) do remove(item)
259
260 # Equality is defined on set and means that each set contains the same elements
261 redef fun ==(other)
262 do
263 if not other isa Set[Object] then return false
264 if other.length != length then return false
265 return has_all(other)
266 end
267
268 # because of the law between `==` and `hash`, hash is redefined to be the sum of the hash of the elements
269 redef fun hash
270 do
271 var res = 0
272 for e in self do res += res.hash
273 return res
274 end
275 end
276
277 # MapRead are abstract associative collections: `key` -> `item`.
278 interface MapRead[K: Object, E]
279 # Get the item at `key`.
280 fun [](key: K): E is abstract
281
282 # Get the item at `key` or return `default` if not in map
283 fun get_or_default(key: K, default: E): E
284 do
285 if has_key(key) then return self[key]
286 return default
287 end
288
289 # Depreciated alias for `keys.has`
290 fun has_key(key: K): Bool do return self.keys.has(key)
291
292 # Get a new iterator on the map.
293 fun iterator: MapIterator[K, E] is abstract
294
295 # Return the point of view of self on the values only.
296 # Note that `self` and `values` are views on the same data;
297 # therefore any modification of one is visible on the other.
298 fun values: Collection[E] is abstract
299
300 # Return the point of view of self on the keys only.
301 # Note that `self` and `keys` are views on the same data;
302 # therefore any modification of one is visible on the other.
303 fun keys: Collection[K] is abstract
304
305 # Is there no item in the collection?
306 fun is_empty: Bool is abstract
307
308 # Number of items in the collection.
309 fun length: Int is abstract
310 end
311
312 # Maps are associative collections: `key` -> `item`.
313 #
314 # The main operator over maps is [].
315 #
316 # var map: Map[String, Int] = new ArrayMap[String, Int]
317 # # ...
318 # map["one"] = 1 # Associate 'one' to '1'
319 # map["two"] = 2 # Associate 'two' to '2'
320 # assert map["one"] == 1
321 # assert map["two"] == 2
322 #
323 # Instances of maps can be used with the for structure
324 #
325 # for key, value in map do
326 # assert (key == "one" and value == 1) or (key == "two" and value == 2)
327 # end
328 #
329 # The keys and values in the map can also be manipulated directly with the `keys` and `values` methods.
330 #
331 # assert map.keys.has("one") == true
332 # assert map.keys.has("tree") == false
333 # assert map.values.has(1) == true
334 # assert map.values.has(3) == false
335 #
336 interface Map[K: Object, E]
337 super MapRead[K, E]
338 # Set the`item` at `key`.
339 fun []=(key: K, item: E) is abstract
340
341 # Add each (key,value) of `map` into `self`.
342 # If a same key exists in `map` and `self`, then the value in self is discarded.
343 fun recover_with(map: Map[K, E])
344 do
345 var i = map.iterator
346 while i.is_ok do
347 self[i.key] = i.item
348 i.next
349 end
350 end
351
352 # Remove all items
353 fun clear is abstract
354
355 redef fun values: RemovableCollection[E] is abstract
356
357 redef fun keys: RemovableCollection[K] is abstract
358 end
359
360 # Iterators for Map.
361 interface MapIterator[K: Object, E]
362 # The current item.
363 # Require `is_ok`.
364 fun item: E is abstract
365
366 # The key of the current item.
367 # Require `is_ok`.
368 fun key: K is abstract
369
370 # Jump to the next item.
371 # Require `is_ok`.
372 fun next is abstract
373
374 # Is there a current item ?
375 fun is_ok: Bool is abstract
376
377 # Set a new `item` at `key`.
378 #fun item=(item: E) is abstract
379 end
380
381 # Iterator on a 'keys' point of view of a map
382 class MapKeysIterator[K: Object, V]
383 super Iterator[K]
384 # The original iterator
385 var iterator: MapIterator[K, V]
386
387 redef fun is_ok do return self.iterator.is_ok
388 redef fun next do self.iterator.next
389 redef fun item do return self.iterator.key
390 end
391
392 # Iterator on a 'values' point of view of a map
393 class MapValuesIterator[K: Object, V]
394 super Iterator[V]
395 # The original iterator
396 var iterator: MapIterator[K, V]
397
398 redef fun is_ok do return self.iterator.is_ok
399 redef fun next do self.iterator.next
400 redef fun item do return self.iterator.item
401 end
402
403 # Sequences are indexed collections.
404 # The first item is 0. The last is `length-1`.
405 interface SequenceRead[E]
406 super Collection[E]
407 # Get the first item.
408 # Is equivalent with `self[0]`.
409 redef fun first
410 do
411 assert not_empty: not is_empty
412 return self[0]
413 end
414
415 # Return the index=th element of the sequence.
416 # The first element is 0 and the last if `length-1`
417 # If index is invalid, the program aborts
418 fun [](index: Int): E is abstract
419
420 # Get the last item.
421 # Is equivalent with `self[length-1]`.
422 fun last: E
423 do
424 assert not_empty: not is_empty
425 return self[length-1]
426 end
427
428 # Return the index of the first occurrence of `item`.
429 # Return -1 if `item` is not found
430 # Comparison is done with ==
431 fun index_of(item: E): Int
432 do
433 var i = iterator
434 while i.is_ok do
435 if i.item == item then return i.index
436 i.next
437 end
438 return -1
439 end
440
441 redef fun iterator: IndexedIterator[E] is abstract
442
443 # Two sequences are equals if they have the same items in the same order.
444 redef fun ==(o)
445 do
446 if not o isa SequenceRead[nullable Object] or o is null then return false
447 var l = length
448 if o.length != l then return false
449 var i = 0
450 while i < l do
451 if self[i] != o[i] then return false
452 i += 1
453 end
454 return true
455 end
456
457 # because of the law between `==` and `hash`, hash is redefined to be the sum of the hash of the elements
458 redef fun hash
459 do
460 var res = 0
461 for e in self do res += res.hash
462 return res
463 end
464 end
465
466 # Sequence are indexed collection.
467 # The first item is 0. The last is `length-1`.
468 interface Sequence[E]
469 super SequenceRead[E]
470 super SimpleCollection[E]
471
472 # Set the first item.
473 # Is equivalent with `self[0] = item`.
474 fun first=(item: E)
475 do self[0] = item end
476
477 # Set the last item.
478 # Is equivalent with `self[length-1] = item`.
479 fun last=(item: E)
480 do
481 var l = length
482 if l > 0 then
483 self[l-1] = item
484 else
485 self[0] = item
486 end
487 end
488
489 # A synonym of `push`
490 redef fun add(e) do push(e)
491
492 # Add an item after the last.
493 fun push(e: E) is abstract
494
495 # Add each item of `coll` after the last.
496 fun append(coll: Collection[E]) do for i in coll do push(i)
497
498 # Remove the last item.
499 fun pop: E is abstract
500
501 # Add an item before the last.
502 fun unshift(e: E) is abstract
503
504 # Remove the first item.
505 # The second item become the first.
506 fun shift: E is abstract
507
508 # Set the `item` at `index`.
509 fun []=(index: Int, item: E) is abstract
510
511 # Remove the item at `index` and shift all following elements
512 fun remove_at(index: Int) is abstract
513 end
514
515 # Iterators on indexed collections.
516 interface IndexedIterator[E]
517 super Iterator[E]
518 # The index of the current item.
519 fun index: Int is abstract
520 end
521
522 # Associative arrays that internally uses couples to represent each (key, value) pairs.
523 interface CoupleMap[K: Object, E]
524 super Map[K, E]
525 # Return the couple of the corresponding key
526 # Return null if the key is no associated element
527 protected fun couple_at(key: K): nullable Couple[K, E] is abstract
528
529 redef fun [](key)
530 do
531 var c = couple_at(key)
532 if c == null then
533 abort
534 else
535 return c.second
536 end
537 end
538 end
539
540 # Iterator on CoupleMap
541 #
542 # Actually is is a wrapper around an iterator of the internal array of the map.
543 class CoupleMapIterator[K: Object, E]
544 super MapIterator[K, E]
545 redef fun item do return _iter.item.second
546
547 #redef fun item=(e) do _iter.item.second = e
548
549 redef fun key do return _iter.item.first
550
551 redef fun is_ok do return _iter.is_ok
552
553 redef fun next
554 do
555 _iter.next
556 end
557
558 var _iter: Iterator[Couple[K,E]]
559
560 init(i: Iterator[Couple[K,E]]) do _iter = i
561 end
562
563 # Some tools ###################################################################
564
565 # Two objects in a simple structure.
566 class Couple[F, S]
567
568 # The first element of the couple.
569 readable writable var _first: F
570
571 # The second element of the couple.
572 readable writable var _second: S
573
574 # Create a new instance with a first and a second object.
575 init(f: F, s: S)
576 do
577 _first = f
578 _second = s
579 end
580 end