8d6bf7a795400f7457516135851864a460d71fc0
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
199
200 # The type `Pointer`, super class to all extern classes
201 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
202
203 # The primitive type `Bool`
204 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
205
206 # The primitive type `Int`
207 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
208
209 # The primitive type `Byte`
210 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
211
212 # The primitive type `Int8`
213 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
214
215 # The primitive type `Int16`
216 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
217
218 # The primitive type `UInt16`
219 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
220
221 # The primitive type `Int32`
222 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
223
224 # The primitive type `UInt32`
225 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
226
227 # The primitive type `Char`
228 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
229
230 # The primitive type `Float`
231 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
232
233 # The primitive type `String`
234 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
235
236 # The primitive type `NativeString`
237 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
238
239 # A primitive type of `Array`
240 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
241
242 # The primitive class `Array`
243 var array_class: MClass = self.get_primitive_class("Array") is lazy
244
245 # A primitive type of `NativeArray`
246 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
247
248 # The primitive class `NativeArray`
249 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
250
251 # The primitive type `Sys`, the main type of the program, if any
252 fun sys_type: nullable MClassType
253 do
254 var clas = self.model.get_mclasses_by_name("Sys")
255 if clas == null then return null
256 return get_primitive_class("Sys").mclass_type
257 end
258
259 # The primitive type `Finalizable`
260 # Used to tag classes that need to be finalized.
261 fun finalizable_type: nullable MClassType
262 do
263 var clas = self.model.get_mclasses_by_name("Finalizable")
264 if clas == null then return null
265 return get_primitive_class("Finalizable").mclass_type
266 end
267
268 # Force to get the primitive class named `name` or abort
269 fun get_primitive_class(name: String): MClass
270 do
271 var cla = self.model.get_mclasses_by_name(name)
272 # Filter classes by introducing module
273 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
274 if cla == null or cla.is_empty then
275 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
276 # Bool is injected because it is needed by engine to code the result
277 # of the implicit casts.
278 var c = new MClass(self, name, null, enum_kind, public_visibility)
279 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
280 cladef.set_supertypes([object_type])
281 cladef.add_in_hierarchy
282 return c
283 end
284 print("Fatal Error: no primitive class {name} in {self}")
285 exit(1)
286 end
287 if cla.length != 1 then
288 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
289 for c in cla do msg += " {c.full_name}"
290 print msg
291 #exit(1)
292 end
293 return cla.first
294 end
295
296 # Try to get the primitive method named `name` on the type `recv`
297 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
298 do
299 var props = self.model.get_mproperties_by_name(name)
300 if props == null then return null
301 var res: nullable MMethod = null
302 for mprop in props do
303 assert mprop isa MMethod
304 var intro = mprop.intro_mclassdef
305 for mclassdef in recv.mclassdefs do
306 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
307 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
308 if res == null then
309 res = mprop
310 else if res != mprop then
311 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
312 abort
313 end
314 end
315 end
316 return res
317 end
318 end
319
320 private class MClassDefSorter
321 super Comparator
322 redef type COMPARED: MClassDef
323 var mmodule: MModule
324 redef fun compare(a, b)
325 do
326 var ca = a.mclass
327 var cb = b.mclass
328 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
329 return mmodule.model.mclassdef_hierarchy.compare(a, b)
330 end
331 end
332
333 private class MPropDefSorter
334 super Comparator
335 redef type COMPARED: MPropDef
336 var mmodule: MModule
337 redef fun compare(pa, pb)
338 do
339 var a = pa.mclassdef
340 var b = pb.mclassdef
341 var ca = a.mclass
342 var cb = b.mclass
343 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
344 return mmodule.model.mclassdef_hierarchy.compare(a, b)
345 end
346 end
347
348 # A named class
349 #
350 # `MClass` are global to the model; it means that a `MClass` is not bound to a
351 # specific `MModule`.
352 #
353 # This characteristic helps the reasoning about classes in a program since a
354 # single `MClass` object always denote the same class.
355 #
356 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
357 # These do not really have properties nor belong to a hierarchy since the property and the
358 # hierarchy of a class depends of the refinement in the modules.
359 #
360 # Most services on classes require the precision of a module, and no one can asks what are
361 # the super-classes of a class nor what are properties of a class without precising what is
362 # the module considered.
363 #
364 # For instance, during the typing of a source-file, the module considered is the module of the file.
365 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
366 # *is the method `foo` exists in the class `Bar` in the current module?*
367 #
368 # During some global analysis, the module considered may be the main module of the program.
369 class MClass
370 super MEntity
371
372 # The module that introduce the class
373 # While classes are not bound to a specific module,
374 # the introducing module is used for naming an visibility
375 var intro_mmodule: MModule
376
377 # The short name of the class
378 # In Nit, the name of a class cannot evolve in refinements
379 redef var name: String
380
381 # The canonical name of the class
382 #
383 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
384 # Example: `"owner::module::MyClass"`
385 redef var full_name is lazy do
386 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
387 end
388
389 redef var c_name is lazy do
390 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
391 end
392
393 # The number of generic formal parameters
394 # 0 if the class is not generic
395 var arity: Int is noinit
396
397 # Each generic formal parameters in order.
398 # is empty if the class is not generic
399 var mparameters = new Array[MParameterType]
400
401 # A string version of the signature a generic class.
402 #
403 # eg. `Map[K: nullable Object, V: nullable Object]`
404 #
405 # If the class in non generic the name is just given.
406 #
407 # eg. `Object`
408 fun signature_to_s: String
409 do
410 if arity == 0 then return name
411 var res = new FlatBuffer
412 res.append name
413 res.append "["
414 for i in [0..arity[ do
415 if i > 0 then res.append ", "
416 res.append mparameters[i].name
417 res.append ": "
418 res.append intro.bound_mtype.arguments[i].to_s
419 end
420 res.append "]"
421 return res.to_s
422 end
423
424 # Initialize `mparameters` from their names.
425 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
426 autoinit
427 do
428 if parameter_names == null then
429 self.arity = 0
430 else
431 self.arity = parameter_names.length
432 end
433
434 # Create the formal parameter types
435 if arity > 0 then
436 assert parameter_names != null
437 var mparametertypes = new Array[MParameterType]
438 for i in [0..arity[ do
439 var mparametertype = new MParameterType(self, i, parameter_names[i])
440 mparametertypes.add(mparametertype)
441 end
442 self.mparameters = mparametertypes
443 var mclass_type = new MGenericType(self, mparametertypes)
444 self.mclass_type = mclass_type
445 self.get_mtype_cache[mparametertypes] = mclass_type
446 else
447 self.mclass_type = new MClassType(self)
448 end
449 end
450
451 # The kind of the class (interface, abstract class, etc.)
452 # In Nit, the kind of a class cannot evolve in refinements
453 var kind: MClassKind
454
455 # The visibility of the class
456 # In Nit, the visibility of a class cannot evolve in refinements
457 var visibility: MVisibility
458
459 init
460 do
461 intro_mmodule.intro_mclasses.add(self)
462 var model = intro_mmodule.model
463 model.mclasses_by_name.add_one(name, self)
464 model.mclasses.add(self)
465 end
466
467 redef fun model do return intro_mmodule.model
468
469 # All class definitions (introduction and refinements)
470 var mclassdefs = new Array[MClassDef]
471
472 # Alias for `name`
473 redef fun to_s do return self.name
474
475 # The definition that introduces the class.
476 #
477 # Warning: such a definition may not exist in the early life of the object.
478 # In this case, the method will abort.
479 #
480 # Use `try_intro` instead
481 var intro: MClassDef is noinit
482
483 # The definition that introduces the class or null if not yet known.
484 #
485 # See `intro`
486 fun try_intro: nullable MClassDef do
487 if isset _intro then return _intro else return null
488 end
489
490 # Return the class `self` in the class hierarchy of the module `mmodule`.
491 #
492 # SEE: `MModule::flatten_mclass_hierarchy`
493 # REQUIRE: `mmodule.has_mclass(self)`
494 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
495 do
496 return mmodule.flatten_mclass_hierarchy[self]
497 end
498
499 # The principal static type of the class.
500 #
501 # For non-generic class, mclass_type is the only `MClassType` based
502 # on self.
503 #
504 # For a generic class, the arguments are the formal parameters.
505 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
506 # If you want Array[Object] the see `MClassDef::bound_mtype`
507 #
508 # For generic classes, the mclass_type is also the way to get a formal
509 # generic parameter type.
510 #
511 # To get other types based on a generic class, see `get_mtype`.
512 #
513 # ENSURE: `mclass_type.mclass == self`
514 var mclass_type: MClassType is noinit
515
516 # Return a generic type based on the class
517 # Is the class is not generic, then the result is `mclass_type`
518 #
519 # REQUIRE: `mtype_arguments.length == self.arity`
520 fun get_mtype(mtype_arguments: Array[MType]): MClassType
521 do
522 assert mtype_arguments.length == self.arity
523 if self.arity == 0 then return self.mclass_type
524 var res = get_mtype_cache.get_or_null(mtype_arguments)
525 if res != null then return res
526 res = new MGenericType(self, mtype_arguments)
527 self.get_mtype_cache[mtype_arguments.to_a] = res
528 return res
529 end
530
531 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
532
533 # Is there a `new` factory to allow the pseudo instantiation?
534 var has_new_factory = false is writable
535
536 # Is `self` a standard or abstract class kind?
537 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
538
539 # Is `self` an interface kind?
540 var is_interface: Bool is lazy do return kind == interface_kind
541
542 # Is `self` an enum kind?
543 var is_enum: Bool is lazy do return kind == enum_kind
544
545 # Is `self` and abstract class?
546 var is_abstract: Bool is lazy do return kind == abstract_kind
547 end
548
549
550 # A definition (an introduction or a refinement) of a class in a module
551 #
552 # A `MClassDef` is associated with an explicit (or almost) definition of a
553 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
554 # a specific class and a specific module, and contains declarations like super-classes
555 # or properties.
556 #
557 # It is the class definitions that are the backbone of most things in the model:
558 # ClassDefs are defined with regard with other classdefs.
559 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
560 #
561 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
562 class MClassDef
563 super MEntity
564
565 # The module where the definition is
566 var mmodule: MModule
567
568 # The associated `MClass`
569 var mclass: MClass is noinit
570
571 # The bounded type associated to the mclassdef
572 #
573 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
574 # are the same type.
575 #
576 # Example:
577 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
578 # If you want Array[E], then see `mclass.mclass_type`
579 #
580 # ENSURE: `bound_mtype.mclass == self.mclass`
581 var bound_mtype: MClassType
582
583 # The origin of the definition
584 var location: Location
585
586 # Internal name combining the module and the class
587 # Example: "mymodule#MyClass"
588 redef var to_s: String is noinit
589
590 init
591 do
592 self.mclass = bound_mtype.mclass
593 mmodule.mclassdefs.add(self)
594 mclass.mclassdefs.add(self)
595 if mclass.intro_mmodule == mmodule then
596 assert not isset mclass._intro
597 mclass.intro = self
598 end
599 self.to_s = "{mmodule}#{mclass}"
600 end
601
602 # Actually the name of the `mclass`
603 redef fun name do return mclass.name
604
605 # The module and class name separated by a '#'.
606 #
607 # The short-name of the class is used for introduction.
608 # Example: "my_module#MyClass"
609 #
610 # The full-name of the class is used for refinement.
611 # Example: "my_module#intro_module::MyClass"
612 redef var full_name is lazy do
613 if is_intro then
614 # public gives 'p#A'
615 # private gives 'p::m#A'
616 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
617 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
618 # public gives 'q::n#p::A'
619 # private gives 'q::n#p::m::A'
620 return "{mmodule.full_name}#{mclass.full_name}"
621 else if mclass.visibility > private_visibility then
622 # public gives 'p::n#A'
623 return "{mmodule.full_name}#{mclass.name}"
624 else
625 # private gives 'p::n#::m::A' (redundant p is omitted)
626 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
627 end
628 end
629
630 redef var c_name is lazy do
631 if is_intro then
632 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
633 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
634 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
635 else
636 return "{mmodule.c_name}___{mclass.c_name}"
637 end
638 end
639
640 redef fun model do return mmodule.model
641
642 # All declared super-types
643 # FIXME: quite ugly but not better idea yet
644 var supertypes = new Array[MClassType]
645
646 # Register some super-types for the class (ie "super SomeType")
647 #
648 # The hierarchy must not already be set
649 # REQUIRE: `self.in_hierarchy == null`
650 fun set_supertypes(supertypes: Array[MClassType])
651 do
652 assert unique_invocation: self.in_hierarchy == null
653 var mmodule = self.mmodule
654 var model = mmodule.model
655 var mtype = self.bound_mtype
656
657 for supertype in supertypes do
658 self.supertypes.add(supertype)
659
660 # Register in full_type_specialization_hierarchy
661 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
662 # Register in intro_type_specialization_hierarchy
663 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
664 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
665 end
666 end
667
668 end
669
670 # Collect the super-types (set by set_supertypes) to build the hierarchy
671 #
672 # This function can only invoked once by class
673 # REQUIRE: `self.in_hierarchy == null`
674 # ENSURE: `self.in_hierarchy != null`
675 fun add_in_hierarchy
676 do
677 assert unique_invocation: self.in_hierarchy == null
678 var model = mmodule.model
679 var res = model.mclassdef_hierarchy.add_node(self)
680 self.in_hierarchy = res
681 var mtype = self.bound_mtype
682
683 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
684 # The simpliest way is to attach it to collect_mclassdefs
685 for mclassdef in mtype.collect_mclassdefs(mmodule) do
686 res.poset.add_edge(self, mclassdef)
687 end
688 end
689
690 # The view of the class definition in `mclassdef_hierarchy`
691 var in_hierarchy: nullable POSetElement[MClassDef] = null
692
693 # Is the definition the one that introduced `mclass`?
694 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
695
696 # All properties introduced by the classdef
697 var intro_mproperties = new Array[MProperty]
698
699 # All property definitions in the class (introductions and redefinitions)
700 var mpropdefs = new Array[MPropDef]
701 end
702
703 # A global static type
704 #
705 # MType are global to the model; it means that a `MType` is not bound to a
706 # specific `MModule`.
707 # This characteristic helps the reasoning about static types in a program
708 # since a single `MType` object always denote the same type.
709 #
710 # However, because a `MType` is global, it does not really have properties
711 # nor have subtypes to a hierarchy since the property and the class hierarchy
712 # depends of a module.
713 # Moreover, virtual types an formal generic parameter types also depends on
714 # a receiver to have sense.
715 #
716 # Therefore, most method of the types require a module and an anchor.
717 # The module is used to know what are the classes and the specialization
718 # links.
719 # The anchor is used to know what is the bound of the virtual types and formal
720 # generic parameter types.
721 #
722 # MType are not directly usable to get properties. See the `anchor_to` method
723 # and the `MClassType` class.
724 #
725 # FIXME: the order of the parameters is not the best. We mus pick on from:
726 # * foo(mmodule, anchor, othertype)
727 # * foo(othertype, anchor, mmodule)
728 # * foo(anchor, mmodule, othertype)
729 # * foo(othertype, mmodule, anchor)
730 abstract class MType
731 super MEntity
732
733 redef fun name do return to_s
734
735 # Return true if `self` is an subtype of `sup`.
736 # The typing is done using the standard typing policy of Nit.
737 #
738 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
739 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
740 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
741 do
742 var sub = self
743 if sub == sup then return true
744
745 #print "1.is {sub} a {sup}? ===="
746
747 if anchor == null then
748 assert not sub.need_anchor
749 assert not sup.need_anchor
750 else
751 # First, resolve the formal types to the simplest equivalent forms in the receiver
752 assert sub.can_resolve_for(anchor, null, mmodule)
753 sub = sub.lookup_fixed(mmodule, anchor)
754 assert sup.can_resolve_for(anchor, null, mmodule)
755 sup = sup.lookup_fixed(mmodule, anchor)
756 end
757
758 # Does `sup` accept null or not?
759 # Discard the nullable marker if it exists
760 var sup_accept_null = false
761 if sup isa MNullableType then
762 sup_accept_null = true
763 sup = sup.mtype
764 else if sup isa MNotNullType then
765 sup = sup.mtype
766 else if sup isa MNullType then
767 sup_accept_null = true
768 end
769
770 # Can `sub` provide null or not?
771 # Thus we can match with `sup_accept_null`
772 # Also discard the nullable marker if it exists
773 var sub_reject_null = false
774 if sub isa MNullableType then
775 if not sup_accept_null then return false
776 sub = sub.mtype
777 else if sub isa MNotNullType then
778 sub_reject_null = true
779 sub = sub.mtype
780 else if sub isa MNullType then
781 return sup_accept_null
782 end
783 # Now the case of direct null and nullable is over.
784
785 # If `sub` is a formal type, then it is accepted if its bound is accepted
786 while sub isa MFormalType do
787 #print "3.is {sub} a {sup}?"
788
789 # A unfixed formal type can only accept itself
790 if sub == sup then return true
791
792 assert anchor != null
793 sub = sub.lookup_bound(mmodule, anchor)
794 if sub_reject_null then sub = sub.as_notnull
795
796 #print "3.is {sub} a {sup}?"
797
798 # Manage the second layer of null/nullable
799 if sub isa MNullableType then
800 if not sup_accept_null and not sub_reject_null then return false
801 sub = sub.mtype
802 else if sub isa MNotNullType then
803 sub_reject_null = true
804 sub = sub.mtype
805 else if sub isa MNullType then
806 return sup_accept_null
807 end
808 end
809 #print "4.is {sub} a {sup}? <- no more resolution"
810
811 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
812
813 # A unfixed formal type can only accept itself
814 if sup isa MFormalType then
815 return false
816 end
817
818 if sup isa MNullType then
819 # `sup` accepts only null
820 return false
821 end
822
823 assert sup isa MClassType # It is the only remaining type
824
825 # Now both are MClassType, we need to dig
826
827 if sub == sup then return true
828
829 if anchor == null then anchor = sub # UGLY: any anchor will work
830 var resolved_sub = sub.anchor_to(mmodule, anchor)
831 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
832 if res == false then return false
833 if not sup isa MGenericType then return true
834 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
835 assert sub2.mclass == sup.mclass
836 for i in [0..sup.mclass.arity[ do
837 var sub_arg = sub2.arguments[i]
838 var sup_arg = sup.arguments[i]
839 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
840 if res == false then return false
841 end
842 return true
843 end
844
845 # The base class type on which self is based
846 #
847 # This base type is used to get property (an internally to perform
848 # unsafe type comparison).
849 #
850 # Beware: some types (like null) are not based on a class thus this
851 # method will crash
852 #
853 # Basically, this function transform the virtual types and parameter
854 # types to their bounds.
855 #
856 # Example
857 #
858 # class A end
859 # class B super A end
860 # class X end
861 # class Y super X end
862 # class G[T: A]
863 # type U: X
864 # end
865 # class H
866 # super G[B]
867 # redef type U: Y
868 # end
869 #
870 # Map[T,U] anchor_to H #-> Map[B,Y]
871 #
872 # Explanation of the example:
873 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
874 # because "redef type U: Y". Therefore, Map[T, U] is bound to
875 # Map[B, Y]
876 #
877 # ENSURE: `not self.need_anchor implies result == self`
878 # ENSURE: `not result.need_anchor`
879 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
880 do
881 if not need_anchor then return self
882 assert not anchor.need_anchor
883 # Just resolve to the anchor and clear all the virtual types
884 var res = self.resolve_for(anchor, null, mmodule, true)
885 assert not res.need_anchor
886 return res
887 end
888
889 # Does `self` contain a virtual type or a formal generic parameter type?
890 # In order to remove those types, you usually want to use `anchor_to`.
891 fun need_anchor: Bool do return true
892
893 # Return the supertype when adapted to a class.
894 #
895 # In Nit, for each super-class of a type, there is a equivalent super-type.
896 #
897 # Example:
898 #
899 # ~~~nitish
900 # class G[T, U] end
901 # class H[V] super G[V, Bool] end
902 #
903 # H[Int] supertype_to G #-> G[Int, Bool]
904 # ~~~
905 #
906 # REQUIRE: `super_mclass` is a super-class of `self`
907 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
908 # ENSURE: `result.mclass = super_mclass`
909 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
910 do
911 if super_mclass.arity == 0 then return super_mclass.mclass_type
912 if self isa MClassType and self.mclass == super_mclass then return self
913 var resolved_self
914 if self.need_anchor then
915 assert anchor != null
916 resolved_self = self.anchor_to(mmodule, anchor)
917 else
918 resolved_self = self
919 end
920 var supertypes = resolved_self.collect_mtypes(mmodule)
921 for supertype in supertypes do
922 if supertype.mclass == super_mclass then
923 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
924 return supertype.resolve_for(self, anchor, mmodule, false)
925 end
926 end
927 abort
928 end
929
930 # Replace formals generic types in self with resolved values in `mtype`
931 # If `cleanup_virtual` is true, then virtual types are also replaced
932 # with their bounds.
933 #
934 # This function returns self if `need_anchor` is false.
935 #
936 # ## Example 1
937 #
938 # ~~~
939 # class G[E] end
940 # class H[F] super G[F] end
941 # class X[Z] end
942 # ~~~
943 #
944 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
945 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
946 #
947 # Explanation of the example:
948 # * Array[E].need_anchor is true because there is a formal generic parameter type E
949 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
950 # * Since "H[F] super G[F]", E is in fact F for H
951 # * More specifically, in H[Int], E is Int
952 # * So, in H[Int], Array[E] is Array[Int]
953 #
954 # This function is mainly used to inherit a signature.
955 # Because, unlike `anchor_to`, we do not want a full resolution of
956 # a type but only an adapted version of it.
957 #
958 # ## Example 2
959 #
960 # ~~~
961 # class A[E]
962 # fun foo(e:E):E is abstract
963 # end
964 # class B super A[Int] end
965 # ~~~
966 #
967 # The signature on foo is (e: E): E
968 # If we resolve the signature for B, we get (e:Int):Int
969 #
970 # ## Example 3
971 #
972 # ~~~nitish
973 # class A[E]
974 # fun foo(e:E):E is abstract
975 # end
976 # class C[F]
977 # var a: A[Array[F]]
978 # fun bar do a.foo(x) # <- x is here
979 # end
980 # ~~~
981 #
982 # The first question is: is foo available on `a`?
983 #
984 # The static type of a is `A[Array[F]]`, that is an open type.
985 # in order to find a method `foo`, whe must look at a resolved type.
986 #
987 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
988 #
989 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
990 #
991 # The next question is: what is the accepted types for `x`?
992 #
993 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
994 #
995 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
996 #
997 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
998 #
999 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1000 # two function instead of one seems also to be a bad idea.
1001 #
1002 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1003 # ENSURE: `not self.need_anchor implies result == self`
1004 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1005
1006 # Resolve formal type to its verbatim bound.
1007 # If the type is not formal, just return self
1008 #
1009 # The result is returned exactly as declared in the "type" property (verbatim).
1010 # So it could be another formal type.
1011 #
1012 # In case of conflict, the method aborts.
1013 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1014
1015 # Resolve the formal type to its simplest equivalent form.
1016 #
1017 # Formal types are either free or fixed.
1018 # When it is fixed, it means that it is equivalent with a simpler type.
1019 # When a formal type is free, it means that it is only equivalent with itself.
1020 # This method return the most simple equivalent type of `self`.
1021 #
1022 # This method is mainly used for subtype test in order to sanely compare fixed.
1023 #
1024 # By default, return self.
1025 # See the redefinitions for specific behavior in each kind of type.
1026 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1027
1028 # Can the type be resolved?
1029 #
1030 # In order to resolve open types, the formal types must make sence.
1031 #
1032 # ## Example
1033 #
1034 # class A[E]
1035 # end
1036 # class B[F]
1037 # end
1038 #
1039 # ~~~nitish
1040 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1041 #
1042 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1043 #
1044 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1045 # # B[E] is a red hearing only the E is important,
1046 # # E make sense in A
1047 # ~~~
1048 #
1049 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1050 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1051 # ENSURE: `not self.need_anchor implies result == true`
1052 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1053
1054 # Return the nullable version of the type
1055 # If the type is already nullable then self is returned
1056 fun as_nullable: MType
1057 do
1058 var res = self.as_nullable_cache
1059 if res != null then return res
1060 res = new MNullableType(self)
1061 self.as_nullable_cache = res
1062 return res
1063 end
1064
1065 # Remove the base type of a decorated (proxy) type.
1066 # Is the type is not decorated, then self is returned.
1067 #
1068 # Most of the time it is used to return the not nullable version of a nullable type.
1069 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1070 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1071 # If you really want to exclude the `null` value, then use `as_notnull`
1072 fun undecorate: MType
1073 do
1074 return self
1075 end
1076
1077 # Returns the not null version of the type.
1078 # That is `self` minus the `null` value.
1079 #
1080 # For most types, this return `self`.
1081 # For formal types, this returns a special `MNotNullType`
1082 fun as_notnull: MType do return self
1083
1084 private var as_nullable_cache: nullable MType = null
1085
1086
1087 # The depth of the type seen as a tree.
1088 #
1089 # * A -> 1
1090 # * G[A] -> 2
1091 # * H[A, B] -> 2
1092 # * H[G[A], B] -> 3
1093 #
1094 # Formal types have a depth of 1.
1095 fun depth: Int
1096 do
1097 return 1
1098 end
1099
1100 # The length of the type seen as a tree.
1101 #
1102 # * A -> 1
1103 # * G[A] -> 2
1104 # * H[A, B] -> 3
1105 # * H[G[A], B] -> 4
1106 #
1107 # Formal types have a length of 1.
1108 fun length: Int
1109 do
1110 return 1
1111 end
1112
1113 # Compute all the classdefs inherited/imported.
1114 # The returned set contains:
1115 # * the class definitions from `mmodule` and its imported modules
1116 # * the class definitions of this type and its super-types
1117 #
1118 # This function is used mainly internally.
1119 #
1120 # REQUIRE: `not self.need_anchor`
1121 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1122
1123 # Compute all the super-classes.
1124 # This function is used mainly internally.
1125 #
1126 # REQUIRE: `not self.need_anchor`
1127 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1128
1129 # Compute all the declared super-types.
1130 # Super-types are returned as declared in the classdefs (verbatim).
1131 # This function is used mainly internally.
1132 #
1133 # REQUIRE: `not self.need_anchor`
1134 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1135
1136 # Is the property in self for a given module
1137 # This method does not filter visibility or whatever
1138 #
1139 # REQUIRE: `not self.need_anchor`
1140 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1141 do
1142 assert not self.need_anchor
1143 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1144 end
1145 end
1146
1147 # A type based on a class.
1148 #
1149 # `MClassType` have properties (see `has_mproperty`).
1150 class MClassType
1151 super MType
1152
1153 # The associated class
1154 var mclass: MClass
1155
1156 redef fun model do return self.mclass.intro_mmodule.model
1157
1158 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1159
1160 # The formal arguments of the type
1161 # ENSURE: `result.length == self.mclass.arity`
1162 var arguments = new Array[MType]
1163
1164 redef fun to_s do return mclass.to_s
1165
1166 redef fun full_name do return mclass.full_name
1167
1168 redef fun c_name do return mclass.c_name
1169
1170 redef fun need_anchor do return false
1171
1172 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1173 do
1174 return super.as(MClassType)
1175 end
1176
1177 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1178
1179 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1180
1181 redef fun collect_mclassdefs(mmodule)
1182 do
1183 assert not self.need_anchor
1184 var cache = self.collect_mclassdefs_cache
1185 if not cache.has_key(mmodule) then
1186 self.collect_things(mmodule)
1187 end
1188 return cache[mmodule]
1189 end
1190
1191 redef fun collect_mclasses(mmodule)
1192 do
1193 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1194 assert not self.need_anchor
1195 var cache = self.collect_mclasses_cache
1196 if not cache.has_key(mmodule) then
1197 self.collect_things(mmodule)
1198 end
1199 var res = cache[mmodule]
1200 collect_mclasses_last_module = mmodule
1201 collect_mclasses_last_module_cache = res
1202 return res
1203 end
1204
1205 private var collect_mclasses_last_module: nullable MModule = null
1206 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1207
1208 redef fun collect_mtypes(mmodule)
1209 do
1210 assert not self.need_anchor
1211 var cache = self.collect_mtypes_cache
1212 if not cache.has_key(mmodule) then
1213 self.collect_things(mmodule)
1214 end
1215 return cache[mmodule]
1216 end
1217
1218 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1219 private fun collect_things(mmodule: MModule)
1220 do
1221 var res = new HashSet[MClassDef]
1222 var seen = new HashSet[MClass]
1223 var types = new HashSet[MClassType]
1224 seen.add(self.mclass)
1225 var todo = [self.mclass]
1226 while not todo.is_empty do
1227 var mclass = todo.pop
1228 #print "process {mclass}"
1229 for mclassdef in mclass.mclassdefs do
1230 if not mmodule.in_importation <= mclassdef.mmodule then continue
1231 #print " process {mclassdef}"
1232 res.add(mclassdef)
1233 for supertype in mclassdef.supertypes do
1234 types.add(supertype)
1235 var superclass = supertype.mclass
1236 if seen.has(superclass) then continue
1237 #print " add {superclass}"
1238 seen.add(superclass)
1239 todo.add(superclass)
1240 end
1241 end
1242 end
1243 collect_mclassdefs_cache[mmodule] = res
1244 collect_mclasses_cache[mmodule] = seen
1245 collect_mtypes_cache[mmodule] = types
1246 end
1247
1248 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1249 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1250 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1251
1252 end
1253
1254 # A type based on a generic class.
1255 # A generic type a just a class with additional formal generic arguments.
1256 class MGenericType
1257 super MClassType
1258
1259 redef var arguments
1260
1261 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1262
1263 init
1264 do
1265 assert self.mclass.arity == arguments.length
1266
1267 self.need_anchor = false
1268 for t in arguments do
1269 if t.need_anchor then
1270 self.need_anchor = true
1271 break
1272 end
1273 end
1274
1275 self.to_s = "{mclass}[{arguments.join(", ")}]"
1276 end
1277
1278 # The short-name of the class, then the full-name of each type arguments within brackets.
1279 # Example: `"Map[String, List[Int]]"`
1280 redef var to_s: String is noinit
1281
1282 # The full-name of the class, then the full-name of each type arguments within brackets.
1283 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1284 redef var full_name is lazy do
1285 var args = new Array[String]
1286 for t in arguments do
1287 args.add t.full_name
1288 end
1289 return "{mclass.full_name}[{args.join(", ")}]"
1290 end
1291
1292 redef var c_name is lazy do
1293 var res = mclass.c_name
1294 # Note: because the arity is known, a prefix notation is enough
1295 for t in arguments do
1296 res += "__"
1297 res += t.c_name
1298 end
1299 return res.to_s
1300 end
1301
1302 redef var need_anchor: Bool is noinit
1303
1304 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1305 do
1306 if not need_anchor then return self
1307 assert can_resolve_for(mtype, anchor, mmodule)
1308 var types = new Array[MType]
1309 for t in arguments do
1310 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1311 end
1312 return mclass.get_mtype(types)
1313 end
1314
1315 redef fun can_resolve_for(mtype, anchor, mmodule)
1316 do
1317 if not need_anchor then return true
1318 for t in arguments do
1319 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1320 end
1321 return true
1322 end
1323
1324
1325 redef fun depth
1326 do
1327 var dmax = 0
1328 for a in self.arguments do
1329 var d = a.depth
1330 if d > dmax then dmax = d
1331 end
1332 return dmax + 1
1333 end
1334
1335 redef fun length
1336 do
1337 var res = 1
1338 for a in self.arguments do
1339 res += a.length
1340 end
1341 return res
1342 end
1343 end
1344
1345 # A formal type (either virtual of parametric).
1346 #
1347 # The main issue with formal types is that they offer very little information on their own
1348 # and need a context (anchor and mmodule) to be useful.
1349 abstract class MFormalType
1350 super MType
1351
1352 redef var as_notnull = new MNotNullType(self) is lazy
1353 end
1354
1355 # A virtual formal type.
1356 class MVirtualType
1357 super MFormalType
1358
1359 # The property associated with the type.
1360 # Its the definitions of this property that determine the bound or the virtual type.
1361 var mproperty: MVirtualTypeProp
1362
1363 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1364
1365 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1366 do
1367 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1368 end
1369
1370 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1371 do
1372 assert not resolved_receiver.need_anchor
1373 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1374 if props.is_empty then
1375 abort
1376 else if props.length == 1 then
1377 return props.first
1378 end
1379 var types = new ArraySet[MType]
1380 var res = props.first
1381 for p in props do
1382 types.add(p.bound.as(not null))
1383 if not res.is_fixed then res = p
1384 end
1385 if types.length == 1 then
1386 return res
1387 end
1388 abort
1389 end
1390
1391 # A VT is fixed when:
1392 # * the VT is (re-)defined with the annotation `is fixed`
1393 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1394 # * the receiver is an enum class since there is no subtype possible
1395 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1396 do
1397 assert not resolved_receiver.need_anchor
1398 resolved_receiver = resolved_receiver.undecorate
1399 assert resolved_receiver isa MClassType # It is the only remaining type
1400
1401 var prop = lookup_single_definition(mmodule, resolved_receiver)
1402 var res = prop.bound.as(not null)
1403
1404 # Recursively lookup the fixed result
1405 res = res.lookup_fixed(mmodule, resolved_receiver)
1406
1407 # 1. For a fixed VT, return the resolved bound
1408 if prop.is_fixed then return res
1409
1410 # 2. For a enum boud, return the bound
1411 if res isa MClassType and res.mclass.kind == enum_kind then return res
1412
1413 # 3. for a enum receiver return the bound
1414 if resolved_receiver.mclass.kind == enum_kind then return res
1415
1416 return self
1417 end
1418
1419 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1420 do
1421 if not cleanup_virtual then return self
1422 assert can_resolve_for(mtype, anchor, mmodule)
1423 # self is a virtual type declared (or inherited) in mtype
1424 # The point of the function it to get the bound of the virtual type that make sense for mtype
1425 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1426 #print "{class_name}: {self}/{mtype}/{anchor}?"
1427 var resolved_receiver
1428 if mtype.need_anchor then
1429 assert anchor != null
1430 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1431 else
1432 resolved_receiver = mtype
1433 end
1434 # Now, we can get the bound
1435 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1436 # The bound is exactly as declared in the "type" property, so we must resolve it again
1437 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1438
1439 return res
1440 end
1441
1442 redef fun can_resolve_for(mtype, anchor, mmodule)
1443 do
1444 if mtype.need_anchor then
1445 assert anchor != null
1446 mtype = mtype.anchor_to(mmodule, anchor)
1447 end
1448 return mtype.has_mproperty(mmodule, mproperty)
1449 end
1450
1451 redef fun to_s do return self.mproperty.to_s
1452
1453 redef fun full_name do return self.mproperty.full_name
1454
1455 redef fun c_name do return self.mproperty.c_name
1456 end
1457
1458 # The type associated to a formal parameter generic type of a class
1459 #
1460 # Each parameter type is associated to a specific class.
1461 # It means that all refinements of a same class "share" the parameter type,
1462 # but that a generic subclass has its own parameter types.
1463 #
1464 # However, in the sense of the meta-model, a parameter type of a class is
1465 # a valid type in a subclass. The "in the sense of the meta-model" is
1466 # important because, in the Nit language, the programmer cannot refers
1467 # directly to the parameter types of the super-classes.
1468 #
1469 # Example:
1470 #
1471 # class A[E]
1472 # fun e: E is abstract
1473 # end
1474 # class B[F]
1475 # super A[Array[F]]
1476 # end
1477 #
1478 # In the class definition B[F], `F` is a valid type but `E` is not.
1479 # However, `self.e` is a valid method call, and the signature of `e` is
1480 # declared `e: E`.
1481 #
1482 # Note that parameter types are shared among class refinements.
1483 # Therefore parameter only have an internal name (see `to_s` for details).
1484 class MParameterType
1485 super MFormalType
1486
1487 # The generic class where the parameter belong
1488 var mclass: MClass
1489
1490 redef fun model do return self.mclass.intro_mmodule.model
1491
1492 # The position of the parameter (0 for the first parameter)
1493 # FIXME: is `position` a better name?
1494 var rank: Int
1495
1496 redef var name
1497
1498 redef fun to_s do return name
1499
1500 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1501
1502 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1503
1504 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1505 do
1506 assert not resolved_receiver.need_anchor
1507 resolved_receiver = resolved_receiver.undecorate
1508 assert resolved_receiver isa MClassType # It is the only remaining type
1509 var goalclass = self.mclass
1510 if resolved_receiver.mclass == goalclass then
1511 return resolved_receiver.arguments[self.rank]
1512 end
1513 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1514 for t in supertypes do
1515 if t.mclass == goalclass then
1516 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1517 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1518 var res = t.arguments[self.rank]
1519 return res
1520 end
1521 end
1522 abort
1523 end
1524
1525 # A PT is fixed when:
1526 # * Its bound is a enum class (see `enum_kind`).
1527 # The PT is just useless, but it is still a case.
1528 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1529 # so it is necessarily fixed in a `super` clause, either with a normal type
1530 # or with another PT.
1531 # See `resolve_for` for examples about related issues.
1532 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1533 do
1534 assert not resolved_receiver.need_anchor
1535 resolved_receiver = resolved_receiver.undecorate
1536 assert resolved_receiver isa MClassType # It is the only remaining type
1537 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1538 return res
1539 end
1540
1541 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1542 do
1543 assert can_resolve_for(mtype, anchor, mmodule)
1544 #print "{class_name}: {self}/{mtype}/{anchor}?"
1545
1546 if mtype isa MGenericType and mtype.mclass == self.mclass then
1547 var res = mtype.arguments[self.rank]
1548 if anchor != null and res.need_anchor then
1549 # Maybe the result can be resolved more if are bound to a final class
1550 var r2 = res.anchor_to(mmodule, anchor)
1551 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1552 end
1553 return res
1554 end
1555
1556 # self is a parameter type of mtype (or of a super-class of mtype)
1557 # The point of the function it to get the bound of the virtual type that make sense for mtype
1558 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1559 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1560 var resolved_receiver
1561 if mtype.need_anchor then
1562 assert anchor != null
1563 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1564 else
1565 resolved_receiver = mtype
1566 end
1567 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1568 if resolved_receiver isa MParameterType then
1569 assert resolved_receiver.mclass == anchor.mclass
1570 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1571 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1572 end
1573 assert resolved_receiver isa MClassType # It is the only remaining type
1574
1575 # Eh! The parameter is in the current class.
1576 # So we return the corresponding argument, no mater what!
1577 if resolved_receiver.mclass == self.mclass then
1578 var res = resolved_receiver.arguments[self.rank]
1579 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1580 return res
1581 end
1582
1583 if resolved_receiver.need_anchor then
1584 assert anchor != null
1585 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1586 end
1587 # Now, we can get the bound
1588 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1589 # The bound is exactly as declared in the "type" property, so we must resolve it again
1590 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1591
1592 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1593
1594 return res
1595 end
1596
1597 redef fun can_resolve_for(mtype, anchor, mmodule)
1598 do
1599 if mtype.need_anchor then
1600 assert anchor != null
1601 mtype = mtype.anchor_to(mmodule, anchor)
1602 end
1603 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1604 end
1605 end
1606
1607 # A type that decorates another type.
1608 #
1609 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1610 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1611 abstract class MProxyType
1612 super MType
1613 # The base type
1614 var mtype: MType
1615
1616 redef fun model do return self.mtype.model
1617 redef fun need_anchor do return mtype.need_anchor
1618 redef fun as_nullable do return mtype.as_nullable
1619 redef fun as_notnull do return mtype.as_notnull
1620 redef fun undecorate do return mtype.undecorate
1621 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1622 do
1623 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1624 return res
1625 end
1626
1627 redef fun can_resolve_for(mtype, anchor, mmodule)
1628 do
1629 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1630 end
1631
1632 redef fun lookup_fixed(mmodule, resolved_receiver)
1633 do
1634 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1635 return t
1636 end
1637
1638 redef fun depth do return self.mtype.depth
1639
1640 redef fun length do return self.mtype.length
1641
1642 redef fun collect_mclassdefs(mmodule)
1643 do
1644 assert not self.need_anchor
1645 return self.mtype.collect_mclassdefs(mmodule)
1646 end
1647
1648 redef fun collect_mclasses(mmodule)
1649 do
1650 assert not self.need_anchor
1651 return self.mtype.collect_mclasses(mmodule)
1652 end
1653
1654 redef fun collect_mtypes(mmodule)
1655 do
1656 assert not self.need_anchor
1657 return self.mtype.collect_mtypes(mmodule)
1658 end
1659 end
1660
1661 # A type prefixed with "nullable"
1662 class MNullableType
1663 super MProxyType
1664
1665 init
1666 do
1667 self.to_s = "nullable {mtype}"
1668 end
1669
1670 redef var to_s: String is noinit
1671
1672 redef var full_name is lazy do return "nullable {mtype.full_name}"
1673
1674 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1675
1676 redef fun as_nullable do return self
1677 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1678 do
1679 var res = super
1680 return res.as_nullable
1681 end
1682
1683 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1684 redef fun lookup_fixed(mmodule, resolved_receiver)
1685 do
1686 var t = super
1687 if t == mtype then return self
1688 return t.as_nullable
1689 end
1690 end
1691
1692 # A non-null version of a formal type.
1693 #
1694 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1695 class MNotNullType
1696 super MProxyType
1697
1698 redef fun to_s do return "not null {mtype}"
1699 redef var full_name is lazy do return "not null {mtype.full_name}"
1700 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1701
1702 redef fun as_notnull do return self
1703
1704 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1705 do
1706 var res = super
1707 return res.as_notnull
1708 end
1709
1710 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1711 redef fun lookup_fixed(mmodule, resolved_receiver)
1712 do
1713 var t = super
1714 if t == mtype then return self
1715 return t.as_notnull
1716 end
1717 end
1718
1719 # The type of the only value null
1720 #
1721 # The is only one null type per model, see `MModel::null_type`.
1722 class MNullType
1723 super MType
1724 redef var model: Model
1725 redef fun to_s do return "null"
1726 redef fun full_name do return "null"
1727 redef fun c_name do return "null"
1728 redef fun as_nullable do return self
1729
1730 redef var as_notnull = new MBottomType(model) is lazy
1731 redef fun need_anchor do return false
1732 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1733 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1734
1735 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1736
1737 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1738
1739 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1740 end
1741
1742 # The special universal most specific type.
1743 #
1744 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1745 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1746 #
1747 # Semantically it is the singleton `null.as_notnull`.
1748 class MBottomType
1749 super MType
1750 redef var model: Model
1751 redef fun to_s do return "bottom"
1752 redef fun full_name do return "bottom"
1753 redef fun c_name do return "bottom"
1754 redef fun as_nullable do return model.null_type
1755 redef fun as_notnull do return self
1756 redef fun need_anchor do return false
1757 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1758 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1759
1760 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1761
1762 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1763
1764 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1765 end
1766
1767 # A signature of a method
1768 class MSignature
1769 super MType
1770
1771 # The each parameter (in order)
1772 var mparameters: Array[MParameter]
1773
1774 # Returns a parameter named `name`, if any.
1775 fun mparameter_by_name(name: String): nullable MParameter
1776 do
1777 for p in mparameters do
1778 if p.name == name then return p
1779 end
1780 return null
1781 end
1782
1783 # The return type (null for a procedure)
1784 var return_mtype: nullable MType
1785
1786 redef fun depth
1787 do
1788 var dmax = 0
1789 var t = self.return_mtype
1790 if t != null then dmax = t.depth
1791 for p in mparameters do
1792 var d = p.mtype.depth
1793 if d > dmax then dmax = d
1794 end
1795 return dmax + 1
1796 end
1797
1798 redef fun length
1799 do
1800 var res = 1
1801 var t = self.return_mtype
1802 if t != null then res += t.length
1803 for p in mparameters do
1804 res += p.mtype.length
1805 end
1806 return res
1807 end
1808
1809 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1810 init
1811 do
1812 var vararg_rank = -1
1813 for i in [0..mparameters.length[ do
1814 var parameter = mparameters[i]
1815 if parameter.is_vararg then
1816 assert vararg_rank == -1
1817 vararg_rank = i
1818 end
1819 end
1820 self.vararg_rank = vararg_rank
1821 end
1822
1823 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1824 # value is -1 if there is no vararg.
1825 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1826 var vararg_rank: Int is noinit
1827
1828 # The number of parameters
1829 fun arity: Int do return mparameters.length
1830
1831 redef fun to_s
1832 do
1833 var b = new FlatBuffer
1834 if not mparameters.is_empty then
1835 b.append("(")
1836 for i in [0..mparameters.length[ do
1837 var mparameter = mparameters[i]
1838 if i > 0 then b.append(", ")
1839 b.append(mparameter.name)
1840 b.append(": ")
1841 b.append(mparameter.mtype.to_s)
1842 if mparameter.is_vararg then
1843 b.append("...")
1844 end
1845 end
1846 b.append(")")
1847 end
1848 var ret = self.return_mtype
1849 if ret != null then
1850 b.append(": ")
1851 b.append(ret.to_s)
1852 end
1853 return b.to_s
1854 end
1855
1856 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1857 do
1858 var params = new Array[MParameter]
1859 for p in self.mparameters do
1860 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1861 end
1862 var ret = self.return_mtype
1863 if ret != null then
1864 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1865 end
1866 var res = new MSignature(params, ret)
1867 return res
1868 end
1869 end
1870
1871 # A parameter in a signature
1872 class MParameter
1873 super MEntity
1874
1875 # The name of the parameter
1876 redef var name: String
1877
1878 # The static type of the parameter
1879 var mtype: MType
1880
1881 # Is the parameter a vararg?
1882 var is_vararg: Bool
1883
1884 redef fun to_s
1885 do
1886 if is_vararg then
1887 return "{name}: {mtype}..."
1888 else
1889 return "{name}: {mtype}"
1890 end
1891 end
1892
1893 # Returns a new parameter with the `mtype` resolved.
1894 # See `MType::resolve_for` for details.
1895 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1896 do
1897 if not self.mtype.need_anchor then return self
1898 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1899 var res = new MParameter(self.name, newtype, self.is_vararg)
1900 return res
1901 end
1902
1903 redef fun model do return mtype.model
1904 end
1905
1906 # A service (global property) that generalize method, attribute, etc.
1907 #
1908 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1909 # to a specific `MModule` nor a specific `MClass`.
1910 #
1911 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1912 # and the other in subclasses and in refinements.
1913 #
1914 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1915 # of any dynamic type).
1916 # For instance, a call site "x.foo" is associated to a `MProperty`.
1917 abstract class MProperty
1918 super MEntity
1919
1920 # The associated MPropDef subclass.
1921 # The two specialization hierarchy are symmetric.
1922 type MPROPDEF: MPropDef
1923
1924 # The classdef that introduce the property
1925 # While a property is not bound to a specific module, or class,
1926 # the introducing mclassdef is used for naming and visibility
1927 var intro_mclassdef: MClassDef
1928
1929 # The (short) name of the property
1930 redef var name: String
1931
1932 # The canonical name of the property.
1933 #
1934 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1935 # Example: "my_package::my_module::MyClass::my_method"
1936 redef var full_name is lazy do
1937 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1938 end
1939
1940 redef var c_name is lazy do
1941 # FIXME use `namespace_for`
1942 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1943 end
1944
1945 # The visibility of the property
1946 var visibility: MVisibility
1947
1948 # Is the property usable as an initializer?
1949 var is_autoinit = false is writable
1950
1951 init
1952 do
1953 intro_mclassdef.intro_mproperties.add(self)
1954 var model = intro_mclassdef.mmodule.model
1955 model.mproperties_by_name.add_one(name, self)
1956 model.mproperties.add(self)
1957 end
1958
1959 # All definitions of the property.
1960 # The first is the introduction,
1961 # The other are redefinitions (in refinements and in subclasses)
1962 var mpropdefs = new Array[MPROPDEF]
1963
1964 # The definition that introduces the property.
1965 #
1966 # Warning: such a definition may not exist in the early life of the object.
1967 # In this case, the method will abort.
1968 var intro: MPROPDEF is noinit
1969
1970 redef fun model do return intro.model
1971
1972 # Alias for `name`
1973 redef fun to_s do return name
1974
1975 # Return the most specific property definitions defined or inherited by a type.
1976 # The selection knows that refinement is stronger than specialization;
1977 # however, in case of conflict more than one property are returned.
1978 # If mtype does not know mproperty then an empty array is returned.
1979 #
1980 # If you want the really most specific property, then look at `lookup_first_definition`
1981 #
1982 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1983 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1984 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1985 do
1986 assert not mtype.need_anchor
1987 mtype = mtype.undecorate
1988
1989 var cache = self.lookup_definitions_cache[mmodule, mtype]
1990 if cache != null then return cache
1991
1992 #print "select prop {mproperty} for {mtype} in {self}"
1993 # First, select all candidates
1994 var candidates = new Array[MPROPDEF]
1995 for mpropdef in self.mpropdefs do
1996 # If the definition is not imported by the module, then skip
1997 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1998 # If the definition is not inherited by the type, then skip
1999 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2000 # Else, we keep it
2001 candidates.add(mpropdef)
2002 end
2003 # Fast track for only one candidate
2004 if candidates.length <= 1 then
2005 self.lookup_definitions_cache[mmodule, mtype] = candidates
2006 return candidates
2007 end
2008
2009 # Second, filter the most specific ones
2010 return select_most_specific(mmodule, candidates)
2011 end
2012
2013 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2014
2015 # Return the most specific property definitions inherited by a type.
2016 # The selection knows that refinement is stronger than specialization;
2017 # however, in case of conflict more than one property are returned.
2018 # If mtype does not know mproperty then an empty array is returned.
2019 #
2020 # If you want the really most specific property, then look at `lookup_next_definition`
2021 #
2022 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2023 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2024 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2025 do
2026 assert not mtype.need_anchor
2027 mtype = mtype.undecorate
2028
2029 # First, select all candidates
2030 var candidates = new Array[MPROPDEF]
2031 for mpropdef in self.mpropdefs do
2032 # If the definition is not imported by the module, then skip
2033 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2034 # If the definition is not inherited by the type, then skip
2035 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2036 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2037 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2038 # Else, we keep it
2039 candidates.add(mpropdef)
2040 end
2041 # Fast track for only one candidate
2042 if candidates.length <= 1 then return candidates
2043
2044 # Second, filter the most specific ones
2045 return select_most_specific(mmodule, candidates)
2046 end
2047
2048 # Return an array containing olny the most specific property definitions
2049 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2050 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2051 do
2052 var res = new Array[MPROPDEF]
2053 for pd1 in candidates do
2054 var cd1 = pd1.mclassdef
2055 var c1 = cd1.mclass
2056 var keep = true
2057 for pd2 in candidates do
2058 if pd2 == pd1 then continue # do not compare with self!
2059 var cd2 = pd2.mclassdef
2060 var c2 = cd2.mclass
2061 if c2.mclass_type == c1.mclass_type then
2062 if cd2.mmodule.in_importation < cd1.mmodule then
2063 # cd2 refines cd1; therefore we skip pd1
2064 keep = false
2065 break
2066 end
2067 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2068 # cd2 < cd1; therefore we skip pd1
2069 keep = false
2070 break
2071 end
2072 end
2073 if keep then
2074 res.add(pd1)
2075 end
2076 end
2077 if res.is_empty then
2078 print "All lost! {candidates.join(", ")}"
2079 # FIXME: should be abort!
2080 end
2081 return res
2082 end
2083
2084 # Return the most specific definition in the linearization of `mtype`.
2085 #
2086 # If you want to know the next properties in the linearization,
2087 # look at `MPropDef::lookup_next_definition`.
2088 #
2089 # FIXME: the linearization is still unspecified
2090 #
2091 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2092 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2093 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2094 do
2095 return lookup_all_definitions(mmodule, mtype).first
2096 end
2097
2098 # Return all definitions in a linearization order
2099 # Most specific first, most general last
2100 #
2101 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2102 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2103 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2104 do
2105 mtype = mtype.undecorate
2106
2107 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2108 if cache != null then return cache
2109
2110 assert not mtype.need_anchor
2111 assert mtype.has_mproperty(mmodule, self)
2112
2113 #print "select prop {mproperty} for {mtype} in {self}"
2114 # First, select all candidates
2115 var candidates = new Array[MPROPDEF]
2116 for mpropdef in self.mpropdefs do
2117 # If the definition is not imported by the module, then skip
2118 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2119 # If the definition is not inherited by the type, then skip
2120 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2121 # Else, we keep it
2122 candidates.add(mpropdef)
2123 end
2124 # Fast track for only one candidate
2125 if candidates.length <= 1 then
2126 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2127 return candidates
2128 end
2129
2130 mmodule.linearize_mpropdefs(candidates)
2131 candidates = candidates.reversed
2132 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2133 return candidates
2134 end
2135
2136 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2137 end
2138
2139 # A global method
2140 class MMethod
2141 super MProperty
2142
2143 redef type MPROPDEF: MMethodDef
2144
2145 # Is the property defined at the top_level of the module?
2146 # Currently such a property are stored in `Object`
2147 var is_toplevel: Bool = false is writable
2148
2149 # Is the property a constructor?
2150 # Warning, this property can be inherited by subclasses with or without being a constructor
2151 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2152 var is_init: Bool = false is writable
2153
2154 # The constructor is a (the) root init with empty signature but a set of initializers
2155 var is_root_init: Bool = false is writable
2156
2157 # Is the property a 'new' constructor?
2158 var is_new: Bool = false is writable
2159
2160 # Is the property a legal constructor for a given class?
2161 # As usual, visibility is not considered.
2162 # FIXME not implemented
2163 fun is_init_for(mclass: MClass): Bool
2164 do
2165 return self.is_init
2166 end
2167
2168 # A specific method that is safe to call on null.
2169 # Currently, only `==`, `!=` and `is_same_instance` are safe
2170 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2171 end
2172
2173 # A global attribute
2174 class MAttribute
2175 super MProperty
2176
2177 redef type MPROPDEF: MAttributeDef
2178
2179 end
2180
2181 # A global virtual type
2182 class MVirtualTypeProp
2183 super MProperty
2184
2185 redef type MPROPDEF: MVirtualTypeDef
2186
2187 # The formal type associated to the virtual type property
2188 var mvirtualtype = new MVirtualType(self)
2189 end
2190
2191 # A definition of a property (local property)
2192 #
2193 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2194 # specific class definition (which belong to a specific module)
2195 abstract class MPropDef
2196 super MEntity
2197
2198 # The associated `MProperty` subclass.
2199 # the two specialization hierarchy are symmetric
2200 type MPROPERTY: MProperty
2201
2202 # Self class
2203 type MPROPDEF: MPropDef
2204
2205 # The class definition where the property definition is
2206 var mclassdef: MClassDef
2207
2208 # The associated global property
2209 var mproperty: MPROPERTY
2210
2211 # The origin of the definition
2212 var location: Location
2213
2214 init
2215 do
2216 mclassdef.mpropdefs.add(self)
2217 mproperty.mpropdefs.add(self)
2218 if mproperty.intro_mclassdef == mclassdef then
2219 assert not isset mproperty._intro
2220 mproperty.intro = self
2221 end
2222 self.to_s = "{mclassdef}#{mproperty}"
2223 end
2224
2225 # Actually the name of the `mproperty`
2226 redef fun name do return mproperty.name
2227
2228 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2229 #
2230 # Therefore the combination of identifiers is awful,
2231 # the worst case being
2232 #
2233 # * a property "p::m::A::x"
2234 # * redefined in a refinement of a class "q::n::B"
2235 # * in a module "r::o"
2236 # * so "r::o#q::n::B#p::m::A::x"
2237 #
2238 # Fortunately, the full-name is simplified when entities are repeated.
2239 # For the previous case, the simplest form is "p#A#x".
2240 redef var full_name is lazy do
2241 var res = new FlatBuffer
2242
2243 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2244 res.append mclassdef.full_name
2245
2246 res.append "#"
2247
2248 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2249 # intro are unambiguous in a class
2250 res.append name
2251 else
2252 # Just try to simplify each part
2253 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2254 # precise "p::m" only if "p" != "r"
2255 res.append mproperty.intro_mclassdef.mmodule.full_name
2256 res.append "::"
2257 else if mproperty.visibility <= private_visibility then
2258 # Same package ("p"=="q"), but private visibility,
2259 # does the module part ("::m") need to be displayed
2260 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2261 res.append "::"
2262 res.append mproperty.intro_mclassdef.mmodule.name
2263 res.append "::"
2264 end
2265 end
2266 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2267 # precise "B" only if not the same class than "A"
2268 res.append mproperty.intro_mclassdef.name
2269 res.append "::"
2270 end
2271 # Always use the property name "x"
2272 res.append mproperty.name
2273 end
2274 return res.to_s
2275 end
2276
2277 redef var c_name is lazy do
2278 var res = new FlatBuffer
2279 res.append mclassdef.c_name
2280 res.append "___"
2281 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2282 res.append name.to_cmangle
2283 else
2284 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2285 res.append mproperty.intro_mclassdef.mmodule.c_name
2286 res.append "__"
2287 end
2288 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2289 res.append mproperty.intro_mclassdef.name.to_cmangle
2290 res.append "__"
2291 end
2292 res.append mproperty.name.to_cmangle
2293 end
2294 return res.to_s
2295 end
2296
2297 redef fun model do return mclassdef.model
2298
2299 # Internal name combining the module, the class and the property
2300 # Example: "mymodule#MyClass#mymethod"
2301 redef var to_s: String is noinit
2302
2303 # Is self the definition that introduce the property?
2304 fun is_intro: Bool do return mproperty.intro == self
2305
2306 # Return the next definition in linearization of `mtype`.
2307 #
2308 # This method is used to determine what method is called by a super.
2309 #
2310 # REQUIRE: `not mtype.need_anchor`
2311 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2312 do
2313 assert not mtype.need_anchor
2314
2315 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2316 var i = mpropdefs.iterator
2317 while i.is_ok and i.item != self do i.next
2318 assert has_property: i.is_ok
2319 i.next
2320 assert has_next_property: i.is_ok
2321 return i.item
2322 end
2323 end
2324
2325 # A local definition of a method
2326 class MMethodDef
2327 super MPropDef
2328
2329 redef type MPROPERTY: MMethod
2330 redef type MPROPDEF: MMethodDef
2331
2332 # The signature attached to the property definition
2333 var msignature: nullable MSignature = null is writable
2334
2335 # The signature attached to the `new` call on a root-init
2336 # This is a concatenation of the signatures of the initializers
2337 #
2338 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2339 var new_msignature: nullable MSignature = null is writable
2340
2341 # List of initialisers to call in root-inits
2342 #
2343 # They could be setters or attributes
2344 #
2345 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2346 var initializers = new Array[MProperty]
2347
2348 # Is the method definition abstract?
2349 var is_abstract: Bool = false is writable
2350
2351 # Is the method definition intern?
2352 var is_intern = false is writable
2353
2354 # Is the method definition extern?
2355 var is_extern = false is writable
2356
2357 # An optional constant value returned in functions.
2358 #
2359 # Only some specific primitife value are accepted by engines.
2360 # Is used when there is no better implementation available.
2361 #
2362 # Currently used only for the implementation of the `--define`
2363 # command-line option.
2364 # SEE: module `mixin`.
2365 var constant_value: nullable Object = null is writable
2366 end
2367
2368 # A local definition of an attribute
2369 class MAttributeDef
2370 super MPropDef
2371
2372 redef type MPROPERTY: MAttribute
2373 redef type MPROPDEF: MAttributeDef
2374
2375 # The static type of the attribute
2376 var static_mtype: nullable MType = null is writable
2377 end
2378
2379 # A local definition of a virtual type
2380 class MVirtualTypeDef
2381 super MPropDef
2382
2383 redef type MPROPERTY: MVirtualTypeProp
2384 redef type MPROPDEF: MVirtualTypeDef
2385
2386 # The bound of the virtual type
2387 var bound: nullable MType = null is writable
2388
2389 # Is the bound fixed?
2390 var is_fixed = false is writable
2391 end
2392
2393 # A kind of class.
2394 #
2395 # * `abstract_kind`
2396 # * `concrete_kind`
2397 # * `interface_kind`
2398 # * `enum_kind`
2399 # * `extern_kind`
2400 #
2401 # Note this class is basically an enum.
2402 # FIXME: use a real enum once user-defined enums are available
2403 class MClassKind
2404 redef var to_s: String
2405
2406 # Is a constructor required?
2407 var need_init: Bool
2408
2409 # TODO: private init because enumeration.
2410
2411 # Can a class of kind `self` specializes a class of kine `other`?
2412 fun can_specialize(other: MClassKind): Bool
2413 do
2414 if other == interface_kind then return true # everybody can specialize interfaces
2415 if self == interface_kind or self == enum_kind then
2416 # no other case for interfaces
2417 return false
2418 else if self == extern_kind then
2419 # only compatible with themselves
2420 return self == other
2421 else if other == enum_kind or other == extern_kind then
2422 # abstract_kind and concrete_kind are incompatible
2423 return false
2424 end
2425 # remain only abstract_kind and concrete_kind
2426 return true
2427 end
2428 end
2429
2430 # The class kind `abstract`
2431 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2432 # The class kind `concrete`
2433 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2434 # The class kind `interface`
2435 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2436 # The class kind `enum`
2437 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2438 # The class kind `extern`
2439 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)