9aefe1945c86f51674c25b0489f3b4797b8ed65e
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree bound to MEntity.
123 #
124 # We introduce a new class so it can be easily refined by tools working
125 # with a Model.
126 class MEntityTree
127 super OrderedTree[MEntity]
128 end
129
130 # A MEntityTree borned to MConcern.
131 #
132 # TODO remove when nitdoc is fully merged with model_collect
133 class ConcernsTree
134 super OrderedTree[MConcern]
135 end
136
137 redef class MModule
138 # All the classes introduced in the module
139 var intro_mclasses = new Array[MClass]
140
141 # All the class definitions of the module
142 # (introduction and refinement)
143 var mclassdefs = new Array[MClassDef]
144
145 # Does the current module has a given class `mclass`?
146 # Return true if the mmodule introduces, refines or imports a class.
147 # Visibility is not considered.
148 fun has_mclass(mclass: MClass): Bool
149 do
150 return self.in_importation <= mclass.intro_mmodule
151 end
152
153 # Full hierarchy of introduced ans imported classes.
154 #
155 # Create a new hierarchy got by flattening the classes for the module
156 # and its imported modules.
157 # Visibility is not considered.
158 #
159 # Note: this function is expensive and is usually used for the main
160 # module of a program only. Do not use it to do you own subtype
161 # functions.
162 fun flatten_mclass_hierarchy: POSet[MClass]
163 do
164 var res = self.flatten_mclass_hierarchy_cache
165 if res != null then return res
166 res = new POSet[MClass]
167 for m in self.in_importation.greaters do
168 for cd in m.mclassdefs do
169 var c = cd.mclass
170 res.add_node(c)
171 for s in cd.supertypes do
172 res.add_edge(c, s.mclass)
173 end
174 end
175 end
176 self.flatten_mclass_hierarchy_cache = res
177 return res
178 end
179
180 # Sort a given array of classes using the linearization order of the module
181 # The most general is first, the most specific is last
182 fun linearize_mclasses(mclasses: Array[MClass])
183 do
184 self.flatten_mclass_hierarchy.sort(mclasses)
185 end
186
187 # Sort a given array of class definitions using the linearization order of the module
188 # the refinement link is stronger than the specialisation link
189 # The most general is first, the most specific is last
190 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
191 do
192 var sorter = new MClassDefSorter(self)
193 sorter.sort(mclassdefs)
194 end
195
196 # Sort a given array of property definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
200 do
201 var sorter = new MPropDefSorter(self)
202 sorter.sort(mpropdefs)
203 end
204
205 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
206
207 # The primitive type `Object`, the root of the class hierarchy
208 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
209
210 # The type `Pointer`, super class to all extern classes
211 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
212
213 # The primitive type `Bool`
214 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
215
216 # The primitive type `Int`
217 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
218
219 # The primitive type `Byte`
220 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
221
222 # The primitive type `Int8`
223 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
224
225 # The primitive type `Int16`
226 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
227
228 # The primitive type `UInt16`
229 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
230
231 # The primitive type `Int32`
232 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
233
234 # The primitive type `UInt32`
235 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
236
237 # The primitive type `Char`
238 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
239
240 # The primitive type `Float`
241 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
242
243 # The primitive type `String`
244 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
245
246 # The primitive type `NativeString`
247 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
248
249 # A primitive type of `Array`
250 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
251
252 # The primitive class `Array`
253 var array_class: MClass = self.get_primitive_class("Array") is lazy
254
255 # A primitive type of `NativeArray`
256 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
257
258 # The primitive class `NativeArray`
259 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
260
261 # The primitive type `Sys`, the main type of the program, if any
262 fun sys_type: nullable MClassType
263 do
264 var clas = self.model.get_mclasses_by_name("Sys")
265 if clas == null then return null
266 return get_primitive_class("Sys").mclass_type
267 end
268
269 # The primitive type `Finalizable`
270 # Used to tag classes that need to be finalized.
271 fun finalizable_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Finalizable")
274 if clas == null then return null
275 return get_primitive_class("Finalizable").mclass_type
276 end
277
278 # Force to get the primitive class named `name` or abort
279 fun get_primitive_class(name: String): MClass
280 do
281 var cla = self.model.get_mclasses_by_name(name)
282 # Filter classes by introducing module
283 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
284 if cla == null or cla.is_empty then
285 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
286 # Bool is injected because it is needed by engine to code the result
287 # of the implicit casts.
288 var loc = model.no_location
289 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
290 var cladef = new MClassDef(self, c.mclass_type, loc)
291 cladef.set_supertypes([object_type])
292 cladef.add_in_hierarchy
293 return c
294 end
295 print("Fatal Error: no primitive class {name} in {self}")
296 exit(1)
297 abort
298 end
299 if cla.length != 1 then
300 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
301 for c in cla do msg += " {c.full_name}"
302 print msg
303 #exit(1)
304 end
305 return cla.first
306 end
307
308 # Try to get the primitive method named `name` on the type `recv`
309 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
310 do
311 var props = self.model.get_mproperties_by_name(name)
312 if props == null then return null
313 var res: nullable MMethod = null
314 var recvtype = recv.intro.bound_mtype
315 for mprop in props do
316 assert mprop isa MMethod
317 if not recvtype.has_mproperty(self, mprop) then continue
318 if res == null then
319 res = mprop
320 else if res != mprop then
321 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
322 abort
323 end
324 end
325 return res
326 end
327 end
328
329 private class MClassDefSorter
330 super Comparator
331 redef type COMPARED: MClassDef
332 var mmodule: MModule
333 redef fun compare(a, b)
334 do
335 var ca = a.mclass
336 var cb = b.mclass
337 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
338 return mmodule.model.mclassdef_hierarchy.compare(a, b)
339 end
340 end
341
342 private class MPropDefSorter
343 super Comparator
344 redef type COMPARED: MPropDef
345 var mmodule: MModule
346 redef fun compare(pa, pb)
347 do
348 var a = pa.mclassdef
349 var b = pb.mclassdef
350 var ca = a.mclass
351 var cb = b.mclass
352 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
353 return mmodule.model.mclassdef_hierarchy.compare(a, b)
354 end
355 end
356
357 # A named class
358 #
359 # `MClass` are global to the model; it means that a `MClass` is not bound to a
360 # specific `MModule`.
361 #
362 # This characteristic helps the reasoning about classes in a program since a
363 # single `MClass` object always denote the same class.
364 #
365 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
366 # These do not really have properties nor belong to a hierarchy since the property and the
367 # hierarchy of a class depends of the refinement in the modules.
368 #
369 # Most services on classes require the precision of a module, and no one can asks what are
370 # the super-classes of a class nor what are properties of a class without precising what is
371 # the module considered.
372 #
373 # For instance, during the typing of a source-file, the module considered is the module of the file.
374 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
375 # *is the method `foo` exists in the class `Bar` in the current module?*
376 #
377 # During some global analysis, the module considered may be the main module of the program.
378 class MClass
379 super MEntity
380
381 # The module that introduce the class
382 # While classes are not bound to a specific module,
383 # the introducing module is used for naming an visibility
384 var intro_mmodule: MModule
385
386 # The short name of the class
387 # In Nit, the name of a class cannot evolve in refinements
388 redef var name
389
390 redef var location
391
392 # The canonical name of the class
393 #
394 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
395 # Example: `"owner::module::MyClass"`
396 redef var full_name is lazy do
397 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
398 end
399
400 redef var c_name is lazy do
401 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
402 end
403
404 # The number of generic formal parameters
405 # 0 if the class is not generic
406 var arity: Int is noinit
407
408 # Each generic formal parameters in order.
409 # is empty if the class is not generic
410 var mparameters = new Array[MParameterType]
411
412 # A string version of the signature a generic class.
413 #
414 # eg. `Map[K: nullable Object, V: nullable Object]`
415 #
416 # If the class in non generic the name is just given.
417 #
418 # eg. `Object`
419 fun signature_to_s: String
420 do
421 if arity == 0 then return name
422 var res = new FlatBuffer
423 res.append name
424 res.append "["
425 for i in [0..arity[ do
426 if i > 0 then res.append ", "
427 res.append mparameters[i].name
428 res.append ": "
429 res.append intro.bound_mtype.arguments[i].to_s
430 end
431 res.append "]"
432 return res.to_s
433 end
434
435 # Initialize `mparameters` from their names.
436 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
437 autoinit
438 do
439 if parameter_names == null then
440 self.arity = 0
441 else
442 self.arity = parameter_names.length
443 end
444
445 # Create the formal parameter types
446 if arity > 0 then
447 assert parameter_names != null
448 var mparametertypes = new Array[MParameterType]
449 for i in [0..arity[ do
450 var mparametertype = new MParameterType(self, i, parameter_names[i])
451 mparametertypes.add(mparametertype)
452 end
453 self.mparameters = mparametertypes
454 var mclass_type = new MGenericType(self, mparametertypes)
455 self.mclass_type = mclass_type
456 self.get_mtype_cache[mparametertypes] = mclass_type
457 else
458 self.mclass_type = new MClassType(self)
459 end
460 end
461
462 # The kind of the class (interface, abstract class, etc.)
463 # In Nit, the kind of a class cannot evolve in refinements
464 var kind: MClassKind
465
466 # The visibility of the class
467 # In Nit, the visibility of a class cannot evolve in refinements
468 var visibility: MVisibility
469
470 init
471 do
472 intro_mmodule.intro_mclasses.add(self)
473 var model = intro_mmodule.model
474 model.mclasses_by_name.add_one(name, self)
475 model.mclasses.add(self)
476 end
477
478 redef fun model do return intro_mmodule.model
479
480 # All class definitions (introduction and refinements)
481 var mclassdefs = new Array[MClassDef]
482
483 # Alias for `name`
484 redef fun to_s do return self.name
485
486 # The definition that introduces the class.
487 #
488 # Warning: such a definition may not exist in the early life of the object.
489 # In this case, the method will abort.
490 #
491 # Use `try_intro` instead
492 var intro: MClassDef is noinit
493
494 # The definition that introduces the class or null if not yet known.
495 #
496 # See `intro`
497 fun try_intro: nullable MClassDef do
498 if isset _intro then return _intro else return null
499 end
500
501 # Return the class `self` in the class hierarchy of the module `mmodule`.
502 #
503 # SEE: `MModule::flatten_mclass_hierarchy`
504 # REQUIRE: `mmodule.has_mclass(self)`
505 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
506 do
507 return mmodule.flatten_mclass_hierarchy[self]
508 end
509
510 # The principal static type of the class.
511 #
512 # For non-generic class, mclass_type is the only `MClassType` based
513 # on self.
514 #
515 # For a generic class, the arguments are the formal parameters.
516 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
517 # If you want Array[Object] the see `MClassDef::bound_mtype`
518 #
519 # For generic classes, the mclass_type is also the way to get a formal
520 # generic parameter type.
521 #
522 # To get other types based on a generic class, see `get_mtype`.
523 #
524 # ENSURE: `mclass_type.mclass == self`
525 var mclass_type: MClassType is noinit
526
527 # Return a generic type based on the class
528 # Is the class is not generic, then the result is `mclass_type`
529 #
530 # REQUIRE: `mtype_arguments.length == self.arity`
531 fun get_mtype(mtype_arguments: Array[MType]): MClassType
532 do
533 assert mtype_arguments.length == self.arity
534 if self.arity == 0 then return self.mclass_type
535 var res = get_mtype_cache.get_or_null(mtype_arguments)
536 if res != null then return res
537 res = new MGenericType(self, mtype_arguments)
538 self.get_mtype_cache[mtype_arguments.to_a] = res
539 return res
540 end
541
542 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
543
544 # Is there a `new` factory to allow the pseudo instantiation?
545 var has_new_factory = false is writable
546
547 # Is `self` a standard or abstract class kind?
548 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
549
550 # Is `self` an interface kind?
551 var is_interface: Bool is lazy do return kind == interface_kind
552
553 # Is `self` an enum kind?
554 var is_enum: Bool is lazy do return kind == enum_kind
555
556 # Is `self` and abstract class?
557 var is_abstract: Bool is lazy do return kind == abstract_kind
558 end
559
560
561 # A definition (an introduction or a refinement) of a class in a module
562 #
563 # A `MClassDef` is associated with an explicit (or almost) definition of a
564 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
565 # a specific class and a specific module, and contains declarations like super-classes
566 # or properties.
567 #
568 # It is the class definitions that are the backbone of most things in the model:
569 # ClassDefs are defined with regard with other classdefs.
570 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
571 #
572 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
573 class MClassDef
574 super MEntity
575
576 # The module where the definition is
577 var mmodule: MModule
578
579 # The associated `MClass`
580 var mclass: MClass is noinit
581
582 # The bounded type associated to the mclassdef
583 #
584 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
585 # are the same type.
586 #
587 # Example:
588 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
589 # If you want Array[E], then see `mclass.mclass_type`
590 #
591 # ENSURE: `bound_mtype.mclass == self.mclass`
592 var bound_mtype: MClassType
593
594 redef var location: Location
595
596 # Internal name combining the module and the class
597 # Example: "mymodule$MyClass"
598 redef var to_s is noinit
599
600 init
601 do
602 self.mclass = bound_mtype.mclass
603 mmodule.mclassdefs.add(self)
604 mclass.mclassdefs.add(self)
605 if mclass.intro_mmodule == mmodule then
606 assert not isset mclass._intro
607 mclass.intro = self
608 end
609 self.to_s = "{mmodule}${mclass}"
610 end
611
612 # Actually the name of the `mclass`
613 redef fun name do return mclass.name
614
615 # The module and class name separated by a '$'.
616 #
617 # The short-name of the class is used for introduction.
618 # Example: "my_module$MyClass"
619 #
620 # The full-name of the class is used for refinement.
621 # Example: "my_module$intro_module::MyClass"
622 redef var full_name is lazy do
623 if is_intro then
624 # public gives 'p$A'
625 # private gives 'p::m$A'
626 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
627 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
628 # public gives 'q::n$p::A'
629 # private gives 'q::n$p::m::A'
630 return "{mmodule.full_name}${mclass.full_name}"
631 else if mclass.visibility > private_visibility then
632 # public gives 'p::n$A'
633 return "{mmodule.full_name}${mclass.name}"
634 else
635 # private gives 'p::n$::m::A' (redundant p is omitted)
636 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
637 end
638 end
639
640 redef var c_name is lazy do
641 if is_intro then
642 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
643 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
644 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
645 else
646 return "{mmodule.c_name}___{mclass.c_name}"
647 end
648 end
649
650 redef fun model do return mmodule.model
651
652 # All declared super-types
653 # FIXME: quite ugly but not better idea yet
654 var supertypes = new Array[MClassType]
655
656 # Register some super-types for the class (ie "super SomeType")
657 #
658 # The hierarchy must not already be set
659 # REQUIRE: `self.in_hierarchy == null`
660 fun set_supertypes(supertypes: Array[MClassType])
661 do
662 assert unique_invocation: self.in_hierarchy == null
663 var mmodule = self.mmodule
664 var model = mmodule.model
665 var mtype = self.bound_mtype
666
667 for supertype in supertypes do
668 self.supertypes.add(supertype)
669
670 # Register in full_type_specialization_hierarchy
671 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
672 # Register in intro_type_specialization_hierarchy
673 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
674 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
675 end
676 end
677
678 end
679
680 # Collect the super-types (set by set_supertypes) to build the hierarchy
681 #
682 # This function can only invoked once by class
683 # REQUIRE: `self.in_hierarchy == null`
684 # ENSURE: `self.in_hierarchy != null`
685 fun add_in_hierarchy
686 do
687 assert unique_invocation: self.in_hierarchy == null
688 var model = mmodule.model
689 var res = model.mclassdef_hierarchy.add_node(self)
690 self.in_hierarchy = res
691 var mtype = self.bound_mtype
692
693 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
694 # The simpliest way is to attach it to collect_mclassdefs
695 for mclassdef in mtype.collect_mclassdefs(mmodule) do
696 res.poset.add_edge(self, mclassdef)
697 end
698 end
699
700 # The view of the class definition in `mclassdef_hierarchy`
701 var in_hierarchy: nullable POSetElement[MClassDef] = null
702
703 # Is the definition the one that introduced `mclass`?
704 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
705
706 # All properties introduced by the classdef
707 var intro_mproperties = new Array[MProperty]
708
709 # All property definitions in the class (introductions and redefinitions)
710 var mpropdefs = new Array[MPropDef]
711 end
712
713 # A global static type
714 #
715 # MType are global to the model; it means that a `MType` is not bound to a
716 # specific `MModule`.
717 # This characteristic helps the reasoning about static types in a program
718 # since a single `MType` object always denote the same type.
719 #
720 # However, because a `MType` is global, it does not really have properties
721 # nor have subtypes to a hierarchy since the property and the class hierarchy
722 # depends of a module.
723 # Moreover, virtual types an formal generic parameter types also depends on
724 # a receiver to have sense.
725 #
726 # Therefore, most method of the types require a module and an anchor.
727 # The module is used to know what are the classes and the specialization
728 # links.
729 # The anchor is used to know what is the bound of the virtual types and formal
730 # generic parameter types.
731 #
732 # MType are not directly usable to get properties. See the `anchor_to` method
733 # and the `MClassType` class.
734 #
735 # FIXME: the order of the parameters is not the best. We mus pick on from:
736 # * foo(mmodule, anchor, othertype)
737 # * foo(othertype, anchor, mmodule)
738 # * foo(anchor, mmodule, othertype)
739 # * foo(othertype, mmodule, anchor)
740 abstract class MType
741 super MEntity
742
743 redef fun name do return to_s
744
745 # Return true if `self` is an subtype of `sup`.
746 # The typing is done using the standard typing policy of Nit.
747 #
748 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
749 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
750 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
751 do
752 var sub = self
753 if sub == sup then return true
754
755 #print "1.is {sub} a {sup}? ===="
756
757 if anchor == null then
758 assert not sub.need_anchor
759 assert not sup.need_anchor
760 else
761 # First, resolve the formal types to the simplest equivalent forms in the receiver
762 assert sub.can_resolve_for(anchor, null, mmodule)
763 sub = sub.lookup_fixed(mmodule, anchor)
764 assert sup.can_resolve_for(anchor, null, mmodule)
765 sup = sup.lookup_fixed(mmodule, anchor)
766 end
767
768 # Does `sup` accept null or not?
769 # Discard the nullable marker if it exists
770 var sup_accept_null = false
771 if sup isa MNullableType then
772 sup_accept_null = true
773 sup = sup.mtype
774 else if sup isa MNotNullType then
775 sup = sup.mtype
776 else if sup isa MNullType then
777 sup_accept_null = true
778 end
779
780 # Can `sub` provide null or not?
781 # Thus we can match with `sup_accept_null`
782 # Also discard the nullable marker if it exists
783 var sub_reject_null = false
784 if sub isa MNullableType then
785 if not sup_accept_null then return false
786 sub = sub.mtype
787 else if sub isa MNotNullType then
788 sub_reject_null = true
789 sub = sub.mtype
790 else if sub isa MNullType then
791 return sup_accept_null
792 end
793 # Now the case of direct null and nullable is over.
794
795 # If `sub` is a formal type, then it is accepted if its bound is accepted
796 while sub isa MFormalType do
797 #print "3.is {sub} a {sup}?"
798
799 # A unfixed formal type can only accept itself
800 if sub == sup then return true
801
802 assert anchor != null
803 sub = sub.lookup_bound(mmodule, anchor)
804 if sub_reject_null then sub = sub.as_notnull
805
806 #print "3.is {sub} a {sup}?"
807
808 # Manage the second layer of null/nullable
809 if sub isa MNullableType then
810 if not sup_accept_null and not sub_reject_null then return false
811 sub = sub.mtype
812 else if sub isa MNotNullType then
813 sub_reject_null = true
814 sub = sub.mtype
815 else if sub isa MNullType then
816 return sup_accept_null
817 end
818 end
819 #print "4.is {sub} a {sup}? <- no more resolution"
820
821 if sub isa MBottomType then
822 return true
823 end
824
825 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
826
827 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
828 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType then
829 # These types are not super-types of Class-based types.
830 return false
831 end
832
833 assert sup isa MClassType else print "got {sup} {sub.inspect}" # It is the only remaining type
834
835 # Now both are MClassType, we need to dig
836
837 if sub == sup then return true
838
839 if anchor == null then anchor = sub # UGLY: any anchor will work
840 var resolved_sub = sub.anchor_to(mmodule, anchor)
841 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
842 if res == false then return false
843 if not sup isa MGenericType then return true
844 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
845 assert sub2.mclass == sup.mclass
846 for i in [0..sup.mclass.arity[ do
847 var sub_arg = sub2.arguments[i]
848 var sup_arg = sup.arguments[i]
849 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
850 if res == false then return false
851 end
852 return true
853 end
854
855 # The base class type on which self is based
856 #
857 # This base type is used to get property (an internally to perform
858 # unsafe type comparison).
859 #
860 # Beware: some types (like null) are not based on a class thus this
861 # method will crash
862 #
863 # Basically, this function transform the virtual types and parameter
864 # types to their bounds.
865 #
866 # Example
867 #
868 # class A end
869 # class B super A end
870 # class X end
871 # class Y super X end
872 # class G[T: A]
873 # type U: X
874 # end
875 # class H
876 # super G[B]
877 # redef type U: Y
878 # end
879 #
880 # Map[T,U] anchor_to H #-> Map[B,Y]
881 #
882 # Explanation of the example:
883 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
884 # because "redef type U: Y". Therefore, Map[T, U] is bound to
885 # Map[B, Y]
886 #
887 # ENSURE: `not self.need_anchor implies result == self`
888 # ENSURE: `not result.need_anchor`
889 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
890 do
891 if not need_anchor then return self
892 assert not anchor.need_anchor
893 # Just resolve to the anchor and clear all the virtual types
894 var res = self.resolve_for(anchor, null, mmodule, true)
895 assert not res.need_anchor
896 return res
897 end
898
899 # Does `self` contain a virtual type or a formal generic parameter type?
900 # In order to remove those types, you usually want to use `anchor_to`.
901 fun need_anchor: Bool do return true
902
903 # Return the supertype when adapted to a class.
904 #
905 # In Nit, for each super-class of a type, there is a equivalent super-type.
906 #
907 # Example:
908 #
909 # ~~~nitish
910 # class G[T, U] end
911 # class H[V] super G[V, Bool] end
912 #
913 # H[Int] supertype_to G #-> G[Int, Bool]
914 # ~~~
915 #
916 # REQUIRE: `super_mclass` is a super-class of `self`
917 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
918 # ENSURE: `result.mclass = super_mclass`
919 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
920 do
921 if super_mclass.arity == 0 then return super_mclass.mclass_type
922 if self isa MClassType and self.mclass == super_mclass then return self
923 var resolved_self
924 if self.need_anchor then
925 assert anchor != null
926 resolved_self = self.anchor_to(mmodule, anchor)
927 else
928 resolved_self = self
929 end
930 var supertypes = resolved_self.collect_mtypes(mmodule)
931 for supertype in supertypes do
932 if supertype.mclass == super_mclass then
933 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
934 return supertype.resolve_for(self, anchor, mmodule, false)
935 end
936 end
937 abort
938 end
939
940 # Replace formals generic types in self with resolved values in `mtype`
941 # If `cleanup_virtual` is true, then virtual types are also replaced
942 # with their bounds.
943 #
944 # This function returns self if `need_anchor` is false.
945 #
946 # ## Example 1
947 #
948 # ~~~
949 # class G[E] end
950 # class H[F] super G[F] end
951 # class X[Z] end
952 # ~~~
953 #
954 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
955 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
956 #
957 # Explanation of the example:
958 # * Array[E].need_anchor is true because there is a formal generic parameter type E
959 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
960 # * Since "H[F] super G[F]", E is in fact F for H
961 # * More specifically, in H[Int], E is Int
962 # * So, in H[Int], Array[E] is Array[Int]
963 #
964 # This function is mainly used to inherit a signature.
965 # Because, unlike `anchor_to`, we do not want a full resolution of
966 # a type but only an adapted version of it.
967 #
968 # ## Example 2
969 #
970 # ~~~
971 # class A[E]
972 # fun foo(e:E):E is abstract
973 # end
974 # class B super A[Int] end
975 # ~~~
976 #
977 # The signature on foo is (e: E): E
978 # If we resolve the signature for B, we get (e:Int):Int
979 #
980 # ## Example 3
981 #
982 # ~~~nitish
983 # class A[E]
984 # fun foo(e:E):E is abstract
985 # end
986 # class C[F]
987 # var a: A[Array[F]]
988 # fun bar do a.foo(x) # <- x is here
989 # end
990 # ~~~
991 #
992 # The first question is: is foo available on `a`?
993 #
994 # The static type of a is `A[Array[F]]`, that is an open type.
995 # in order to find a method `foo`, whe must look at a resolved type.
996 #
997 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
998 #
999 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1000 #
1001 # The next question is: what is the accepted types for `x`?
1002 #
1003 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1004 #
1005 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1006 #
1007 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1008 #
1009 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1010 # two function instead of one seems also to be a bad idea.
1011 #
1012 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1013 # ENSURE: `not self.need_anchor implies result == self`
1014 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1015
1016 # Resolve formal type to its verbatim bound.
1017 # If the type is not formal, just return self
1018 #
1019 # The result is returned exactly as declared in the "type" property (verbatim).
1020 # So it could be another formal type.
1021 #
1022 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1023 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1024
1025 # Resolve the formal type to its simplest equivalent form.
1026 #
1027 # Formal types are either free or fixed.
1028 # When it is fixed, it means that it is equivalent with a simpler type.
1029 # When a formal type is free, it means that it is only equivalent with itself.
1030 # This method return the most simple equivalent type of `self`.
1031 #
1032 # This method is mainly used for subtype test in order to sanely compare fixed.
1033 #
1034 # By default, return self.
1035 # See the redefinitions for specific behavior in each kind of type.
1036 #
1037 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1038 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1039
1040 # Can the type be resolved?
1041 #
1042 # In order to resolve open types, the formal types must make sence.
1043 #
1044 # ## Example
1045 #
1046 # class A[E]
1047 # end
1048 # class B[F]
1049 # end
1050 #
1051 # ~~~nitish
1052 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1053 #
1054 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1055 #
1056 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1057 # # B[E] is a red hearing only the E is important,
1058 # # E make sense in A
1059 # ~~~
1060 #
1061 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1062 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1063 # ENSURE: `not self.need_anchor implies result == true`
1064 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1065
1066 # Return the nullable version of the type
1067 # If the type is already nullable then self is returned
1068 fun as_nullable: MType
1069 do
1070 var res = self.as_nullable_cache
1071 if res != null then return res
1072 res = new MNullableType(self)
1073 self.as_nullable_cache = res
1074 return res
1075 end
1076
1077 # Remove the base type of a decorated (proxy) type.
1078 # Is the type is not decorated, then self is returned.
1079 #
1080 # Most of the time it is used to return the not nullable version of a nullable type.
1081 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1082 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1083 # If you really want to exclude the `null` value, then use `as_notnull`
1084 fun undecorate: MType
1085 do
1086 return self
1087 end
1088
1089 # Returns the not null version of the type.
1090 # That is `self` minus the `null` value.
1091 #
1092 # For most types, this return `self`.
1093 # For formal types, this returns a special `MNotNullType`
1094 fun as_notnull: MType do return self
1095
1096 private var as_nullable_cache: nullable MType = null
1097
1098
1099 # The depth of the type seen as a tree.
1100 #
1101 # * A -> 1
1102 # * G[A] -> 2
1103 # * H[A, B] -> 2
1104 # * H[G[A], B] -> 3
1105 #
1106 # Formal types have a depth of 1.
1107 fun depth: Int
1108 do
1109 return 1
1110 end
1111
1112 # The length of the type seen as a tree.
1113 #
1114 # * A -> 1
1115 # * G[A] -> 2
1116 # * H[A, B] -> 3
1117 # * H[G[A], B] -> 4
1118 #
1119 # Formal types have a length of 1.
1120 fun length: Int
1121 do
1122 return 1
1123 end
1124
1125 # Compute all the classdefs inherited/imported.
1126 # The returned set contains:
1127 # * the class definitions from `mmodule` and its imported modules
1128 # * the class definitions of this type and its super-types
1129 #
1130 # This function is used mainly internally.
1131 #
1132 # REQUIRE: `not self.need_anchor`
1133 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1134
1135 # Compute all the super-classes.
1136 # This function is used mainly internally.
1137 #
1138 # REQUIRE: `not self.need_anchor`
1139 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1140
1141 # Compute all the declared super-types.
1142 # Super-types are returned as declared in the classdefs (verbatim).
1143 # This function is used mainly internally.
1144 #
1145 # REQUIRE: `not self.need_anchor`
1146 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1147
1148 # Is the property in self for a given module
1149 # This method does not filter visibility or whatever
1150 #
1151 # REQUIRE: `not self.need_anchor`
1152 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1153 do
1154 assert not self.need_anchor
1155 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1156 end
1157 end
1158
1159 # A type based on a class.
1160 #
1161 # `MClassType` have properties (see `has_mproperty`).
1162 class MClassType
1163 super MType
1164
1165 # The associated class
1166 var mclass: MClass
1167
1168 redef fun model do return self.mclass.intro_mmodule.model
1169
1170 redef fun location do return mclass.location
1171
1172 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1173
1174 # The formal arguments of the type
1175 # ENSURE: `result.length == self.mclass.arity`
1176 var arguments = new Array[MType]
1177
1178 redef fun to_s do return mclass.to_s
1179
1180 redef fun full_name do return mclass.full_name
1181
1182 redef fun c_name do return mclass.c_name
1183
1184 redef fun need_anchor do return false
1185
1186 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1187 do
1188 return super.as(MClassType)
1189 end
1190
1191 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1192
1193 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1194
1195 redef fun collect_mclassdefs(mmodule)
1196 do
1197 assert not self.need_anchor
1198 var cache = self.collect_mclassdefs_cache
1199 if not cache.has_key(mmodule) then
1200 self.collect_things(mmodule)
1201 end
1202 return cache[mmodule]
1203 end
1204
1205 redef fun collect_mclasses(mmodule)
1206 do
1207 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1208 assert not self.need_anchor
1209 var cache = self.collect_mclasses_cache
1210 if not cache.has_key(mmodule) then
1211 self.collect_things(mmodule)
1212 end
1213 var res = cache[mmodule]
1214 collect_mclasses_last_module = mmodule
1215 collect_mclasses_last_module_cache = res
1216 return res
1217 end
1218
1219 private var collect_mclasses_last_module: nullable MModule = null
1220 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1221
1222 redef fun collect_mtypes(mmodule)
1223 do
1224 assert not self.need_anchor
1225 var cache = self.collect_mtypes_cache
1226 if not cache.has_key(mmodule) then
1227 self.collect_things(mmodule)
1228 end
1229 return cache[mmodule]
1230 end
1231
1232 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1233 private fun collect_things(mmodule: MModule)
1234 do
1235 var res = new HashSet[MClassDef]
1236 var seen = new HashSet[MClass]
1237 var types = new HashSet[MClassType]
1238 seen.add(self.mclass)
1239 var todo = [self.mclass]
1240 while not todo.is_empty do
1241 var mclass = todo.pop
1242 #print "process {mclass}"
1243 for mclassdef in mclass.mclassdefs do
1244 if not mmodule.in_importation <= mclassdef.mmodule then continue
1245 #print " process {mclassdef}"
1246 res.add(mclassdef)
1247 for supertype in mclassdef.supertypes do
1248 types.add(supertype)
1249 var superclass = supertype.mclass
1250 if seen.has(superclass) then continue
1251 #print " add {superclass}"
1252 seen.add(superclass)
1253 todo.add(superclass)
1254 end
1255 end
1256 end
1257 collect_mclassdefs_cache[mmodule] = res
1258 collect_mclasses_cache[mmodule] = seen
1259 collect_mtypes_cache[mmodule] = types
1260 end
1261
1262 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1263 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1264 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1265
1266 end
1267
1268 # A type based on a generic class.
1269 # A generic type a just a class with additional formal generic arguments.
1270 class MGenericType
1271 super MClassType
1272
1273 redef var arguments
1274
1275 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1276
1277 init
1278 do
1279 assert self.mclass.arity == arguments.length
1280
1281 self.need_anchor = false
1282 for t in arguments do
1283 if t.need_anchor then
1284 self.need_anchor = true
1285 break
1286 end
1287 end
1288
1289 self.to_s = "{mclass}[{arguments.join(", ")}]"
1290 end
1291
1292 # The short-name of the class, then the full-name of each type arguments within brackets.
1293 # Example: `"Map[String, List[Int]]"`
1294 redef var to_s is noinit
1295
1296 # The full-name of the class, then the full-name of each type arguments within brackets.
1297 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1298 redef var full_name is lazy do
1299 var args = new Array[String]
1300 for t in arguments do
1301 args.add t.full_name
1302 end
1303 return "{mclass.full_name}[{args.join(", ")}]"
1304 end
1305
1306 redef var c_name is lazy do
1307 var res = mclass.c_name
1308 # Note: because the arity is known, a prefix notation is enough
1309 for t in arguments do
1310 res += "__"
1311 res += t.c_name
1312 end
1313 return res.to_s
1314 end
1315
1316 redef var need_anchor is noinit
1317
1318 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1319 do
1320 if not need_anchor then return self
1321 assert can_resolve_for(mtype, anchor, mmodule)
1322 var types = new Array[MType]
1323 for t in arguments do
1324 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1325 end
1326 return mclass.get_mtype(types)
1327 end
1328
1329 redef fun can_resolve_for(mtype, anchor, mmodule)
1330 do
1331 if not need_anchor then return true
1332 for t in arguments do
1333 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1334 end
1335 return true
1336 end
1337
1338
1339 redef fun depth
1340 do
1341 var dmax = 0
1342 for a in self.arguments do
1343 var d = a.depth
1344 if d > dmax then dmax = d
1345 end
1346 return dmax + 1
1347 end
1348
1349 redef fun length
1350 do
1351 var res = 1
1352 for a in self.arguments do
1353 res += a.length
1354 end
1355 return res
1356 end
1357 end
1358
1359 # A formal type (either virtual of parametric).
1360 #
1361 # The main issue with formal types is that they offer very little information on their own
1362 # and need a context (anchor and mmodule) to be useful.
1363 abstract class MFormalType
1364 super MType
1365
1366 redef var as_notnull = new MNotNullType(self) is lazy
1367 end
1368
1369 # A virtual formal type.
1370 class MVirtualType
1371 super MFormalType
1372
1373 # The property associated with the type.
1374 # Its the definitions of this property that determine the bound or the virtual type.
1375 var mproperty: MVirtualTypeProp
1376
1377 redef fun location do return mproperty.location
1378
1379 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1380
1381 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1382 do
1383 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MBottomType(model)
1384 end
1385
1386 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1387 do
1388 assert not resolved_receiver.need_anchor
1389 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1390 if props.is_empty then
1391 abort
1392 else if props.length == 1 then
1393 return props.first
1394 end
1395 var types = new ArraySet[MType]
1396 var res = props.first
1397 for p in props do
1398 types.add(p.bound.as(not null))
1399 if not res.is_fixed then res = p
1400 end
1401 if types.length == 1 then
1402 return res
1403 end
1404 abort
1405 end
1406
1407 # A VT is fixed when:
1408 # * the VT is (re-)defined with the annotation `is fixed`
1409 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1410 # * the receiver is an enum class since there is no subtype possible
1411 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1412 do
1413 assert not resolved_receiver.need_anchor
1414 resolved_receiver = resolved_receiver.undecorate
1415 assert resolved_receiver isa MClassType # It is the only remaining type
1416
1417 var prop = lookup_single_definition(mmodule, resolved_receiver)
1418 var res = prop.bound
1419 if res == null then return new MBottomType(model)
1420
1421 # Recursively lookup the fixed result
1422 res = res.lookup_fixed(mmodule, resolved_receiver)
1423
1424 # 1. For a fixed VT, return the resolved bound
1425 if prop.is_fixed then return res
1426
1427 # 2. For a enum boud, return the bound
1428 if res isa MClassType and res.mclass.kind == enum_kind then return res
1429
1430 # 3. for a enum receiver return the bound
1431 if resolved_receiver.mclass.kind == enum_kind then return res
1432
1433 return self
1434 end
1435
1436 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1437 do
1438 if not cleanup_virtual then return self
1439 assert can_resolve_for(mtype, anchor, mmodule)
1440 # self is a virtual type declared (or inherited) in mtype
1441 # The point of the function it to get the bound of the virtual type that make sense for mtype
1442 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1443 #print "{class_name}: {self}/{mtype}/{anchor}?"
1444 var resolved_receiver
1445 if mtype.need_anchor then
1446 assert anchor != null
1447 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1448 else
1449 resolved_receiver = mtype
1450 end
1451 # Now, we can get the bound
1452 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1453 # The bound is exactly as declared in the "type" property, so we must resolve it again
1454 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1455
1456 return res
1457 end
1458
1459 redef fun can_resolve_for(mtype, anchor, mmodule)
1460 do
1461 if mtype.need_anchor then
1462 assert anchor != null
1463 mtype = mtype.anchor_to(mmodule, anchor)
1464 end
1465 return mtype.has_mproperty(mmodule, mproperty)
1466 end
1467
1468 redef fun to_s do return self.mproperty.to_s
1469
1470 redef fun full_name do return self.mproperty.full_name
1471
1472 redef fun c_name do return self.mproperty.c_name
1473 end
1474
1475 # The type associated to a formal parameter generic type of a class
1476 #
1477 # Each parameter type is associated to a specific class.
1478 # It means that all refinements of a same class "share" the parameter type,
1479 # but that a generic subclass has its own parameter types.
1480 #
1481 # However, in the sense of the meta-model, a parameter type of a class is
1482 # a valid type in a subclass. The "in the sense of the meta-model" is
1483 # important because, in the Nit language, the programmer cannot refers
1484 # directly to the parameter types of the super-classes.
1485 #
1486 # Example:
1487 #
1488 # class A[E]
1489 # fun e: E is abstract
1490 # end
1491 # class B[F]
1492 # super A[Array[F]]
1493 # end
1494 #
1495 # In the class definition B[F], `F` is a valid type but `E` is not.
1496 # However, `self.e` is a valid method call, and the signature of `e` is
1497 # declared `e: E`.
1498 #
1499 # Note that parameter types are shared among class refinements.
1500 # Therefore parameter only have an internal name (see `to_s` for details).
1501 class MParameterType
1502 super MFormalType
1503
1504 # The generic class where the parameter belong
1505 var mclass: MClass
1506
1507 redef fun model do return self.mclass.intro_mmodule.model
1508
1509 redef fun location do return mclass.location
1510
1511 # The position of the parameter (0 for the first parameter)
1512 # FIXME: is `position` a better name?
1513 var rank: Int
1514
1515 redef var name
1516
1517 redef fun to_s do return name
1518
1519 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1520
1521 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1522
1523 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1524 do
1525 assert not resolved_receiver.need_anchor
1526 resolved_receiver = resolved_receiver.undecorate
1527 assert resolved_receiver isa MClassType # It is the only remaining type
1528 var goalclass = self.mclass
1529 if resolved_receiver.mclass == goalclass then
1530 return resolved_receiver.arguments[self.rank]
1531 end
1532 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1533 for t in supertypes do
1534 if t.mclass == goalclass then
1535 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1536 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1537 var res = t.arguments[self.rank]
1538 return res
1539 end
1540 end
1541 abort
1542 end
1543
1544 # A PT is fixed when:
1545 # * Its bound is a enum class (see `enum_kind`).
1546 # The PT is just useless, but it is still a case.
1547 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1548 # so it is necessarily fixed in a `super` clause, either with a normal type
1549 # or with another PT.
1550 # See `resolve_for` for examples about related issues.
1551 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1552 do
1553 assert not resolved_receiver.need_anchor
1554 resolved_receiver = resolved_receiver.undecorate
1555 assert resolved_receiver isa MClassType # It is the only remaining type
1556 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1557 return res
1558 end
1559
1560 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1561 do
1562 assert can_resolve_for(mtype, anchor, mmodule)
1563 #print "{class_name}: {self}/{mtype}/{anchor}?"
1564
1565 if mtype isa MGenericType and mtype.mclass == self.mclass then
1566 var res = mtype.arguments[self.rank]
1567 if anchor != null and res.need_anchor then
1568 # Maybe the result can be resolved more if are bound to a final class
1569 var r2 = res.anchor_to(mmodule, anchor)
1570 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1571 end
1572 return res
1573 end
1574
1575 # self is a parameter type of mtype (or of a super-class of mtype)
1576 # The point of the function it to get the bound of the virtual type that make sense for mtype
1577 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1578 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1579 var resolved_receiver
1580 if mtype.need_anchor then
1581 assert anchor != null
1582 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1583 else
1584 resolved_receiver = mtype
1585 end
1586 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1587 if resolved_receiver isa MParameterType then
1588 assert anchor != null
1589 assert resolved_receiver.mclass == anchor.mclass
1590 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1591 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1592 end
1593 assert resolved_receiver isa MClassType # It is the only remaining type
1594
1595 # Eh! The parameter is in the current class.
1596 # So we return the corresponding argument, no mater what!
1597 if resolved_receiver.mclass == self.mclass then
1598 var res = resolved_receiver.arguments[self.rank]
1599 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1600 return res
1601 end
1602
1603 if resolved_receiver.need_anchor then
1604 assert anchor != null
1605 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1606 end
1607 # Now, we can get the bound
1608 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1609 # The bound is exactly as declared in the "type" property, so we must resolve it again
1610 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1611
1612 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1613
1614 return res
1615 end
1616
1617 redef fun can_resolve_for(mtype, anchor, mmodule)
1618 do
1619 if mtype.need_anchor then
1620 assert anchor != null
1621 mtype = mtype.anchor_to(mmodule, anchor)
1622 end
1623 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1624 end
1625 end
1626
1627 # A type that decorates another type.
1628 #
1629 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1630 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1631 abstract class MProxyType
1632 super MType
1633 # The base type
1634 var mtype: MType
1635
1636 redef fun location do return mtype.location
1637
1638 redef fun model do return self.mtype.model
1639 redef fun need_anchor do return mtype.need_anchor
1640 redef fun as_nullable do return mtype.as_nullable
1641 redef fun as_notnull do return mtype.as_notnull
1642 redef fun undecorate do return mtype.undecorate
1643 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1644 do
1645 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1646 return res
1647 end
1648
1649 redef fun can_resolve_for(mtype, anchor, mmodule)
1650 do
1651 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1652 end
1653
1654 redef fun lookup_fixed(mmodule, resolved_receiver)
1655 do
1656 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1657 return t
1658 end
1659
1660 redef fun depth do return self.mtype.depth
1661
1662 redef fun length do return self.mtype.length
1663
1664 redef fun collect_mclassdefs(mmodule)
1665 do
1666 assert not self.need_anchor
1667 return self.mtype.collect_mclassdefs(mmodule)
1668 end
1669
1670 redef fun collect_mclasses(mmodule)
1671 do
1672 assert not self.need_anchor
1673 return self.mtype.collect_mclasses(mmodule)
1674 end
1675
1676 redef fun collect_mtypes(mmodule)
1677 do
1678 assert not self.need_anchor
1679 return self.mtype.collect_mtypes(mmodule)
1680 end
1681 end
1682
1683 # A type prefixed with "nullable"
1684 class MNullableType
1685 super MProxyType
1686
1687 init
1688 do
1689 self.to_s = "nullable {mtype}"
1690 end
1691
1692 redef var to_s is noinit
1693
1694 redef var full_name is lazy do return "nullable {mtype.full_name}"
1695
1696 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1697
1698 redef fun as_nullable do return self
1699 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1700 do
1701 var res = super
1702 return res.as_nullable
1703 end
1704
1705 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1706 redef fun lookup_fixed(mmodule, resolved_receiver)
1707 do
1708 var t = super
1709 if t == mtype then return self
1710 return t.as_nullable
1711 end
1712 end
1713
1714 # A non-null version of a formal type.
1715 #
1716 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1717 class MNotNullType
1718 super MProxyType
1719
1720 redef fun to_s do return "not null {mtype}"
1721 redef var full_name is lazy do return "not null {mtype.full_name}"
1722 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1723
1724 redef fun as_notnull do return self
1725
1726 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1727 do
1728 var res = super
1729 return res.as_notnull
1730 end
1731
1732 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1733 redef fun lookup_fixed(mmodule, resolved_receiver)
1734 do
1735 var t = super
1736 if t == mtype then return self
1737 return t.as_notnull
1738 end
1739 end
1740
1741 # The type of the only value null
1742 #
1743 # The is only one null type per model, see `MModel::null_type`.
1744 class MNullType
1745 super MType
1746 redef var model
1747 redef fun to_s do return "null"
1748 redef fun full_name do return "null"
1749 redef fun c_name do return "null"
1750 redef fun as_nullable do return self
1751
1752 redef var as_notnull = new MBottomType(model) is lazy
1753 redef fun need_anchor do return false
1754 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1755 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1756
1757 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1758
1759 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1760
1761 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1762 end
1763
1764 # The special universal most specific type.
1765 #
1766 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1767 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1768 #
1769 # Semantically it is the singleton `null.as_notnull`.
1770 class MBottomType
1771 super MType
1772 redef var model
1773 redef fun to_s do return "bottom"
1774 redef fun full_name do return "bottom"
1775 redef fun c_name do return "bottom"
1776 redef fun as_nullable do return model.null_type
1777 redef fun as_notnull do return self
1778 redef fun need_anchor do return false
1779 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1780 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1781
1782 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1783
1784 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1785
1786 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1787 end
1788
1789 # A signature of a method
1790 class MSignature
1791 super MType
1792
1793 # The each parameter (in order)
1794 var mparameters: Array[MParameter]
1795
1796 # Returns a parameter named `name`, if any.
1797 fun mparameter_by_name(name: String): nullable MParameter
1798 do
1799 for p in mparameters do
1800 if p.name == name then return p
1801 end
1802 return null
1803 end
1804
1805 # The return type (null for a procedure)
1806 var return_mtype: nullable MType
1807
1808 redef fun depth
1809 do
1810 var dmax = 0
1811 var t = self.return_mtype
1812 if t != null then dmax = t.depth
1813 for p in mparameters do
1814 var d = p.mtype.depth
1815 if d > dmax then dmax = d
1816 end
1817 return dmax + 1
1818 end
1819
1820 redef fun length
1821 do
1822 var res = 1
1823 var t = self.return_mtype
1824 if t != null then res += t.length
1825 for p in mparameters do
1826 res += p.mtype.length
1827 end
1828 return res
1829 end
1830
1831 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1832 init
1833 do
1834 var vararg_rank = -1
1835 for i in [0..mparameters.length[ do
1836 var parameter = mparameters[i]
1837 if parameter.is_vararg then
1838 if vararg_rank >= 0 then
1839 # If there is more than one vararg,
1840 # consider that additional arguments cannot be mapped.
1841 vararg_rank = -1
1842 break
1843 end
1844 vararg_rank = i
1845 end
1846 end
1847 self.vararg_rank = vararg_rank
1848 end
1849
1850 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1851 # value is -1 if there is no vararg.
1852 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1853 #
1854 # From a model POV, a signature can contain more than one vararg parameter,
1855 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1856 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1857 # and additional arguments will be refused.
1858 var vararg_rank: Int is noinit
1859
1860 # The number of parameters
1861 fun arity: Int do return mparameters.length
1862
1863 redef fun to_s
1864 do
1865 var b = new FlatBuffer
1866 if not mparameters.is_empty then
1867 b.append("(")
1868 for i in [0..mparameters.length[ do
1869 var mparameter = mparameters[i]
1870 if i > 0 then b.append(", ")
1871 b.append(mparameter.name)
1872 b.append(": ")
1873 b.append(mparameter.mtype.to_s)
1874 if mparameter.is_vararg then
1875 b.append("...")
1876 end
1877 end
1878 b.append(")")
1879 end
1880 var ret = self.return_mtype
1881 if ret != null then
1882 b.append(": ")
1883 b.append(ret.to_s)
1884 end
1885 return b.to_s
1886 end
1887
1888 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1889 do
1890 var params = new Array[MParameter]
1891 for p in self.mparameters do
1892 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1893 end
1894 var ret = self.return_mtype
1895 if ret != null then
1896 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1897 end
1898 var res = new MSignature(params, ret)
1899 return res
1900 end
1901 end
1902
1903 # A parameter in a signature
1904 class MParameter
1905 super MEntity
1906
1907 # The name of the parameter
1908 redef var name
1909
1910 # The static type of the parameter
1911 var mtype: MType
1912
1913 # Is the parameter a vararg?
1914 var is_vararg: Bool
1915
1916 redef fun to_s
1917 do
1918 if is_vararg then
1919 return "{name}: {mtype}..."
1920 else
1921 return "{name}: {mtype}"
1922 end
1923 end
1924
1925 # Returns a new parameter with the `mtype` resolved.
1926 # See `MType::resolve_for` for details.
1927 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1928 do
1929 if not self.mtype.need_anchor then return self
1930 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1931 var res = new MParameter(self.name, newtype, self.is_vararg)
1932 return res
1933 end
1934
1935 redef fun model do return mtype.model
1936 end
1937
1938 # A service (global property) that generalize method, attribute, etc.
1939 #
1940 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1941 # to a specific `MModule` nor a specific `MClass`.
1942 #
1943 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1944 # and the other in subclasses and in refinements.
1945 #
1946 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1947 # of any dynamic type).
1948 # For instance, a call site "x.foo" is associated to a `MProperty`.
1949 abstract class MProperty
1950 super MEntity
1951
1952 # The associated MPropDef subclass.
1953 # The two specialization hierarchy are symmetric.
1954 type MPROPDEF: MPropDef
1955
1956 # The classdef that introduce the property
1957 # While a property is not bound to a specific module, or class,
1958 # the introducing mclassdef is used for naming and visibility
1959 var intro_mclassdef: MClassDef
1960
1961 # The (short) name of the property
1962 redef var name
1963
1964 redef var location
1965
1966 # The canonical name of the property.
1967 #
1968 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
1969 # Example: "my_package::my_module::MyClass::my_method"
1970 #
1971 # The full-name of the module is needed because two distinct modules of the same package can
1972 # still refine the same class and introduce homonym properties.
1973 #
1974 # For public properties not introduced by refinement, the module name is not used.
1975 #
1976 # Example: `my_package::MyClass::My_method`
1977 redef var full_name is lazy do
1978 if intro_mclassdef.is_intro then
1979 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1980 else
1981 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
1982 end
1983 end
1984
1985 redef var c_name is lazy do
1986 # FIXME use `namespace_for`
1987 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1988 end
1989
1990 # The visibility of the property
1991 var visibility: MVisibility
1992
1993 # Is the property usable as an initializer?
1994 var is_autoinit = false is writable
1995
1996 init
1997 do
1998 intro_mclassdef.intro_mproperties.add(self)
1999 var model = intro_mclassdef.mmodule.model
2000 model.mproperties_by_name.add_one(name, self)
2001 model.mproperties.add(self)
2002 end
2003
2004 # All definitions of the property.
2005 # The first is the introduction,
2006 # The other are redefinitions (in refinements and in subclasses)
2007 var mpropdefs = new Array[MPROPDEF]
2008
2009 # The definition that introduces the property.
2010 #
2011 # Warning: such a definition may not exist in the early life of the object.
2012 # In this case, the method will abort.
2013 var intro: MPROPDEF is noinit
2014
2015 redef fun model do return intro.model
2016
2017 # Alias for `name`
2018 redef fun to_s do return name
2019
2020 # Return the most specific property definitions defined or inherited by a type.
2021 # The selection knows that refinement is stronger than specialization;
2022 # however, in case of conflict more than one property are returned.
2023 # If mtype does not know mproperty then an empty array is returned.
2024 #
2025 # If you want the really most specific property, then look at `lookup_first_definition`
2026 #
2027 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2028 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2029 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2030 do
2031 assert not mtype.need_anchor
2032 mtype = mtype.undecorate
2033
2034 var cache = self.lookup_definitions_cache[mmodule, mtype]
2035 if cache != null then return cache
2036
2037 #print "select prop {mproperty} for {mtype} in {self}"
2038 # First, select all candidates
2039 var candidates = new Array[MPROPDEF]
2040 for mpropdef in self.mpropdefs do
2041 # If the definition is not imported by the module, then skip
2042 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2043 # If the definition is not inherited by the type, then skip
2044 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2045 # Else, we keep it
2046 candidates.add(mpropdef)
2047 end
2048 # Fast track for only one candidate
2049 if candidates.length <= 1 then
2050 self.lookup_definitions_cache[mmodule, mtype] = candidates
2051 return candidates
2052 end
2053
2054 # Second, filter the most specific ones
2055 return select_most_specific(mmodule, candidates)
2056 end
2057
2058 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2059
2060 # Return the most specific property definitions inherited by a type.
2061 # The selection knows that refinement is stronger than specialization;
2062 # however, in case of conflict more than one property are returned.
2063 # If mtype does not know mproperty then an empty array is returned.
2064 #
2065 # If you want the really most specific property, then look at `lookup_next_definition`
2066 #
2067 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2068 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2069 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2070 do
2071 assert not mtype.need_anchor
2072 mtype = mtype.undecorate
2073
2074 # First, select all candidates
2075 var candidates = new Array[MPROPDEF]
2076 for mpropdef in self.mpropdefs do
2077 # If the definition is not imported by the module, then skip
2078 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2079 # If the definition is not inherited by the type, then skip
2080 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2081 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2082 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2083 # Else, we keep it
2084 candidates.add(mpropdef)
2085 end
2086 # Fast track for only one candidate
2087 if candidates.length <= 1 then return candidates
2088
2089 # Second, filter the most specific ones
2090 return select_most_specific(mmodule, candidates)
2091 end
2092
2093 # Return an array containing olny the most specific property definitions
2094 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2095 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2096 do
2097 var res = new Array[MPROPDEF]
2098 for pd1 in candidates do
2099 var cd1 = pd1.mclassdef
2100 var c1 = cd1.mclass
2101 var keep = true
2102 for pd2 in candidates do
2103 if pd2 == pd1 then continue # do not compare with self!
2104 var cd2 = pd2.mclassdef
2105 var c2 = cd2.mclass
2106 if c2.mclass_type == c1.mclass_type then
2107 if cd2.mmodule.in_importation < cd1.mmodule then
2108 # cd2 refines cd1; therefore we skip pd1
2109 keep = false
2110 break
2111 end
2112 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2113 # cd2 < cd1; therefore we skip pd1
2114 keep = false
2115 break
2116 end
2117 end
2118 if keep then
2119 res.add(pd1)
2120 end
2121 end
2122 if res.is_empty then
2123 print "All lost! {candidates.join(", ")}"
2124 # FIXME: should be abort!
2125 end
2126 return res
2127 end
2128
2129 # Return the most specific definition in the linearization of `mtype`.
2130 #
2131 # If you want to know the next properties in the linearization,
2132 # look at `MPropDef::lookup_next_definition`.
2133 #
2134 # FIXME: the linearization is still unspecified
2135 #
2136 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2137 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2138 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2139 do
2140 return lookup_all_definitions(mmodule, mtype).first
2141 end
2142
2143 # Return all definitions in a linearization order
2144 # Most specific first, most general last
2145 #
2146 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2147 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2148 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2149 do
2150 mtype = mtype.undecorate
2151
2152 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2153 if cache != null then return cache
2154
2155 assert not mtype.need_anchor
2156 assert mtype.has_mproperty(mmodule, self)
2157
2158 #print "select prop {mproperty} for {mtype} in {self}"
2159 # First, select all candidates
2160 var candidates = new Array[MPROPDEF]
2161 for mpropdef in self.mpropdefs do
2162 # If the definition is not imported by the module, then skip
2163 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2164 # If the definition is not inherited by the type, then skip
2165 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2166 # Else, we keep it
2167 candidates.add(mpropdef)
2168 end
2169 # Fast track for only one candidate
2170 if candidates.length <= 1 then
2171 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2172 return candidates
2173 end
2174
2175 mmodule.linearize_mpropdefs(candidates)
2176 candidates = candidates.reversed
2177 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2178 return candidates
2179 end
2180
2181 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2182 end
2183
2184 # A global method
2185 class MMethod
2186 super MProperty
2187
2188 redef type MPROPDEF: MMethodDef
2189
2190 # Is the property defined at the top_level of the module?
2191 # Currently such a property are stored in `Object`
2192 var is_toplevel: Bool = false is writable
2193
2194 # Is the property a constructor?
2195 # Warning, this property can be inherited by subclasses with or without being a constructor
2196 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2197 var is_init: Bool = false is writable
2198
2199 # The constructor is a (the) root init with empty signature but a set of initializers
2200 var is_root_init: Bool = false is writable
2201
2202 # Is the property a 'new' constructor?
2203 var is_new: Bool = false is writable
2204
2205 # Is the property a legal constructor for a given class?
2206 # As usual, visibility is not considered.
2207 # FIXME not implemented
2208 fun is_init_for(mclass: MClass): Bool
2209 do
2210 return self.is_init
2211 end
2212
2213 # A specific method that is safe to call on null.
2214 # Currently, only `==`, `!=` and `is_same_instance` are safe
2215 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2216 end
2217
2218 # A global attribute
2219 class MAttribute
2220 super MProperty
2221
2222 redef type MPROPDEF: MAttributeDef
2223
2224 end
2225
2226 # A global virtual type
2227 class MVirtualTypeProp
2228 super MProperty
2229
2230 redef type MPROPDEF: MVirtualTypeDef
2231
2232 # The formal type associated to the virtual type property
2233 var mvirtualtype = new MVirtualType(self)
2234 end
2235
2236 # A definition of a property (local property)
2237 #
2238 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2239 # specific class definition (which belong to a specific module)
2240 abstract class MPropDef
2241 super MEntity
2242
2243 # The associated `MProperty` subclass.
2244 # the two specialization hierarchy are symmetric
2245 type MPROPERTY: MProperty
2246
2247 # Self class
2248 type MPROPDEF: MPropDef
2249
2250 # The class definition where the property definition is
2251 var mclassdef: MClassDef
2252
2253 # The associated global property
2254 var mproperty: MPROPERTY
2255
2256 redef var location: Location
2257
2258 init
2259 do
2260 mclassdef.mpropdefs.add(self)
2261 mproperty.mpropdefs.add(self)
2262 if mproperty.intro_mclassdef == mclassdef then
2263 assert not isset mproperty._intro
2264 mproperty.intro = self
2265 end
2266 self.to_s = "{mclassdef}${mproperty}"
2267 end
2268
2269 # Actually the name of the `mproperty`
2270 redef fun name do return mproperty.name
2271
2272 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2273 #
2274 # Therefore the combination of identifiers is awful,
2275 # the worst case being
2276 #
2277 # * a property "p::m::A::x"
2278 # * redefined in a refinement of a class "q::n::B"
2279 # * in a module "r::o"
2280 # * so "r::o$q::n::B$p::m::A::x"
2281 #
2282 # Fortunately, the full-name is simplified when entities are repeated.
2283 # For the previous case, the simplest form is "p$A$x".
2284 redef var full_name is lazy do
2285 var res = new FlatBuffer
2286
2287 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2288 res.append mclassdef.full_name
2289
2290 res.append "$"
2291
2292 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2293 # intro are unambiguous in a class
2294 res.append name
2295 else
2296 # Just try to simplify each part
2297 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2298 # precise "p::m" only if "p" != "r"
2299 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2300 res.append "::"
2301 else if mproperty.visibility <= private_visibility then
2302 # Same package ("p"=="q"), but private visibility,
2303 # does the module part ("::m") need to be displayed
2304 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2305 res.append "::"
2306 res.append mproperty.intro_mclassdef.mmodule.name
2307 res.append "::"
2308 end
2309 end
2310 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2311 # precise "B" only if not the same class than "A"
2312 res.append mproperty.intro_mclassdef.name
2313 res.append "::"
2314 end
2315 # Always use the property name "x"
2316 res.append mproperty.name
2317 end
2318 return res.to_s
2319 end
2320
2321 redef var c_name is lazy do
2322 var res = new FlatBuffer
2323 res.append mclassdef.c_name
2324 res.append "___"
2325 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2326 res.append name.to_cmangle
2327 else
2328 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2329 res.append mproperty.intro_mclassdef.mmodule.c_name
2330 res.append "__"
2331 end
2332 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2333 res.append mproperty.intro_mclassdef.name.to_cmangle
2334 res.append "__"
2335 end
2336 res.append mproperty.name.to_cmangle
2337 end
2338 return res.to_s
2339 end
2340
2341 redef fun model do return mclassdef.model
2342
2343 # Internal name combining the module, the class and the property
2344 # Example: "mymodule$MyClass$mymethod"
2345 redef var to_s is noinit
2346
2347 # Is self the definition that introduce the property?
2348 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2349
2350 # Return the next definition in linearization of `mtype`.
2351 #
2352 # This method is used to determine what method is called by a super.
2353 #
2354 # REQUIRE: `not mtype.need_anchor`
2355 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2356 do
2357 assert not mtype.need_anchor
2358
2359 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2360 var i = mpropdefs.iterator
2361 while i.is_ok and i.item != self do i.next
2362 assert has_property: i.is_ok
2363 i.next
2364 assert has_next_property: i.is_ok
2365 return i.item
2366 end
2367 end
2368
2369 # A local definition of a method
2370 class MMethodDef
2371 super MPropDef
2372
2373 redef type MPROPERTY: MMethod
2374 redef type MPROPDEF: MMethodDef
2375
2376 # The signature attached to the property definition
2377 var msignature: nullable MSignature = null is writable
2378
2379 # The signature attached to the `new` call on a root-init
2380 # This is a concatenation of the signatures of the initializers
2381 #
2382 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2383 var new_msignature: nullable MSignature = null is writable
2384
2385 # List of initialisers to call in root-inits
2386 #
2387 # They could be setters or attributes
2388 #
2389 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2390 var initializers = new Array[MProperty]
2391
2392 # Is the method definition abstract?
2393 var is_abstract: Bool = false is writable
2394
2395 # Is the method definition intern?
2396 var is_intern = false is writable
2397
2398 # Is the method definition extern?
2399 var is_extern = false is writable
2400
2401 # An optional constant value returned in functions.
2402 #
2403 # Only some specific primitife value are accepted by engines.
2404 # Is used when there is no better implementation available.
2405 #
2406 # Currently used only for the implementation of the `--define`
2407 # command-line option.
2408 # SEE: module `mixin`.
2409 var constant_value: nullable Object = null is writable
2410 end
2411
2412 # A local definition of an attribute
2413 class MAttributeDef
2414 super MPropDef
2415
2416 redef type MPROPERTY: MAttribute
2417 redef type MPROPDEF: MAttributeDef
2418
2419 # The static type of the attribute
2420 var static_mtype: nullable MType = null is writable
2421 end
2422
2423 # A local definition of a virtual type
2424 class MVirtualTypeDef
2425 super MPropDef
2426
2427 redef type MPROPERTY: MVirtualTypeProp
2428 redef type MPROPDEF: MVirtualTypeDef
2429
2430 # The bound of the virtual type
2431 var bound: nullable MType = null is writable
2432
2433 # Is the bound fixed?
2434 var is_fixed = false is writable
2435 end
2436
2437 # A kind of class.
2438 #
2439 # * `abstract_kind`
2440 # * `concrete_kind`
2441 # * `interface_kind`
2442 # * `enum_kind`
2443 # * `extern_kind`
2444 #
2445 # Note this class is basically an enum.
2446 # FIXME: use a real enum once user-defined enums are available
2447 class MClassKind
2448 redef var to_s
2449
2450 # Is a constructor required?
2451 var need_init: Bool
2452
2453 # TODO: private init because enumeration.
2454
2455 # Can a class of kind `self` specializes a class of kine `other`?
2456 fun can_specialize(other: MClassKind): Bool
2457 do
2458 if other == interface_kind then return true # everybody can specialize interfaces
2459 if self == interface_kind or self == enum_kind then
2460 # no other case for interfaces
2461 return false
2462 else if self == extern_kind then
2463 # only compatible with themselves
2464 return self == other
2465 else if other == enum_kind or other == extern_kind then
2466 # abstract_kind and concrete_kind are incompatible
2467 return false
2468 end
2469 # remain only abstract_kind and concrete_kind
2470 return true
2471 end
2472 end
2473
2474 # The class kind `abstract`
2475 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2476 # The class kind `concrete`
2477 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2478 # The class kind `interface`
2479 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2480 # The class kind `enum`
2481 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2482 # The class kind `extern`
2483 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)