bf3cb1286abe47feb41037adbc10f5ca68ed9b6e
[nit.git] / src / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import coloring
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate: OptionBool = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern: OptionBool = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute: OptionBool = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate: OptionBool = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --inline-coloring-numbers
33 var opt_inline_coloring_numbers: OptionBool = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
34 # --inline-some-methods
35 var opt_inline_some_methods: OptionBool = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
36 # --direct-call-monomorph
37 var opt_direct_call_monomorph: OptionBool = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph")
38 # --skip-dead-methods
39 var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods")
40 # --semi-global
41 var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global")
42 # --no-colo-dead-methods
43 var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods")
44 # --tables-metrics
45 var opt_tables_metrics: OptionBool = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
46
47 redef init
48 do
49 super
50 self.option_context.add_option(self.opt_separate)
51 self.option_context.add_option(self.opt_no_inline_intern)
52 self.option_context.add_option(self.opt_no_union_attribute)
53 self.option_context.add_option(self.opt_no_shortcut_equate)
54 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global)
55 self.option_context.add_option(self.opt_colo_dead_methods)
56 self.option_context.add_option(self.opt_tables_metrics)
57 end
58
59 redef fun process_options(args)
60 do
61 super
62
63 var tc = self
64 if tc.opt_semi_global.value then
65 tc.opt_inline_coloring_numbers.value = true
66 tc.opt_inline_some_methods.value = true
67 tc.opt_direct_call_monomorph.value = true
68 tc.opt_skip_dead_methods.value = true
69 end
70 end
71
72 var separate_compiler_phase = new SeparateCompilerPhase(self, null)
73 end
74
75 class SeparateCompilerPhase
76 super Phase
77 redef fun process_mainmodule(mainmodule, given_mmodules) do
78 if not toolcontext.opt_separate.value then return
79
80 var modelbuilder = toolcontext.modelbuilder
81 var analysis = modelbuilder.do_rapid_type_analysis(mainmodule)
82 modelbuilder.run_separate_compiler(mainmodule, analysis)
83 end
84 end
85
86 redef class ModelBuilder
87 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
88 do
89 var time0 = get_time
90 self.toolcontext.info("*** GENERATING C ***", 1)
91
92 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
93 compiler.compile_header
94
95 # compile class structures
96 self.toolcontext.info("Property coloring", 2)
97 compiler.new_file("{mainmodule.name}.classes")
98 compiler.do_property_coloring
99 for m in mainmodule.in_importation.greaters do
100 for mclass in m.intro_mclasses do
101 if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
102 compiler.compile_class_to_c(mclass)
103 end
104 end
105
106 # The main function of the C
107 compiler.new_file("{mainmodule.name}.main")
108 compiler.compile_nitni_global_ref_functions
109 compiler.compile_main_function
110
111 # compile methods
112 for m in mainmodule.in_importation.greaters do
113 self.toolcontext.info("Generate C for module {m}", 2)
114 compiler.new_file("{m.name}.sep")
115 compiler.compile_module_to_c(m)
116 end
117
118 # compile live & cast type structures
119 self.toolcontext.info("Type coloring", 2)
120 compiler.new_file("{mainmodule.name}.types")
121 var mtypes = compiler.do_type_coloring
122 for t in mtypes do
123 compiler.compile_type_to_c(t)
124 end
125 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
126 for t in compiler.undead_types do
127 if mtypes.has(t) then continue
128 compiler.compile_type_to_c(t)
129 end
130
131 compiler.display_stats
132
133 var time1 = get_time
134 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
135 write_and_make(compiler)
136 end
137
138 # Count number of invocations by VFT
139 private var nb_invok_by_tables = 0
140 # Count number of invocations by direct call
141 private var nb_invok_by_direct = 0
142 # Count number of invocations by inlining
143 private var nb_invok_by_inline = 0
144 end
145
146 # Singleton that store the knowledge about the separate compilation process
147 class SeparateCompiler
148 super AbstractCompiler
149
150 redef type VISITOR: SeparateCompilerVisitor
151
152 # The result of the RTA (used to know live types and methods)
153 var runtime_type_analysis: nullable RapidTypeAnalysis
154
155 private var undead_types: Set[MType] = new HashSet[MType]
156 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
157
158 private var type_ids: Map[MType, Int]
159 private var type_colors: Map[MType, Int]
160 private var opentype_colors: Map[MType, Int]
161 protected var method_colors: Map[PropertyLayoutElement, Int]
162 protected var attr_colors: Map[MAttribute, Int]
163
164 init(mainmodule: MModule, mmbuilder: ModelBuilder, runtime_type_analysis: nullable RapidTypeAnalysis) do
165 super(mainmodule, mmbuilder)
166 var file = new_file("nit.common")
167 self.header = new CodeWriter(file)
168 self.runtime_type_analysis = runtime_type_analysis
169 self.compile_box_kinds
170 end
171
172 redef fun compile_header_structs do
173 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
174 self.compile_header_attribute_structs
175 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
176
177 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
178 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
179 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
180 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
181 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
182 end
183
184 fun compile_header_attribute_structs
185 do
186 if modelbuilder.toolcontext.opt_no_union_attribute.value then
187 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
188 else
189 self.header.add_decl("typedef union \{")
190 self.header.add_decl("void* val;")
191 for c, v in self.box_kinds do
192 var t = c.mclass_type
193 self.header.add_decl("{t.ctype} {t.ctypename};")
194 end
195 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
196 end
197 end
198
199 fun compile_box_kinds
200 do
201 # Collect all bas box class
202 # FIXME: this is not completely fine with a separate compilation scheme
203 for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do
204 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
205 if classes == null then continue
206 assert classes.length == 1 else print classes.join(", ")
207 self.box_kinds[classes.first] = self.box_kinds.length + 1
208 end
209 end
210
211 var box_kinds = new HashMap[MClass, Int]
212
213 fun box_kind_of(mclass: MClass): Int
214 do
215 if mclass.mclass_type.ctype == "val*" then
216 return 0
217 else if mclass.kind == extern_kind then
218 return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")]
219 else
220 return self.box_kinds[mclass]
221 end
222
223 end
224
225 fun compile_color_consts(colors: Map[Object, Int]) do
226 var v = new_visitor
227 for m, c in colors do
228 compile_color_const(v, m, c)
229 end
230 end
231
232 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
233 if color_consts_done.has(m) then return
234 if m isa MProperty then
235 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
236 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
237 else
238 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
239 v.add("const int {m.const_color} = {color};")
240 end
241 else if m isa MPropDef then
242 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
243 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
244 else
245 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
246 v.add("const int {m.const_color} = {color};")
247 end
248 else if m isa MType then
249 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
250 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
251 else
252 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
253 v.add("const int {m.const_color} = {color};")
254 end
255 end
256 color_consts_done.add(m)
257 end
258
259 private var color_consts_done = new HashSet[Object]
260
261 # colorize classe properties
262 fun do_property_coloring do
263
264 var rta = runtime_type_analysis
265
266 # Layouts
267 var poset = mainmodule.flatten_mclass_hierarchy
268 var mclasses = new HashSet[MClass].from(poset)
269 var colorer = new POSetColorer[MClass]
270 colorer.colorize(poset)
271
272 # The dead methods, still need to provide a dead color symbol
273 var dead_methods = new Array[MMethod]
274
275 # lookup properties to build layout with
276 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
277 var mattributes = new HashMap[MClass, Set[MAttribute]]
278 for mclass in mclasses do
279 mmethods[mclass] = new HashSet[PropertyLayoutElement]
280 mattributes[mclass] = new HashSet[MAttribute]
281 for mprop in self.mainmodule.properties(mclass) do
282 if mprop isa MMethod then
283 if not modelbuilder.toolcontext.opt_colo_dead_methods.value and rta != null and not rta.live_methods.has(mprop) then
284 dead_methods.add(mprop)
285 continue
286 end
287 mmethods[mclass].add(mprop)
288 else if mprop isa MAttribute then
289 mattributes[mclass].add(mprop)
290 end
291 end
292 end
293
294 # Collect all super calls (dead or not)
295 var all_super_calls = new HashSet[MMethodDef]
296 for mmodule in self.mainmodule.in_importation.greaters do
297 for mclassdef in mmodule.mclassdefs do
298 for mpropdef in mclassdef.mpropdefs do
299 if not mpropdef isa MMethodDef then continue
300 if mpropdef.has_supercall then
301 all_super_calls.add(mpropdef)
302 end
303 end
304 end
305 end
306
307 # lookup super calls and add it to the list of mmethods to build layout with
308 var super_calls
309 if rta != null then
310 super_calls = rta.live_super_sends
311 else
312 super_calls = all_super_calls
313 end
314
315 for mmethoddef in super_calls do
316 var mclass = mmethoddef.mclassdef.mclass
317 mmethods[mclass].add(mmethoddef)
318 for descendant in mclass.in_hierarchy(self.mainmodule).smallers do
319 mmethods[descendant].add(mmethoddef)
320 end
321 end
322
323 # methods coloration
324 var meth_colorer = new POSetBucketsColorer[MClass, PropertyLayoutElement](poset, colorer.conflicts)
325 method_colors = meth_colorer.colorize(mmethods)
326 method_tables = build_method_tables(mclasses, super_calls)
327 compile_color_consts(method_colors)
328
329 # attribute null color to dead methods and supercalls
330 for mproperty in dead_methods do
331 compile_color_const(new_visitor, mproperty, -1)
332 end
333 for mpropdef in all_super_calls do
334 if super_calls.has(mpropdef) then continue
335 compile_color_const(new_visitor, mpropdef, -1)
336 end
337
338 # attributes coloration
339 var attr_colorer = new POSetBucketsColorer[MClass, MAttribute](poset, colorer.conflicts)
340 attr_colors = attr_colorer.colorize(mattributes)
341 attr_tables = build_attr_tables(mclasses)
342 compile_color_consts(attr_colors)
343 end
344
345 fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do
346 var tables = new HashMap[MClass, Array[nullable MPropDef]]
347 for mclass in mclasses do
348 var table = new Array[nullable MPropDef]
349 tables[mclass] = table
350
351 var mproperties = self.mainmodule.properties(mclass)
352 var mtype = mclass.intro.bound_mtype
353
354 for mproperty in mproperties do
355 if not mproperty isa MMethod then continue
356 if not method_colors.has_key(mproperty) then continue
357 var color = method_colors[mproperty]
358 if table.length <= color then
359 for i in [table.length .. color[ do
360 table[i] = null
361 end
362 end
363 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
364 end
365
366 for supercall in super_calls do
367 if not mtype.collect_mclassdefs(mainmodule).has(supercall.mclassdef) then continue
368
369 var color = method_colors[supercall]
370 if table.length <= color then
371 for i in [table.length .. color[ do
372 table[i] = null
373 end
374 end
375 var mmethoddef = supercall.lookup_next_definition(mainmodule, mtype)
376 table[color] = mmethoddef
377 end
378
379 end
380 return tables
381 end
382
383 fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do
384 var tables = new HashMap[MClass, Array[nullable MPropDef]]
385 for mclass in mclasses do
386 var table = new Array[nullable MPropDef]
387 tables[mclass] = table
388
389 var mproperties = self.mainmodule.properties(mclass)
390 var mtype = mclass.intro.bound_mtype
391
392 for mproperty in mproperties do
393 if not mproperty isa MAttribute then continue
394 if not attr_colors.has_key(mproperty) then continue
395 var color = attr_colors[mproperty]
396 if table.length <= color then
397 for i in [table.length .. color[ do
398 table[i] = null
399 end
400 end
401 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
402 end
403 end
404 return tables
405 end
406
407 # colorize live types of the program
408 private fun do_type_coloring: POSet[MType] do
409 # Collect types to colorize
410 var live_types = runtime_type_analysis.live_types
411 var live_cast_types = runtime_type_analysis.live_cast_types
412 var mtypes = new HashSet[MType]
413 mtypes.add_all(live_types)
414 mtypes.add_all(live_cast_types)
415 for c in self.box_kinds.keys do
416 mtypes.add(c.mclass_type)
417 end
418
419 # Compute colors
420 var poset = poset_from_mtypes(mtypes)
421 var colorer = new POSetColorer[MType]
422 colorer.colorize(poset)
423 type_ids = colorer.ids
424 type_colors = colorer.colors
425 type_tables = build_type_tables(poset)
426
427 # VT and FT are stored with other unresolved types in the big resolution_tables
428 self.compile_resolution_tables(mtypes)
429
430 return poset
431 end
432
433 private fun poset_from_mtypes(mtypes: Set[MType]): POSet[MType] do
434 var poset = new POSet[MType]
435 for e in mtypes do
436 poset.add_node(e)
437 for o in mtypes do
438 if e == o then continue
439 if e.is_subtype(mainmodule, null, o) then
440 poset.add_edge(e, o)
441 end
442 end
443 end
444 return poset
445 end
446
447 # Build type tables
448 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
449 var tables = new HashMap[MType, Array[nullable MType]]
450 for mtype in mtypes do
451 var table = new Array[nullable MType]
452 for sup in mtypes[mtype].greaters do
453 var color = type_colors[sup]
454 if table.length <= color then
455 for i in [table.length .. color[ do
456 table[i] = null
457 end
458 end
459 table[color] = sup
460 end
461 tables[mtype] = table
462 end
463 return tables
464 end
465
466 protected fun compile_resolution_tables(mtypes: Set[MType]) do
467 # resolution_tables is used to perform a type resolution at runtime in O(1)
468
469 # During the visit of the body of classes, live_unresolved_types are collected
470 # and associated to
471 # Collect all live_unresolved_types (visited in the body of classes)
472
473 # Determinate fo each livetype what are its possible requested anchored types
474 var mtype2unresolved = new HashMap[MClassType, Set[MType]]
475 for mtype in self.runtime_type_analysis.live_types do
476 var set = new HashSet[MType]
477 for cd in mtype.collect_mclassdefs(self.mainmodule) do
478 if self.live_unresolved_types.has_key(cd) then
479 set.add_all(self.live_unresolved_types[cd])
480 end
481 end
482 mtype2unresolved[mtype] = set
483 end
484
485 # Compute the table layout with the prefered method
486 var colorer = new BucketsColorer[MType, MType]
487 opentype_colors = colorer.colorize(mtype2unresolved)
488 resolution_tables = self.build_resolution_tables(mtype2unresolved)
489
490 # Compile a C constant for each collected unresolved type.
491 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
492 var all_unresolved = new HashSet[MType]
493 for t in self.live_unresolved_types.values do
494 all_unresolved.add_all(t)
495 end
496 var all_unresolved_types_colors = new HashMap[MType, Int]
497 for t in all_unresolved do
498 if opentype_colors.has_key(t) then
499 all_unresolved_types_colors[t] = opentype_colors[t]
500 else
501 all_unresolved_types_colors[t] = -1
502 end
503 end
504 self.compile_color_consts(all_unresolved_types_colors)
505
506 #print "tables"
507 #for k, v in unresolved_types_tables.as(not null) do
508 # print "{k}: {v.join(", ")}"
509 #end
510 #print ""
511 end
512
513 fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do
514 var tables = new HashMap[MClassType, Array[nullable MType]]
515 for mclasstype, mtypes in elements do
516 var table = new Array[nullable MType]
517 for mtype in mtypes do
518 var color = opentype_colors[mtype]
519 if table.length <= color then
520 for i in [table.length .. color[ do
521 table[i] = null
522 end
523 end
524 table[color] = mtype
525 end
526 tables[mclasstype] = table
527 end
528 return tables
529 end
530
531 # Separately compile all the method definitions of the module
532 fun compile_module_to_c(mmodule: MModule)
533 do
534 var old_module = self.mainmodule
535 self.mainmodule = mmodule
536 for cd in mmodule.mclassdefs do
537 for pd in cd.mpropdefs do
538 if not pd isa MMethodDef then continue
539 var rta = runtime_type_analysis
540 if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue
541 #print "compile {pd} @ {cd} @ {mmodule}"
542 var r = pd.separate_runtime_function
543 r.compile_to_c(self)
544 var r2 = pd.virtual_runtime_function
545 r2.compile_to_c(self)
546 end
547 end
548 self.mainmodule = old_module
549 end
550
551 # Globaly compile the type structure of a live type
552 fun compile_type_to_c(mtype: MType)
553 do
554 assert not mtype.need_anchor
555 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
556 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
557 var c_name = mtype.c_name
558 var v = new SeparateCompilerVisitor(self)
559 v.add_decl("/* runtime type {mtype} */")
560
561 # extern const struct type_X
562 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
563
564 # const struct type_X
565 v.add_decl("const struct type type_{c_name} = \{")
566
567 # type id (for cast target)
568 if is_cast_live then
569 v.add_decl("{type_ids[mtype]},")
570 else
571 v.add_decl("-1, /*CAST DEAD*/")
572 end
573
574 # type name
575 v.add_decl("\"{mtype}\", /* class_name_string */")
576
577 # type color (for cast target)
578 if is_cast_live then
579 v.add_decl("{type_colors[mtype]},")
580 else
581 v.add_decl("-1, /*CAST DEAD*/")
582 end
583
584 # is_nullable bit
585 if mtype isa MNullableType then
586 v.add_decl("1,")
587 else
588 v.add_decl("0,")
589 end
590
591 # resolution table (for receiver)
592 if is_live then
593 var mclass_type = mtype
594 if mclass_type isa MNullableType then mclass_type = mclass_type.mtype
595 assert mclass_type isa MClassType
596 if resolution_tables[mclass_type].is_empty then
597 v.add_decl("NULL, /*NO RESOLUTIONS*/")
598 else
599 compile_type_resolution_table(mtype)
600 v.require_declaration("resolution_table_{c_name}")
601 v.add_decl("&resolution_table_{c_name},")
602 end
603 else
604 v.add_decl("NULL, /*DEAD*/")
605 end
606
607 # cast table (for receiver)
608 if is_live then
609 v.add_decl("{self.type_tables[mtype].length},")
610 v.add_decl("\{")
611 for stype in self.type_tables[mtype] do
612 if stype == null then
613 v.add_decl("-1, /* empty */")
614 else
615 v.add_decl("{type_ids[stype]}, /* {stype} */")
616 end
617 end
618 v.add_decl("\},")
619 else
620 v.add_decl("0, \{\}, /*DEAD TYPE*/")
621 end
622 v.add_decl("\};")
623 end
624
625 fun compile_type_resolution_table(mtype: MType) do
626
627 var mclass_type: MClassType
628 if mtype isa MNullableType then
629 mclass_type = mtype.mtype.as(MClassType)
630 else
631 mclass_type = mtype.as(MClassType)
632 end
633
634 # extern const struct resolution_table_X resolution_table_X
635 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
636
637 # const struct fts_table_X fts_table_X
638 var v = new_visitor
639 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
640 v.add_decl("0, /* dummy */")
641 v.add_decl("\{")
642 for t in self.resolution_tables[mclass_type] do
643 if t == null then
644 v.add_decl("NULL, /* empty */")
645 else
646 # The table stores the result of the type resolution
647 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
648 # the value stored is tv.
649 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
650 # FIXME: What typeids means here? How can a tv not be live?
651 if type_ids.has_key(tv) then
652 v.require_declaration("type_{tv.c_name}")
653 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
654 else
655 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
656 end
657 end
658 end
659 v.add_decl("\}")
660 v.add_decl("\};")
661 end
662
663 # Globally compile the table of the class mclass
664 # In a link-time optimisation compiler, tables are globally computed
665 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
666 fun compile_class_to_c(mclass: MClass)
667 do
668 var mtype = mclass.intro.bound_mtype
669 var c_name = mclass.c_name
670 var c_instance_name = mclass.c_instance_name
671
672 var vft = self.method_tables[mclass]
673 var attrs = self.attr_tables[mclass]
674 var v = new_visitor
675
676 var rta = runtime_type_analysis
677 var is_dead = rta != null and not rta.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray"
678
679 v.add_decl("/* runtime class {c_name} */")
680
681 # Build class vft
682 if not is_dead then
683 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
684 v.add_decl("const struct class class_{c_name} = \{")
685 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
686 v.add_decl("\{")
687 for i in [0 .. vft.length[ do
688 var mpropdef = vft[i]
689 if mpropdef == null then
690 v.add_decl("NULL, /* empty */")
691 else
692 assert mpropdef isa MMethodDef
693 if rta != null and not rta.live_methoddefs.has(mpropdef) then
694 v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
695 continue
696 end
697 var rf = mpropdef.virtual_runtime_function
698 v.require_declaration(rf.c_name)
699 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
700 end
701 end
702 v.add_decl("\}")
703 v.add_decl("\};")
704 end
705
706 if mtype.ctype != "val*" then
707 if mtype.mclass.name == "Pointer" or mtype.mclass.kind != extern_kind then
708 #Build instance struct
709 self.header.add_decl("struct instance_{c_instance_name} \{")
710 self.header.add_decl("const struct type *type;")
711 self.header.add_decl("const struct class *class;")
712 self.header.add_decl("{mtype.ctype} value;")
713 self.header.add_decl("\};")
714 end
715
716 if not rta.live_types.has(mtype) then return
717
718 #Build BOX
719 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype});")
720 v.add_decl("/* allocate {mtype} */")
721 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype} value) \{")
722 v.add("struct instance_{c_instance_name}*res = nit_alloc(sizeof(struct instance_{c_instance_name}));")
723 v.require_declaration("type_{c_name}")
724 v.add("res->type = &type_{c_name};")
725 v.require_declaration("class_{c_name}")
726 v.add("res->class = &class_{c_name};")
727 v.add("res->value = value;")
728 v.add("return (val*)res;")
729 v.add("\}")
730 return
731 else if mclass.name == "NativeArray" then
732 #Build instance struct
733 self.header.add_decl("struct instance_{c_instance_name} \{")
734 self.header.add_decl("const struct type *type;")
735 self.header.add_decl("const struct class *class;")
736 # NativeArrays are just a instance header followed by a length and an array of values
737 self.header.add_decl("int length;")
738 self.header.add_decl("val* values[0];")
739 self.header.add_decl("\};")
740
741 #Build NEW
742 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
743 v.add_decl("/* allocate {mtype} */")
744 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
745 var res = v.get_name("self")
746 v.add_decl("struct instance_{c_instance_name} *{res};")
747 var mtype_elt = mtype.arguments.first
748 v.add("{res} = nit_alloc(sizeof(struct instance_{c_instance_name}) + length*sizeof({mtype_elt.ctype}));")
749 v.add("{res}->type = type;")
750 hardening_live_type(v, "type")
751 v.require_declaration("class_{c_name}")
752 v.add("{res}->class = &class_{c_name};")
753 v.add("{res}->length = length;")
754 v.add("return (val*){res};")
755 v.add("\}")
756 return
757 end
758
759 #Build NEW
760 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
761 v.add_decl("/* allocate {mtype} */")
762 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
763 if is_dead then
764 v.add_abort("{mclass} is DEAD")
765 else
766 var res = v.new_named_var(mtype, "self")
767 res.is_exact = true
768 v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));")
769 v.add("{res}->type = type;")
770 hardening_live_type(v, "type")
771 v.require_declaration("class_{c_name}")
772 v.add("{res}->class = &class_{c_name};")
773 self.generate_init_attr(v, res, mtype)
774 v.add("return {res};")
775 end
776 v.add("\}")
777 end
778
779 # Add a dynamic test to ensure that the type referenced by `t` is a live type
780 fun hardening_live_type(v: VISITOR, t: String)
781 do
782 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
783 v.add("if({t} == NULL) \{")
784 v.add_abort("type null")
785 v.add("\}")
786 v.add("if({t}->table_size == 0) \{")
787 v.add("PRINT_ERROR(\"Insantiation of a dead type: %s\\n\", {t}->name);")
788 v.add_abort("type dead")
789 v.add("\}")
790 end
791
792 redef fun new_visitor do return new SeparateCompilerVisitor(self)
793
794 # Stats
795
796 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
797 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
798 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
799 protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
800
801 redef fun display_stats
802 do
803 super
804 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
805 display_sizes
806 end
807 if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
808 display_isset_checks
809 end
810 var tc = self.modelbuilder.toolcontext
811 tc.info("# implementation of method invocation",2)
812 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
813 tc.info("total number of invocations: {nb_invok_total}",2)
814 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
815 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
816 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
817 end
818
819 fun display_sizes
820 do
821 print "# size of subtyping tables"
822 print "\ttotal \tholes"
823 var total = 0
824 var holes = 0
825 for t, table in type_tables do
826 total += table.length
827 for e in table do if e == null then holes += 1
828 end
829 print "\t{total}\t{holes}"
830
831 print "# size of resolution tables"
832 print "\ttotal \tholes"
833 total = 0
834 holes = 0
835 for t, table in resolution_tables do
836 total += table.length
837 for e in table do if e == null then holes += 1
838 end
839 print "\t{total}\t{holes}"
840
841 print "# size of methods tables"
842 print "\ttotal \tholes"
843 total = 0
844 holes = 0
845 for t, table in method_tables do
846 total += table.length
847 for e in table do if e == null then holes += 1
848 end
849 print "\t{total}\t{holes}"
850
851 print "# size of attributes tables"
852 print "\ttotal \tholes"
853 total = 0
854 holes = 0
855 for t, table in attr_tables do
856 total += table.length
857 for e in table do if e == null then holes += 1
858 end
859 print "\t{total}\t{holes}"
860 end
861
862 protected var isset_checks_count = 0
863 protected var attr_read_count = 0
864
865 fun display_isset_checks do
866 print "# total number of compiled attribute reads"
867 print "\t{attr_read_count}"
868 print "# total number of compiled isset-checks"
869 print "\t{isset_checks_count}"
870 end
871
872 redef fun compile_nitni_structs
873 do
874 self.header.add_decl """
875 struct nitni_instance \{
876 struct nitni_instance *next,
877 *prev; /* adjacent global references in global list */
878 int count; /* number of time this global reference has been marked */
879 struct instance *value;
880 \};
881 """
882 super
883 end
884
885 redef fun finalize_ffi_for_module(mmodule)
886 do
887 var old_module = self.mainmodule
888 self.mainmodule = mmodule
889 super
890 self.mainmodule = old_module
891 end
892 end
893
894 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
895 class SeparateCompilerVisitor
896 super AbstractCompilerVisitor
897
898 redef type COMPILER: SeparateCompiler
899
900 redef fun adapt_signature(m, args)
901 do
902 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
903 var recv = args.first
904 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
905 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
906 end
907 for i in [0..msignature.arity[ do
908 var t = msignature.mparameters[i].mtype
909 if i == msignature.vararg_rank then
910 t = args[i+1].mtype
911 end
912 args[i+1] = self.autobox(args[i+1], t)
913 end
914 end
915
916 redef fun autobox(value, mtype)
917 do
918 if value.mtype == mtype then
919 return value
920 else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then
921 return value
922 else if value.mtype.ctype == "val*" then
923 return self.new_expr("((struct instance_{mtype.c_instance_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
924 else if mtype.ctype == "val*" then
925 var valtype = value.mtype.as(MClassType)
926 var res = self.new_var(mtype)
927 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then
928 self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */")
929 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);")
930 return res
931 end
932 self.require_declaration("BOX_{valtype.c_name}")
933 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
934 return res
935 else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or
936 (value.mtype.ctype == "char*" and mtype.ctype == "void*") or
937 (value.mtype.ctype == "void*" and mtype.ctype == "char*") then
938 return value
939 else
940 # Bad things will appen!
941 var res = self.new_var(mtype)
942 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
943 self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);")
944 return res
945 end
946 end
947
948 # Return a C expression returning the runtime type structure of the value
949 # The point of the method is to works also with primitives types.
950 fun type_info(value: RuntimeVariable): String
951 do
952 if value.mtype.ctype == "val*" then
953 return "{value}->type"
954 else
955 compiler.undead_types.add(value.mtype)
956 self.require_declaration("type_{value.mtype.c_name}")
957 return "(&type_{value.mtype.c_name})"
958 end
959 end
960
961 redef fun compile_callsite(callsite, args)
962 do
963 var rta = compiler.runtime_type_analysis
964 var recv = args.first.mtype
965 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null then
966 var tgs = rta.live_targets(callsite)
967 if tgs.length == 1 then
968 # DIRECT CALL
969 var mmethod = callsite.mproperty
970 self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), args)
971 var res0 = before_send(mmethod, args)
972 var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args)
973 if res0 != null then
974 assert res != null
975 self.assign(res0, res)
976 res = res0
977 end
978 add("\}") # close the before_send
979 return res
980 end
981 end
982 return super
983 end
984 redef fun send(mmethod, arguments)
985 do
986 self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), arguments)
987
988 if arguments.first.mcasttype.ctype != "val*" then
989 # In order to shortcut the primitive, we need to find the most specific method
990 # Howverr, because of performance (no flattening), we always work on the realmainmodule
991 var m = self.compiler.mainmodule
992 self.compiler.mainmodule = self.compiler.realmainmodule
993 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
994 self.compiler.mainmodule = m
995 return res
996 end
997
998 return table_send(mmethod, arguments, mmethod.const_color)
999 end
1000
1001 # Handel common special cases before doing the effective method invocation
1002 # This methods handle the `==` and `!=` methods and the case of the null receiver.
1003 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
1004 # Client must not forget to close the } after them.
1005 #
1006 # The value returned is the result of the common special cases.
1007 # If not null, client must compine it with the result of their own effective method invocation.
1008 #
1009 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1010 # is generated to cancel the effective method invocation that will follow
1011 # TODO: find a better approach
1012 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1013 do
1014 var res: nullable RuntimeVariable = null
1015 var recv = arguments.first
1016 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_other.value or mmethod.name == "==" or mmethod.name == "!="
1017 var maybenull = recv.mcasttype isa MNullableType and consider_null
1018 if maybenull then
1019 self.add("if ({recv} == NULL) \{")
1020 if mmethod.name == "==" then
1021 res = self.new_var(bool_type)
1022 var arg = arguments[1]
1023 if arg.mcasttype isa MNullableType then
1024 self.add("{res} = ({arg} == NULL);")
1025 else if arg.mcasttype isa MNullType then
1026 self.add("{res} = 1; /* is null */")
1027 else
1028 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1029 end
1030 else if mmethod.name == "!=" then
1031 res = self.new_var(bool_type)
1032 var arg = arguments[1]
1033 if arg.mcasttype isa MNullableType then
1034 self.add("{res} = ({arg} != NULL);")
1035 else if arg.mcasttype isa MNullType then
1036 self.add("{res} = 0; /* is null */")
1037 else
1038 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1039 end
1040 else
1041 self.add_abort("Receiver is null")
1042 end
1043 self.add("\} else \{")
1044 else
1045 self.add("\{")
1046 end
1047 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then
1048 if res == null then res = self.new_var(bool_type)
1049 # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants)
1050 var arg = arguments[1]
1051 if arg.mcasttype isa MNullType then
1052 if mmethod.name == "==" then
1053 self.add("{res} = 0; /* arg is null but recv is not */")
1054 else
1055 self.add("{res} = 1; /* arg is null and recv is not */")
1056 end
1057 self.add("\}") # closes the null case
1058 self.add("if (0) \{") # what follow is useless, CC will drop it
1059 end
1060 end
1061 return res
1062 end
1063
1064 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable
1065 do
1066 compiler.modelbuilder.nb_invok_by_tables += 1
1067 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1068
1069 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1070 var recv = arguments.first
1071
1072 var res0 = before_send(mmethod, arguments)
1073
1074 var res: nullable RuntimeVariable
1075 var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true)
1076 var ret = msignature.return_mtype
1077 if mmethod.is_new then
1078 ret = arguments.first.mtype
1079 res = self.new_var(ret)
1080 else if ret == null then
1081 res = null
1082 else
1083 res = self.new_var(ret)
1084 end
1085
1086 var s = new FlatBuffer
1087 var ss = new FlatBuffer
1088
1089 s.append("val*")
1090 ss.append("{recv}")
1091 for i in [0..msignature.arity[ do
1092 var a = arguments[i+1]
1093 var t = msignature.mparameters[i].mtype
1094 if i == msignature.vararg_rank then
1095 t = arguments[i+1].mcasttype
1096 end
1097 s.append(", {t.ctype}")
1098 a = self.autobox(a, t)
1099 ss.append(", {a}")
1100 end
1101
1102
1103 var r
1104 if ret == null then r = "void" else r = ret.ctype
1105 self.require_declaration(const_color)
1106 var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/"
1107
1108 if res != null then
1109 self.add("{res} = {call};")
1110 else
1111 self.add("{call};")
1112 end
1113
1114 if res0 != null then
1115 assert res != null
1116 assign(res0,res)
1117 res = res0
1118 end
1119
1120 self.add("\}") # closes the null case
1121
1122 return res
1123 end
1124
1125 redef fun call(mmethoddef, recvtype, arguments)
1126 do
1127 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1128
1129 var res: nullable RuntimeVariable
1130 var ret = mmethoddef.msignature.return_mtype
1131 if mmethoddef.mproperty.is_new then
1132 ret = arguments.first.mtype
1133 res = self.new_var(ret)
1134 else if ret == null then
1135 res = null
1136 else
1137 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1138 res = self.new_var(ret)
1139 end
1140
1141 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1142 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1143 compiler.modelbuilder.nb_invok_by_inline += 1
1144 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1145 var frame = new Frame(self, mmethoddef, recvtype, arguments)
1146 frame.returnlabel = self.get_name("RET_LABEL")
1147 frame.returnvar = res
1148 var old_frame = self.frame
1149 self.frame = frame
1150 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1151 mmethoddef.compile_inside_to_c(self, arguments)
1152 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1153 self.add("\}")
1154 self.frame = old_frame
1155 return res
1156 end
1157 compiler.modelbuilder.nb_invok_by_direct += 1
1158 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1159
1160 # Autobox arguments
1161 self.adapt_signature(mmethoddef, arguments)
1162
1163 self.require_declaration(mmethoddef.c_name)
1164 if res == null then
1165 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1166 return null
1167 else
1168 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1169 end
1170
1171 return res
1172 end
1173
1174 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1175 do
1176 if arguments.first.mcasttype.ctype != "val*" then
1177 # In order to shortcut the primitive, we need to find the most specific method
1178 # However, because of performance (no flattening), we always work on the realmainmodule
1179 var main = self.compiler.mainmodule
1180 self.compiler.mainmodule = self.compiler.realmainmodule
1181 var res = self.monomorphic_super_send(m, recvtype, arguments)
1182 self.compiler.mainmodule = main
1183 return res
1184 end
1185 return table_send(m.mproperty, arguments, m.const_color)
1186 end
1187
1188 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1189 do
1190 # A vararg must be stored into an new array
1191 # The trick is that the dymaic type of the array may depends on the receiver
1192 # of the method (ie recv) if the static type is unresolved
1193 # This is more complex than usual because the unresolved type must not be resolved
1194 # with the current receiver (ie self).
1195 # Therefore to isolate the resolution from self, a local Frame is created.
1196 # One can see this implementation as an inlined method of the receiver whose only
1197 # job is to allocate the array
1198 var old_frame = self.frame
1199 var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1200 self.frame = frame
1201 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1202 var res = self.array_instance(varargs, elttype)
1203 self.frame = old_frame
1204 return res
1205 end
1206
1207 redef fun isset_attribute(a, recv)
1208 do
1209 self.check_recv_notnull(recv)
1210 var res = self.new_var(bool_type)
1211
1212 # What is the declared type of the attribute?
1213 var mtype = a.intro.static_mtype.as(not null)
1214 var intromclassdef = a.intro.mclassdef
1215 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1216
1217 if mtype isa MNullableType then
1218 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1219 return res
1220 end
1221
1222 self.require_declaration(a.const_color)
1223 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1224 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1225 else
1226
1227 if mtype.ctype == "val*" then
1228 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1229 else
1230 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1231 end
1232 end
1233 return res
1234 end
1235
1236 redef fun read_attribute(a, recv)
1237 do
1238 self.check_recv_notnull(recv)
1239
1240 # What is the declared type of the attribute?
1241 var ret = a.intro.static_mtype.as(not null)
1242 var intromclassdef = a.intro.mclassdef
1243 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1244
1245 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1246 self.compiler.attr_read_count += 1
1247 self.add("count_attr_reads++;")
1248 end
1249
1250 self.require_declaration(a.const_color)
1251 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1252 # Get the attribute or a box (ie. always a val*)
1253 var cret = self.object_type.as_nullable
1254 var res = self.new_var(cret)
1255 res.mcasttype = ret
1256
1257 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1258
1259 # Check for Uninitialized attribute
1260 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1261 self.add("if (unlikely({res} == NULL)) \{")
1262 self.add_abort("Uninitialized attribute {a.name}")
1263 self.add("\}")
1264
1265 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1266 self.compiler.isset_checks_count += 1
1267 self.add("count_isset_checks++;")
1268 end
1269 end
1270
1271 # Return the attribute or its unboxed version
1272 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1273 return self.autobox(res, ret)
1274 else
1275 var res = self.new_var(ret)
1276 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1277
1278 # Check for Uninitialized attribute
1279 if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1280 self.add("if (unlikely({res} == NULL)) \{")
1281 self.add_abort("Uninitialized attribute {a.name}")
1282 self.add("\}")
1283 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1284 self.compiler.isset_checks_count += 1
1285 self.add("count_isset_checks++;")
1286 end
1287 end
1288
1289 return res
1290 end
1291 end
1292
1293 redef fun write_attribute(a, recv, value)
1294 do
1295 self.check_recv_notnull(recv)
1296
1297 # What is the declared type of the attribute?
1298 var mtype = a.intro.static_mtype.as(not null)
1299 var intromclassdef = a.intro.mclassdef
1300 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1301
1302 # Adapt the value to the declared type
1303 value = self.autobox(value, mtype)
1304
1305 self.require_declaration(a.const_color)
1306 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1307 var attr = "{recv}->attrs[{a.const_color}]"
1308 if mtype.ctype != "val*" then
1309 assert mtype isa MClassType
1310 # The attribute is primitive, thus we store it in a box
1311 # The trick is to create the box the first time then resuse the box
1312 self.add("if ({attr} != NULL) \{")
1313 self.add("((struct instance_{mtype.c_instance_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1314 self.add("\} else \{")
1315 value = self.autobox(value, self.object_type.as_nullable)
1316 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1317 self.add("\}")
1318 else
1319 # The attribute is not primitive, thus store it direclty
1320 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1321 end
1322 else
1323 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1324 end
1325 end
1326
1327 # Check that mtype is a live open type
1328 fun hardening_live_open_type(mtype: MType)
1329 do
1330 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1331 self.require_declaration(mtype.const_color)
1332 var col = mtype.const_color
1333 self.add("if({col} == -1) \{")
1334 self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1335 self.add_abort("open type dead")
1336 self.add("\}")
1337 end
1338
1339 # Check that mtype it a pointer to a live cast type
1340 fun hardening_cast_type(t: String)
1341 do
1342 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1343 add("if({t} == NULL) \{")
1344 add_abort("cast type null")
1345 add("\}")
1346 add("if({t}->id == -1 || {t}->color == -1) \{")
1347 add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1348 add_abort("cast type dead")
1349 add("\}")
1350 end
1351
1352 redef fun init_instance(mtype)
1353 do
1354 self.require_declaration("NEW_{mtype.mclass.c_name}")
1355 var compiler = self.compiler
1356 if mtype isa MGenericType and mtype.need_anchor then
1357 hardening_live_open_type(mtype)
1358 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1359 var recv = self.frame.arguments.first
1360 var recv_type_info = self.type_info(recv)
1361 self.require_declaration(mtype.const_color)
1362 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1363 end
1364 compiler.undead_types.add(mtype)
1365 self.require_declaration("type_{mtype.c_name}")
1366 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1367 end
1368
1369 redef fun type_test(value, mtype, tag)
1370 do
1371 self.add("/* {value.inspect} isa {mtype} */")
1372 var compiler = self.compiler
1373
1374 var recv = self.frame.arguments.first
1375 var recv_type_info = self.type_info(recv)
1376
1377 var res = self.new_var(bool_type)
1378
1379 var cltype = self.get_name("cltype")
1380 self.add_decl("int {cltype};")
1381 var idtype = self.get_name("idtype")
1382 self.add_decl("int {idtype};")
1383
1384 var maybe_null = self.maybe_null(value)
1385 var accept_null = "0"
1386 var ntype = mtype
1387 if ntype isa MNullableType then
1388 ntype = ntype.mtype
1389 accept_null = "1"
1390 end
1391
1392 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1393 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1394 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1395 self.compiler.count_type_test_skipped[tag] += 1
1396 self.add("count_type_test_skipped_{tag}++;")
1397 end
1398 return res
1399 end
1400
1401 if ntype.need_anchor then
1402 var type_struct = self.get_name("type_struct")
1403 self.add_decl("const struct type* {type_struct};")
1404
1405 # Either with resolution_table with a direct resolution
1406 hardening_live_open_type(mtype)
1407 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1408 self.require_declaration(mtype.const_color)
1409 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1410 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1411 self.compiler.count_type_test_unresolved[tag] += 1
1412 self.add("count_type_test_unresolved_{tag}++;")
1413 end
1414 hardening_cast_type(type_struct)
1415 self.add("{cltype} = {type_struct}->color;")
1416 self.add("{idtype} = {type_struct}->id;")
1417 if maybe_null and accept_null == "0" then
1418 var is_nullable = self.get_name("is_nullable")
1419 self.add_decl("short int {is_nullable};")
1420 self.add("{is_nullable} = {type_struct}->is_nullable;")
1421 accept_null = is_nullable.to_s
1422 end
1423 else if ntype isa MClassType then
1424 compiler.undead_types.add(mtype)
1425 self.require_declaration("type_{mtype.c_name}")
1426 hardening_cast_type("(&type_{mtype.c_name})")
1427 self.add("{cltype} = type_{mtype.c_name}.color;")
1428 self.add("{idtype} = type_{mtype.c_name}.id;")
1429 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1430 self.compiler.count_type_test_resolved[tag] += 1
1431 self.add("count_type_test_resolved_{tag}++;")
1432 end
1433 else
1434 self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);")
1435 end
1436
1437 # check color is in table
1438 if maybe_null then
1439 self.add("if({value} == NULL) \{")
1440 self.add("{res} = {accept_null};")
1441 self.add("\} else \{")
1442 end
1443 var value_type_info = self.type_info(value)
1444 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1445 self.add("{res} = 0;")
1446 self.add("\} else \{")
1447 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1448 self.add("\}")
1449 if maybe_null then
1450 self.add("\}")
1451 end
1452
1453 return res
1454 end
1455
1456 redef fun is_same_type_test(value1, value2)
1457 do
1458 var res = self.new_var(bool_type)
1459 # Swap values to be symetric
1460 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1461 var tmp = value1
1462 value1 = value2
1463 value2 = tmp
1464 end
1465 if value1.mtype.ctype != "val*" then
1466 if value2.mtype == value1.mtype then
1467 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1468 else if value2.mtype.ctype != "val*" then
1469 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1470 else
1471 var mtype1 = value1.mtype.as(MClassType)
1472 self.require_declaration("class_{mtype1.c_name}")
1473 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */")
1474 end
1475 else
1476 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */")
1477 end
1478 return res
1479 end
1480
1481 redef fun class_name_string(value)
1482 do
1483 var res = self.get_name("var_class_name")
1484 self.add_decl("const char* {res};")
1485 if value.mtype.ctype == "val*" then
1486 self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;"
1487 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind then
1488 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1489 else
1490 self.require_declaration("type_{value.mtype.c_name}")
1491 self.add "{res} = type_{value.mtype.c_name}.name;"
1492 end
1493 return res
1494 end
1495
1496 redef fun equal_test(value1, value2)
1497 do
1498 var res = self.new_var(bool_type)
1499 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1500 var tmp = value1
1501 value1 = value2
1502 value2 = tmp
1503 end
1504 if value1.mtype.ctype != "val*" then
1505 if value2.mtype == value1.mtype then
1506 self.add("{res} = {value1} == {value2};")
1507 else if value2.mtype.ctype != "val*" then
1508 self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/")
1509 else
1510 var mtype1 = value1.mtype.as(MClassType)
1511 self.require_declaration("class_{mtype1.c_name}")
1512 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});")
1513 self.add("if ({res}) \{")
1514 self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});")
1515 self.add("\}")
1516 end
1517 return res
1518 end
1519 var maybe_null = true
1520 var test = new Array[String]
1521 var t1 = value1.mcasttype
1522 if t1 isa MNullableType then
1523 test.add("{value1} != NULL")
1524 t1 = t1.mtype
1525 else
1526 maybe_null = false
1527 end
1528 var t2 = value2.mcasttype
1529 if t2 isa MNullableType then
1530 test.add("{value2} != NULL")
1531 t2 = t2.mtype
1532 else
1533 maybe_null = false
1534 end
1535
1536 var incompatible = false
1537 var primitive
1538 if t1.ctype != "val*" then
1539 primitive = t1
1540 if t1 == t2 then
1541 # No need to compare class
1542 else if t2.ctype != "val*" then
1543 incompatible = true
1544 else if can_be_primitive(value2) then
1545 test.add("{value1}->class == {value2}->class")
1546 else
1547 incompatible = true
1548 end
1549 else if t2.ctype != "val*" then
1550 primitive = t2
1551 if can_be_primitive(value1) then
1552 test.add("{value1}->class == {value2}->class")
1553 else
1554 incompatible = true
1555 end
1556 else
1557 primitive = null
1558 end
1559
1560 if incompatible then
1561 if maybe_null then
1562 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
1563 return res
1564 else
1565 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
1566 return res
1567 end
1568 end
1569 if primitive != null then
1570 test.add("((struct instance_{primitive.c_instance_name}*){value1})->value == ((struct instance_{primitive.c_instance_name}*){value2})->value")
1571 else if can_be_primitive(value1) and can_be_primitive(value2) then
1572 test.add("{value1}->class == {value2}->class")
1573 var s = new Array[String]
1574 for t, v in self.compiler.box_kinds do
1575 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_instance_name}*){value1})->value == ((struct instance_{t.c_instance_name}*){value2})->value)"
1576 end
1577 test.add("({s.join(" || ")})")
1578 else
1579 self.add("{res} = {value1} == {value2};")
1580 return res
1581 end
1582 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
1583 return res
1584 end
1585
1586 fun can_be_primitive(value: RuntimeVariable): Bool
1587 do
1588 var t = value.mcasttype
1589 if t isa MNullableType then t = t.mtype
1590 if not t isa MClassType then return false
1591 var k = t.mclass.kind
1592 return k == interface_kind or t.ctype != "val*"
1593 end
1594
1595 fun maybe_null(value: RuntimeVariable): Bool
1596 do
1597 var t = value.mcasttype
1598 return t isa MNullableType or t isa MNullType
1599 end
1600
1601 redef fun array_instance(array, elttype)
1602 do
1603 var nclass = self.get_class("NativeArray")
1604 var arrayclass = self.get_class("Array")
1605 var arraytype = arrayclass.get_mtype([elttype])
1606 var res = self.init_instance(arraytype)
1607 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
1608 var length = self.int_instance(array.length)
1609 var nat = native_array_instance(elttype, length)
1610 for i in [0..array.length[ do
1611 var r = self.autobox(array[i], self.object_type)
1612 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
1613 end
1614 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
1615 self.add("\}")
1616 return res
1617 end
1618
1619 redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable
1620 do
1621 var mtype = self.get_class("NativeArray").get_mtype([elttype])
1622 self.require_declaration("NEW_{mtype.mclass.c_name}")
1623 assert mtype isa MGenericType
1624 var compiler = self.compiler
1625 if mtype.need_anchor then
1626 hardening_live_open_type(mtype)
1627 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1628 var recv = self.frame.arguments.first
1629 var recv_type_info = self.type_info(recv)
1630 self.require_declaration(mtype.const_color)
1631 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1632 end
1633 compiler.undead_types.add(mtype)
1634 self.require_declaration("type_{mtype.c_name}")
1635 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype)
1636 end
1637
1638 redef fun native_array_def(pname, ret_type, arguments)
1639 do
1640 var elttype = arguments.first.mtype
1641 var nclass = self.get_class("NativeArray")
1642 var recv = "((struct instance_{nclass.c_instance_name}*){arguments[0]})->values"
1643 if pname == "[]" then
1644 self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null)))
1645 return
1646 else if pname == "[]=" then
1647 self.add("{recv}[{arguments[1]}]={arguments[2]};")
1648 return
1649 else if pname == "length" then
1650 self.ret(self.new_expr("((struct instance_{nclass.c_instance_name}*){arguments[0]})->length", ret_type.as(not null)))
1651 return
1652 else if pname == "copy_to" then
1653 var recv1 = "((struct instance_{nclass.c_instance_name}*){arguments[1]})->values"
1654 self.add("memcpy({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
1655 return
1656 end
1657 end
1658
1659 redef fun calloc_array(ret_type, arguments)
1660 do
1661 var mclass = self.get_class("ArrayCapable")
1662 var ft = mclass.mclass_type.arguments.first.as(MParameterType)
1663 var res = self.native_array_instance(ft, arguments[1])
1664 self.ret(res)
1665 end
1666
1667 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
1668 assert mtype.need_anchor
1669 var compiler = self.compiler
1670 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
1671 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
1672 end
1673 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
1674 end
1675 end
1676
1677 redef class MMethodDef
1678 fun separate_runtime_function: AbstractRuntimeFunction
1679 do
1680 var res = self.separate_runtime_function_cache
1681 if res == null then
1682 res = new SeparateRuntimeFunction(self)
1683 self.separate_runtime_function_cache = res
1684 end
1685 return res
1686 end
1687 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
1688
1689 fun virtual_runtime_function: AbstractRuntimeFunction
1690 do
1691 var res = self.virtual_runtime_function_cache
1692 if res == null then
1693 res = new VirtualRuntimeFunction(self)
1694 self.virtual_runtime_function_cache = res
1695 end
1696 return res
1697 end
1698 private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction
1699 end
1700
1701 # The C function associated to a methoddef separately compiled
1702 class SeparateRuntimeFunction
1703 super AbstractRuntimeFunction
1704
1705 redef fun build_c_name: String do return "{mmethoddef.c_name}"
1706
1707 redef fun to_s do return self.mmethoddef.to_s
1708
1709 redef fun compile_to_c(compiler)
1710 do
1711 var mmethoddef = self.mmethoddef
1712
1713 var recv = self.mmethoddef.mclassdef.bound_mtype
1714 var v = compiler.new_visitor
1715 var selfvar = new RuntimeVariable("self", recv, recv)
1716 var arguments = new Array[RuntimeVariable]
1717 var frame = new Frame(v, mmethoddef, recv, arguments)
1718 v.frame = frame
1719
1720 var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1721
1722 var sig = new FlatBuffer
1723 var comment = new FlatBuffer
1724 var ret = msignature.return_mtype
1725 if ret != null then
1726 sig.append("{ret.ctype} ")
1727 else if mmethoddef.mproperty.is_new then
1728 ret = recv
1729 sig.append("{ret.ctype} ")
1730 else
1731 sig.append("void ")
1732 end
1733 sig.append(self.c_name)
1734 sig.append("({selfvar.mtype.ctype} {selfvar}")
1735 comment.append("({selfvar}: {selfvar.mtype}")
1736 arguments.add(selfvar)
1737 for i in [0..msignature.arity[ do
1738 var mtype = msignature.mparameters[i].mtype
1739 if i == msignature.vararg_rank then
1740 mtype = v.get_class("Array").get_mtype([mtype])
1741 end
1742 comment.append(", {mtype}")
1743 sig.append(", {mtype.ctype} p{i}")
1744 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1745 arguments.add(argvar)
1746 end
1747 sig.append(")")
1748 comment.append(")")
1749 if ret != null then
1750 comment.append(": {ret}")
1751 end
1752 compiler.provide_declaration(self.c_name, "{sig};")
1753
1754 v.add_decl("/* method {self} for {comment} */")
1755 v.add_decl("{sig} \{")
1756 if ret != null then
1757 frame.returnvar = v.new_var(ret)
1758 end
1759 frame.returnlabel = v.get_name("RET_LABEL")
1760
1761 if recv != arguments.first.mtype then
1762 #print "{self} {recv} {arguments.first}"
1763 end
1764 mmethoddef.compile_inside_to_c(v, arguments)
1765
1766 v.add("{frame.returnlabel.as(not null)}:;")
1767 if ret != null then
1768 v.add("return {frame.returnvar.as(not null)};")
1769 end
1770 v.add("\}")
1771 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
1772 end
1773 end
1774
1775 # The C function associated to a methoddef on a primitive type, stored into a VFT of a class
1776 # The first parameter (the reciever) is always typed by val* in order to accept an object value
1777 class VirtualRuntimeFunction
1778 super AbstractRuntimeFunction
1779
1780 redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}"
1781
1782 redef fun to_s do return self.mmethoddef.to_s
1783
1784 redef fun compile_to_c(compiler)
1785 do
1786 var mmethoddef = self.mmethoddef
1787
1788 var recv = self.mmethoddef.mclassdef.bound_mtype
1789 var v = compiler.new_visitor
1790 var selfvar = new RuntimeVariable("self", v.object_type, recv)
1791 var arguments = new Array[RuntimeVariable]
1792 var frame = new Frame(v, mmethoddef, recv, arguments)
1793 v.frame = frame
1794
1795 var sig = new FlatBuffer
1796 var comment = new FlatBuffer
1797
1798 # Because the function is virtual, the signature must match the one of the original class
1799 var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef
1800 var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1801 var ret = msignature.return_mtype
1802 if ret != null then
1803 sig.append("{ret.ctype} ")
1804 else if mmethoddef.mproperty.is_new then
1805 ret = recv
1806 sig.append("{ret.ctype} ")
1807 else
1808 sig.append("void ")
1809 end
1810 sig.append(self.c_name)
1811 sig.append("({selfvar.mtype.ctype} {selfvar}")
1812 comment.append("({selfvar}: {selfvar.mtype}")
1813 arguments.add(selfvar)
1814 for i in [0..msignature.arity[ do
1815 var mtype = msignature.mparameters[i].mtype
1816 if i == msignature.vararg_rank then
1817 mtype = v.get_class("Array").get_mtype([mtype])
1818 end
1819 comment.append(", {mtype}")
1820 sig.append(", {mtype.ctype} p{i}")
1821 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1822 arguments.add(argvar)
1823 end
1824 sig.append(")")
1825 comment.append(")")
1826 if ret != null then
1827 comment.append(": {ret}")
1828 end
1829 compiler.provide_declaration(self.c_name, "{sig};")
1830
1831 v.add_decl("/* method {self} for {comment} */")
1832 v.add_decl("{sig} \{")
1833 if ret != null then
1834 frame.returnvar = v.new_var(ret)
1835 end
1836 frame.returnlabel = v.get_name("RET_LABEL")
1837
1838 var subret = v.call(mmethoddef, recv, arguments)
1839 if ret != null then
1840 assert subret != null
1841 v.assign(frame.returnvar.as(not null), subret)
1842 end
1843
1844 v.add("{frame.returnlabel.as(not null)}:;")
1845 if ret != null then
1846 v.add("return {frame.returnvar.as(not null)};")
1847 end
1848 v.add("\}")
1849 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})"
1850 end
1851
1852 # TODO ?
1853 redef fun call(v, arguments) do abort
1854 end
1855
1856 redef class MType
1857 fun const_color: String do return "COLOR_{c_name}"
1858
1859 # C name of the instance type to use
1860 fun c_instance_name: String do return c_name
1861 end
1862
1863 redef class MClassType
1864 redef fun c_instance_name do return mclass.c_instance_name
1865 end
1866
1867 redef class MClass
1868 # Extern classes use the C instance of kernel::Pointer
1869 fun c_instance_name: String
1870 do
1871 if kind == extern_kind then
1872 return "kernel__Pointer"
1873 else return c_name
1874 end
1875 end
1876
1877 interface PropertyLayoutElement end
1878
1879 redef class MProperty
1880 super PropertyLayoutElement
1881 fun const_color: String do return "COLOR_{c_name}"
1882 end
1883
1884 redef class MPropDef
1885 super PropertyLayoutElement
1886 fun const_color: String do return "COLOR_{c_name}"
1887 end