f0f4ff9e5eb91aece058cb7c620f3461f4c10753
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 fun object_type: MClassType
199 do
200 var res = self.object_type_cache
201 if res != null then return res
202 res = self.get_primitive_class("Object").mclass_type
203 self.object_type_cache = res
204 return res
205 end
206
207 private var object_type_cache: nullable MClassType
208
209 # The type `Pointer`, super class to all extern classes
210 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
211
212 # The primitive type `Bool`
213 fun bool_type: MClassType
214 do
215 var res = self.bool_type_cache
216 if res != null then return res
217 res = self.get_primitive_class("Bool").mclass_type
218 self.bool_type_cache = res
219 return res
220 end
221
222 private var bool_type_cache: nullable MClassType
223
224 # The primitive type `Sys`, the main type of the program, if any
225 fun sys_type: nullable MClassType
226 do
227 var clas = self.model.get_mclasses_by_name("Sys")
228 if clas == null then return null
229 return get_primitive_class("Sys").mclass_type
230 end
231
232 # The primitive type `Finalizable`
233 # Used to tag classes that need to be finalized.
234 fun finalizable_type: nullable MClassType
235 do
236 var clas = self.model.get_mclasses_by_name("Finalizable")
237 if clas == null then return null
238 return get_primitive_class("Finalizable").mclass_type
239 end
240
241 # Force to get the primitive class named `name` or abort
242 fun get_primitive_class(name: String): MClass
243 do
244 var cla = self.model.get_mclasses_by_name(name)
245 if cla == null then
246 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
247 # Bool is injected because it is needed by engine to code the result
248 # of the implicit casts.
249 var c = new MClass(self, name, null, enum_kind, public_visibility)
250 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
251 cladef.set_supertypes([object_type])
252 cladef.add_in_hierarchy
253 return c
254 end
255 print("Fatal Error: no primitive class {name}")
256 exit(1)
257 end
258 if cla.length != 1 then
259 var msg = "Fatal Error: more than one primitive class {name}:"
260 for c in cla do msg += " {c.full_name}"
261 print msg
262 #exit(1)
263 end
264 return cla.first
265 end
266
267 # Try to get the primitive method named `name` on the type `recv`
268 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
269 do
270 var props = self.model.get_mproperties_by_name(name)
271 if props == null then return null
272 var res: nullable MMethod = null
273 for mprop in props do
274 assert mprop isa MMethod
275 var intro = mprop.intro_mclassdef
276 for mclassdef in recv.mclassdefs do
277 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
278 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
279 if res == null then
280 res = mprop
281 else if res != mprop then
282 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
283 abort
284 end
285 end
286 end
287 return res
288 end
289 end
290
291 private class MClassDefSorter
292 super Comparator
293 redef type COMPARED: MClassDef
294 var mmodule: MModule
295 redef fun compare(a, b)
296 do
297 var ca = a.mclass
298 var cb = b.mclass
299 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
300 return mmodule.model.mclassdef_hierarchy.compare(a, b)
301 end
302 end
303
304 private class MPropDefSorter
305 super Comparator
306 redef type COMPARED: MPropDef
307 var mmodule: MModule
308 redef fun compare(pa, pb)
309 do
310 var a = pa.mclassdef
311 var b = pb.mclassdef
312 var ca = a.mclass
313 var cb = b.mclass
314 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
315 return mmodule.model.mclassdef_hierarchy.compare(a, b)
316 end
317 end
318
319 # A named class
320 #
321 # `MClass` are global to the model; it means that a `MClass` is not bound to a
322 # specific `MModule`.
323 #
324 # This characteristic helps the reasoning about classes in a program since a
325 # single `MClass` object always denote the same class.
326 #
327 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
328 # These do not really have properties nor belong to a hierarchy since the property and the
329 # hierarchy of a class depends of the refinement in the modules.
330 #
331 # Most services on classes require the precision of a module, and no one can asks what are
332 # the super-classes of a class nor what are properties of a class without precising what is
333 # the module considered.
334 #
335 # For instance, during the typing of a source-file, the module considered is the module of the file.
336 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
337 # *is the method `foo` exists in the class `Bar` in the current module?*
338 #
339 # During some global analysis, the module considered may be the main module of the program.
340 class MClass
341 super MEntity
342
343 # The module that introduce the class
344 # While classes are not bound to a specific module,
345 # the introducing module is used for naming an visibility
346 var intro_mmodule: MModule
347
348 # The short name of the class
349 # In Nit, the name of a class cannot evolve in refinements
350 redef var name: String
351
352 # The canonical name of the class
353 #
354 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
355 # Example: `"owner::module::MyClass"`
356 redef var full_name is lazy do
357 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
358 end
359
360 redef var c_name is lazy do
361 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
362 end
363
364 # The number of generic formal parameters
365 # 0 if the class is not generic
366 var arity: Int is noinit
367
368 # Each generic formal parameters in order.
369 # is empty if the class is not generic
370 var mparameters = new Array[MParameterType]
371
372 # Initialize `mparameters` from their names.
373 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
374 autoinit
375 do
376 if parameter_names == null then
377 self.arity = 0
378 else
379 self.arity = parameter_names.length
380 end
381
382 # Create the formal parameter types
383 if arity > 0 then
384 assert parameter_names != null
385 var mparametertypes = new Array[MParameterType]
386 for i in [0..arity[ do
387 var mparametertype = new MParameterType(self, i, parameter_names[i])
388 mparametertypes.add(mparametertype)
389 end
390 self.mparameters = mparametertypes
391 var mclass_type = new MGenericType(self, mparametertypes)
392 self.mclass_type = mclass_type
393 self.get_mtype_cache[mparametertypes] = mclass_type
394 else
395 self.mclass_type = new MClassType(self)
396 end
397 end
398
399 # The kind of the class (interface, abstract class, etc.)
400 # In Nit, the kind of a class cannot evolve in refinements
401 var kind: MClassKind
402
403 # The visibility of the class
404 # In Nit, the visibility of a class cannot evolve in refinements
405 var visibility: MVisibility
406
407 init
408 do
409 intro_mmodule.intro_mclasses.add(self)
410 var model = intro_mmodule.model
411 model.mclasses_by_name.add_one(name, self)
412 model.mclasses.add(self)
413 end
414
415 redef fun model do return intro_mmodule.model
416
417 # All class definitions (introduction and refinements)
418 var mclassdefs = new Array[MClassDef]
419
420 # Alias for `name`
421 redef fun to_s do return self.name
422
423 # The definition that introduces the class.
424 #
425 # Warning: such a definition may not exist in the early life of the object.
426 # In this case, the method will abort.
427 var intro: MClassDef is noinit
428
429 # Return the class `self` in the class hierarchy of the module `mmodule`.
430 #
431 # SEE: `MModule::flatten_mclass_hierarchy`
432 # REQUIRE: `mmodule.has_mclass(self)`
433 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
434 do
435 return mmodule.flatten_mclass_hierarchy[self]
436 end
437
438 # The principal static type of the class.
439 #
440 # For non-generic class, mclass_type is the only `MClassType` based
441 # on self.
442 #
443 # For a generic class, the arguments are the formal parameters.
444 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
445 # If you want Array[Object] the see `MClassDef::bound_mtype`
446 #
447 # For generic classes, the mclass_type is also the way to get a formal
448 # generic parameter type.
449 #
450 # To get other types based on a generic class, see `get_mtype`.
451 #
452 # ENSURE: `mclass_type.mclass == self`
453 var mclass_type: MClassType is noinit
454
455 # Return a generic type based on the class
456 # Is the class is not generic, then the result is `mclass_type`
457 #
458 # REQUIRE: `mtype_arguments.length == self.arity`
459 fun get_mtype(mtype_arguments: Array[MType]): MClassType
460 do
461 assert mtype_arguments.length == self.arity
462 if self.arity == 0 then return self.mclass_type
463 var res = get_mtype_cache.get_or_null(mtype_arguments)
464 if res != null then return res
465 res = new MGenericType(self, mtype_arguments)
466 self.get_mtype_cache[mtype_arguments.to_a] = res
467 return res
468 end
469
470 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
471 end
472
473
474 # A definition (an introduction or a refinement) of a class in a module
475 #
476 # A `MClassDef` is associated with an explicit (or almost) definition of a
477 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
478 # a specific class and a specific module, and contains declarations like super-classes
479 # or properties.
480 #
481 # It is the class definitions that are the backbone of most things in the model:
482 # ClassDefs are defined with regard with other classdefs.
483 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
484 #
485 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
486 class MClassDef
487 super MEntity
488
489 # The module where the definition is
490 var mmodule: MModule
491
492 # The associated `MClass`
493 var mclass: MClass is noinit
494
495 # The bounded type associated to the mclassdef
496 #
497 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
498 # are the same type.
499 #
500 # Example:
501 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
502 # If you want Array[E], then see `mclass.mclass_type`
503 #
504 # ENSURE: `bound_mtype.mclass == self.mclass`
505 var bound_mtype: MClassType
506
507 # The origin of the definition
508 var location: Location
509
510 # Internal name combining the module and the class
511 # Example: "mymodule#MyClass"
512 redef var to_s: String is noinit
513
514 init
515 do
516 self.mclass = bound_mtype.mclass
517 mmodule.mclassdefs.add(self)
518 mclass.mclassdefs.add(self)
519 if mclass.intro_mmodule == mmodule then
520 assert not isset mclass._intro
521 mclass.intro = self
522 end
523 self.to_s = "{mmodule}#{mclass}"
524 end
525
526 # Actually the name of the `mclass`
527 redef fun name do return mclass.name
528
529 # The module and class name separated by a '#'.
530 #
531 # The short-name of the class is used for introduction.
532 # Example: "my_module#MyClass"
533 #
534 # The full-name of the class is used for refinement.
535 # Example: "my_module#intro_module::MyClass"
536 redef var full_name is lazy do
537 if is_intro then
538 # public gives 'p#A'
539 # private gives 'p::m#A'
540 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
541 else if mclass.intro_mmodule.mproject != mmodule.mproject then
542 # public gives 'q::n#p::A'
543 # private gives 'q::n#p::m::A'
544 return "{mmodule.full_name}#{mclass.full_name}"
545 else if mclass.visibility > private_visibility then
546 # public gives 'p::n#A'
547 return "{mmodule.full_name}#{mclass.name}"
548 else
549 # private gives 'p::n#::m::A' (redundant p is omitted)
550 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
551 end
552 end
553
554 redef var c_name is lazy do
555 if is_intro then
556 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
557 else if mclass.intro_mmodule.mproject == mmodule.mproject and mclass.visibility > private_visibility then
558 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
559 else
560 return "{mmodule.c_name}___{mclass.c_name}"
561 end
562 end
563
564 redef fun model do return mmodule.model
565
566 # All declared super-types
567 # FIXME: quite ugly but not better idea yet
568 var supertypes = new Array[MClassType]
569
570 # Register some super-types for the class (ie "super SomeType")
571 #
572 # The hierarchy must not already be set
573 # REQUIRE: `self.in_hierarchy == null`
574 fun set_supertypes(supertypes: Array[MClassType])
575 do
576 assert unique_invocation: self.in_hierarchy == null
577 var mmodule = self.mmodule
578 var model = mmodule.model
579 var mtype = self.bound_mtype
580
581 for supertype in supertypes do
582 self.supertypes.add(supertype)
583
584 # Register in full_type_specialization_hierarchy
585 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
586 # Register in intro_type_specialization_hierarchy
587 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
588 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
589 end
590 end
591
592 end
593
594 # Collect the super-types (set by set_supertypes) to build the hierarchy
595 #
596 # This function can only invoked once by class
597 # REQUIRE: `self.in_hierarchy == null`
598 # ENSURE: `self.in_hierarchy != null`
599 fun add_in_hierarchy
600 do
601 assert unique_invocation: self.in_hierarchy == null
602 var model = mmodule.model
603 var res = model.mclassdef_hierarchy.add_node(self)
604 self.in_hierarchy = res
605 var mtype = self.bound_mtype
606
607 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
608 # The simpliest way is to attach it to collect_mclassdefs
609 for mclassdef in mtype.collect_mclassdefs(mmodule) do
610 res.poset.add_edge(self, mclassdef)
611 end
612 end
613
614 # The view of the class definition in `mclassdef_hierarchy`
615 var in_hierarchy: nullable POSetElement[MClassDef] = null
616
617 # Is the definition the one that introduced `mclass`?
618 fun is_intro: Bool do return mclass.intro == self
619
620 # All properties introduced by the classdef
621 var intro_mproperties = new Array[MProperty]
622
623 # All property definitions in the class (introductions and redefinitions)
624 var mpropdefs = new Array[MPropDef]
625 end
626
627 # A global static type
628 #
629 # MType are global to the model; it means that a `MType` is not bound to a
630 # specific `MModule`.
631 # This characteristic helps the reasoning about static types in a program
632 # since a single `MType` object always denote the same type.
633 #
634 # However, because a `MType` is global, it does not really have properties
635 # nor have subtypes to a hierarchy since the property and the class hierarchy
636 # depends of a module.
637 # Moreover, virtual types an formal generic parameter types also depends on
638 # a receiver to have sense.
639 #
640 # Therefore, most method of the types require a module and an anchor.
641 # The module is used to know what are the classes and the specialization
642 # links.
643 # The anchor is used to know what is the bound of the virtual types and formal
644 # generic parameter types.
645 #
646 # MType are not directly usable to get properties. See the `anchor_to` method
647 # and the `MClassType` class.
648 #
649 # FIXME: the order of the parameters is not the best. We mus pick on from:
650 # * foo(mmodule, anchor, othertype)
651 # * foo(othertype, anchor, mmodule)
652 # * foo(anchor, mmodule, othertype)
653 # * foo(othertype, mmodule, anchor)
654 abstract class MType
655 super MEntity
656
657 redef fun name do return to_s
658
659 # Return true if `self` is an subtype of `sup`.
660 # The typing is done using the standard typing policy of Nit.
661 #
662 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
663 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
664 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
665 do
666 var sub = self
667 if sub == sup then return true
668
669 #print "1.is {sub} a {sup}? ===="
670
671 if anchor == null then
672 assert not sub.need_anchor
673 assert not sup.need_anchor
674 else
675 # First, resolve the formal types to the simplest equivalent forms in the receiver
676 assert sub.can_resolve_for(anchor, null, mmodule)
677 sub = sub.lookup_fixed(mmodule, anchor)
678 assert sup.can_resolve_for(anchor, null, mmodule)
679 sup = sup.lookup_fixed(mmodule, anchor)
680 end
681
682 # Does `sup` accept null or not?
683 # Discard the nullable marker if it exists
684 var sup_accept_null = false
685 if sup isa MNullableType then
686 sup_accept_null = true
687 sup = sup.mtype
688 else if sup isa MNullType then
689 sup_accept_null = true
690 end
691
692 # Can `sub` provide null or not?
693 # Thus we can match with `sup_accept_null`
694 # Also discard the nullable marker if it exists
695 if sub isa MNullableType then
696 if not sup_accept_null then return false
697 sub = sub.mtype
698 else if sub isa MNullType then
699 return sup_accept_null
700 end
701 # Now the case of direct null and nullable is over.
702
703 # If `sub` is a formal type, then it is accepted if its bound is accepted
704 while sub isa MParameterType or sub isa MVirtualType do
705 #print "3.is {sub} a {sup}?"
706
707 # A unfixed formal type can only accept itself
708 if sub == sup then return true
709
710 assert anchor != null
711 sub = sub.lookup_bound(mmodule, anchor)
712
713 #print "3.is {sub} a {sup}?"
714
715 # Manage the second layer of null/nullable
716 if sub isa MNullableType then
717 if not sup_accept_null then return false
718 sub = sub.mtype
719 else if sub isa MNullType then
720 return sup_accept_null
721 end
722 end
723 #print "4.is {sub} a {sup}? <- no more resolution"
724
725 assert sub isa MClassType # It is the only remaining type
726
727 # A unfixed formal type can only accept itself
728 if sup isa MParameterType or sup isa MVirtualType then
729 return false
730 end
731
732 if sup isa MNullType then
733 # `sup` accepts only null
734 return false
735 end
736
737 assert sup isa MClassType # It is the only remaining type
738
739 # Now both are MClassType, we need to dig
740
741 if sub == sup then return true
742
743 if anchor == null then anchor = sub # UGLY: any anchor will work
744 var resolved_sub = sub.anchor_to(mmodule, anchor)
745 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
746 if res == false then return false
747 if not sup isa MGenericType then return true
748 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
749 assert sub2.mclass == sup.mclass
750 for i in [0..sup.mclass.arity[ do
751 var sub_arg = sub2.arguments[i]
752 var sup_arg = sup.arguments[i]
753 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
754 if res == false then return false
755 end
756 return true
757 end
758
759 # The base class type on which self is based
760 #
761 # This base type is used to get property (an internally to perform
762 # unsafe type comparison).
763 #
764 # Beware: some types (like null) are not based on a class thus this
765 # method will crash
766 #
767 # Basically, this function transform the virtual types and parameter
768 # types to their bounds.
769 #
770 # Example
771 #
772 # class A end
773 # class B super A end
774 # class X end
775 # class Y super X end
776 # class G[T: A]
777 # type U: X
778 # end
779 # class H
780 # super G[B]
781 # redef type U: Y
782 # end
783 #
784 # Map[T,U] anchor_to H #-> Map[B,Y]
785 #
786 # Explanation of the example:
787 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
788 # because "redef type U: Y". Therefore, Map[T, U] is bound to
789 # Map[B, Y]
790 #
791 # ENSURE: `not self.need_anchor implies result == self`
792 # ENSURE: `not result.need_anchor`
793 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
794 do
795 if not need_anchor then return self
796 assert not anchor.need_anchor
797 # Just resolve to the anchor and clear all the virtual types
798 var res = self.resolve_for(anchor, null, mmodule, true)
799 assert not res.need_anchor
800 return res
801 end
802
803 # Does `self` contain a virtual type or a formal generic parameter type?
804 # In order to remove those types, you usually want to use `anchor_to`.
805 fun need_anchor: Bool do return true
806
807 # Return the supertype when adapted to a class.
808 #
809 # In Nit, for each super-class of a type, there is a equivalent super-type.
810 #
811 # Example:
812 #
813 # ~~~nitish
814 # class G[T, U] end
815 # class H[V] super G[V, Bool] end
816 #
817 # H[Int] supertype_to G #-> G[Int, Bool]
818 # ~~~
819 #
820 # REQUIRE: `super_mclass` is a super-class of `self`
821 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
822 # ENSURE: `result.mclass = super_mclass`
823 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
824 do
825 if super_mclass.arity == 0 then return super_mclass.mclass_type
826 if self isa MClassType and self.mclass == super_mclass then return self
827 var resolved_self
828 if self.need_anchor then
829 assert anchor != null
830 resolved_self = self.anchor_to(mmodule, anchor)
831 else
832 resolved_self = self
833 end
834 var supertypes = resolved_self.collect_mtypes(mmodule)
835 for supertype in supertypes do
836 if supertype.mclass == super_mclass then
837 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
838 return supertype.resolve_for(self, anchor, mmodule, false)
839 end
840 end
841 abort
842 end
843
844 # Replace formals generic types in self with resolved values in `mtype`
845 # If `cleanup_virtual` is true, then virtual types are also replaced
846 # with their bounds.
847 #
848 # This function returns self if `need_anchor` is false.
849 #
850 # ## Example 1
851 #
852 # ~~~
853 # class G[E] end
854 # class H[F] super G[F] end
855 # class X[Z] end
856 # ~~~
857 #
858 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
859 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
860 #
861 # Explanation of the example:
862 # * Array[E].need_anchor is true because there is a formal generic parameter type E
863 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
864 # * Since "H[F] super G[F]", E is in fact F for H
865 # * More specifically, in H[Int], E is Int
866 # * So, in H[Int], Array[E] is Array[Int]
867 #
868 # This function is mainly used to inherit a signature.
869 # Because, unlike `anchor_to`, we do not want a full resolution of
870 # a type but only an adapted version of it.
871 #
872 # ## Example 2
873 #
874 # ~~~
875 # class A[E]
876 # fun foo(e:E):E is abstract
877 # end
878 # class B super A[Int] end
879 # ~~~
880 #
881 # The signature on foo is (e: E): E
882 # If we resolve the signature for B, we get (e:Int):Int
883 #
884 # ## Example 3
885 #
886 # ~~~nitish
887 # class A[E]
888 # fun foo(e:E):E is abstract
889 # end
890 # class C[F]
891 # var a: A[Array[F]]
892 # fun bar do a.foo(x) # <- x is here
893 # end
894 # ~~~
895 #
896 # The first question is: is foo available on `a`?
897 #
898 # The static type of a is `A[Array[F]]`, that is an open type.
899 # in order to find a method `foo`, whe must look at a resolved type.
900 #
901 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
902 #
903 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
904 #
905 # The next question is: what is the accepted types for `x`?
906 #
907 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
908 #
909 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
910 #
911 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
912 #
913 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
914 # two function instead of one seems also to be a bad idea.
915 #
916 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
917 # ENSURE: `not self.need_anchor implies result == self`
918 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
919
920 # Resolve formal type to its verbatim bound.
921 # If the type is not formal, just return self
922 #
923 # The result is returned exactly as declared in the "type" property (verbatim).
924 # So it could be another formal type.
925 #
926 # In case of conflict, the method aborts.
927 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
928
929 # Resolve the formal type to its simplest equivalent form.
930 #
931 # Formal types are either free or fixed.
932 # When it is fixed, it means that it is equivalent with a simpler type.
933 # When a formal type is free, it means that it is only equivalent with itself.
934 # This method return the most simple equivalent type of `self`.
935 #
936 # This method is mainly used for subtype test in order to sanely compare fixed.
937 #
938 # By default, return self.
939 # See the redefinitions for specific behavior in each kind of type.
940 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
941
942 # Can the type be resolved?
943 #
944 # In order to resolve open types, the formal types must make sence.
945 #
946 # ## Example
947 #
948 # class A[E]
949 # end
950 # class B[F]
951 # end
952 #
953 # ~~~nitish
954 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
955 #
956 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
957 #
958 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
959 # # B[E] is a red hearing only the E is important,
960 # # E make sense in A
961 # ~~~
962 #
963 # REQUIRE: `anchor != null implies not anchor.need_anchor`
964 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
965 # ENSURE: `not self.need_anchor implies result == true`
966 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
967
968 # Return the nullable version of the type
969 # If the type is already nullable then self is returned
970 fun as_nullable: MType
971 do
972 var res = self.as_nullable_cache
973 if res != null then return res
974 res = new MNullableType(self)
975 self.as_nullable_cache = res
976 return res
977 end
978
979 # Return the not nullable version of the type
980 # Is the type is already not nullable, then self is returned.
981 #
982 # Note: this just remove the `nullable` notation, but the result can still contains null.
983 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
984 fun as_notnullable: MType
985 do
986 return self
987 end
988
989 private var as_nullable_cache: nullable MType = null
990
991
992 # The depth of the type seen as a tree.
993 #
994 # * A -> 1
995 # * G[A] -> 2
996 # * H[A, B] -> 2
997 # * H[G[A], B] -> 3
998 #
999 # Formal types have a depth of 1.
1000 fun depth: Int
1001 do
1002 return 1
1003 end
1004
1005 # The length of the type seen as a tree.
1006 #
1007 # * A -> 1
1008 # * G[A] -> 2
1009 # * H[A, B] -> 3
1010 # * H[G[A], B] -> 4
1011 #
1012 # Formal types have a length of 1.
1013 fun length: Int
1014 do
1015 return 1
1016 end
1017
1018 # Compute all the classdefs inherited/imported.
1019 # The returned set contains:
1020 # * the class definitions from `mmodule` and its imported modules
1021 # * the class definitions of this type and its super-types
1022 #
1023 # This function is used mainly internally.
1024 #
1025 # REQUIRE: `not self.need_anchor`
1026 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1027
1028 # Compute all the super-classes.
1029 # This function is used mainly internally.
1030 #
1031 # REQUIRE: `not self.need_anchor`
1032 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1033
1034 # Compute all the declared super-types.
1035 # Super-types are returned as declared in the classdefs (verbatim).
1036 # This function is used mainly internally.
1037 #
1038 # REQUIRE: `not self.need_anchor`
1039 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1040
1041 # Is the property in self for a given module
1042 # This method does not filter visibility or whatever
1043 #
1044 # REQUIRE: `not self.need_anchor`
1045 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1046 do
1047 assert not self.need_anchor
1048 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1049 end
1050 end
1051
1052 # A type based on a class.
1053 #
1054 # `MClassType` have properties (see `has_mproperty`).
1055 class MClassType
1056 super MType
1057
1058 # The associated class
1059 var mclass: MClass
1060
1061 redef fun model do return self.mclass.intro_mmodule.model
1062
1063 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1064
1065 # The formal arguments of the type
1066 # ENSURE: `result.length == self.mclass.arity`
1067 var arguments = new Array[MType]
1068
1069 redef fun to_s do return mclass.to_s
1070
1071 redef fun full_name do return mclass.full_name
1072
1073 redef fun c_name do return mclass.c_name
1074
1075 redef fun need_anchor do return false
1076
1077 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1078 do
1079 return super.as(MClassType)
1080 end
1081
1082 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1083
1084 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1085
1086 redef fun collect_mclassdefs(mmodule)
1087 do
1088 assert not self.need_anchor
1089 var cache = self.collect_mclassdefs_cache
1090 if not cache.has_key(mmodule) then
1091 self.collect_things(mmodule)
1092 end
1093 return cache[mmodule]
1094 end
1095
1096 redef fun collect_mclasses(mmodule)
1097 do
1098 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1099 assert not self.need_anchor
1100 var cache = self.collect_mclasses_cache
1101 if not cache.has_key(mmodule) then
1102 self.collect_things(mmodule)
1103 end
1104 var res = cache[mmodule]
1105 collect_mclasses_last_module = mmodule
1106 collect_mclasses_last_module_cache = res
1107 return res
1108 end
1109
1110 private var collect_mclasses_last_module: nullable MModule = null
1111 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1112
1113 redef fun collect_mtypes(mmodule)
1114 do
1115 assert not self.need_anchor
1116 var cache = self.collect_mtypes_cache
1117 if not cache.has_key(mmodule) then
1118 self.collect_things(mmodule)
1119 end
1120 return cache[mmodule]
1121 end
1122
1123 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1124 private fun collect_things(mmodule: MModule)
1125 do
1126 var res = new HashSet[MClassDef]
1127 var seen = new HashSet[MClass]
1128 var types = new HashSet[MClassType]
1129 seen.add(self.mclass)
1130 var todo = [self.mclass]
1131 while not todo.is_empty do
1132 var mclass = todo.pop
1133 #print "process {mclass}"
1134 for mclassdef in mclass.mclassdefs do
1135 if not mmodule.in_importation <= mclassdef.mmodule then continue
1136 #print " process {mclassdef}"
1137 res.add(mclassdef)
1138 for supertype in mclassdef.supertypes do
1139 types.add(supertype)
1140 var superclass = supertype.mclass
1141 if seen.has(superclass) then continue
1142 #print " add {superclass}"
1143 seen.add(superclass)
1144 todo.add(superclass)
1145 end
1146 end
1147 end
1148 collect_mclassdefs_cache[mmodule] = res
1149 collect_mclasses_cache[mmodule] = seen
1150 collect_mtypes_cache[mmodule] = types
1151 end
1152
1153 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1154 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1155 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1156
1157 end
1158
1159 # A type based on a generic class.
1160 # A generic type a just a class with additional formal generic arguments.
1161 class MGenericType
1162 super MClassType
1163
1164 redef var arguments
1165
1166 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1167
1168 init
1169 do
1170 assert self.mclass.arity == arguments.length
1171
1172 self.need_anchor = false
1173 for t in arguments do
1174 if t.need_anchor then
1175 self.need_anchor = true
1176 break
1177 end
1178 end
1179
1180 self.to_s = "{mclass}[{arguments.join(", ")}]"
1181 end
1182
1183 # The short-name of the class, then the full-name of each type arguments within brackets.
1184 # Example: `"Map[String, List[Int]]"`
1185 redef var to_s: String is noinit
1186
1187 # The full-name of the class, then the full-name of each type arguments within brackets.
1188 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1189 redef var full_name is lazy do
1190 var args = new Array[String]
1191 for t in arguments do
1192 args.add t.full_name
1193 end
1194 return "{mclass.full_name}[{args.join(", ")}]}"
1195 end
1196
1197 redef var c_name is lazy do
1198 var res = mclass.c_name
1199 # Note: because the arity is known, a prefix notation is enough
1200 for t in arguments do
1201 res += "__"
1202 res += t.c_name
1203 end
1204 return res.to_s
1205 end
1206
1207 redef var need_anchor: Bool is noinit
1208
1209 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1210 do
1211 if not need_anchor then return self
1212 assert can_resolve_for(mtype, anchor, mmodule)
1213 var types = new Array[MType]
1214 for t in arguments do
1215 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1216 end
1217 return mclass.get_mtype(types)
1218 end
1219
1220 redef fun can_resolve_for(mtype, anchor, mmodule)
1221 do
1222 if not need_anchor then return true
1223 for t in arguments do
1224 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1225 end
1226 return true
1227 end
1228
1229
1230 redef fun depth
1231 do
1232 var dmax = 0
1233 for a in self.arguments do
1234 var d = a.depth
1235 if d > dmax then dmax = d
1236 end
1237 return dmax + 1
1238 end
1239
1240 redef fun length
1241 do
1242 var res = 1
1243 for a in self.arguments do
1244 res += a.length
1245 end
1246 return res
1247 end
1248 end
1249
1250 # A virtual formal type.
1251 class MVirtualType
1252 super MType
1253
1254 # The property associated with the type.
1255 # Its the definitions of this property that determine the bound or the virtual type.
1256 var mproperty: MVirtualTypeProp
1257
1258 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1259
1260 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1261 do
1262 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1263 end
1264
1265 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1266 do
1267 assert not resolved_receiver.need_anchor
1268 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1269 if props.is_empty then
1270 abort
1271 else if props.length == 1 then
1272 return props.first
1273 end
1274 var types = new ArraySet[MType]
1275 var res = props.first
1276 for p in props do
1277 types.add(p.bound.as(not null))
1278 if not res.is_fixed then res = p
1279 end
1280 if types.length == 1 then
1281 return res
1282 end
1283 abort
1284 end
1285
1286 # A VT is fixed when:
1287 # * the VT is (re-)defined with the annotation `is fixed`
1288 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1289 # * the receiver is an enum class since there is no subtype possible
1290 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1291 do
1292 assert not resolved_receiver.need_anchor
1293 resolved_receiver = resolved_receiver.as_notnullable
1294 assert resolved_receiver isa MClassType # It is the only remaining type
1295
1296 var prop = lookup_single_definition(mmodule, resolved_receiver)
1297 var res = prop.bound.as(not null)
1298
1299 # Recursively lookup the fixed result
1300 res = res.lookup_fixed(mmodule, resolved_receiver)
1301
1302 # 1. For a fixed VT, return the resolved bound
1303 if prop.is_fixed then return res
1304
1305 # 2. For a enum boud, return the bound
1306 if res isa MClassType and res.mclass.kind == enum_kind then return res
1307
1308 # 3. for a enum receiver return the bound
1309 if resolved_receiver.mclass.kind == enum_kind then return res
1310
1311 return self
1312 end
1313
1314 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1315 do
1316 if not cleanup_virtual then return self
1317 assert can_resolve_for(mtype, anchor, mmodule)
1318 # self is a virtual type declared (or inherited) in mtype
1319 # The point of the function it to get the bound of the virtual type that make sense for mtype
1320 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1321 #print "{class_name}: {self}/{mtype}/{anchor}?"
1322 var resolved_receiver
1323 if mtype.need_anchor then
1324 assert anchor != null
1325 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1326 else
1327 resolved_receiver = mtype
1328 end
1329 # Now, we can get the bound
1330 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1331 # The bound is exactly as declared in the "type" property, so we must resolve it again
1332 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1333
1334 return res
1335 end
1336
1337 redef fun can_resolve_for(mtype, anchor, mmodule)
1338 do
1339 if mtype.need_anchor then
1340 assert anchor != null
1341 mtype = mtype.anchor_to(mmodule, anchor)
1342 end
1343 return mtype.has_mproperty(mmodule, mproperty)
1344 end
1345
1346 redef fun to_s do return self.mproperty.to_s
1347
1348 redef fun full_name do return self.mproperty.full_name
1349
1350 redef fun c_name do return self.mproperty.c_name
1351 end
1352
1353 # The type associated to a formal parameter generic type of a class
1354 #
1355 # Each parameter type is associated to a specific class.
1356 # It means that all refinements of a same class "share" the parameter type,
1357 # but that a generic subclass has its own parameter types.
1358 #
1359 # However, in the sense of the meta-model, a parameter type of a class is
1360 # a valid type in a subclass. The "in the sense of the meta-model" is
1361 # important because, in the Nit language, the programmer cannot refers
1362 # directly to the parameter types of the super-classes.
1363 #
1364 # Example:
1365 #
1366 # class A[E]
1367 # fun e: E is abstract
1368 # end
1369 # class B[F]
1370 # super A[Array[F]]
1371 # end
1372 #
1373 # In the class definition B[F], `F` is a valid type but `E` is not.
1374 # However, `self.e` is a valid method call, and the signature of `e` is
1375 # declared `e: E`.
1376 #
1377 # Note that parameter types are shared among class refinements.
1378 # Therefore parameter only have an internal name (see `to_s` for details).
1379 class MParameterType
1380 super MType
1381
1382 # The generic class where the parameter belong
1383 var mclass: MClass
1384
1385 redef fun model do return self.mclass.intro_mmodule.model
1386
1387 # The position of the parameter (0 for the first parameter)
1388 # FIXME: is `position` a better name?
1389 var rank: Int
1390
1391 redef var name
1392
1393 redef fun to_s do return name
1394
1395 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1396
1397 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1398
1399 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1400 do
1401 assert not resolved_receiver.need_anchor
1402 resolved_receiver = resolved_receiver.as_notnullable
1403 assert resolved_receiver isa MClassType # It is the only remaining type
1404 var goalclass = self.mclass
1405 if resolved_receiver.mclass == goalclass then
1406 return resolved_receiver.arguments[self.rank]
1407 end
1408 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1409 for t in supertypes do
1410 if t.mclass == goalclass then
1411 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1412 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1413 var res = t.arguments[self.rank]
1414 return res
1415 end
1416 end
1417 abort
1418 end
1419
1420 # A PT is fixed when:
1421 # * Its bound is a enum class (see `enum_kind`).
1422 # The PT is just useless, but it is still a case.
1423 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1424 # so it is necessarily fixed in a `super` clause, either with a normal type
1425 # or with another PT.
1426 # See `resolve_for` for examples about related issues.
1427 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1428 do
1429 assert not resolved_receiver.need_anchor
1430 resolved_receiver = resolved_receiver.as_notnullable
1431 assert resolved_receiver isa MClassType # It is the only remaining type
1432 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1433 return res
1434 end
1435
1436 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1437 do
1438 assert can_resolve_for(mtype, anchor, mmodule)
1439 #print "{class_name}: {self}/{mtype}/{anchor}?"
1440
1441 if mtype isa MGenericType and mtype.mclass == self.mclass then
1442 var res = mtype.arguments[self.rank]
1443 if anchor != null and res.need_anchor then
1444 # Maybe the result can be resolved more if are bound to a final class
1445 var r2 = res.anchor_to(mmodule, anchor)
1446 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1447 end
1448 return res
1449 end
1450
1451 # self is a parameter type of mtype (or of a super-class of mtype)
1452 # The point of the function it to get the bound of the virtual type that make sense for mtype
1453 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1454 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1455 var resolved_receiver
1456 if mtype.need_anchor then
1457 assert anchor != null
1458 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1459 else
1460 resolved_receiver = mtype
1461 end
1462 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1463 if resolved_receiver isa MParameterType then
1464 assert resolved_receiver.mclass == anchor.mclass
1465 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1466 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1467 end
1468 assert resolved_receiver isa MClassType # It is the only remaining type
1469
1470 # Eh! The parameter is in the current class.
1471 # So we return the corresponding argument, no mater what!
1472 if resolved_receiver.mclass == self.mclass then
1473 var res = resolved_receiver.arguments[self.rank]
1474 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1475 return res
1476 end
1477
1478 if resolved_receiver.need_anchor then
1479 assert anchor != null
1480 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1481 end
1482 # Now, we can get the bound
1483 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1484 # The bound is exactly as declared in the "type" property, so we must resolve it again
1485 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1486
1487 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1488
1489 return res
1490 end
1491
1492 redef fun can_resolve_for(mtype, anchor, mmodule)
1493 do
1494 if mtype.need_anchor then
1495 assert anchor != null
1496 mtype = mtype.anchor_to(mmodule, anchor)
1497 end
1498 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1499 end
1500 end
1501
1502 # A type prefixed with "nullable"
1503 class MNullableType
1504 super MType
1505
1506 # The base type of the nullable type
1507 var mtype: MType
1508
1509 redef fun model do return self.mtype.model
1510
1511 init
1512 do
1513 self.to_s = "nullable {mtype}"
1514 end
1515
1516 redef var to_s: String is noinit
1517
1518 redef var full_name is lazy do return "nullable {mtype.full_name}"
1519
1520 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1521
1522 redef fun need_anchor do return mtype.need_anchor
1523 redef fun as_nullable do return self
1524 redef fun as_notnullable do return mtype
1525 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1526 do
1527 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1528 return res.as_nullable
1529 end
1530
1531 redef fun can_resolve_for(mtype, anchor, mmodule)
1532 do
1533 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1534 end
1535
1536 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1537 redef fun lookup_fixed(mmodule, resolved_receiver)
1538 do
1539 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1540 if t == mtype then return self
1541 return t.as_nullable
1542 end
1543
1544 redef fun depth do return self.mtype.depth
1545
1546 redef fun length do return self.mtype.length
1547
1548 redef fun collect_mclassdefs(mmodule)
1549 do
1550 assert not self.need_anchor
1551 return self.mtype.collect_mclassdefs(mmodule)
1552 end
1553
1554 redef fun collect_mclasses(mmodule)
1555 do
1556 assert not self.need_anchor
1557 return self.mtype.collect_mclasses(mmodule)
1558 end
1559
1560 redef fun collect_mtypes(mmodule)
1561 do
1562 assert not self.need_anchor
1563 return self.mtype.collect_mtypes(mmodule)
1564 end
1565 end
1566
1567 # The type of the only value null
1568 #
1569 # The is only one null type per model, see `MModel::null_type`.
1570 class MNullType
1571 super MType
1572 redef var model: Model
1573 redef fun to_s do return "null"
1574 redef fun full_name do return "null"
1575 redef fun c_name do return "null"
1576 redef fun as_nullable do return self
1577 redef fun need_anchor do return false
1578 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1579 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1580
1581 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1582
1583 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1584
1585 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1586 end
1587
1588 # A signature of a method
1589 class MSignature
1590 super MType
1591
1592 # The each parameter (in order)
1593 var mparameters: Array[MParameter]
1594
1595 # The return type (null for a procedure)
1596 var return_mtype: nullable MType
1597
1598 redef fun depth
1599 do
1600 var dmax = 0
1601 var t = self.return_mtype
1602 if t != null then dmax = t.depth
1603 for p in mparameters do
1604 var d = p.mtype.depth
1605 if d > dmax then dmax = d
1606 end
1607 return dmax + 1
1608 end
1609
1610 redef fun length
1611 do
1612 var res = 1
1613 var t = self.return_mtype
1614 if t != null then res += t.length
1615 for p in mparameters do
1616 res += p.mtype.length
1617 end
1618 return res
1619 end
1620
1621 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1622 init
1623 do
1624 var vararg_rank = -1
1625 for i in [0..mparameters.length[ do
1626 var parameter = mparameters[i]
1627 if parameter.is_vararg then
1628 assert vararg_rank == -1
1629 vararg_rank = i
1630 end
1631 end
1632 self.vararg_rank = vararg_rank
1633 end
1634
1635 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1636 # value is -1 if there is no vararg.
1637 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1638 var vararg_rank: Int is noinit
1639
1640 # The number or parameters
1641 fun arity: Int do return mparameters.length
1642
1643 redef fun to_s
1644 do
1645 var b = new FlatBuffer
1646 if not mparameters.is_empty then
1647 b.append("(")
1648 for i in [0..mparameters.length[ do
1649 var mparameter = mparameters[i]
1650 if i > 0 then b.append(", ")
1651 b.append(mparameter.name)
1652 b.append(": ")
1653 b.append(mparameter.mtype.to_s)
1654 if mparameter.is_vararg then
1655 b.append("...")
1656 end
1657 end
1658 b.append(")")
1659 end
1660 var ret = self.return_mtype
1661 if ret != null then
1662 b.append(": ")
1663 b.append(ret.to_s)
1664 end
1665 return b.to_s
1666 end
1667
1668 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1669 do
1670 var params = new Array[MParameter]
1671 for p in self.mparameters do
1672 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1673 end
1674 var ret = self.return_mtype
1675 if ret != null then
1676 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1677 end
1678 var res = new MSignature(params, ret)
1679 return res
1680 end
1681 end
1682
1683 # A parameter in a signature
1684 class MParameter
1685 super MEntity
1686
1687 # The name of the parameter
1688 redef var name: String
1689
1690 # The static type of the parameter
1691 var mtype: MType
1692
1693 # Is the parameter a vararg?
1694 var is_vararg: Bool
1695
1696 redef fun to_s
1697 do
1698 if is_vararg then
1699 return "{name}: {mtype}..."
1700 else
1701 return "{name}: {mtype}"
1702 end
1703 end
1704
1705 # Returns a new parameter with the `mtype` resolved.
1706 # See `MType::resolve_for` for details.
1707 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1708 do
1709 if not self.mtype.need_anchor then return self
1710 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1711 var res = new MParameter(self.name, newtype, self.is_vararg)
1712 return res
1713 end
1714
1715 redef fun model do return mtype.model
1716 end
1717
1718 # A service (global property) that generalize method, attribute, etc.
1719 #
1720 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1721 # to a specific `MModule` nor a specific `MClass`.
1722 #
1723 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1724 # and the other in subclasses and in refinements.
1725 #
1726 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1727 # of any dynamic type).
1728 # For instance, a call site "x.foo" is associated to a `MProperty`.
1729 abstract class MProperty
1730 super MEntity
1731
1732 # The associated MPropDef subclass.
1733 # The two specialization hierarchy are symmetric.
1734 type MPROPDEF: MPropDef
1735
1736 # The classdef that introduce the property
1737 # While a property is not bound to a specific module, or class,
1738 # the introducing mclassdef is used for naming and visibility
1739 var intro_mclassdef: MClassDef
1740
1741 # The (short) name of the property
1742 redef var name: String
1743
1744 # The canonical name of the property.
1745 #
1746 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1747 # Example: "my_project::my_module::MyClass::my_method"
1748 redef var full_name is lazy do
1749 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1750 end
1751
1752 redef var c_name is lazy do
1753 # FIXME use `namespace_for`
1754 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1755 end
1756
1757 # The visibility of the property
1758 var visibility: MVisibility
1759
1760 # Is the property usable as an initializer?
1761 var is_autoinit = false is writable
1762
1763 init
1764 do
1765 intro_mclassdef.intro_mproperties.add(self)
1766 var model = intro_mclassdef.mmodule.model
1767 model.mproperties_by_name.add_one(name, self)
1768 model.mproperties.add(self)
1769 end
1770
1771 # All definitions of the property.
1772 # The first is the introduction,
1773 # The other are redefinitions (in refinements and in subclasses)
1774 var mpropdefs = new Array[MPROPDEF]
1775
1776 # The definition that introduces the property.
1777 #
1778 # Warning: such a definition may not exist in the early life of the object.
1779 # In this case, the method will abort.
1780 var intro: MPROPDEF is noinit
1781
1782 redef fun model do return intro.model
1783
1784 # Alias for `name`
1785 redef fun to_s do return name
1786
1787 # Return the most specific property definitions defined or inherited by a type.
1788 # The selection knows that refinement is stronger than specialization;
1789 # however, in case of conflict more than one property are returned.
1790 # If mtype does not know mproperty then an empty array is returned.
1791 #
1792 # If you want the really most specific property, then look at `lookup_first_definition`
1793 #
1794 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1795 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1796 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1797 do
1798 assert not mtype.need_anchor
1799 mtype = mtype.as_notnullable
1800
1801 var cache = self.lookup_definitions_cache[mmodule, mtype]
1802 if cache != null then return cache
1803
1804 #print "select prop {mproperty} for {mtype} in {self}"
1805 # First, select all candidates
1806 var candidates = new Array[MPROPDEF]
1807 for mpropdef in self.mpropdefs do
1808 # If the definition is not imported by the module, then skip
1809 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1810 # If the definition is not inherited by the type, then skip
1811 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1812 # Else, we keep it
1813 candidates.add(mpropdef)
1814 end
1815 # Fast track for only one candidate
1816 if candidates.length <= 1 then
1817 self.lookup_definitions_cache[mmodule, mtype] = candidates
1818 return candidates
1819 end
1820
1821 # Second, filter the most specific ones
1822 return select_most_specific(mmodule, candidates)
1823 end
1824
1825 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1826
1827 # Return the most specific property definitions inherited by a type.
1828 # The selection knows that refinement is stronger than specialization;
1829 # however, in case of conflict more than one property are returned.
1830 # If mtype does not know mproperty then an empty array is returned.
1831 #
1832 # If you want the really most specific property, then look at `lookup_next_definition`
1833 #
1834 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1835 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
1836 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1837 do
1838 assert not mtype.need_anchor
1839 mtype = mtype.as_notnullable
1840
1841 # First, select all candidates
1842 var candidates = new Array[MPROPDEF]
1843 for mpropdef in self.mpropdefs do
1844 # If the definition is not imported by the module, then skip
1845 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1846 # If the definition is not inherited by the type, then skip
1847 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1848 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1849 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1850 # Else, we keep it
1851 candidates.add(mpropdef)
1852 end
1853 # Fast track for only one candidate
1854 if candidates.length <= 1 then return candidates
1855
1856 # Second, filter the most specific ones
1857 return select_most_specific(mmodule, candidates)
1858 end
1859
1860 # Return an array containing olny the most specific property definitions
1861 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1862 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1863 do
1864 var res = new Array[MPROPDEF]
1865 for pd1 in candidates do
1866 var cd1 = pd1.mclassdef
1867 var c1 = cd1.mclass
1868 var keep = true
1869 for pd2 in candidates do
1870 if pd2 == pd1 then continue # do not compare with self!
1871 var cd2 = pd2.mclassdef
1872 var c2 = cd2.mclass
1873 if c2.mclass_type == c1.mclass_type then
1874 if cd2.mmodule.in_importation < cd1.mmodule then
1875 # cd2 refines cd1; therefore we skip pd1
1876 keep = false
1877 break
1878 end
1879 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1880 # cd2 < cd1; therefore we skip pd1
1881 keep = false
1882 break
1883 end
1884 end
1885 if keep then
1886 res.add(pd1)
1887 end
1888 end
1889 if res.is_empty then
1890 print "All lost! {candidates.join(", ")}"
1891 # FIXME: should be abort!
1892 end
1893 return res
1894 end
1895
1896 # Return the most specific definition in the linearization of `mtype`.
1897 #
1898 # If you want to know the next properties in the linearization,
1899 # look at `MPropDef::lookup_next_definition`.
1900 #
1901 # FIXME: the linearization is still unspecified
1902 #
1903 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1904 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1905 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1906 do
1907 return lookup_all_definitions(mmodule, mtype).first
1908 end
1909
1910 # Return all definitions in a linearization order
1911 # Most specific first, most general last
1912 #
1913 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1914 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1915 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1916 do
1917 mtype = mtype.as_notnullable
1918
1919 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1920 if cache != null then return cache
1921
1922 assert not mtype.need_anchor
1923 assert mtype.has_mproperty(mmodule, self)
1924
1925 #print "select prop {mproperty} for {mtype} in {self}"
1926 # First, select all candidates
1927 var candidates = new Array[MPROPDEF]
1928 for mpropdef in self.mpropdefs do
1929 # If the definition is not imported by the module, then skip
1930 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1931 # If the definition is not inherited by the type, then skip
1932 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1933 # Else, we keep it
1934 candidates.add(mpropdef)
1935 end
1936 # Fast track for only one candidate
1937 if candidates.length <= 1 then
1938 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1939 return candidates
1940 end
1941
1942 mmodule.linearize_mpropdefs(candidates)
1943 candidates = candidates.reversed
1944 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1945 return candidates
1946 end
1947
1948 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1949 end
1950
1951 # A global method
1952 class MMethod
1953 super MProperty
1954
1955 redef type MPROPDEF: MMethodDef
1956
1957 # Is the property defined at the top_level of the module?
1958 # Currently such a property are stored in `Object`
1959 var is_toplevel: Bool = false is writable
1960
1961 # Is the property a constructor?
1962 # Warning, this property can be inherited by subclasses with or without being a constructor
1963 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
1964 var is_init: Bool = false is writable
1965
1966 # The constructor is a (the) root init with empty signature but a set of initializers
1967 var is_root_init: Bool = false is writable
1968
1969 # Is the property a 'new' constructor?
1970 var is_new: Bool = false is writable
1971
1972 # Is the property a legal constructor for a given class?
1973 # As usual, visibility is not considered.
1974 # FIXME not implemented
1975 fun is_init_for(mclass: MClass): Bool
1976 do
1977 return self.is_init
1978 end
1979 end
1980
1981 # A global attribute
1982 class MAttribute
1983 super MProperty
1984
1985 redef type MPROPDEF: MAttributeDef
1986
1987 end
1988
1989 # A global virtual type
1990 class MVirtualTypeProp
1991 super MProperty
1992
1993 redef type MPROPDEF: MVirtualTypeDef
1994
1995 # The formal type associated to the virtual type property
1996 var mvirtualtype = new MVirtualType(self)
1997 end
1998
1999 # A definition of a property (local property)
2000 #
2001 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2002 # specific class definition (which belong to a specific module)
2003 abstract class MPropDef
2004 super MEntity
2005
2006 # The associated `MProperty` subclass.
2007 # the two specialization hierarchy are symmetric
2008 type MPROPERTY: MProperty
2009
2010 # Self class
2011 type MPROPDEF: MPropDef
2012
2013 # The class definition where the property definition is
2014 var mclassdef: MClassDef
2015
2016 # The associated global property
2017 var mproperty: MPROPERTY
2018
2019 # The origin of the definition
2020 var location: Location
2021
2022 init
2023 do
2024 mclassdef.mpropdefs.add(self)
2025 mproperty.mpropdefs.add(self)
2026 if mproperty.intro_mclassdef == mclassdef then
2027 assert not isset mproperty._intro
2028 mproperty.intro = self
2029 end
2030 self.to_s = "{mclassdef}#{mproperty}"
2031 end
2032
2033 # Actually the name of the `mproperty`
2034 redef fun name do return mproperty.name
2035
2036 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2037 #
2038 # Therefore the combination of identifiers is awful,
2039 # the worst case being
2040 #
2041 # * a property "p::m::A::x"
2042 # * redefined in a refinement of a class "q::n::B"
2043 # * in a module "r::o"
2044 # * so "r::o#q::n::B#p::m::A::x"
2045 #
2046 # Fortunately, the full-name is simplified when entities are repeated.
2047 # For the previous case, the simplest form is "p#A#x".
2048 redef var full_name is lazy do
2049 var res = new FlatBuffer
2050
2051 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2052 res.append mclassdef.full_name
2053
2054 res.append "#"
2055
2056 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2057 # intro are unambiguous in a class
2058 res.append name
2059 else
2060 # Just try to simplify each part
2061 if mclassdef.mmodule.mproject != mproperty.intro_mclassdef.mmodule.mproject then
2062 # precise "p::m" only if "p" != "r"
2063 res.append mproperty.intro_mclassdef.mmodule.full_name
2064 res.append "::"
2065 else if mproperty.visibility <= private_visibility then
2066 # Same project ("p"=="q"), but private visibility,
2067 # does the module part ("::m") need to be displayed
2068 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mproject then
2069 res.append "::"
2070 res.append mproperty.intro_mclassdef.mmodule.name
2071 res.append "::"
2072 end
2073 end
2074 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2075 # precise "B" only if not the same class than "A"
2076 res.append mproperty.intro_mclassdef.name
2077 res.append "::"
2078 end
2079 # Always use the property name "x"
2080 res.append mproperty.name
2081 end
2082 return res.to_s
2083 end
2084
2085 redef var c_name is lazy do
2086 var res = new FlatBuffer
2087 res.append mclassdef.c_name
2088 res.append "___"
2089 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2090 res.append name.to_cmangle
2091 else
2092 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2093 res.append mproperty.intro_mclassdef.mmodule.c_name
2094 res.append "__"
2095 end
2096 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2097 res.append mproperty.intro_mclassdef.name.to_cmangle
2098 res.append "__"
2099 end
2100 res.append mproperty.name.to_cmangle
2101 end
2102 return res.to_s
2103 end
2104
2105 redef fun model do return mclassdef.model
2106
2107 # Internal name combining the module, the class and the property
2108 # Example: "mymodule#MyClass#mymethod"
2109 redef var to_s: String is noinit
2110
2111 # Is self the definition that introduce the property?
2112 fun is_intro: Bool do return mproperty.intro == self
2113
2114 # Return the next definition in linearization of `mtype`.
2115 #
2116 # This method is used to determine what method is called by a super.
2117 #
2118 # REQUIRE: `not mtype.need_anchor`
2119 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2120 do
2121 assert not mtype.need_anchor
2122
2123 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2124 var i = mpropdefs.iterator
2125 while i.is_ok and i.item != self do i.next
2126 assert has_property: i.is_ok
2127 i.next
2128 assert has_next_property: i.is_ok
2129 return i.item
2130 end
2131 end
2132
2133 # A local definition of a method
2134 class MMethodDef
2135 super MPropDef
2136
2137 redef type MPROPERTY: MMethod
2138 redef type MPROPDEF: MMethodDef
2139
2140 # The signature attached to the property definition
2141 var msignature: nullable MSignature = null is writable
2142
2143 # The signature attached to the `new` call on a root-init
2144 # This is a concatenation of the signatures of the initializers
2145 #
2146 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2147 var new_msignature: nullable MSignature = null is writable
2148
2149 # List of initialisers to call in root-inits
2150 #
2151 # They could be setters or attributes
2152 #
2153 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2154 var initializers = new Array[MProperty]
2155
2156 # Is the method definition abstract?
2157 var is_abstract: Bool = false is writable
2158
2159 # Is the method definition intern?
2160 var is_intern = false is writable
2161
2162 # Is the method definition extern?
2163 var is_extern = false is writable
2164
2165 # An optional constant value returned in functions.
2166 #
2167 # Only some specific primitife value are accepted by engines.
2168 # Is used when there is no better implementation available.
2169 #
2170 # Currently used only for the implementation of the `--define`
2171 # command-line option.
2172 # SEE: module `mixin`.
2173 var constant_value: nullable Object = null is writable
2174 end
2175
2176 # A local definition of an attribute
2177 class MAttributeDef
2178 super MPropDef
2179
2180 redef type MPROPERTY: MAttribute
2181 redef type MPROPDEF: MAttributeDef
2182
2183 # The static type of the attribute
2184 var static_mtype: nullable MType = null is writable
2185 end
2186
2187 # A local definition of a virtual type
2188 class MVirtualTypeDef
2189 super MPropDef
2190
2191 redef type MPROPERTY: MVirtualTypeProp
2192 redef type MPROPDEF: MVirtualTypeDef
2193
2194 # The bound of the virtual type
2195 var bound: nullable MType = null is writable
2196
2197 # Is the bound fixed?
2198 var is_fixed = false is writable
2199 end
2200
2201 # A kind of class.
2202 #
2203 # * `abstract_kind`
2204 # * `concrete_kind`
2205 # * `interface_kind`
2206 # * `enum_kind`
2207 # * `extern_kind`
2208 #
2209 # Note this class is basically an enum.
2210 # FIXME: use a real enum once user-defined enums are available
2211 class MClassKind
2212 redef var to_s: String
2213
2214 # Is a constructor required?
2215 var need_init: Bool
2216
2217 # TODO: private init because enumeration.
2218
2219 # Can a class of kind `self` specializes a class of kine `other`?
2220 fun can_specialize(other: MClassKind): Bool
2221 do
2222 if other == interface_kind then return true # everybody can specialize interfaces
2223 if self == interface_kind or self == enum_kind then
2224 # no other case for interfaces
2225 return false
2226 else if self == extern_kind then
2227 # only compatible with themselves
2228 return self == other
2229 else if other == enum_kind or other == extern_kind then
2230 # abstract_kind and concrete_kind are incompatible
2231 return false
2232 end
2233 # remain only abstract_kind and concrete_kind
2234 return true
2235 end
2236 end
2237
2238 # The class kind `abstract`
2239 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2240 # The class kind `concrete`
2241 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2242 # The class kind `interface`
2243 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2244 # The class kind `enum`
2245 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2246 # The class kind `extern`
2247 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)