f9d14449b7badbb3413f1e14273e4282493107e8
[nit.git] / src / compiler / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import coloring
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute = new OptionBool("Put primitive attributes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --no-tag-primitives
33 var opt_no_tag_primitives = new OptionBool("Use only boxes for primitive types", "--no-tag-primitives")
34
35 # --colors-are-symbols
36 var opt_colors_are_symbols = new OptionBool("Store colors as symbols instead of static data (link-boost)", "--colors-are-symbols")
37 # --trampoline-call
38 var opt_trampoline_call = new OptionBool("Use an indirection when calling", "--trampoline-call")
39 # --guard-call
40 var opt_guard_call = new OptionBool("Guard VFT calls with a direct call", "--guard-call")
41 # --substitute-monomorph
42 var opt_substitute_monomorph = new OptionBool("Replace monomorphic trampolines with direct calls (link-boost)", "--substitute-monomorph")
43 # --link-boost
44 var opt_link_boost = new OptionBool("Enable all link-boost optimizations", "--link-boost")
45
46 # --inline-coloring-numbers
47 var opt_inline_coloring_numbers = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
48 # --inline-some-methods
49 var opt_inline_some_methods = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
50 # --direct-call-monomorph
51 var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorphic sites (semi-global)", "--direct-call-monomorph")
52 # --direct-call-monomorph0
53 var opt_direct_call_monomorph0 = new OptionBool("Allow the separate compiler to direct call monomorphic sites (semi-global)", "--direct-call-monomorph0")
54 # --skip-dead-methods
55 var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods")
56 # --semi-global
57 var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global")
58 # --no-colo-dead-methods
59 var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods")
60 # --tables-metrics
61 var opt_tables_metrics = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
62 # --type-poset
63 var opt_type_poset = new OptionBool("Build a poset of types to create more condensed tables", "--type-poset")
64
65 redef init
66 do
67 super
68 self.option_context.add_option(self.opt_separate)
69 self.option_context.add_option(self.opt_no_inline_intern)
70 self.option_context.add_option(self.opt_no_union_attribute)
71 self.option_context.add_option(self.opt_no_shortcut_equate)
72 self.option_context.add_option(self.opt_no_tag_primitives)
73 self.option_context.add_option(opt_colors_are_symbols, opt_trampoline_call, opt_guard_call, opt_direct_call_monomorph0, opt_substitute_monomorph, opt_link_boost)
74 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global)
75 self.option_context.add_option(self.opt_colo_dead_methods)
76 self.option_context.add_option(self.opt_tables_metrics)
77 self.option_context.add_option(self.opt_type_poset)
78 end
79
80 redef fun process_options(args)
81 do
82 super
83
84 var tc = self
85 if tc.opt_semi_global.value then
86 tc.opt_inline_coloring_numbers.value = true
87 tc.opt_inline_some_methods.value = true
88 tc.opt_direct_call_monomorph.value = true
89 tc.opt_skip_dead_methods.value = true
90 end
91 if tc.opt_link_boost.value then
92 tc.opt_colors_are_symbols.value = true
93 tc.opt_substitute_monomorph.value = true
94 end
95 if tc.opt_substitute_monomorph.value then
96 tc.opt_trampoline_call.value = true
97 end
98 end
99
100 var separate_compiler_phase = new SeparateCompilerPhase(self, null)
101 end
102
103 class SeparateCompilerPhase
104 super Phase
105 redef fun process_mainmodule(mainmodule, given_mmodules) do
106 if not toolcontext.opt_separate.value then return
107
108 var modelbuilder = toolcontext.modelbuilder
109 var analysis = modelbuilder.do_rapid_type_analysis(mainmodule)
110 modelbuilder.run_separate_compiler(mainmodule, analysis)
111 end
112 end
113
114 redef class ModelBuilder
115 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
116 do
117 var time0 = get_time
118 self.toolcontext.info("*** GENERATING C ***", 1)
119
120 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
121 compiler.do_compilation
122 compiler.display_stats
123
124 var time1 = get_time
125 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
126 write_and_make(compiler)
127 end
128
129 # Count number of invocations by VFT
130 private var nb_invok_by_tables = 0
131 # Count number of invocations by direct call
132 private var nb_invok_by_direct = 0
133 # Count number of invocations by inlining
134 private var nb_invok_by_inline = 0
135 end
136
137 # Singleton that store the knowledge about the separate compilation process
138 class SeparateCompiler
139 super AbstractCompiler
140
141 redef type VISITOR: SeparateCompilerVisitor
142
143 # The result of the RTA (used to know live types and methods)
144 var runtime_type_analysis: nullable RapidTypeAnalysis
145
146 private var undead_types: Set[MType] = new HashSet[MType]
147 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
148
149 private var type_ids: Map[MType, Int] is noinit
150 private var type_colors: Map[MType, Int] is noinit
151 private var opentype_colors: Map[MType, Int] is noinit
152
153 init do
154 var file = new_file("nit.common")
155 self.header = new CodeWriter(file)
156 self.compile_box_kinds
157 end
158
159 redef fun do_compilation
160 do
161 var compiler = self
162 compiler.compile_header
163
164 var c_name = mainmodule.c_name
165
166 # compile class structures
167 modelbuilder.toolcontext.info("Property coloring", 2)
168 compiler.new_file("{c_name}.classes")
169 compiler.do_property_coloring
170 compiler.compile_class_infos
171 for m in mainmodule.in_importation.greaters do
172 for mclass in m.intro_mclasses do
173 #if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
174 compiler.compile_class_to_c(mclass)
175 end
176 end
177
178 # The main function of the C
179 compiler.new_file("{c_name}.main")
180 compiler.compile_nitni_global_ref_functions
181 compiler.compile_main_function
182 compiler.compile_finalizer_function
183 compiler.link_mmethods
184
185 # compile methods
186 for m in mainmodule.in_importation.greaters do
187 modelbuilder.toolcontext.info("Generate C for module {m.full_name}", 2)
188 compiler.new_file("{m.c_name}.sep")
189 compiler.compile_module_to_c(m)
190 end
191
192 # compile live & cast type structures
193 modelbuilder.toolcontext.info("Type coloring", 2)
194 compiler.new_file("{c_name}.types")
195 compiler.compile_types
196 end
197
198 # Color and compile type structures and cast information
199 fun compile_types
200 do
201 var compiler = self
202
203 var mtypes = compiler.do_type_coloring
204 for t in mtypes do
205 compiler.compile_type_to_c(t)
206 end
207 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
208 for t in compiler.undead_types do
209 if mtypes.has(t) then continue
210 compiler.compile_type_to_c(t)
211 end
212
213 end
214
215 redef fun compile_header_structs do
216 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
217 self.compile_header_attribute_structs
218 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
219
220 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
221 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
222 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
223 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
224 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
225
226 if not modelbuilder.toolcontext.opt_no_tag_primitives.value then
227 self.header.add_decl("extern const struct class *class_info[];")
228 self.header.add_decl("extern const struct type *type_info[];")
229 end
230 end
231
232 fun compile_header_attribute_structs
233 do
234 if modelbuilder.toolcontext.opt_no_union_attribute.value then
235 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
236 else
237 self.header.add_decl("typedef union \{")
238 self.header.add_decl("void* val;")
239 for c, v in self.box_kinds do
240 var t = c.mclass_type
241
242 # `Pointer` reuse the `val` field
243 if t.mclass.name == "Pointer" then continue
244
245 self.header.add_decl("{t.ctype_extern} {t.ctypename};")
246 end
247 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
248 end
249 end
250
251 fun compile_box_kinds
252 do
253 # Collect all bas box class
254 # FIXME: this is not completely fine with a separate compilation scheme
255 for classname in ["Int", "Bool", "Byte", "Char", "Float", "CString",
256 "Pointer", "Int8", "Int16", "UInt16", "Int32", "UInt32"] do
257 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
258 if classes == null then continue
259 assert classes.length == 1 else print_error classes.join(", ")
260 self.box_kinds[classes.first] = self.box_kinds.length + 1
261 end
262 end
263
264 var box_kinds = new HashMap[MClass, Int]
265
266 fun box_kind_of(mclass: MClass): Int
267 do
268 #var pointer_type = self.mainmodule.pointer_type
269 #if mclass.mclass_type.ctype == "val*" or mclass.mclass_type.is_subtype(self.mainmodule, mclass.mclass_type pointer_type) then
270 if mclass.mclass_type.ctype_extern == "val*" then
271 return 0
272 else if mclass.kind == extern_kind and mclass.name != "CString" then
273 return self.box_kinds[self.mainmodule.pointer_type.mclass]
274 else
275 return self.box_kinds[mclass]
276 end
277
278 end
279
280 fun compile_color_consts(colors: Map[Object, Int]) do
281 var v = new_visitor
282 for m, c in colors do
283 compile_color_const(v, m, c)
284 end
285 end
286
287 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
288 if color_consts_done.has(m) then return
289 if m isa MEntity then
290 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
291 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
292 else if not modelbuilder.toolcontext.opt_colors_are_symbols.value or not v.compiler.target_platform.supports_linker_script then
293 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
294 v.add("const int {m.const_color} = {color};")
295 else
296 # The color 'C' is the ``address'' of a false static variable 'XC'
297 self.provide_declaration(m.const_color, "#define {m.const_color} ((long)&X{m.const_color})\nextern const void X{m.const_color};")
298 if color == -1 then color = 0 # Symbols cannot be negative, so just use 0 for dead things
299 # Teach the linker that the address of 'XC' is `color`.
300 linker_script.add("X{m.const_color} = {color};")
301 end
302 else
303 abort
304 end
305 color_consts_done.add(m)
306 end
307
308 private var color_consts_done = new HashSet[Object]
309
310 # The conflict graph of classes used for coloration
311 var class_conflict_graph: POSetConflictGraph[MClass] is noinit
312
313 # colorize classe properties
314 fun do_property_coloring do
315
316 var rta = runtime_type_analysis
317
318 # Class graph
319 var mclasses = mainmodule.flatten_mclass_hierarchy
320 class_conflict_graph = mclasses.to_conflict_graph
321
322 # Prepare to collect elements to color and build layout with
323 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
324 var mattributes = new HashMap[MClass, Set[MAttribute]]
325
326 # The dead methods and super-call, still need to provide a dead color symbol
327 var dead_methods = new Array[PropertyLayoutElement]
328
329 for mclass in mclasses do
330 mmethods[mclass] = new HashSet[PropertyLayoutElement]
331 mattributes[mclass] = new HashSet[MAttribute]
332 end
333
334 # Pre-collect known live things
335 if rta != null then
336 for m in rta.live_methods do
337 mmethods[m.intro_mclassdef.mclass].add m
338 end
339 for m in rta.live_super_sends do
340 var mclass = m.mclassdef.mclass
341 mmethods[mclass].add m
342 end
343 end
344
345 for m in mainmodule.in_importation.greaters do for cd in m.mclassdefs do
346 var mclass = cd.mclass
347 # Collect methods and attributes
348 for p in cd.intro_mproperties do
349 if p isa MMethod then
350 if rta == null then
351 mmethods[mclass].add p
352 else if not rta.live_methods.has(p) then
353 dead_methods.add p
354 end
355 else if p isa MAttribute then
356 mattributes[mclass].add p
357 end
358 end
359
360 # Collect all super calls (dead or not)
361 for mpropdef in cd.mpropdefs do
362 if not mpropdef isa MMethodDef then continue
363 if mpropdef.has_supercall then
364 if rta == null then
365 mmethods[mclass].add mpropdef
366 else if not rta.live_super_sends.has(mpropdef) then
367 dead_methods.add mpropdef
368 end
369 end
370 end
371 end
372
373 # methods coloration
374 var meth_colorer = new POSetGroupColorer[MClass, PropertyLayoutElement](class_conflict_graph, mmethods)
375 var method_colors = meth_colorer.colors
376 compile_color_consts(method_colors)
377
378 # give null color to dead methods and supercalls
379 for mproperty in dead_methods do compile_color_const(new_visitor, mproperty, -1)
380
381 # attribute coloration
382 var attr_colorer = new POSetGroupColorer[MClass, MAttribute](class_conflict_graph, mattributes)
383 var attr_colors = attr_colorer.colors#ize(poset, mattributes)
384 compile_color_consts(attr_colors)
385
386 # Build method and attribute tables
387 method_tables = new HashMap[MClass, Array[nullable MPropDef]]
388 attr_tables = new HashMap[MClass, Array[nullable MProperty]]
389 for mclass in mclasses do
390 if not mclass.has_new_factory and (mclass.kind == abstract_kind or mclass.kind == interface_kind) then continue
391 if rta != null and not rta.live_classes.has(mclass) then continue
392
393 var mtype = mclass.intro.bound_mtype
394
395 # Resolve elements in the layout to get the final table
396 var meth_layout = meth_colorer.build_layout(mclass)
397 var meth_table = new Array[nullable MPropDef].with_capacity(meth_layout.length)
398 method_tables[mclass] = meth_table
399 for e in meth_layout do
400 if e == null then
401 meth_table.add null
402 else if e isa MMethod then
403 # Standard method call of `e`
404 meth_table.add e.lookup_first_definition(mainmodule, mtype)
405 else if e isa MMethodDef then
406 # Super-call in the methoddef `e`
407 meth_table.add e.lookup_next_definition(mainmodule, mtype)
408 else
409 abort
410 end
411 end
412
413 # Do not need to resolve attributes as only the position is used
414 attr_tables[mclass] = attr_colorer.build_layout(mclass)
415 end
416
417
418 end
419
420 # colorize live types of the program
421 private fun do_type_coloring: Collection[MType] do
422 # Collect types to colorize
423 var live_types = runtime_type_analysis.live_types
424 var live_cast_types = runtime_type_analysis.live_cast_types
425
426 var res = new HashSet[MType]
427 res.add_all live_types
428 res.add_all live_cast_types
429
430 if modelbuilder.toolcontext.opt_type_poset.value then
431 # Compute colors with a type poset
432 var poset = poset_from_mtypes(live_types, live_cast_types)
433 var colorer = new POSetColorer[MType]
434 colorer.colorize(poset)
435 type_ids = colorer.ids
436 type_colors = colorer.colors
437 type_tables = build_type_tables(poset)
438 else
439 # Compute colors using the class poset
440 # Faster to compute but the number of holes can degenerate
441 compute_type_test_layouts(live_types, live_cast_types)
442
443 type_ids = new HashMap[MType, Int]
444 for x in res do type_ids[x] = type_ids.length + 1
445 end
446
447 # VT and FT are stored with other unresolved types in the big resolution_tables
448 self.compute_resolution_tables(live_types)
449
450 return res
451 end
452
453 private fun poset_from_mtypes(mtypes, cast_types: Set[MType]): POSet[MType] do
454 var poset = new POSet[MType]
455
456 # Instead of doing the full matrix mtypes X cast_types,
457 # a grouping is done by the base classes of the type so
458 # that we compare only types whose base classes are in inheritance.
459
460 var mtypes_by_class = new MultiHashMap[MClass, MType]
461 for e in mtypes do
462 var c = e.undecorate.as(MClassType).mclass
463 mtypes_by_class[c].add(e)
464 poset.add_node(e)
465 end
466
467 var casttypes_by_class = new MultiHashMap[MClass, MType]
468 for e in cast_types do
469 var c = e.undecorate.as(MClassType).mclass
470 casttypes_by_class[c].add(e)
471 poset.add_node(e)
472 end
473
474 for c1, ts1 in mtypes_by_class do
475 for c2 in c1.in_hierarchy(mainmodule).greaters do
476 var ts2 = casttypes_by_class[c2]
477 for e in ts1 do
478 for o in ts2 do
479 if e == o then continue
480 if e.is_subtype(mainmodule, null, o) then
481 poset.add_edge(e, o)
482 end
483 end
484 end
485 end
486 end
487 return poset
488 end
489
490 # Build type tables
491 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
492 var tables = new HashMap[MType, Array[nullable MType]]
493 for mtype in mtypes do
494 var table = new Array[nullable MType]
495 for sup in mtypes[mtype].greaters do
496 var color = type_colors[sup]
497 if table.length <= color then
498 for i in [table.length .. color[ do
499 table[i] = null
500 end
501 end
502 table[color] = sup
503 end
504 tables[mtype] = table
505 end
506 return tables
507 end
508
509
510 private fun compute_type_test_layouts(mtypes: Set[MClassType], cast_types: Set[MType]) do
511 # Group cast_type by their classes
512 var bucklets = new HashMap[MClass, Set[MType]]
513 for e in cast_types do
514 var c = e.undecorate.as(MClassType).mclass
515 if not bucklets.has_key(c) then
516 bucklets[c] = new HashSet[MType]
517 end
518 bucklets[c].add(e)
519 end
520
521 # Colorize cast_types from the class hierarchy
522 var colorer = new POSetGroupColorer[MClass, MType](class_conflict_graph, bucklets)
523 type_colors = colorer.colors
524
525 var layouts = new HashMap[MClass, Array[nullable MType]]
526 for c in runtime_type_analysis.live_classes do
527 layouts[c] = colorer.build_layout(c)
528 end
529
530 # Build the table for each live type
531 for t in mtypes do
532 # A live type use the layout of its class
533 var c = t.mclass
534 var layout = layouts[c]
535 var table = new Array[nullable MType].with_capacity(layout.length)
536 type_tables[t] = table
537
538 # For each potential super-type in the layout
539 for sup in layout do
540 if sup == null then
541 table.add null
542 else if t.is_subtype(mainmodule, null, sup) then
543 table.add sup
544 else
545 table.add null
546 end
547 end
548 end
549 end
550
551 # resolution_tables is used to perform a type resolution at runtime in O(1)
552 private fun compute_resolution_tables(mtypes: Set[MType]) do
553 # During the visit of the body of classes, live_unresolved_types are collected
554 # and associated to
555 # Collect all live_unresolved_types (visited in the body of classes)
556
557 # Determinate fo each livetype what are its possible requested anchored types
558 var mtype2unresolved = new HashMap[MClass, Set[MType]]
559 for mtype in self.runtime_type_analysis.live_types do
560 var mclass = mtype.mclass
561 var set = mtype2unresolved.get_or_null(mclass)
562 if set == null then
563 set = new HashSet[MType]
564 mtype2unresolved[mclass] = set
565 end
566 for cd in mtype.collect_mclassdefs(self.mainmodule) do
567 if self.live_unresolved_types.has_key(cd) then
568 set.add_all(self.live_unresolved_types[cd])
569 end
570 end
571 end
572
573 # Compute the table layout with the prefered method
574 var colorer = new BucketsColorer[MClass, MType]
575
576 opentype_colors = colorer.colorize(mtype2unresolved)
577 resolution_tables = self.build_resolution_tables(self.runtime_type_analysis.live_types, mtype2unresolved)
578
579 # Compile a C constant for each collected unresolved type.
580 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
581 var all_unresolved = new HashSet[MType]
582 for t in self.live_unresolved_types.values do
583 all_unresolved.add_all(t)
584 end
585 var all_unresolved_types_colors = new HashMap[MType, Int]
586 for t in all_unresolved do
587 if opentype_colors.has_key(t) then
588 all_unresolved_types_colors[t] = opentype_colors[t]
589 else
590 all_unresolved_types_colors[t] = -1
591 end
592 end
593 self.compile_color_consts(all_unresolved_types_colors)
594
595 #print "tables"
596 #for k, v in unresolved_types_tables.as(not null) do
597 # print "{k}: {v.join(", ")}"
598 #end
599 #print ""
600 end
601
602 fun build_resolution_tables(elements: Set[MClassType], map: Map[MClass, Set[MType]]): Map[MClassType, Array[nullable MType]] do
603 var tables = new HashMap[MClassType, Array[nullable MType]]
604 for mclasstype in elements do
605 var mtypes = map[mclasstype.mclass]
606 var table = new Array[nullable MType]
607 for mtype in mtypes do
608 var color = opentype_colors[mtype]
609 if table.length <= color then
610 for i in [table.length .. color[ do
611 table[i] = null
612 end
613 end
614 table[color] = mtype
615 end
616 tables[mclasstype] = table
617 end
618 return tables
619 end
620
621 # Separately compile all the method definitions of the module
622 fun compile_module_to_c(mmodule: MModule)
623 do
624 var old_module = self.mainmodule
625 self.mainmodule = mmodule
626 for cd in mmodule.mclassdefs do
627 for pd in cd.mpropdefs do
628 if not pd isa MMethodDef then continue
629 if pd.mproperty.is_broken or pd.is_broken or pd.msignature == null then continue # Skip broken method
630 var rta = runtime_type_analysis
631 if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue
632 #print "compile {pd} @ {cd} @ {mmodule}"
633 var r = pd.separate_runtime_function
634 r.compile_to_c(self)
635 var r2 = pd.virtual_runtime_function
636 if r2 != r then r2.compile_to_c(self)
637
638 # Generate trampolines
639 if modelbuilder.toolcontext.opt_trampoline_call.value then
640 r2.compile_trampolines(self)
641 end
642 end
643 end
644 self.mainmodule = old_module
645 end
646
647 # Process all introduced methods and compile some linking information (if needed)
648 fun link_mmethods
649 do
650 if not modelbuilder.toolcontext.opt_substitute_monomorph.value and not modelbuilder.toolcontext.opt_guard_call.value then return
651
652 for mmodule in mainmodule.in_importation.greaters do
653 for cd in mmodule.mclassdefs do
654 for m in cd.intro_mproperties do
655 if not m isa MMethod then continue
656 link_mmethod(m)
657 end
658 end
659 end
660 end
661
662 # Compile some linking information (if needed)
663 fun link_mmethod(m: MMethod)
664 do
665 var n2 = "CALL_" + m.const_color
666
667 # Replace monomorphic call by a direct call to the virtual implementation
668 var md = is_monomorphic(m)
669 if md != null then
670 linker_script.add("{n2} = {md.virtual_runtime_function.c_name};")
671 end
672
673 # If opt_substitute_monomorph then a trampoline is used, else a weak symbol is used
674 if modelbuilder.toolcontext.opt_guard_call.value then
675 var r = m.intro.virtual_runtime_function
676 provide_declaration(n2, "{r.c_ret} {n2}{r.c_sig} __attribute__((weak));")
677 end
678 end
679
680 # The single mmethodef called in case of monomorphism.
681 # Returns nul if dead or polymorphic.
682 fun is_monomorphic(m: MMethod): nullable MMethodDef
683 do
684 var rta = runtime_type_analysis
685 if rta == null then
686 # Without RTA, monomorphic means alone (uniq name)
687 if m.mpropdefs.length == 1 then
688 return m.mpropdefs.first
689 else
690 return null
691 end
692 else
693 # With RTA, monomorphic means only live methoddef
694 var res: nullable MMethodDef = null
695 for md in m.mpropdefs do
696 if rta.live_methoddefs.has(md) then
697 if res != null then return null
698 res = md
699 end
700 end
701 return res
702 end
703 end
704
705 # Globaly compile the type structure of a live type
706 fun compile_type_to_c(mtype: MType)
707 do
708 assert not mtype.need_anchor
709 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
710 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
711 var c_name = mtype.c_name
712 var v = new SeparateCompilerVisitor(self)
713 v.add_decl("/* runtime type {mtype} */")
714
715 # extern const struct type_X
716 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
717
718 # const struct type_X
719 v.add_decl("const struct type type_{c_name} = \{")
720
721 # type id (for cast target)
722 if is_cast_live then
723 v.add_decl("{type_ids[mtype]},")
724 else
725 v.add_decl("-1, /*CAST DEAD*/")
726 end
727
728 # type name
729 v.add_decl("\"{mtype}\", /* class_name_string */")
730
731 # type color (for cast target)
732 if is_cast_live then
733 v.add_decl("{type_colors[mtype]},")
734 else
735 v.add_decl("-1, /*CAST DEAD*/")
736 end
737
738 # is_nullable bit
739 if mtype isa MNullableType then
740 v.add_decl("1,")
741 else
742 v.add_decl("0,")
743 end
744
745 # resolution table (for receiver)
746 if is_live then
747 var mclass_type = mtype.undecorate
748 assert mclass_type isa MClassType
749 if resolution_tables[mclass_type].is_empty then
750 v.add_decl("NULL, /*NO RESOLUTIONS*/")
751 else
752 compile_type_resolution_table(mtype)
753 v.require_declaration("resolution_table_{c_name}")
754 v.add_decl("&resolution_table_{c_name},")
755 end
756 else
757 v.add_decl("NULL, /*DEAD*/")
758 end
759
760 # cast table (for receiver)
761 if is_live then
762 v.add_decl("{self.type_tables[mtype].length},")
763 v.add_decl("\{")
764 for stype in self.type_tables[mtype] do
765 if stype == null then
766 v.add_decl("-1, /* empty */")
767 else
768 v.add_decl("{type_ids[stype]}, /* {stype} */")
769 end
770 end
771 v.add_decl("\},")
772 else
773 # Use -1 to indicate dead type, the info is used by --hardening
774 v.add_decl("-1, \{\}, /*DEAD TYPE*/")
775 end
776 v.add_decl("\};")
777 end
778
779 fun compile_type_resolution_table(mtype: MType) do
780
781 var mclass_type = mtype.undecorate.as(MClassType)
782
783 # extern const struct resolution_table_X resolution_table_X
784 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
785
786 # const struct fts_table_X fts_table_X
787 var v = new_visitor
788 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
789 v.add_decl("0, /* dummy */")
790 v.add_decl("\{")
791 for t in self.resolution_tables[mclass_type] do
792 if t == null then
793 v.add_decl("NULL, /* empty */")
794 else
795 # The table stores the result of the type resolution
796 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
797 # the value stored is tv.
798 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
799 # FIXME: What typeids means here? How can a tv not be live?
800 if type_ids.has_key(tv) then
801 v.require_declaration("type_{tv.c_name}")
802 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
803 else
804 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
805 end
806 end
807 end
808 v.add_decl("\}")
809 v.add_decl("\};")
810 end
811
812 # Globally compile the table of the class mclass
813 # In a link-time optimisation compiler, tables are globally computed
814 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
815 fun compile_class_to_c(mclass: MClass)
816 do
817 if mclass.is_broken then return
818
819 var mtype = mclass.intro.bound_mtype
820 var c_name = mclass.c_name
821
822 var v = new_visitor
823
824 var rta = runtime_type_analysis
825 var is_dead = rta != null and not rta.live_classes.has(mclass)
826 # While the class may be dead, some part of separately compiled code may use symbols associated to the class, so
827 # in order to compile and link correctly the C code, these symbols should be declared and defined.
828 var need_corpse = is_dead and mtype.is_c_primitive or mclass.kind == extern_kind or mclass.kind == enum_kind
829
830 v.add_decl("/* runtime class {c_name}: {mclass.full_name} (dead={is_dead}; need_corpse={need_corpse})*/")
831
832 # Build class vft
833 if not is_dead or need_corpse then
834 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
835 v.add_decl("const struct class class_{c_name} = \{")
836 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
837 v.add_decl("\{")
838 var vft = self.method_tables.get_or_null(mclass)
839 if vft != null then for i in [0 .. vft.length[ do
840 var mpropdef = vft[i]
841 if mpropdef == null then
842 v.add_decl("NULL, /* empty */")
843 else
844 assert mpropdef isa MMethodDef
845 if rta != null and not rta.live_methoddefs.has(mpropdef) then
846 v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
847 continue
848 else if mpropdef.is_broken or mpropdef.msignature == null or mpropdef.mproperty.is_broken then
849 v.add_decl("NULL, /* DEAD (BROKEN) {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
850 continue
851 end
852 var rf = mpropdef.virtual_runtime_function
853 v.require_declaration(rf.c_name)
854 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
855 end
856 end
857 v.add_decl("\}")
858 v.add_decl("\};")
859 end
860
861 if mtype.is_c_primitive or mtype.mclass.name == "Pointer" then
862 # Is a primitive type or the Pointer class, not any other extern class
863
864 if mtype.is_tagged then return
865
866 #Build instance struct
867 self.header.add_decl("struct instance_{c_name} \{")
868 self.header.add_decl("const struct type *type;")
869 self.header.add_decl("const struct class *class;")
870 self.header.add_decl("{mtype.ctype_extern} value;")
871 self.header.add_decl("\};")
872
873 # Pointer is needed by extern types, live or not
874 if is_dead and mtype.mclass.name != "Pointer" then return
875
876 #Build BOX
877 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype_extern});")
878 v.add_decl("/* allocate {mtype} */")
879 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype_extern} value) \{")
880 var alloc = v.nit_alloc("sizeof(struct instance_{c_name})", mclass.full_name)
881 v.add("struct instance_{c_name}*res = {alloc};")
882 v.compiler.undead_types.add(mtype)
883 v.require_declaration("type_{c_name}")
884 v.add("res->type = &type_{c_name};")
885 v.require_declaration("class_{c_name}")
886 v.add("res->class = &class_{c_name};")
887 v.add("res->value = value;")
888 v.add("return (val*)res;")
889 v.add("\}")
890
891 # A Pointer class also need its constructor
892 if mtype.mclass.name != "Pointer" then return
893
894 v = new_visitor
895 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
896 v.add_decl("/* allocate {mtype} */")
897 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
898 if is_dead then
899 v.add_abort("{mclass} is DEAD")
900 else
901 var res = v.new_named_var(mtype, "self")
902 res.is_exact = true
903 alloc = v.nit_alloc("sizeof(struct instance_{mtype.c_name})", mclass.full_name)
904 v.add("{res} = {alloc};")
905 v.add("{res}->type = type;")
906 hardening_live_type(v, "type")
907 v.require_declaration("class_{c_name}")
908 v.add("{res}->class = &class_{c_name};")
909 v.add("((struct instance_{mtype.c_name}*){res})->value = NULL;")
910 v.add("return {res};")
911 end
912 v.add("\}")
913 return
914 else if mclass.name == "NativeArray" then
915 #Build instance struct
916 self.header.add_decl("struct instance_{c_name} \{")
917 self.header.add_decl("const struct type *type;")
918 self.header.add_decl("const struct class *class;")
919 # NativeArrays are just a instance header followed by a length and an array of values
920 self.header.add_decl("int length;")
921 self.header.add_decl("val* values[0];")
922 self.header.add_decl("\};")
923
924 #Build NEW
925 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
926 v.add_decl("/* allocate {mtype} */")
927 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
928 var res = v.get_name("self")
929 v.add_decl("struct instance_{c_name} *{res};")
930 var mtype_elt = mtype.arguments.first
931 var alloc = v.nit_alloc("sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype})", mclass.full_name)
932 v.add("{res} = {alloc};")
933 v.add("{res}->type = type;")
934 hardening_live_type(v, "type")
935 v.require_declaration("class_{c_name}")
936 v.add("{res}->class = &class_{c_name};")
937 v.add("{res}->length = length;")
938 v.add("return (val*){res};")
939 v.add("\}")
940 return
941 else if mtype.mclass.kind == extern_kind and mtype.mclass.name != "CString" then
942 # Is an extern class (other than Pointer and CString)
943 # Pointer is caught in a previous `if`, and CString is internal
944
945 var pointer_type = mainmodule.pointer_type
946
947 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
948 v.add_decl("/* allocate extern {mtype} */")
949 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
950 if is_dead then
951 v.add_abort("{mclass} is DEAD")
952 else
953 var res = v.new_named_var(mtype, "self")
954 res.is_exact = true
955 var alloc = v.nit_alloc("sizeof(struct instance_{pointer_type.c_name})", mclass.full_name)
956 v.add("{res} = {alloc};")
957 v.add("{res}->type = type;")
958 hardening_live_type(v, "type")
959 v.require_declaration("class_{c_name}")
960 v.add("{res}->class = &class_{c_name};")
961 v.add("((struct instance_{pointer_type.c_name}*){res})->value = NULL;")
962 v.add("return {res};")
963 end
964 v.add("\}")
965 return
966 end
967
968 #Build NEW
969 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
970 v.add_decl("/* allocate {mtype} */")
971 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
972 if is_dead then
973 v.add_abort("{mclass} is DEAD")
974 else
975 var res = v.new_named_var(mtype, "self")
976 res.is_exact = true
977 var attrs = self.attr_tables.get_or_null(mclass)
978 if attrs == null then
979 var alloc = v.nit_alloc("sizeof(struct instance)", mclass.full_name)
980 v.add("{res} = {alloc};")
981 else
982 var alloc = v.nit_alloc("sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t)", mclass.full_name)
983 v.add("{res} = {alloc};")
984 end
985 if modelbuilder.toolcontext.opt_trace.value then
986 v.add("tracepoint(Nit_Compiler, Object_Instance,\"{mtype}\", (uintptr_t)self);")
987 v.add("GC_register_finalizer(self, object_destroy_callback, NULL, NULL, NULL);")
988 end
989 v.add("{res}->type = type;")
990 hardening_live_type(v, "type")
991 v.require_declaration("class_{c_name}")
992 v.add("{res}->class = &class_{c_name};")
993 if attrs != null then
994 self.generate_init_attr(v, res, mtype)
995 v.set_finalizer res
996 end
997 v.add("return {res};")
998 end
999 v.add("\}")
1000 end
1001
1002 # Compile structures used to map tagged primitive values to their classes and types.
1003 # This method also determines which class will be tagged.
1004 fun compile_class_infos
1005 do
1006 if modelbuilder.toolcontext.opt_no_tag_primitives.value then return
1007
1008 # Note: if you change the tagging scheme, do not forget to update
1009 # `autobox` and `extract_tag`
1010 var class_info = new Array[nullable MClass].filled_with(null, 4)
1011 for t in box_kinds.keys do
1012 # Note: a same class can be associated to multiple slots if one want to
1013 # use some Huffman coding.
1014 if t.name == "Int" then
1015 class_info[1] = t
1016 t.mclass_type.tag_value = 1
1017 else if t.name == "Char" then
1018 class_info[2] = t
1019 t.mclass_type.tag_value = 2
1020 else if t.name == "Bool" then
1021 class_info[3] = t
1022 t.mclass_type.tag_value = 3
1023 else
1024 continue
1025 end
1026 t.mclass_type.is_tagged = true
1027 end
1028
1029 # Compile the table for classes. The tag is used as an index
1030 var v = self.new_visitor
1031 v.add_decl "const struct class *class_info[4] = \{"
1032 for t in class_info do
1033 if t == null then
1034 v.add_decl("NULL,")
1035 else
1036 var s = "class_{t.c_name}"
1037 v.require_declaration(s)
1038 v.add_decl("&{s},")
1039 end
1040 end
1041 v.add_decl("\};")
1042
1043 # Compile the table for types. The tag is used as an index
1044 v.add_decl "const struct type *type_info[4] = \{"
1045 for t in class_info do
1046 if t == null then
1047 v.add_decl("NULL,")
1048 else
1049 var s = "type_{t.c_name}"
1050 undead_types.add(t.mclass_type)
1051 v.require_declaration(s)
1052 v.add_decl("&{s},")
1053 end
1054 end
1055 v.add_decl("\};")
1056 end
1057
1058 # Add a dynamic test to ensure that the type referenced by `t` is a live type
1059 fun hardening_live_type(v: VISITOR, t: String)
1060 do
1061 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
1062 v.add("if({t} == NULL) \{")
1063 v.add_abort("type null")
1064 v.add("\}")
1065 v.add("if({t}->table_size < 0) \{")
1066 v.add("PRINT_ERROR(\"Instantiation of a dead type: %s\\n\", {t}->name);")
1067 v.add_abort("type dead")
1068 v.add("\}")
1069 end
1070
1071 redef fun new_visitor do return new SeparateCompilerVisitor(self)
1072
1073 # Stats
1074
1075 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
1076 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
1077 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
1078 protected var attr_tables: Map[MClass, Array[nullable MProperty]] = new HashMap[MClass, Array[nullable MProperty]]
1079
1080 redef fun display_stats
1081 do
1082 super
1083 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
1084 display_sizes
1085 end
1086 if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1087 display_isset_checks
1088 end
1089 var tc = self.modelbuilder.toolcontext
1090 tc.info("# implementation of method invocation",2)
1091 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
1092 tc.info("total number of invocations: {nb_invok_total}",2)
1093 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
1094 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
1095 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
1096 end
1097
1098 fun display_sizes
1099 do
1100 print "# size of subtyping tables"
1101 print "\ttotal \tholes"
1102 var total = 0
1103 var holes = 0
1104 for t, table in type_tables do
1105 total += table.length
1106 for e in table do if e == null then holes += 1
1107 end
1108 print "\t{total}\t{holes}"
1109
1110 print "# size of resolution tables"
1111 print "\ttotal \tholes"
1112 total = 0
1113 holes = 0
1114 for t, table in resolution_tables do
1115 total += table.length
1116 for e in table do if e == null then holes += 1
1117 end
1118 print "\t{total}\t{holes}"
1119
1120 print "# size of methods tables"
1121 print "\ttotal \tholes"
1122 total = 0
1123 holes = 0
1124 for t, table in method_tables do
1125 total += table.length
1126 for e in table do if e == null then holes += 1
1127 end
1128 print "\t{total}\t{holes}"
1129
1130 print "# size of attributes tables"
1131 print "\ttotal \tholes"
1132 total = 0
1133 holes = 0
1134 for t, table in attr_tables do
1135 total += table.length
1136 for e in table do if e == null then holes += 1
1137 end
1138 print "\t{total}\t{holes}"
1139 end
1140
1141 protected var isset_checks_count = 0
1142 protected var attr_read_count = 0
1143
1144 fun display_isset_checks do
1145 print "# total number of compiled attribute reads"
1146 print "\t{attr_read_count}"
1147 print "# total number of compiled isset-checks"
1148 print "\t{isset_checks_count}"
1149 end
1150
1151 redef fun compile_nitni_structs
1152 do
1153 self.header.add_decl """
1154 struct nitni_instance \{
1155 struct nitni_instance *next,
1156 *prev; /* adjacent global references in global list */
1157 int count; /* number of time this global reference has been marked */
1158 struct instance *value;
1159 \};
1160 """
1161 super
1162 end
1163
1164 redef fun finalize_ffi_for_module(mmodule)
1165 do
1166 var old_module = self.mainmodule
1167 self.mainmodule = mmodule
1168 super
1169 self.mainmodule = old_module
1170 end
1171 end
1172
1173 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
1174 class SeparateCompilerVisitor
1175 super AbstractCompilerVisitor
1176
1177 redef type COMPILER: SeparateCompiler
1178
1179 redef fun adapt_signature(m, args)
1180 do
1181 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
1182 var recv = args.first
1183 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
1184 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
1185 end
1186 for i in [0..msignature.arity[ do
1187 var mp = msignature.mparameters[i]
1188 var t = mp.mtype
1189 if mp.is_vararg then
1190 t = args[i+1].mtype
1191 end
1192 args[i+1] = self.autobox(args[i+1], t)
1193 end
1194 end
1195
1196 redef fun unbox_signature_extern(m, args)
1197 do
1198 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
1199 if not m.mproperty.is_init and m.is_extern then
1200 args.first = self.unbox_extern(args.first, m.mclassdef.mclass.mclass_type)
1201 end
1202 for i in [0..msignature.arity[ do
1203 var mp = msignature.mparameters[i]
1204 var t = mp.mtype
1205 if mp.is_vararg then
1206 t = args[i+1].mtype
1207 end
1208 if m.is_extern then args[i+1] = self.unbox_extern(args[i+1], t)
1209 end
1210 end
1211
1212 redef fun autobox(value, mtype)
1213 do
1214 if value.mtype == mtype then
1215 return value
1216 else if not value.mtype.is_c_primitive and not mtype.is_c_primitive then
1217 return value
1218 else if not value.mtype.is_c_primitive then
1219 if mtype.is_tagged then
1220 if mtype.name == "Int" then
1221 return self.new_expr("(long)({value})>>2", mtype)
1222 else if mtype.name == "Char" then
1223 return self.new_expr("(uint32_t)((long)({value})>>2)", mtype)
1224 else if mtype.name == "Bool" then
1225 return self.new_expr("(short int)((long)({value})>>2)", mtype)
1226 else
1227 abort
1228 end
1229 end
1230 return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
1231 else if not mtype.is_c_primitive then
1232 assert value.mtype == value.mcasttype
1233 if value.mtype.is_tagged then
1234 var res
1235 if value.mtype.name == "Int" then
1236 res = self.new_expr("(val*)({value}<<2|1)", mtype)
1237 else if value.mtype.name == "Char" then
1238 res = self.new_expr("(val*)((long)({value})<<2|2)", mtype)
1239 else if value.mtype.name == "Bool" then
1240 res = self.new_expr("(val*)((long)({value})<<2|3)", mtype)
1241 else
1242 abort
1243 end
1244 # Do not loose type info
1245 res.mcasttype = value.mcasttype
1246 return res
1247 end
1248 var valtype = value.mtype.as(MClassType)
1249 if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "CString" then
1250 valtype = compiler.mainmodule.pointer_type
1251 end
1252 var res = self.new_var(mtype)
1253 # Do not loose type info
1254 res.mcasttype = value.mcasttype
1255 self.require_declaration("BOX_{valtype.c_name}")
1256 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
1257 return res
1258 else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or
1259 (value.mtype.ctype == "char*" and mtype.ctype == "void*") or
1260 (value.mtype.ctype == "void*" and mtype.ctype == "char*") then
1261 return value
1262 else
1263 # Bad things will appen!
1264 var res = self.new_var(mtype)
1265 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
1266 self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); fatal_exit(1);")
1267 return res
1268 end
1269 end
1270
1271 redef fun unbox_extern(value, mtype)
1272 do
1273 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1274 mtype.mclass.name != "CString" then
1275 var pointer_type = compiler.mainmodule.pointer_type
1276 var res = self.new_var_extern(mtype)
1277 self.add "{res} = ((struct instance_{pointer_type.c_name}*){value})->value; /* unboxing {value.mtype} */"
1278 return res
1279 else
1280 return value
1281 end
1282 end
1283
1284 redef fun box_extern(value, mtype)
1285 do
1286 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1287 mtype.mclass.name != "CString" then
1288 var valtype = compiler.mainmodule.pointer_type
1289 var res = self.new_var(mtype)
1290 compiler.undead_types.add(mtype)
1291 self.require_declaration("BOX_{valtype.c_name}")
1292 self.add("{res} = BOX_{valtype.c_name}({value}); /* boxing {value.mtype} */")
1293 self.require_declaration("type_{mtype.c_name}")
1294 self.add("{res}->type = &type_{mtype.c_name};")
1295 self.require_declaration("class_{mtype.c_name}")
1296 self.add("{res}->class = &class_{mtype.c_name};")
1297 return res
1298 else
1299 return value
1300 end
1301 end
1302
1303 # Returns a C expression containing the tag of the value as a long.
1304 #
1305 # If the C expression is evaluated to 0, it means there is no tag.
1306 # Thus the expression can be used as a condition.
1307 fun extract_tag(value: RuntimeVariable): String
1308 do
1309 assert not value.mtype.is_c_primitive
1310 return "((long){value}&3)" # Get the two low bits
1311 end
1312
1313 # Returns a C expression of the runtime class structure of the value.
1314 # The point of the method is to work also with primitive types.
1315 fun class_info(value: RuntimeVariable): String
1316 do
1317 if not value.mtype.is_c_primitive then
1318 if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1319 var tag = extract_tag(value)
1320 return "({tag}?class_info[{tag}]:{value}->class)"
1321 end
1322 return "{value}->class"
1323 else
1324 compiler.undead_types.add(value.mtype)
1325 self.require_declaration("class_{value.mtype.c_name}")
1326 return "(&class_{value.mtype.c_name})"
1327 end
1328 end
1329
1330 # Returns a C expression of the runtime type structure of the value.
1331 # The point of the method is to work also with primitive types.
1332 fun type_info(value: RuntimeVariable): String
1333 do
1334 if not value.mtype.is_c_primitive then
1335 if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1336 var tag = extract_tag(value)
1337 return "({tag}?type_info[{tag}]:{value}->type)"
1338 end
1339 return "{value}->type"
1340 else
1341 compiler.undead_types.add(value.mtype)
1342 self.require_declaration("type_{value.mtype.c_name}")
1343 return "(&type_{value.mtype.c_name})"
1344 end
1345 end
1346
1347 redef fun compile_callsite(callsite, args)
1348 do
1349 var rta = compiler.runtime_type_analysis
1350 # TODO: Inlining of new-style constructors with initializers
1351 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and callsite.mpropdef.initializers.is_empty then
1352 var tgs = rta.live_targets(callsite)
1353 if tgs.length == 1 then
1354 return direct_call(tgs.first, args)
1355 end
1356 end
1357 # Shortcut intern methods as they are not usually redefinable
1358 if callsite.mpropdef.is_intern and callsite.mproperty.name != "object_id" then
1359 # `object_id` is the only redefined intern method, so it can not be directly called.
1360 # TODO find a less ugly approach?
1361 return direct_call(callsite.mpropdef, args)
1362 end
1363 return super
1364 end
1365
1366 # Fully and directly call a mpropdef
1367 #
1368 # This method is used by `compile_callsite`
1369 private fun direct_call(mpropdef: MMethodDef, args: Array[RuntimeVariable]): nullable RuntimeVariable
1370 do
1371 var res0 = before_send(mpropdef.mproperty, args)
1372 var res = call(mpropdef, mpropdef.mclassdef.bound_mtype, args)
1373 if res0 != null then
1374 assert res != null
1375 self.assign(res0, res)
1376 res = res0
1377 end
1378 add("\}") # close the before_send
1379 return res
1380 end
1381 redef fun send(mmethod, arguments)
1382 do
1383 if arguments.first.mcasttype.is_c_primitive then
1384 # In order to shortcut the primitive, we need to find the most specific method
1385 # Howverr, because of performance (no flattening), we always work on the realmainmodule
1386 var m = self.compiler.mainmodule
1387 self.compiler.mainmodule = self.compiler.realmainmodule
1388 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
1389 self.compiler.mainmodule = m
1390 return res
1391 end
1392
1393 return table_send(mmethod, arguments, mmethod)
1394 end
1395
1396 # Handle common special cases before doing the effective method invocation
1397 # This methods handle the `==` and `!=` methods and the case of the null receiver.
1398 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
1399 # Client must not forget to close the } after them.
1400 #
1401 # The value returned is the result of the common special cases.
1402 # If not null, client must compile it with the result of their own effective method invocation.
1403 #
1404 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1405 # is generated to cancel the effective method invocation that will follow
1406 # TODO: find a better approach
1407 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1408 do
1409 var res: nullable RuntimeVariable = null
1410 var recv = arguments.first
1411 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_null.value or mmethod.name == "==" or mmethod.name == "!="
1412 if maybe_null(recv) and consider_null then
1413 self.add("if ({recv} == NULL) \{")
1414 if mmethod.name == "==" or mmethod.name == "is_same_instance" then
1415 res = self.new_var(bool_type)
1416 var arg = arguments[1]
1417 if arg.mcasttype isa MNullableType then
1418 self.add("{res} = ({arg} == NULL);")
1419 else if arg.mcasttype isa MNullType then
1420 self.add("{res} = 1; /* is null */")
1421 else
1422 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1423 end
1424 else if mmethod.name == "!=" then
1425 res = self.new_var(bool_type)
1426 var arg = arguments[1]
1427 if arg.mcasttype isa MNullableType then
1428 self.add("{res} = ({arg} != NULL);")
1429 else if arg.mcasttype isa MNullType then
1430 self.add("{res} = 0; /* is null */")
1431 else
1432 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1433 end
1434 else
1435 self.add_abort("Receiver is null")
1436 end
1437 self.add("\} else \{")
1438 else
1439 self.add("\{")
1440 end
1441 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=" or mmethod.name == "is_same_instance") then
1442 # Recv is not null, thus if arg is, it is easy to conclude (and respect the invariants)
1443 var arg = arguments[1]
1444 if arg.mcasttype isa MNullType then
1445 if res == null then res = self.new_var(bool_type)
1446 if mmethod.name == "!=" then
1447 self.add("{res} = 1; /* arg is null and recv is not */")
1448 else # `==` and `is_same_instance`
1449 self.add("{res} = 0; /* arg is null but recv is not */")
1450 end
1451 self.add("\}") # closes the null case
1452 self.add("if (0) \{") # what follow is useless, CC will drop it
1453 end
1454 end
1455 return res
1456 end
1457
1458 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], mentity: MEntity): nullable RuntimeVariable
1459 do
1460 compiler.modelbuilder.nb_invok_by_tables += 1
1461 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1462
1463 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1464
1465 var res0 = before_send(mmethod, arguments)
1466
1467 var runtime_function = mmethod.intro.virtual_runtime_function
1468 var msignature = runtime_function.called_signature
1469
1470 adapt_signature(mmethod.intro, arguments)
1471
1472 var res: nullable RuntimeVariable
1473 var ret = msignature.return_mtype
1474 if ret == null then
1475 res = null
1476 else
1477 res = self.new_var(ret)
1478 end
1479
1480 var ss = arguments.join(", ")
1481
1482 var const_color = mentity.const_color
1483 var ress
1484 if res != null then
1485 ress = "{res} = "
1486 else
1487 ress = ""
1488 end
1489 if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_direct_call_monomorph0.value then
1490 # opt_direct_call_monomorph0 is used to compare the efficiency of the alternative lookup implementation, ceteris paribus.
1491 # The difference with the non-zero option is that the monomorphism is looked-at on the mmethod level and not at the callsite level.
1492 # TODO: remove this mess and use per callsite service to detect monomorphism in a single place.
1493 var md = compiler.is_monomorphic(mentity)
1494 if md != null then
1495 var callsym = md.virtual_runtime_function.c_name
1496 self.require_declaration(callsym)
1497 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1498 else
1499 self.require_declaration(const_color)
1500 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1501 end
1502 else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_guard_call.value then
1503 var callsym = "CALL_" + const_color
1504 self.require_declaration(callsym)
1505 self.add "if (!{callsym}) \{"
1506 self.require_declaration(const_color)
1507 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1508 self.add "\} else \{"
1509 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1510 self.add "\}"
1511 else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_trampoline_call.value then
1512 var callsym = "CALL_" + const_color
1513 self.require_declaration(callsym)
1514 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1515 else
1516 self.require_declaration(const_color)
1517 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1518 end
1519
1520 if res0 != null then
1521 assert res != null
1522 assign(res0,res)
1523 res = res0
1524 end
1525
1526 self.add("\}") # closes the null case
1527
1528 return res
1529 end
1530
1531 redef fun call(mmethoddef, recvtype, arguments)
1532 do
1533 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1534
1535 var res: nullable RuntimeVariable
1536 var ret = mmethoddef.msignature.return_mtype
1537 if ret == null then
1538 res = null
1539 else
1540 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1541 res = self.new_var(ret)
1542 end
1543
1544 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1545 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1546 compiler.modelbuilder.nb_invok_by_inline += 1
1547 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1548 var frame = new StaticFrame(self, mmethoddef, recvtype, arguments)
1549 frame.returnlabel = self.get_name("RET_LABEL")
1550 frame.returnvar = res
1551 var old_frame = self.frame
1552 self.frame = frame
1553 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1554 mmethoddef.compile_inside_to_c(self, arguments)
1555 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1556 self.add("\}")
1557 self.frame = old_frame
1558 return res
1559 end
1560 compiler.modelbuilder.nb_invok_by_direct += 1
1561 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1562
1563 # Autobox arguments
1564 self.adapt_signature(mmethoddef, arguments)
1565
1566 self.require_declaration(mmethoddef.c_name)
1567 if res == null then
1568 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1569 return null
1570 else
1571 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1572 end
1573
1574 return res
1575 end
1576
1577 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1578 do
1579 if arguments.first.mcasttype.is_c_primitive then
1580 # In order to shortcut the primitive, we need to find the most specific method
1581 # However, because of performance (no flattening), we always work on the realmainmodule
1582 var main = self.compiler.mainmodule
1583 self.compiler.mainmodule = self.compiler.realmainmodule
1584 var res = self.monomorphic_super_send(m, recvtype, arguments)
1585 self.compiler.mainmodule = main
1586 return res
1587 end
1588 return table_send(m.mproperty, arguments, m)
1589 end
1590
1591 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1592 do
1593 # A vararg must be stored into an new array
1594 # The trick is that the dymaic type of the array may depends on the receiver
1595 # of the method (ie recv) if the static type is unresolved
1596 # This is more complex than usual because the unresolved type must not be resolved
1597 # with the current receiver (ie self).
1598 # Therefore to isolate the resolution from self, a local StaticFrame is created.
1599 # One can see this implementation as an inlined method of the receiver whose only
1600 # job is to allocate the array
1601 var old_frame = self.frame
1602 var frame = new StaticFrame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1603 self.frame = frame
1604 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1605 var res = self.array_instance(varargs, elttype)
1606 self.frame = old_frame
1607 return res
1608 end
1609
1610 redef fun isset_attribute(a, recv)
1611 do
1612 self.check_recv_notnull(recv)
1613 var res = self.new_var(bool_type)
1614
1615 # What is the declared type of the attribute?
1616 var mtype = a.intro.static_mtype.as(not null)
1617 var intromclassdef = a.intro.mclassdef
1618 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1619
1620 if mtype isa MNullableType then
1621 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1622 return res
1623 end
1624
1625 self.require_declaration(a.const_color)
1626 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1627 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1628 else
1629
1630 if not mtype.is_c_primitive and not mtype.is_tagged then
1631 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1632 else
1633 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1634 end
1635 end
1636 return res
1637 end
1638
1639 redef fun read_attribute(a, recv)
1640 do
1641 self.check_recv_notnull(recv)
1642
1643 # What is the declared type of the attribute?
1644 var ret = a.intro.static_mtype.as(not null)
1645 var intromclassdef = a.intro.mclassdef
1646 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1647
1648 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1649 self.compiler.attr_read_count += 1
1650 self.add("count_attr_reads++;")
1651 end
1652
1653 self.require_declaration(a.const_color)
1654 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1655 # Get the attribute or a box (ie. always a val*)
1656 var cret = self.object_type.as_nullable
1657 var res = self.new_var(cret)
1658 res.mcasttype = ret
1659
1660 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1661
1662 # Check for Uninitialized attribute
1663 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1664 self.add("if (unlikely({res} == NULL)) \{")
1665 self.add_abort("Uninitialized attribute {a.name}")
1666 self.add("\}")
1667
1668 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1669 self.compiler.isset_checks_count += 1
1670 self.add("count_isset_checks++;")
1671 end
1672 end
1673
1674 # Return the attribute or its unboxed version
1675 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1676 return self.autobox(res, ret)
1677 else
1678 var res = self.new_var(ret)
1679 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1680
1681 # Check for Uninitialized attribute
1682 if not ret.is_c_primitive and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1683 self.add("if (unlikely({res} == NULL)) \{")
1684 self.add_abort("Uninitialized attribute {a.name}")
1685 self.add("\}")
1686 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1687 self.compiler.isset_checks_count += 1
1688 self.add("count_isset_checks++;")
1689 end
1690 end
1691
1692 return res
1693 end
1694 end
1695
1696 redef fun write_attribute(a, recv, value)
1697 do
1698 self.check_recv_notnull(recv)
1699
1700 # What is the declared type of the attribute?
1701 var mtype = a.intro.static_mtype.as(not null)
1702 var intromclassdef = a.intro.mclassdef
1703 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1704
1705 # Adapt the value to the declared type
1706 value = self.autobox(value, mtype)
1707
1708 self.require_declaration(a.const_color)
1709 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1710 var attr = "{recv}->attrs[{a.const_color}]"
1711 if mtype.is_tagged then
1712 # The attribute is not primitive, thus store it as tagged
1713 var tv = autobox(value, compiler.mainmodule.object_type)
1714 self.add("{attr} = {tv}; /* {a} on {recv.inspect} */")
1715 else if mtype.is_c_primitive then
1716 assert mtype isa MClassType
1717 # The attribute is primitive, thus we store it in a box
1718 # The trick is to create the box the first time then resuse the box
1719 self.add("if ({attr} != NULL) \{")
1720 self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1721 self.add("\} else \{")
1722 value = self.autobox(value, self.object_type.as_nullable)
1723 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1724 self.add("\}")
1725 else
1726 # The attribute is not primitive, thus store it direclty
1727 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1728 end
1729 else
1730 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1731 end
1732 end
1733
1734 # Check that mtype is a live open type
1735 fun hardening_live_open_type(mtype: MType)
1736 do
1737 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1738 self.require_declaration(mtype.const_color)
1739 var col = mtype.const_color
1740 self.add("if({col} == -1) \{")
1741 self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1742 self.add_abort("open type dead")
1743 self.add("\}")
1744 end
1745
1746 # Check that mtype it a pointer to a live cast type
1747 fun hardening_cast_type(t: String)
1748 do
1749 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1750 add("if({t} == NULL) \{")
1751 add_abort("cast type null")
1752 add("\}")
1753 add("if({t}->id == -1 || {t}->color == -1) \{")
1754 add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1755 add_abort("cast type dead")
1756 add("\}")
1757 end
1758
1759 redef fun init_instance(mtype)
1760 do
1761 self.require_declaration("NEW_{mtype.mclass.c_name}")
1762 var compiler = self.compiler
1763 if mtype isa MGenericType and mtype.need_anchor then
1764 hardening_live_open_type(mtype)
1765 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1766 var recv = self.frame.arguments.first
1767 var recv_type_info = self.type_info(recv)
1768 self.require_declaration(mtype.const_color)
1769 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1770 end
1771 compiler.undead_types.add(mtype)
1772 self.require_declaration("type_{mtype.c_name}")
1773 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1774 end
1775
1776 redef fun type_test(value, mtype, tag)
1777 do
1778 self.add("/* {value.inspect} isa {mtype} */")
1779 var compiler = self.compiler
1780
1781 var recv = self.frame.arguments.first
1782 var recv_type_info = self.type_info(recv)
1783
1784 var res = self.new_var(bool_type)
1785
1786 var cltype = self.get_name("cltype")
1787 self.add_decl("int {cltype};")
1788 var idtype = self.get_name("idtype")
1789 self.add_decl("int {idtype};")
1790
1791 var maybe_null = self.maybe_null(value)
1792 var accept_null = "0"
1793 var ntype = mtype
1794 if ntype isa MNullableType then
1795 ntype = ntype.mtype
1796 accept_null = "1"
1797 end
1798
1799 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1800 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1801 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1802 self.compiler.count_type_test_skipped[tag] += 1
1803 self.add("count_type_test_skipped_{tag}++;")
1804 end
1805 return res
1806 end
1807
1808 if ntype.need_anchor then
1809 var type_struct = self.get_name("type_struct")
1810 self.add_decl("const struct type* {type_struct};")
1811
1812 # Either with resolution_table with a direct resolution
1813 hardening_live_open_type(mtype)
1814 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1815 self.require_declaration(mtype.const_color)
1816 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1817 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1818 self.compiler.count_type_test_unresolved[tag] += 1
1819 self.add("count_type_test_unresolved_{tag}++;")
1820 end
1821 hardening_cast_type(type_struct)
1822 self.add("{cltype} = {type_struct}->color;")
1823 self.add("{idtype} = {type_struct}->id;")
1824 if maybe_null and accept_null == "0" then
1825 var is_nullable = self.get_name("is_nullable")
1826 self.add_decl("short int {is_nullable};")
1827 self.add("{is_nullable} = {type_struct}->is_nullable;")
1828 accept_null = is_nullable.to_s
1829 end
1830 else if ntype isa MClassType then
1831 compiler.undead_types.add(mtype)
1832 self.require_declaration("type_{mtype.c_name}")
1833 hardening_cast_type("(&type_{mtype.c_name})")
1834 self.add("{cltype} = type_{mtype.c_name}.color;")
1835 self.add("{idtype} = type_{mtype.c_name}.id;")
1836 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1837 self.compiler.count_type_test_resolved[tag] += 1
1838 self.add("count_type_test_resolved_{tag}++;")
1839 end
1840 else
1841 self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); fatal_exit(1);")
1842 end
1843
1844 # check color is in table
1845 if maybe_null then
1846 self.add("if({value} == NULL) \{")
1847 self.add("{res} = {accept_null};")
1848 self.add("\} else \{")
1849 end
1850 var value_type_info = self.type_info(value)
1851 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1852 self.add("{res} = 0;")
1853 self.add("\} else \{")
1854 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1855 self.add("\}")
1856 if maybe_null then
1857 self.add("\}")
1858 end
1859
1860 return res
1861 end
1862
1863 redef fun is_same_type_test(value1, value2)
1864 do
1865 var res = self.new_var(bool_type)
1866 # Swap values to be symetric
1867 if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then
1868 var tmp = value1
1869 value1 = value2
1870 value2 = tmp
1871 end
1872 if value1.mtype.is_c_primitive then
1873 if value2.mtype == value1.mtype then
1874 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1875 else if value2.mtype.is_c_primitive then
1876 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1877 else
1878 var mtype1 = value1.mtype.as(MClassType)
1879 self.require_declaration("class_{mtype1.c_name}")
1880 self.add("{res} = ({value2} != NULL) && ({class_info(value2)} == &class_{mtype1.c_name}); /* is_same_type_test */")
1881 end
1882 else
1883 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {class_info(value1)} == {class_info(value2)}); /* is_same_type_test */")
1884 end
1885 return res
1886 end
1887
1888 redef fun class_name_string(value)
1889 do
1890 var res = self.get_name("var_class_name")
1891 self.add_decl("const char* {res};")
1892 if not value.mtype.is_c_primitive then
1893 self.add "{res} = {value} == NULL ? \"null\" : {type_info(value)}->name;"
1894 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind and
1895 value.mtype.as(MClassType).name != "CString" then
1896 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1897 else
1898 self.require_declaration("type_{value.mtype.c_name}")
1899 self.add "{res} = type_{value.mtype.c_name}.name;"
1900 end
1901 return res
1902 end
1903
1904 redef fun equal_test(value1, value2)
1905 do
1906 var res = self.new_var(bool_type)
1907 if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then
1908 var tmp = value1
1909 value1 = value2
1910 value2 = tmp
1911 end
1912 if value1.mtype.is_c_primitive then
1913 var t1 = value1.mtype
1914 assert t1 == value1.mcasttype
1915
1916 # Fast case: same C type.
1917 if value2.mtype == t1 then
1918 # Same exact C primitive representation.
1919 self.add("{res} = {value1} == {value2};")
1920 return res
1921 end
1922
1923 # Complex case: value2 has a different representation
1924 # Thus, it should be checked if `value2` is type-compatible with `value1`
1925 # This compatibility is done statically if possible and dynamically else
1926
1927 # Conjunction (ands) of dynamic tests according to the static knowledge
1928 var tests = new Array[String]
1929
1930 var t2 = value2.mcasttype
1931 if t2 isa MNullableType then
1932 # The destination type cannot be null
1933 tests.add("({value2} != NULL)")
1934 t2 = t2.mtype
1935 else if t2 isa MNullType then
1936 # `value2` is known to be null, thus incompatible with a primitive
1937 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}*/")
1938 return res
1939 end
1940
1941 if t2 == t1 then
1942 # Same type but different representation.
1943 else if t2.is_c_primitive then
1944 # Type of `value2` is a different primitive type, thus incompatible
1945 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}*/")
1946 return res
1947 else if t1.is_tagged then
1948 # To be equal, `value2` should also be correctly tagged
1949 tests.add("({extract_tag(value2)} == {t1.tag_value})")
1950 else
1951 # To be equal, `value2` should also be boxed with the same class
1952 self.require_declaration("class_{t1.c_name}")
1953 tests.add "({class_info(value2)} == &class_{t1.c_name})"
1954 end
1955
1956 # Compare the unboxed `value2` with `value1`
1957 if tests.not_empty then
1958 self.add "if ({tests.join(" && ")}) \{"
1959 end
1960 self.add "{res} = {self.autobox(value2, t1)} == {value1};"
1961 if tests.not_empty then
1962 self.add "\} else {res} = 0;"
1963 end
1964
1965 return res
1966 end
1967 var maybe_null = true
1968 var test = new Array[String]
1969 var t1 = value1.mcasttype
1970 if t1 isa MNullableType then
1971 test.add("{value1} != NULL")
1972 t1 = t1.mtype
1973 else
1974 maybe_null = false
1975 end
1976 var t2 = value2.mcasttype
1977 if t2 isa MNullableType then
1978 test.add("{value2} != NULL")
1979 t2 = t2.mtype
1980 else
1981 maybe_null = false
1982 end
1983
1984 var incompatible = false
1985 var primitive
1986 if t1.is_c_primitive then
1987 primitive = t1
1988 if t1 == t2 then
1989 # No need to compare class
1990 else if t2.is_c_primitive then
1991 incompatible = true
1992 else if can_be_primitive(value2) then
1993 if t1.is_tagged then
1994 self.add("{res} = {value1} == {value2};")
1995 return res
1996 end
1997 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1998 test.add("(!{extract_tag(value2)})")
1999 end
2000 test.add("{value1}->class == {value2}->class")
2001 else
2002 incompatible = true
2003 end
2004 else if t2.is_c_primitive then
2005 primitive = t2
2006 if can_be_primitive(value1) then
2007 if t2.is_tagged then
2008 self.add("{res} = {value1} == {value2};")
2009 return res
2010 end
2011 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
2012 test.add("(!{extract_tag(value1)})")
2013 end
2014 test.add("{value1}->class == {value2}->class")
2015 else
2016 incompatible = true
2017 end
2018 else
2019 primitive = null
2020 end
2021
2022 if incompatible then
2023 if maybe_null then
2024 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
2025 return res
2026 else
2027 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
2028 return res
2029 end
2030 end
2031 if primitive != null then
2032 if primitive.is_tagged then
2033 self.add("{res} = {value1} == {value2};")
2034 return res
2035 end
2036 test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value")
2037 else if can_be_primitive(value1) and can_be_primitive(value2) then
2038 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
2039 test.add("(!{extract_tag(value1)}) && (!{extract_tag(value2)})")
2040 end
2041 test.add("{value1}->class == {value2}->class")
2042 var s = new Array[String]
2043 for t, v in self.compiler.box_kinds do
2044 if t.mclass_type.is_tagged then continue
2045 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)"
2046 end
2047 if s.is_empty then
2048 self.add("{res} = {value1} == {value2};")
2049 return res
2050 end
2051 test.add("({s.join(" || ")})")
2052 else
2053 self.add("{res} = {value1} == {value2};")
2054 return res
2055 end
2056 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
2057 return res
2058 end
2059
2060 fun can_be_primitive(value: RuntimeVariable): Bool
2061 do
2062 var t = value.mcasttype.undecorate
2063 if not t isa MClassType then return false
2064 var k = t.mclass.kind
2065 return k == interface_kind or t.is_c_primitive
2066 end
2067
2068 redef fun array_instance(array, elttype)
2069 do
2070 var nclass = mmodule.native_array_class
2071 var arrayclass = mmodule.array_class
2072 var arraytype = arrayclass.get_mtype([elttype])
2073 var res = self.init_instance(arraytype)
2074 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
2075 var length = self.int_instance(array.length)
2076 var nat = native_array_instance(elttype, length)
2077 for i in [0..array.length[ do
2078 var r = self.autobox(array[i], self.object_type)
2079 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
2080 end
2081 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
2082 self.add("\}")
2083 return res
2084 end
2085
2086 redef fun native_array_instance(elttype, length)
2087 do
2088 var mtype = mmodule.native_array_type(elttype)
2089 self.require_declaration("NEW_{mtype.mclass.c_name}")
2090 assert mtype isa MGenericType
2091 var compiler = self.compiler
2092 length = autobox(length, compiler.mainmodule.int_type)
2093 if mtype.need_anchor then
2094 hardening_live_open_type(mtype)
2095 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
2096 var recv = self.frame.arguments.first
2097 var recv_type_info = self.type_info(recv)
2098 self.require_declaration(mtype.const_color)
2099 return self.new_expr("NEW_{mtype.mclass.c_name}((int){length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
2100 end
2101 compiler.undead_types.add(mtype)
2102 self.require_declaration("type_{mtype.c_name}")
2103 return self.new_expr("NEW_{mtype.mclass.c_name}((int){length}, &type_{mtype.c_name})", mtype)
2104 end
2105
2106 redef fun native_array_def(pname, ret_type, arguments)
2107 do
2108 var elttype = arguments.first.mtype
2109 var nclass = mmodule.native_array_class
2110 var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values"
2111 if pname == "[]" then
2112 # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing
2113 var res = self.new_expr("{recv}[{arguments[1]}]", compiler.mainmodule.object_type)
2114 res.mcasttype = ret_type.as(not null)
2115 self.ret(res)
2116 return true
2117 else if pname == "[]=" then
2118 self.add("{recv}[{arguments[1]}]={arguments[2]};")
2119 return true
2120 else if pname == "length" then
2121 self.ret(self.new_expr("((struct instance_{nclass.c_name}*){arguments[0]})->length", ret_type.as(not null)))
2122 return true
2123 else if pname == "copy_to" then
2124 var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values"
2125 self.add("memmove({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
2126 return true
2127 else if pname == "memmove" then
2128 # fun memmove(start: Int, length: Int, dest: NativeArray[E], dest_start: Int) is intern do
2129 var recv1 = "((struct instance_{nclass.c_name}*){arguments[3]})->values"
2130 self.add("memmove({recv1}+{arguments[4]}, {recv}+{arguments[1]}, {arguments[2]}*sizeof({elttype.ctype}));")
2131 return true
2132 end
2133 return false
2134 end
2135
2136 redef fun native_array_get(nat, i)
2137 do
2138 var nclass = mmodule.native_array_class
2139 var recv = "((struct instance_{nclass.c_name}*){nat})->values"
2140 # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing
2141 var res = self.new_expr("{recv}[{i}]", compiler.mainmodule.object_type)
2142 return res
2143 end
2144
2145 redef fun native_array_set(nat, i, val)
2146 do
2147 var nclass = mmodule.native_array_class
2148 var recv = "((struct instance_{nclass.c_name}*){nat})->values"
2149 self.add("{recv}[{i}]={val};")
2150 end
2151
2152 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
2153 assert mtype.need_anchor
2154 var compiler = self.compiler
2155 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
2156 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
2157 end
2158 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
2159 end
2160 end
2161
2162 redef class MMethodDef
2163 # The C function associated to a mmethoddef
2164 fun separate_runtime_function: SeparateRuntimeFunction
2165 do
2166 var res = self.separate_runtime_function_cache
2167 if res == null then
2168 var recv = mclassdef.bound_mtype
2169 var msignature = msignature.resolve_for(recv, recv, mclassdef.mmodule, true)
2170 res = new SeparateRuntimeFunction(self, recv, msignature, c_name)
2171 self.separate_runtime_function_cache = res
2172 end
2173 return res
2174 end
2175 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
2176
2177 # The C function associated to a mmethoddef, that can be stored into a VFT of a class
2178 # The first parameter (the reciever) is always typed by val* in order to accept an object value
2179 # The C-signature is always compatible with the intro
2180 fun virtual_runtime_function: SeparateRuntimeFunction
2181 do
2182 var res = self.virtual_runtime_function_cache
2183 if res == null then
2184 # Because the function is virtual, the signature must match the one of the original class
2185 var intromclassdef = mproperty.intro.mclassdef
2186 var recv = intromclassdef.bound_mtype
2187
2188 res = separate_runtime_function
2189 if res.called_recv == recv then
2190 self.virtual_runtime_function_cache = res
2191 return res
2192 end
2193
2194 var msignature = mproperty.intro.msignature.resolve_for(recv, recv, intromclassdef.mmodule, true)
2195
2196 if recv.ctype == res.called_recv.ctype and msignature.c_equiv(res.called_signature) then
2197 self.virtual_runtime_function_cache = res
2198 return res
2199 end
2200 res = new SeparateThunkFunction(self, recv, msignature, "VIRTUAL_{c_name}", mclassdef.bound_mtype)
2201 end
2202 return res
2203 end
2204 private var virtual_runtime_function_cache: nullable SeparateRuntimeFunction
2205 end
2206
2207 redef class MSignature
2208 # Does the C-version of `self` the same than the C-version of `other`?
2209 fun c_equiv(other: MSignature): Bool
2210 do
2211 if self == other then return true
2212 if arity != other.arity then return false
2213 for i in [0..arity[ do
2214 if mparameters[i].mtype.ctype != other.mparameters[i].mtype.ctype then return false
2215 end
2216 if return_mtype != other.return_mtype then
2217 if return_mtype == null or other.return_mtype == null then return false
2218 if return_mtype.ctype != other.return_mtype.ctype then return false
2219 end
2220 return true
2221 end
2222 end
2223
2224 # The C function associated to a methoddef separately compiled
2225 class SeparateRuntimeFunction
2226 super AbstractRuntimeFunction
2227
2228 # The call-side static receiver
2229 var called_recv: MType
2230
2231 # The call-side static signature
2232 var called_signature: MSignature
2233
2234 # The name on the compiled method
2235 redef var build_c_name: String
2236
2237 redef fun to_s do return self.mmethoddef.to_s
2238
2239 redef fun msignature
2240 do
2241 return called_signature
2242 end
2243
2244 redef fun recv_mtype
2245 do
2246 return called_recv
2247 end
2248
2249 redef fun return_mtype
2250 do
2251 return called_signature.return_mtype
2252 end
2253
2254 # The C return type (something or `void`)
2255 var c_ret: String is lazy do
2256 var ret = called_signature.return_mtype
2257 if ret != null then
2258 return ret.ctype
2259 else
2260 return "void"
2261 end
2262 end
2263
2264 # The C signature (only the parmeter part)
2265 var c_sig: String is lazy do
2266 var sig = new FlatBuffer
2267 sig.append("({called_recv.ctype} self")
2268 for i in [0..called_signature.arity[ do
2269 var mp = called_signature.mparameters[i]
2270 var mtype = mp.mtype
2271 if mp.is_vararg then
2272 mtype = mmethoddef.mclassdef.mmodule.array_type(mtype)
2273 end
2274 sig.append(", {mtype.ctype} p{i}")
2275 end
2276 sig.append(")")
2277 return sig.to_s
2278 end
2279
2280 # The C type for the function pointer.
2281 var c_funptrtype: String is lazy do return "{c_ret}(*){c_sig}"
2282
2283 redef fun declare_signature(v, sig)
2284 do
2285 v.compiler.provide_declaration(c_name, "{sig};")
2286 end
2287
2288 redef fun body_to_c(v)
2289 do
2290 var rta = v.compiler.as(SeparateCompiler).runtime_type_analysis
2291 if rta != null and not rta.live_mmodules.has(mmethoddef.mclassdef.mmodule) then
2292 v.add_abort("FATAL: Dead method executed.")
2293 else
2294 super
2295 end
2296 end
2297
2298
2299 redef fun end_compile_to_c(v)
2300 do
2301 var compiler = v.compiler
2302 compiler.names[self.c_name] = "{mmethoddef.full_name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
2303 end
2304
2305 redef fun build_frame(v, arguments)
2306 do
2307 var recv = mmethoddef.mclassdef.bound_mtype
2308 return new StaticFrame(v, mmethoddef, recv, arguments)
2309 end
2310
2311 # Compile the trampolines used to implement late-binding.
2312 #
2313 # See `opt_trampoline_call`.
2314 fun compile_trampolines(compiler: SeparateCompiler)
2315 do
2316 var recv = self.mmethoddef.mclassdef.bound_mtype
2317 var selfvar = new RuntimeVariable("self", called_recv, recv)
2318 var ret = called_signature.return_mtype
2319 var arguments = ["self"]
2320 for i in [0..called_signature.arity[ do arguments.add "p{i}"
2321
2322 if mmethoddef.is_intro and not recv.is_c_primitive then
2323 var m = mmethoddef.mproperty
2324 var n2 = "CALL_" + m.const_color
2325 compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};")
2326 var v2 = compiler.new_visitor
2327 v2.add "{c_ret} {n2}{c_sig} \{"
2328 v2.require_declaration(m.const_color)
2329 var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});"
2330 if ret != null then
2331 v2.add "return {call}"
2332 else
2333 v2.add call
2334 end
2335
2336 v2.add "\}"
2337
2338 end
2339 if mmethoddef.has_supercall and not recv.is_c_primitive then
2340 var m = mmethoddef
2341 var n2 = "CALL_" + m.const_color
2342 compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};")
2343 var v2 = compiler.new_visitor
2344 v2.add "{c_ret} {n2}{c_sig} \{"
2345 v2.require_declaration(m.const_color)
2346 var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});"
2347 if ret != null then
2348 v2.add "return {call}"
2349 else
2350 v2.add call
2351 end
2352
2353 v2.add "\}"
2354 end
2355 end
2356 end
2357
2358 class SeparateThunkFunction
2359 super ThunkFunction
2360 super SeparateRuntimeFunction
2361 redef var target_recv
2362 end
2363
2364 redef class MType
2365 # Are values of `self` tagged?
2366 # If false, it means that the type is not primitive, or is boxed.
2367 var is_tagged = false
2368
2369 # The tag value of the type
2370 #
2371 # ENSURE `is_tagged == (tag_value > 0)`
2372 # ENSURE `not is_tagged == (tag_value == 0)`
2373 var tag_value = 0
2374 end
2375
2376 redef class MEntity
2377 var const_color: String is lazy do return "COLOR_{c_name}"
2378 end
2379
2380 interface PropertyLayoutElement end
2381
2382 redef class MProperty
2383 super PropertyLayoutElement
2384 end
2385
2386 redef class MPropDef
2387 super PropertyLayoutElement
2388 end
2389
2390 redef class AMethPropdef
2391 # The semi-global compilation does not support inlining calls to extern news
2392 redef fun can_inline
2393 do
2394 var m = mpropdef
2395 if m != null and m.mproperty.is_init and m.is_extern then return false
2396 return super
2397 end
2398 end
2399
2400 redef class AAttrPropdef
2401 redef fun init_expr(v, recv)
2402 do
2403 super
2404 if is_lazy and v.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
2405 var guard = self.mlazypropdef.mproperty
2406 v.write_attribute(guard, recv, v.bool_instance(false))
2407 end
2408 end
2409 end