geometry: fix warnings in quadtree structures and standardize the doc
authorAlexis Laferrière <alexis.laf@xymus.net>
Thu, 18 May 2017 19:52:59 +0000 (12:52 -0700)
committerAlexis Laferrière <alexis.laf@xymus.net>
Fri, 14 Jul 2017 03:19:25 +0000 (23:19 -0400)
Signed-off-by: Alexis Laferrière <alexis.laf@xymus.net>

lib/geometry/quadtree.nit

index 7c3f2d4..b3ed46f 100644 (file)
 # limitations under the License.
 
 # QuadTree API mostly used for 2 dimensional collision detection
+#
 # The QuadTree data structure partition a 2D space by recursively
-# subdividing it into 4 regions when it's capacity is reached
-# This module introduce 2 principal implementation of the structure,
-# the static and the dynamic QuadTree
+# subdividing it into 4 regions when its capacity is reached.
+# This module introduces 2 main implementation of the structure,
+# a static and a dynamic QuadTree.
 module quadtree
 
 import boxes
 import pipeline
 
-# Abstract QuadTree implementing most of the basic functions
-# and introducing specific QuadTree data
+# Abstract QuadTree implementing the basic functions and data
 abstract class QuadTree[E: Boxed[Numeric]]
        super BoxedCollection[E]
 
+       # Center coordinate of the children
        protected var center: nullable Point[Numeric] = null
-       var data: Array[E] = new Array[E]
 
-       #  ________________
-       #  |       |       |
-       #  |   1   |   2   |
-       #  |-------|-------|
-       #  |   0   |   3   |
-       #  |_______|_______|
+       # Items in this node
+       protected var data = new Array[E]
 
-       protected var child0: nullable QuadTree[E] = null
-       protected var child1: nullable QuadTree[E] = null
-       protected var child2: nullable QuadTree[E] = null
-       protected var child3: nullable QuadTree[E] = null
+       # Children nodes, if not `is_leaf`
+       #
+       # ~~~raw
+       # ________________
+       # |       |       |
+       # |   1   |   2   |
+       # |-------|-------|
+       # |   0   |   3   |
+       # |_______|_______|
+       # ~~~
+       protected var children = new Array[QuadTree[E]]
 
-       # represent the threshold before subdividing the node
+       # Maximum number of items in this node before subdividing
        protected var item_limit: Int
+
+       # Parent node in the tree
        protected var parent_node: nullable QuadTree[E] = null
 
-       # create a node, giving him self as a parent. Used to create children nodes
+       # Create a child node to `parent`
        init with_parent(limit: Int, parent: QuadTree[E])
        do
                init(limit)
@@ -61,31 +66,33 @@ abstract class QuadTree[E: Boxed[Numeric]]
                return res
        end
 
-       # add the item to the tree, create children if the limit is reached
+       # Add `item` to the tree, create children if `item_limit` is reached
        redef fun add(item) do if self.is_leaf then self.data.add(item) else add_to_children(item)
 
        private fun add_to_children(item: Boxed[Numeric])
        do
-               if self.child0 != null then
-                       if self.center.x > item.right then
-                               if self.center.y > item.top then
-                                       child0.add(item)
-                               else if self.center.y < item.bottom then
-                                       child1.add(item)
+               if children.not_empty then
+                       var center = center
+                       assert center != null
+                       if center.x > item.right then
+                               if center.y > item.top then
+                                       children[0].add(item)
+                               else if center.y < item.bottom then
+                                       children[1].add(item)
                                else
                                        self.data.add(item)
                                end
-                       else if self.center.x < item.left then
-                               if self.center.y > item.top then
-                                       child3.add(item)
-                               else if self.center.y < item.bottom then
-                                       child2.add(item)
+                       else if center.x < item.left then
+                               if center.y > item.top then
+                                       children[3].add(item)
+                               else if center.y < item.bottom then
+                                       children[2].add(item)
                                else
                                        self.data.add(item)
                                end
-                       else if self.center.y > item.top then
+                       else if center.y > item.top then
                                self.data.add(item)
-                       else if self.center.y < item.bottom then
+                       else if center.y < item.bottom then
                                self.data.add(item)
                        else
                                self.data.add(item)
@@ -93,10 +100,16 @@ abstract class QuadTree[E: Boxed[Numeric]]
                end
        end
 
-       redef fun is_empty do return data.is_empty and (self.is_leaf or (child0.is_empty and child1.is_empty and child2.is_empty and child3.is_empty))
+       redef fun is_empty
+       do
+               if is_leaf then return data.is_empty
+
+               assert children.length >= 4
+               return data.is_empty and children[0].is_empty and children[1].is_empty and children[2].is_empty and children[3].is_empty
+       end
 
        # Return whether or not the Node is a leaf of the tree
-       fun is_leaf: Bool do return child0 == null
+       fun is_leaf: Bool do return children.is_empty
 
        #     var dquadtree = new DQuadTree[Point[Int]](2)
        #     var p1 = new Point[Int](0,0)
@@ -113,7 +126,7 @@ abstract class QuadTree[E: Boxed[Numeric]]
        #     assert result.length == 0
        #     result = dquadtree.items_overlapping(p4.padded(10))
        #     assert result.length == 3
-       fun items_overlapping_in(region: Boxed[Numeric], mdata: SimpleCollection[E])
+       private fun items_overlapping_in(region: Boxed[Numeric], mdata: SimpleCollection[E])
        do
                if self.is_leaf and data.length >= item_limit then
                        subdivide
@@ -125,63 +138,72 @@ abstract class QuadTree[E: Boxed[Numeric]]
                        end
                end
                for i in data do if i.intersects(region) then mdata.add(i)
-               if self.child0 != null then
-                       if self.center.x > region.right then
-                               if self.center.y > region.top then
-                                       child0.items_overlapping_in(region, mdata)
-                               else if self.center.y < region.bottom then
-                                       child1.items_overlapping_in(region, mdata)
+
+               if children.not_empty then
+                       var center = center
+                       assert center != null
+                       if center.x > region.right then
+                               if center.y > region.top then
+                                       children[0].items_overlapping_in(region, mdata)
+                               else if center.y < region.bottom then
+                                       children[1].items_overlapping_in(region, mdata)
                                else
-                                       child0.items_overlapping_in(region,mdata)
-                                       child1.items_overlapping_in(region, mdata)
+                                       children[0].items_overlapping_in(region,mdata)
+                                       children[1].items_overlapping_in(region, mdata)
                                end
-                       else if self.center.x < region.left then
-                               if self.center.y > region.top then
-                                       child3.items_overlapping_in(region, mdata)
-                               else if self.center.y < region.bottom then
-                                       child2.items_overlapping_in(region, mdata)
+                       else if center.x < region.left then
+                               if center.y > region.top then
+                                       children[3].items_overlapping_in(region, mdata)
+                               else if center.y < region.bottom then
+                                       children[2].items_overlapping_in(region, mdata)
                                else
-                                       child3.items_overlapping_in(region, mdata)
-                                       child2.items_overlapping_in(region, mdata)
+                                       children[3].items_overlapping_in(region, mdata)
+                                       children[2].items_overlapping_in(region, mdata)
                                end
-                       else if self.center.y > region.top then
-                               child0.items_overlapping_in(region, mdata)
-                               child3.items_overlapping_in(region, mdata)
-                       else if self.center.y < region.bottom then
-                               child1.items_overlapping_in(region, mdata)
-                               child2.items_overlapping_in(region, mdata)
+                       else if center.y > region.top then
+                               children[0].items_overlapping_in(region, mdata)
+                               children[3].items_overlapping_in(region, mdata)
+                       else if center.y < region.bottom then
+                               children[1].items_overlapping_in(region, mdata)
+                               children[2].items_overlapping_in(region, mdata)
                        else
-                               child0.items_overlapping_in(region, mdata)
-                               child1.items_overlapping_in(region, mdata)
-                               child2.items_overlapping_in(region, mdata)
-                               child3.items_overlapping_in(region, mdata)
+                               children[0].items_overlapping_in(region, mdata)
+                               children[1].items_overlapping_in(region, mdata)
+                               children[2].items_overlapping_in(region, mdata)
+                               children[3].items_overlapping_in(region, mdata)
                        end
                end
        end
 
-       # this function is responsible of the creation of the children,
-       # depending on your needs
+       # Create children nodes, depends on the concrete implementation
        protected fun subdivide is abstract
 
-       redef fun iterator do if self.is_leaf then return data.iterator else return data.iterator + child0.iterator + child1.iterator + child2.iterator + child3.iterator
+       redef fun iterator
+       do
+               if is_leaf then return data.iterator
+
+               assert children.length >= 4
+               return data.iterator + children[0].iterator + children[1].iterator + children[2].iterator + children[3].iterator
+       end
 end
 
 # A dynamic implementation of the quadtree data structure
-# the center of the parent node is determined by the average
-# values of the data it contains when the item limit is reached
+#
+# The center of the parent node is determined by the average
+# values of the data it contains when `item_limit` is reached.
 class DQuadTree[E: Boxed[Numeric]]
        super QuadTree[E]
 
        redef fun subdivide
        do
                self.center = new Point[Numeric](average_x, average_y)
-               child0 = new DQuadTree[E].with_parent(self.item_limit, self)
-               child1 = new DQuadTree[E].with_parent(self.item_limit, self)
-               child2 = new DQuadTree[E].with_parent(self.item_limit, self)
-               child3 = new DQuadTree[E].with_parent(self.item_limit, self)
+               children[0] = new DQuadTree[E].with_parent(self.item_limit, self)
+               children[1] = new DQuadTree[E].with_parent(self.item_limit, self)
+               children[2] = new DQuadTree[E].with_parent(self.item_limit, self)
+               children[3] = new DQuadTree[E].with_parent(self.item_limit, self)
        end
 
-       # average x of data in this node
+       # Average X coordinate of the items in this node
        fun average_x: Numeric
        do
                var x_total = data.first.left.zero
@@ -191,7 +213,7 @@ class DQuadTree[E: Boxed[Numeric]]
                return x_total/x_total.value_of(self.data.length)
        end
 
-       # average y of data in this node
+       # Average Y coordinate of the items in this node
        fun average_y: Numeric
        do
                var y_total = data.first.left.zero
@@ -202,17 +224,19 @@ class DQuadTree[E: Boxed[Numeric]]
        end
 end
 
-# Static implementation of the quadtree structure.
+# Static implementation of the quadtree structure
+#
 # You need to specify a zone when creating the quadtree,
 # which will be the zone corresponding to the root node.
-# each subdivision cut the space in 4 equal regions from
-# the center of the parent node
+# Each subdivision cut the space in 4 equal regions from
+# the center of the parent node.
 class SQuadTree[E: Boxed[Numeric]]
        super QuadTree[E]
 
-       # the width of the current node of the QuadTree
+       # Width of this node of the QuadTree
        var width: Numeric
-       # the height of the current node of the QuadTree
+
+       # Height of this node of the QuadTree
        var height: Numeric
 
        init
@@ -220,30 +244,35 @@ class SQuadTree[E: Boxed[Numeric]]
                center = new Point[Numeric](width.div(2), height.div(2))
        end
 
-       init with_parent(l: Int, c: Point[Numeric], w: Numeric, h: Numeric, p: QuadTree[E])
+       # Create a child node to `parent`
+       init with_parent(l: Int, c: Point[Numeric], w, h: Numeric, parent: QuadTree[E])
        do
                init(l, w, h)
                center = c
-               self.parent_node = p
+               self.parent_node = parent
        end
 
        redef fun subdivide
        do
-               child0 = new SQuadTree[E].with_parent(self.item_limit, new Point[Numeric](self.center.x.div(2), self.center.y.div(2)), self.width.div(2), self.height.div(2), self)
-               child1 = new SQuadTree[E].with_parent(self.item_limit, new Point[Numeric](self.center.x.div(2), (self.center.y.mul(3)).div(2)), self.width.div(2), self.height.div(2), self)
-               child2 = new SQuadTree[E].with_parent(self.item_limit, new Point[Numeric]((self.center.x.mul(3)).div(2), (self.center.y.mul(3)).div(2)), self.width.div(2), self.height.div(2), self)
-               child3 = new SQuadTree[E].with_parent(self.item_limit, new Point[Numeric]((self.center.x.mul(3)).div(2), self.center.y.div(2)), self.width.div(2), self.height.div(2), self)
+               var center = center
+               assert center != null
+
+               children[0] = new SQuadTree[E].with_parent(self.item_limit, new Point[Numeric](center.x.div(2), center.y.div(2)), self.width.div(2), self.height.div(2), self)
+               children[1] = new SQuadTree[E].with_parent(self.item_limit, new Point[Numeric](center.x.div(2), (center.y.mul(3)).div(2)), self.width.div(2), self.height.div(2), self)
+               children[2] = new SQuadTree[E].with_parent(self.item_limit, new Point[Numeric]((center.x.mul(3)).div(2), (center.y.mul(3)).div(2)), self.width.div(2), self.height.div(2), self)
+               children[3] = new SQuadTree[E].with_parent(self.item_limit, new Point[Numeric]((center.x.mul(3)).div(2), center.y.div(2)), self.width.div(2), self.height.div(2), self)
        end
 
        redef fun to_s
        do
-               var s = "center : {center.to_s}\n"
+               var s = "center : {center or else "null"}\n"
                for d in data do s += d.to_s
-               if child0 != null then
-                       s += "\nchild0: {child0.to_s}\n"
-                       s += "   child1: {child1.to_s}\n"
-                       s += "   child2: {child2.to_s}\n"
-                       s += "   child3: {child3.to_s}\n"
+
+               if children.not_empty then
+                       s += "\n   children[0]: {children[0]}\n"
+                       s += "   children[1]: {children[1]}\n"
+                       s += "   children[2]: {children[2]}\n"
+                       s += "   children[3]: {children[3]}\n"
                end
                return s
        end