# A runtime function customized on a specific monomorph receiver type
private class CustomizedRuntimeFunction
super AbstractRuntimeFunction
redef type COMPILER: GlobalCompiler
redef type VISITOR: GlobalCompilerVisitor
# The considered reciever
# (usually is a live type but no strong guarantee)
var recv: MClassType
redef fun build_c_name
do
var res = self.c_name_cache
if res != null then return res
if self.mmethoddef.mclassdef.bound_mtype == self.recv then
res = self.mmethoddef.c_name
else
res = "{mmethoddef.c_name}__{recv.c_name}"
end
self.c_name_cache = res
return res
end
# used in the compiler worklist
redef fun ==(o)
do
if not o isa CustomizedRuntimeFunction then return false
if self.mmethoddef != o.mmethoddef then return false
if self.recv != o.recv then return false
return true
end
# used in the compiler work-list
redef fun hash do return self.mmethoddef.hash + self.recv.hash
redef fun to_s
do
if self.mmethoddef.mclassdef.bound_mtype == self.recv then
return self.mmethoddef.to_s
else
return "{self.mmethoddef}@{self.recv}"
end
end
redef fun recv_mtype
do
return recv
end
redef var return_mtype
redef fun resolve_receiver(v)
do
var selfvar = new RuntimeVariable("self", recv, recv)
if v.compiler.runtime_type_analysis.live_types.has(recv) then
selfvar.is_exact = true
end
return selfvar
end
redef fun resolve_return_mtype(v)
do
var selfvar = v.frame.
if has_return then
var ret = msignature.return_mtype.as(not null)
return_mtype = v.resolve_for(ret, selfvar)
end
end
redef fun resolve_ith_parameter(v, i)
do
var selfvar = v.frame.
var mp = msignature.mparameters[i]
var mtype = mp.mtype
if mp.is_vararg then
mtype = v.mmodule.array_type(mtype)
end
mtype = v.resolve_for(mtype, selfvar)
return new RuntimeVariable("p{i}", mtype, mtype)
end
redef fun declare_signature(v, sig)
do
v.compiler.header.add_decl("{sig};")
end
redef fun end_compile_to_c(v)
do
if not self.c_name.has_substring("VIRTUAL", 0) then v.compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.}:{mmethoddef.location.line_start})"
end
redef fun call(v: , arguments: Array[RuntimeVariable]): nullable RuntimeVariable
do
var ret = self.mmethoddef.msignature.
if ret != null then
ret = v.resolve_for(ret, arguments.first)
end
# TODO: remove this guard when gcc warning issue (#2781) is resolved
# WARNING: the next two lines of code is used to prevent inlining.
# Inlining of a callref seems to work all the time. However,
# it will produce some deadcode in certain scenarios (when using nullable type).
#
# ~~~~nitish
# class A[E]
# fun toto(x: E)
# do
# # ...do something with x...
# end
# end
# end
# var a = new A[nullable Int]
# var f = &a.toto
# f.call(null) # Will produce a proper C callsite, but it will
# # produce unreachable (dead code) for type checking
# # and covariance. Thus, creating warnings when
# # compiling in global. However, if you ignore
# # those warnings, the binary works perfectly fine.
# ~~~~
var intromclassdef = self.mmethoddef.mproperty.intro_mclassdef
var is_callref = v.compiler.all_routine_types_name.has(intromclassdef.name)
if self.mmethoddef.can_inline(v) and not is_callref then
var frame = new StaticFrame(v, self.mmethoddef, self.recv, arguments)
frame.returnlabel = v.get_name("RET_LABEL")
if ret != null then
frame.returnvar = v.new_var(ret)
end
var old_frame = v.frame
v.frame = frame
v.add("\{ /* Inline {self} ({arguments.join(",")}) */")
self.mmethoddef.compile_inside_to_c(v, arguments)
v.add("{frame.returnlabel.as(not null)}:(void)0;")
v.add("\}")
v.frame = old_frame
return frame.returnvar
end
v.adapt_signature(self.mmethoddef, arguments)
v.compiler.todo(self)
if ret == null then
v.add("{self.c_name}({arguments.join(",")});")
return null
else
var res = v.new_var(ret)
v.add("{res} = {self.c_name}({arguments.join(",")});")
return res
end
end
end
src/compiler/global_compiler.nit:1013,1--1161,3