compiler: do the varargization in the ANodes
[nit.git] / src / compiler / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import coloring
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --inline-coloring-numbers
33 var opt_inline_coloring_numbers = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
34 # --inline-some-methods
35 var opt_inline_some_methods = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
36 # --direct-call-monomorph
37 var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph")
38 # --skip-dead-methods
39 var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods")
40 # --semi-global
41 var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global")
42 # --no-colo-dead-methods
43 var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods")
44 # --tables-metrics
45 var opt_tables_metrics = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
46
47 redef init
48 do
49 super
50 self.option_context.add_option(self.opt_separate)
51 self.option_context.add_option(self.opt_no_inline_intern)
52 self.option_context.add_option(self.opt_no_union_attribute)
53 self.option_context.add_option(self.opt_no_shortcut_equate)
54 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global)
55 self.option_context.add_option(self.opt_colo_dead_methods)
56 self.option_context.add_option(self.opt_tables_metrics)
57 end
58
59 redef fun process_options(args)
60 do
61 super
62
63 var tc = self
64 if tc.opt_semi_global.value then
65 tc.opt_inline_coloring_numbers.value = true
66 tc.opt_inline_some_methods.value = true
67 tc.opt_direct_call_monomorph.value = true
68 tc.opt_skip_dead_methods.value = true
69 end
70 end
71
72 var separate_compiler_phase = new SeparateCompilerPhase(self, null)
73 end
74
75 class SeparateCompilerPhase
76 super Phase
77 redef fun process_mainmodule(mainmodule, given_mmodules) do
78 if not toolcontext.opt_separate.value then return
79
80 var modelbuilder = toolcontext.modelbuilder
81 var analysis = modelbuilder.do_rapid_type_analysis(mainmodule)
82 modelbuilder.run_separate_compiler(mainmodule, analysis)
83 end
84 end
85
86 redef class ModelBuilder
87 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
88 do
89 var time0 = get_time
90 self.toolcontext.info("*** GENERATING C ***", 1)
91
92 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
93 compiler.compile_header
94
95 # compile class structures
96 self.toolcontext.info("Property coloring", 2)
97 compiler.new_file("{mainmodule.name}.classes")
98 compiler.do_property_coloring
99 for m in mainmodule.in_importation.greaters do
100 for mclass in m.intro_mclasses do
101 if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
102 compiler.compile_class_to_c(mclass)
103 end
104 end
105
106 # The main function of the C
107 compiler.new_file("{mainmodule.name}.main")
108 compiler.compile_nitni_global_ref_functions
109 compiler.compile_main_function
110 compiler.compile_finalizer_function
111
112 # compile methods
113 for m in mainmodule.in_importation.greaters do
114 self.toolcontext.info("Generate C for module {m}", 2)
115 compiler.new_file("{m.name}.sep")
116 compiler.compile_module_to_c(m)
117 end
118
119 # compile live & cast type structures
120 self.toolcontext.info("Type coloring", 2)
121 compiler.new_file("{mainmodule.name}.types")
122 var mtypes = compiler.do_type_coloring
123 for t in mtypes do
124 compiler.compile_type_to_c(t)
125 end
126 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
127 for t in compiler.undead_types do
128 if mtypes.has(t) then continue
129 compiler.compile_type_to_c(t)
130 end
131
132 compiler.display_stats
133
134 var time1 = get_time
135 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
136 write_and_make(compiler)
137 end
138
139 # Count number of invocations by VFT
140 private var nb_invok_by_tables = 0
141 # Count number of invocations by direct call
142 private var nb_invok_by_direct = 0
143 # Count number of invocations by inlining
144 private var nb_invok_by_inline = 0
145 end
146
147 # Singleton that store the knowledge about the separate compilation process
148 class SeparateCompiler
149 super AbstractCompiler
150
151 redef type VISITOR: SeparateCompilerVisitor
152
153 # The result of the RTA (used to know live types and methods)
154 var runtime_type_analysis: nullable RapidTypeAnalysis
155
156 private var undead_types: Set[MType] = new HashSet[MType]
157 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
158
159 private var type_ids: Map[MType, Int]
160 private var type_colors: Map[MType, Int]
161 private var opentype_colors: Map[MType, Int]
162 protected var method_colors: Map[PropertyLayoutElement, Int]
163 protected var attr_colors: Map[MAttribute, Int]
164
165 init(mainmodule: MModule, mmbuilder: ModelBuilder, runtime_type_analysis: nullable RapidTypeAnalysis) do
166 super(mainmodule, mmbuilder)
167 var file = new_file("nit.common")
168 self.header = new CodeWriter(file)
169 self.runtime_type_analysis = runtime_type_analysis
170 self.compile_box_kinds
171 end
172
173 redef fun compile_header_structs do
174 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
175 self.compile_header_attribute_structs
176 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
177
178 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
179 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
180 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
181 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
182 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
183 end
184
185 fun compile_header_attribute_structs
186 do
187 if modelbuilder.toolcontext.opt_no_union_attribute.value then
188 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
189 else
190 self.header.add_decl("typedef union \{")
191 self.header.add_decl("void* val;")
192 for c, v in self.box_kinds do
193 var t = c.mclass_type
194
195 # `Pointer` reuse the `val` field
196 if t.mclass.name == "Pointer" then continue
197
198 self.header.add_decl("{t.ctype_extern} {t.ctypename};")
199 end
200 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
201 end
202 end
203
204 fun compile_box_kinds
205 do
206 # Collect all bas box class
207 # FIXME: this is not completely fine with a separate compilation scheme
208 for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do
209 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
210 if classes == null then continue
211 assert classes.length == 1 else print classes.join(", ")
212 self.box_kinds[classes.first] = self.box_kinds.length + 1
213 end
214 end
215
216 var box_kinds = new HashMap[MClass, Int]
217
218 fun box_kind_of(mclass: MClass): Int
219 do
220 #var pointer_type = self.mainmodule.pointer_type
221 #if mclass.mclass_type.ctype == "val*" or mclass.mclass_type.is_subtype(self.mainmodule, mclass.mclass_type pointer_type) then
222 if mclass.mclass_type.ctype_extern == "val*" then
223 return 0
224 else if mclass.kind == extern_kind and mclass.name != "NativeString" then
225 return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")]
226 else
227 return self.box_kinds[mclass]
228 end
229
230 end
231
232 fun compile_color_consts(colors: Map[Object, Int]) do
233 var v = new_visitor
234 for m, c in colors do
235 compile_color_const(v, m, c)
236 end
237 end
238
239 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
240 if color_consts_done.has(m) then return
241 if m isa MProperty then
242 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
243 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
244 else
245 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
246 v.add("const int {m.const_color} = {color};")
247 end
248 else if m isa MPropDef then
249 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
250 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
251 else
252 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
253 v.add("const int {m.const_color} = {color};")
254 end
255 else if m isa MType then
256 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
257 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
258 else
259 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
260 v.add("const int {m.const_color} = {color};")
261 end
262 end
263 color_consts_done.add(m)
264 end
265
266 private var color_consts_done = new HashSet[Object]
267
268 # colorize classe properties
269 fun do_property_coloring do
270
271 var rta = runtime_type_analysis
272
273 # Layouts
274 var poset = mainmodule.flatten_mclass_hierarchy
275 var mclasses = new HashSet[MClass].from(poset)
276 var colorer = new POSetColorer[MClass]
277 colorer.colorize(poset)
278
279 # The dead methods, still need to provide a dead color symbol
280 var dead_methods = new Array[MMethod]
281
282 # lookup properties to build layout with
283 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
284 var mattributes = new HashMap[MClass, Set[MAttribute]]
285 for mclass in mclasses do
286 mmethods[mclass] = new HashSet[PropertyLayoutElement]
287 mattributes[mclass] = new HashSet[MAttribute]
288 for mprop in self.mainmodule.properties(mclass) do
289 if mprop isa MMethod then
290 if not modelbuilder.toolcontext.opt_colo_dead_methods.value and rta != null and not rta.live_methods.has(mprop) then
291 dead_methods.add(mprop)
292 continue
293 end
294 mmethods[mclass].add(mprop)
295 else if mprop isa MAttribute then
296 mattributes[mclass].add(mprop)
297 end
298 end
299 end
300
301 # Collect all super calls (dead or not)
302 var all_super_calls = new HashSet[MMethodDef]
303 for mmodule in self.mainmodule.in_importation.greaters do
304 for mclassdef in mmodule.mclassdefs do
305 for mpropdef in mclassdef.mpropdefs do
306 if not mpropdef isa MMethodDef then continue
307 if mpropdef.has_supercall then
308 all_super_calls.add(mpropdef)
309 end
310 end
311 end
312 end
313
314 # lookup super calls and add it to the list of mmethods to build layout with
315 var super_calls
316 if rta != null then
317 super_calls = rta.live_super_sends
318 else
319 super_calls = all_super_calls
320 end
321
322 for mmethoddef in super_calls do
323 var mclass = mmethoddef.mclassdef.mclass
324 mmethods[mclass].add(mmethoddef)
325 for descendant in mclass.in_hierarchy(self.mainmodule).smallers do
326 mmethods[descendant].add(mmethoddef)
327 end
328 end
329
330 # methods coloration
331 var meth_colorer = new POSetBucketsColorer[MClass, PropertyLayoutElement](poset, colorer.conflicts)
332 method_colors = meth_colorer.colorize(mmethods)
333 method_tables = build_method_tables(mclasses, super_calls)
334 compile_color_consts(method_colors)
335
336 # attribute null color to dead methods and supercalls
337 for mproperty in dead_methods do
338 compile_color_const(new_visitor, mproperty, -1)
339 end
340 for mpropdef in all_super_calls do
341 if super_calls.has(mpropdef) then continue
342 compile_color_const(new_visitor, mpropdef, -1)
343 end
344
345 # attributes coloration
346 var attr_colorer = new POSetBucketsColorer[MClass, MAttribute](poset, colorer.conflicts)
347 attr_colors = attr_colorer.colorize(mattributes)
348 attr_tables = build_attr_tables(mclasses)
349 compile_color_consts(attr_colors)
350 end
351
352 fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do
353 var tables = new HashMap[MClass, Array[nullable MPropDef]]
354 for mclass in mclasses do
355 var table = new Array[nullable MPropDef]
356 tables[mclass] = table
357
358 var mproperties = self.mainmodule.properties(mclass)
359 var mtype = mclass.intro.bound_mtype
360
361 for mproperty in mproperties do
362 if not mproperty isa MMethod then continue
363 if not method_colors.has_key(mproperty) then continue
364 var color = method_colors[mproperty]
365 if table.length <= color then
366 for i in [table.length .. color[ do
367 table[i] = null
368 end
369 end
370 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
371 end
372
373 for supercall in super_calls do
374 if not mtype.collect_mclassdefs(mainmodule).has(supercall.mclassdef) then continue
375
376 var color = method_colors[supercall]
377 if table.length <= color then
378 for i in [table.length .. color[ do
379 table[i] = null
380 end
381 end
382 var mmethoddef = supercall.lookup_next_definition(mainmodule, mtype)
383 table[color] = mmethoddef
384 end
385
386 end
387 return tables
388 end
389
390 fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do
391 var tables = new HashMap[MClass, Array[nullable MPropDef]]
392 for mclass in mclasses do
393 var table = new Array[nullable MPropDef]
394 tables[mclass] = table
395
396 var mproperties = self.mainmodule.properties(mclass)
397 var mtype = mclass.intro.bound_mtype
398
399 for mproperty in mproperties do
400 if not mproperty isa MAttribute then continue
401 if not attr_colors.has_key(mproperty) then continue
402 var color = attr_colors[mproperty]
403 if table.length <= color then
404 for i in [table.length .. color[ do
405 table[i] = null
406 end
407 end
408 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
409 end
410 end
411 return tables
412 end
413
414 # colorize live types of the program
415 private fun do_type_coloring: POSet[MType] do
416 # Collect types to colorize
417 var live_types = runtime_type_analysis.live_types
418 var live_cast_types = runtime_type_analysis.live_cast_types
419 var mtypes = new HashSet[MType]
420 mtypes.add_all(live_types)
421 mtypes.add_all(live_cast_types)
422 for c in self.box_kinds.keys do
423 mtypes.add(c.mclass_type)
424 end
425
426 # Compute colors
427 var poset = poset_from_mtypes(mtypes)
428 var colorer = new POSetColorer[MType]
429 colorer.colorize(poset)
430 type_ids = colorer.ids
431 type_colors = colorer.colors
432 type_tables = build_type_tables(poset)
433
434 # VT and FT are stored with other unresolved types in the big resolution_tables
435 self.compile_resolution_tables(mtypes)
436
437 return poset
438 end
439
440 private fun poset_from_mtypes(mtypes: Set[MType]): POSet[MType] do
441 var poset = new POSet[MType]
442 for e in mtypes do
443 poset.add_node(e)
444 for o in mtypes do
445 if e == o then continue
446 if e.is_subtype(mainmodule, null, o) then
447 poset.add_edge(e, o)
448 end
449 end
450 end
451 return poset
452 end
453
454 # Build type tables
455 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
456 var tables = new HashMap[MType, Array[nullable MType]]
457 for mtype in mtypes do
458 var table = new Array[nullable MType]
459 for sup in mtypes[mtype].greaters do
460 var color = type_colors[sup]
461 if table.length <= color then
462 for i in [table.length .. color[ do
463 table[i] = null
464 end
465 end
466 table[color] = sup
467 end
468 tables[mtype] = table
469 end
470 return tables
471 end
472
473 protected fun compile_resolution_tables(mtypes: Set[MType]) do
474 # resolution_tables is used to perform a type resolution at runtime in O(1)
475
476 # During the visit of the body of classes, live_unresolved_types are collected
477 # and associated to
478 # Collect all live_unresolved_types (visited in the body of classes)
479
480 # Determinate fo each livetype what are its possible requested anchored types
481 var mtype2unresolved = new HashMap[MClassType, Set[MType]]
482 for mtype in self.runtime_type_analysis.live_types do
483 var set = new HashSet[MType]
484 for cd in mtype.collect_mclassdefs(self.mainmodule) do
485 if self.live_unresolved_types.has_key(cd) then
486 set.add_all(self.live_unresolved_types[cd])
487 end
488 end
489 mtype2unresolved[mtype] = set
490 end
491
492 # Compute the table layout with the prefered method
493 var colorer = new BucketsColorer[MType, MType]
494 opentype_colors = colorer.colorize(mtype2unresolved)
495 resolution_tables = self.build_resolution_tables(mtype2unresolved)
496
497 # Compile a C constant for each collected unresolved type.
498 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
499 var all_unresolved = new HashSet[MType]
500 for t in self.live_unresolved_types.values do
501 all_unresolved.add_all(t)
502 end
503 var all_unresolved_types_colors = new HashMap[MType, Int]
504 for t in all_unresolved do
505 if opentype_colors.has_key(t) then
506 all_unresolved_types_colors[t] = opentype_colors[t]
507 else
508 all_unresolved_types_colors[t] = -1
509 end
510 end
511 self.compile_color_consts(all_unresolved_types_colors)
512
513 #print "tables"
514 #for k, v in unresolved_types_tables.as(not null) do
515 # print "{k}: {v.join(", ")}"
516 #end
517 #print ""
518 end
519
520 fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do
521 var tables = new HashMap[MClassType, Array[nullable MType]]
522 for mclasstype, mtypes in elements do
523 var table = new Array[nullable MType]
524 for mtype in mtypes do
525 var color = opentype_colors[mtype]
526 if table.length <= color then
527 for i in [table.length .. color[ do
528 table[i] = null
529 end
530 end
531 table[color] = mtype
532 end
533 tables[mclasstype] = table
534 end
535 return tables
536 end
537
538 # Separately compile all the method definitions of the module
539 fun compile_module_to_c(mmodule: MModule)
540 do
541 var old_module = self.mainmodule
542 self.mainmodule = mmodule
543 for cd in mmodule.mclassdefs do
544 for pd in cd.mpropdefs do
545 if not pd isa MMethodDef then continue
546 var rta = runtime_type_analysis
547 if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue
548 #print "compile {pd} @ {cd} @ {mmodule}"
549 var r = pd.separate_runtime_function
550 r.compile_to_c(self)
551 var r2 = pd.virtual_runtime_function
552 r2.compile_to_c(self)
553 end
554 end
555 self.mainmodule = old_module
556 end
557
558 # Globaly compile the type structure of a live type
559 fun compile_type_to_c(mtype: MType)
560 do
561 assert not mtype.need_anchor
562 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
563 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
564 var c_name = mtype.c_name
565 var v = new SeparateCompilerVisitor(self)
566 v.add_decl("/* runtime type {mtype} */")
567
568 # extern const struct type_X
569 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
570
571 # const struct type_X
572 v.add_decl("const struct type type_{c_name} = \{")
573
574 # type id (for cast target)
575 if is_cast_live then
576 v.add_decl("{type_ids[mtype]},")
577 else
578 v.add_decl("-1, /*CAST DEAD*/")
579 end
580
581 # type name
582 v.add_decl("\"{mtype}\", /* class_name_string */")
583
584 # type color (for cast target)
585 if is_cast_live then
586 v.add_decl("{type_colors[mtype]},")
587 else
588 v.add_decl("-1, /*CAST DEAD*/")
589 end
590
591 # is_nullable bit
592 if mtype isa MNullableType then
593 v.add_decl("1,")
594 else
595 v.add_decl("0,")
596 end
597
598 # resolution table (for receiver)
599 if is_live then
600 var mclass_type = mtype.as_notnullable
601 assert mclass_type isa MClassType
602 if resolution_tables[mclass_type].is_empty then
603 v.add_decl("NULL, /*NO RESOLUTIONS*/")
604 else
605 compile_type_resolution_table(mtype)
606 v.require_declaration("resolution_table_{c_name}")
607 v.add_decl("&resolution_table_{c_name},")
608 end
609 else
610 v.add_decl("NULL, /*DEAD*/")
611 end
612
613 # cast table (for receiver)
614 if is_live then
615 v.add_decl("{self.type_tables[mtype].length},")
616 v.add_decl("\{")
617 for stype in self.type_tables[mtype] do
618 if stype == null then
619 v.add_decl("-1, /* empty */")
620 else
621 v.add_decl("{type_ids[stype]}, /* {stype} */")
622 end
623 end
624 v.add_decl("\},")
625 else
626 v.add_decl("0, \{\}, /*DEAD TYPE*/")
627 end
628 v.add_decl("\};")
629 end
630
631 fun compile_type_resolution_table(mtype: MType) do
632
633 var mclass_type = mtype.as_notnullable.as(MClassType)
634
635 # extern const struct resolution_table_X resolution_table_X
636 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
637
638 # const struct fts_table_X fts_table_X
639 var v = new_visitor
640 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
641 v.add_decl("0, /* dummy */")
642 v.add_decl("\{")
643 for t in self.resolution_tables[mclass_type] do
644 if t == null then
645 v.add_decl("NULL, /* empty */")
646 else
647 # The table stores the result of the type resolution
648 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
649 # the value stored is tv.
650 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
651 # FIXME: What typeids means here? How can a tv not be live?
652 if type_ids.has_key(tv) then
653 v.require_declaration("type_{tv.c_name}")
654 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
655 else
656 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
657 end
658 end
659 end
660 v.add_decl("\}")
661 v.add_decl("\};")
662 end
663
664 # Globally compile the table of the class mclass
665 # In a link-time optimisation compiler, tables are globally computed
666 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
667 fun compile_class_to_c(mclass: MClass)
668 do
669 var mtype = mclass.intro.bound_mtype
670 var c_name = mclass.c_name
671
672 var vft = self.method_tables[mclass]
673 var attrs = self.attr_tables[mclass]
674 var v = new_visitor
675
676 var rta = runtime_type_analysis
677 var is_dead = rta != null and not rta.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray" and mclass.name != "Pointer"
678
679 v.add_decl("/* runtime class {c_name} */")
680
681 # Build class vft
682 if not is_dead then
683 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
684 v.add_decl("const struct class class_{c_name} = \{")
685 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
686 v.add_decl("\{")
687 for i in [0 .. vft.length[ do
688 var mpropdef = vft[i]
689 if mpropdef == null then
690 v.add_decl("NULL, /* empty */")
691 else
692 assert mpropdef isa MMethodDef
693 if rta != null and not rta.live_methoddefs.has(mpropdef) then
694 v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
695 continue
696 end
697 var rf = mpropdef.virtual_runtime_function
698 v.require_declaration(rf.c_name)
699 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
700 end
701 end
702 v.add_decl("\}")
703 v.add_decl("\};")
704 end
705
706 if mtype.ctype != "val*" or mtype.mclass.name == "Pointer" then
707 # Is a primitive type or the Pointer class, not any other extern class
708
709 #Build instance struct
710 self.header.add_decl("struct instance_{c_name} \{")
711 self.header.add_decl("const struct type *type;")
712 self.header.add_decl("const struct class *class;")
713 self.header.add_decl("{mtype.ctype_extern} value;")
714 self.header.add_decl("\};")
715
716 if not rta.live_types.has(mtype) and mtype.mclass.name != "Pointer" then return
717
718 #Build BOX
719 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype_extern});")
720 v.add_decl("/* allocate {mtype} */")
721 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype_extern} value) \{")
722 v.add("struct instance_{c_name}*res = nit_alloc(sizeof(struct instance_{c_name}));")
723 v.compiler.undead_types.add(mtype)
724 v.require_declaration("type_{c_name}")
725 v.add("res->type = &type_{c_name};")
726 v.require_declaration("class_{c_name}")
727 v.add("res->class = &class_{c_name};")
728 v.add("res->value = value;")
729 v.add("return (val*)res;")
730 v.add("\}")
731
732 if mtype.mclass.name != "Pointer" then return
733
734 v = new_visitor
735 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
736 v.add_decl("/* allocate {mtype} */")
737 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
738 if is_dead then
739 v.add_abort("{mclass} is DEAD")
740 else
741 var res = v.new_named_var(mtype, "self")
742 res.is_exact = true
743 v.add("{res} = nit_alloc(sizeof(struct instance_{mtype.c_name}));")
744 v.add("{res}->type = type;")
745 hardening_live_type(v, "type")
746 v.require_declaration("class_{c_name}")
747 v.add("{res}->class = &class_{c_name};")
748 v.add("((struct instance_{mtype.c_name}*){res})->value = NULL;")
749 v.add("return {res};")
750 end
751 v.add("\}")
752 return
753 else if mclass.name == "NativeArray" then
754 #Build instance struct
755 self.header.add_decl("struct instance_{c_name} \{")
756 self.header.add_decl("const struct type *type;")
757 self.header.add_decl("const struct class *class;")
758 # NativeArrays are just a instance header followed by a length and an array of values
759 self.header.add_decl("int length;")
760 self.header.add_decl("val* values[0];")
761 self.header.add_decl("\};")
762
763 #Build NEW
764 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
765 v.add_decl("/* allocate {mtype} */")
766 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
767 var res = v.get_name("self")
768 v.add_decl("struct instance_{c_name} *{res};")
769 var mtype_elt = mtype.arguments.first
770 v.add("{res} = nit_alloc(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));")
771 v.add("{res}->type = type;")
772 hardening_live_type(v, "type")
773 v.require_declaration("class_{c_name}")
774 v.add("{res}->class = &class_{c_name};")
775 v.add("{res}->length = length;")
776 v.add("return (val*){res};")
777 v.add("\}")
778 return
779 else if mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
780 # Is an extern class (other than Pointer and NativeString)
781 # Pointer is caught in a previous `if`, and NativeString is internal
782
783 var pointer_type = mainmodule.pointer_type
784
785 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
786 v.add_decl("/* allocate {mtype} */")
787 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
788 if is_dead then
789 v.add_abort("{mclass} is DEAD")
790 else
791 var res = v.new_named_var(mtype, "self")
792 res.is_exact = true
793 v.add("{res} = nit_alloc(sizeof(struct instance_{pointer_type.c_name}));")
794 v.add("{res}->type = type;")
795 hardening_live_type(v, "type")
796 v.require_declaration("class_{c_name}")
797 v.add("{res}->class = &class_{c_name};")
798 v.add("((struct instance_{pointer_type.c_name}*){res})->value = NULL;")
799 v.add("return {res};")
800 end
801 v.add("\}")
802 return
803 end
804
805 #Build NEW
806 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
807 v.add_decl("/* allocate {mtype} */")
808 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
809 if is_dead then
810 v.add_abort("{mclass} is DEAD")
811 else
812 var res = v.new_named_var(mtype, "self")
813 res.is_exact = true
814 v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));")
815 v.add("{res}->type = type;")
816 hardening_live_type(v, "type")
817 v.require_declaration("class_{c_name}")
818 v.add("{res}->class = &class_{c_name};")
819 self.generate_init_attr(v, res, mtype)
820 v.set_finalizer res
821 v.add("return {res};")
822 end
823 v.add("\}")
824 end
825
826 # Add a dynamic test to ensure that the type referenced by `t` is a live type
827 fun hardening_live_type(v: VISITOR, t: String)
828 do
829 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
830 v.add("if({t} == NULL) \{")
831 v.add_abort("type null")
832 v.add("\}")
833 v.add("if({t}->table_size == 0) \{")
834 v.add("PRINT_ERROR(\"Insantiation of a dead type: %s\\n\", {t}->name);")
835 v.add_abort("type dead")
836 v.add("\}")
837 end
838
839 redef fun new_visitor do return new SeparateCompilerVisitor(self)
840
841 # Stats
842
843 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
844 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
845 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
846 protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
847
848 redef fun display_stats
849 do
850 super
851 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
852 display_sizes
853 end
854 if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
855 display_isset_checks
856 end
857 var tc = self.modelbuilder.toolcontext
858 tc.info("# implementation of method invocation",2)
859 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
860 tc.info("total number of invocations: {nb_invok_total}",2)
861 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
862 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
863 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
864 end
865
866 fun display_sizes
867 do
868 print "# size of subtyping tables"
869 print "\ttotal \tholes"
870 var total = 0
871 var holes = 0
872 for t, table in type_tables do
873 total += table.length
874 for e in table do if e == null then holes += 1
875 end
876 print "\t{total}\t{holes}"
877
878 print "# size of resolution tables"
879 print "\ttotal \tholes"
880 total = 0
881 holes = 0
882 for t, table in resolution_tables do
883 total += table.length
884 for e in table do if e == null then holes += 1
885 end
886 print "\t{total}\t{holes}"
887
888 print "# size of methods tables"
889 print "\ttotal \tholes"
890 total = 0
891 holes = 0
892 for t, table in method_tables do
893 total += table.length
894 for e in table do if e == null then holes += 1
895 end
896 print "\t{total}\t{holes}"
897
898 print "# size of attributes tables"
899 print "\ttotal \tholes"
900 total = 0
901 holes = 0
902 for t, table in attr_tables do
903 total += table.length
904 for e in table do if e == null then holes += 1
905 end
906 print "\t{total}\t{holes}"
907 end
908
909 protected var isset_checks_count = 0
910 protected var attr_read_count = 0
911
912 fun display_isset_checks do
913 print "# total number of compiled attribute reads"
914 print "\t{attr_read_count}"
915 print "# total number of compiled isset-checks"
916 print "\t{isset_checks_count}"
917 end
918
919 redef fun compile_nitni_structs
920 do
921 self.header.add_decl """
922 struct nitni_instance \{
923 struct nitni_instance *next,
924 *prev; /* adjacent global references in global list */
925 int count; /* number of time this global reference has been marked */
926 struct instance *value;
927 \};
928 """
929 super
930 end
931
932 redef fun finalize_ffi_for_module(mmodule)
933 do
934 var old_module = self.mainmodule
935 self.mainmodule = mmodule
936 super
937 self.mainmodule = old_module
938 end
939 end
940
941 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
942 class SeparateCompilerVisitor
943 super AbstractCompilerVisitor
944
945 redef type COMPILER: SeparateCompiler
946
947 redef fun adapt_signature(m, args)
948 do
949 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
950 var recv = args.first
951 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
952 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
953 end
954 for i in [0..msignature.arity[ do
955 var t = msignature.mparameters[i].mtype
956 if i == msignature.vararg_rank then
957 t = args[i+1].mtype
958 end
959 args[i+1] = self.autobox(args[i+1], t)
960 end
961 end
962
963 redef fun unbox_signature_extern(m, args)
964 do
965 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
966 if not m.mproperty.is_init and m.is_extern then
967 args.first = self.unbox_extern(args.first, m.mclassdef.mclass.mclass_type)
968 end
969 for i in [0..msignature.arity[ do
970 var t = msignature.mparameters[i].mtype
971 if i == msignature.vararg_rank then
972 t = args[i+1].mtype
973 end
974 if m.is_extern then args[i+1] = self.unbox_extern(args[i+1], t)
975 end
976 end
977
978 redef fun autobox(value, mtype)
979 do
980 if value.mtype == mtype then
981 return value
982 else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then
983 return value
984 else if value.mtype.ctype == "val*" then
985 return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
986 else if mtype.ctype == "val*" then
987 var valtype = value.mtype.as(MClassType)
988 if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
989 valtype = compiler.mainmodule.pointer_type
990 end
991 var res = self.new_var(mtype)
992 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then
993 self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */")
994 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);")
995 return res
996 end
997 self.require_declaration("BOX_{valtype.c_name}")
998 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
999 return res
1000 else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or
1001 (value.mtype.ctype == "char*" and mtype.ctype == "void*") or
1002 (value.mtype.ctype == "void*" and mtype.ctype == "char*") then
1003 return value
1004 else
1005 # Bad things will appen!
1006 var res = self.new_var(mtype)
1007 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
1008 self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);")
1009 return res
1010 end
1011 end
1012
1013 redef fun unbox_extern(value, mtype)
1014 do
1015 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1016 mtype.mclass.name != "NativeString" then
1017 var pointer_type = compiler.mainmodule.pointer_type
1018 var res = self.new_var_extern(mtype)
1019 self.add "{res} = ((struct instance_{pointer_type.c_name}*){value})->value; /* unboxing {value.mtype} */"
1020 return res
1021 else
1022 return value
1023 end
1024 end
1025
1026 redef fun box_extern(value, mtype)
1027 do
1028 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1029 mtype.mclass.name != "NativeString" then
1030 var valtype = compiler.mainmodule.pointer_type
1031 var res = self.new_var(mtype)
1032 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(value.mtype.as(MClassType)) then
1033 self.add("/*no boxing of {value.mtype}: {value.mtype} is not live! */")
1034 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);")
1035 return res
1036 end
1037 self.require_declaration("BOX_{valtype.c_name}")
1038 self.add("{res} = BOX_{valtype.c_name}({value}); /* boxing {value.mtype} */")
1039 self.require_declaration("type_{mtype.c_name}")
1040 self.add("{res}->type = &type_{mtype.c_name};")
1041 self.require_declaration("class_{mtype.c_name}")
1042 self.add("{res}->class = &class_{mtype.c_name};")
1043 return res
1044 else
1045 return value
1046 end
1047 end
1048
1049 # Return a C expression returning the runtime type structure of the value
1050 # The point of the method is to works also with primitives types.
1051 fun type_info(value: RuntimeVariable): String
1052 do
1053 if value.mtype.ctype == "val*" then
1054 return "{value}->type"
1055 else
1056 compiler.undead_types.add(value.mtype)
1057 self.require_declaration("type_{value.mtype.c_name}")
1058 return "(&type_{value.mtype.c_name})"
1059 end
1060 end
1061
1062 redef fun compile_callsite(callsite, args)
1063 do
1064 var rta = compiler.runtime_type_analysis
1065 var mmethod = callsite.mproperty
1066 # TODO: Inlining of new-style constructors
1067 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and not mmethod.is_root_init then
1068 var tgs = rta.live_targets(callsite)
1069 if tgs.length == 1 then
1070 # DIRECT CALL
1071 var res0 = before_send(mmethod, args)
1072 var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args)
1073 if res0 != null then
1074 assert res != null
1075 self.assign(res0, res)
1076 res = res0
1077 end
1078 add("\}") # close the before_send
1079 return res
1080 end
1081 end
1082 return super
1083 end
1084 redef fun send(mmethod, arguments)
1085 do
1086 if arguments.first.mcasttype.ctype != "val*" then
1087 # In order to shortcut the primitive, we need to find the most specific method
1088 # Howverr, because of performance (no flattening), we always work on the realmainmodule
1089 var m = self.compiler.mainmodule
1090 self.compiler.mainmodule = self.compiler.realmainmodule
1091 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
1092 self.compiler.mainmodule = m
1093 return res
1094 end
1095
1096 return table_send(mmethod, arguments, mmethod.const_color)
1097 end
1098
1099 # Handle common special cases before doing the effective method invocation
1100 # This methods handle the `==` and `!=` methods and the case of the null receiver.
1101 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
1102 # Client must not forget to close the } after them.
1103 #
1104 # The value returned is the result of the common special cases.
1105 # If not null, client must compile it with the result of their own effective method invocation.
1106 #
1107 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1108 # is generated to cancel the effective method invocation that will follow
1109 # TODO: find a better approach
1110 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1111 do
1112 var res: nullable RuntimeVariable = null
1113 var recv = arguments.first
1114 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_null.value or mmethod.name == "==" or mmethod.name == "!="
1115 var maybenull = recv.mcasttype isa MNullableType and consider_null
1116 if maybenull then
1117 self.add("if ({recv} == NULL) \{")
1118 if mmethod.name == "==" then
1119 res = self.new_var(bool_type)
1120 var arg = arguments[1]
1121 if arg.mcasttype isa MNullableType then
1122 self.add("{res} = ({arg} == NULL);")
1123 else if arg.mcasttype isa MNullType then
1124 self.add("{res} = 1; /* is null */")
1125 else
1126 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1127 end
1128 else if mmethod.name == "!=" then
1129 res = self.new_var(bool_type)
1130 var arg = arguments[1]
1131 if arg.mcasttype isa MNullableType then
1132 self.add("{res} = ({arg} != NULL);")
1133 else if arg.mcasttype isa MNullType then
1134 self.add("{res} = 0; /* is null */")
1135 else
1136 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1137 end
1138 else
1139 self.add_abort("Receiver is null")
1140 end
1141 self.add("\} else \{")
1142 else
1143 self.add("\{")
1144 end
1145 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then
1146 if res == null then res = self.new_var(bool_type)
1147 # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants)
1148 var arg = arguments[1]
1149 if arg.mcasttype isa MNullType then
1150 if mmethod.name == "==" then
1151 self.add("{res} = 0; /* arg is null but recv is not */")
1152 else
1153 self.add("{res} = 1; /* arg is null and recv is not */")
1154 end
1155 self.add("\}") # closes the null case
1156 self.add("if (0) \{") # what follow is useless, CC will drop it
1157 end
1158 end
1159 return res
1160 end
1161
1162 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable
1163 do
1164 compiler.modelbuilder.nb_invok_by_tables += 1
1165 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1166
1167 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1168 var recv = arguments.first
1169
1170 var res0 = before_send(mmethod, arguments)
1171
1172 var res: nullable RuntimeVariable
1173 var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true)
1174 var ret = msignature.return_mtype
1175 if mmethod.is_new then
1176 ret = arguments.first.mtype
1177 res = self.new_var(ret)
1178 else if ret == null then
1179 res = null
1180 else
1181 res = self.new_var(ret)
1182 end
1183
1184 var s = new FlatBuffer
1185 var ss = new FlatBuffer
1186
1187 s.append("val*")
1188 ss.append("{recv}")
1189 for i in [0..msignature.arity[ do
1190 var a = arguments[i+1]
1191 var t = msignature.mparameters[i].mtype
1192 if i == msignature.vararg_rank then
1193 t = arguments[i+1].mcasttype
1194 end
1195 s.append(", {t.ctype}")
1196 a = self.autobox(a, t)
1197 ss.append(", {a}")
1198 end
1199
1200
1201 var r
1202 if ret == null then r = "void" else r = ret.ctype
1203 self.require_declaration(const_color)
1204 var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/"
1205
1206 if res != null then
1207 self.add("{res} = {call};")
1208 else
1209 self.add("{call};")
1210 end
1211
1212 if res0 != null then
1213 assert res != null
1214 assign(res0,res)
1215 res = res0
1216 end
1217
1218 self.add("\}") # closes the null case
1219
1220 return res
1221 end
1222
1223 redef fun call(mmethoddef, recvtype, arguments)
1224 do
1225 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1226
1227 var res: nullable RuntimeVariable
1228 var ret = mmethoddef.msignature.return_mtype
1229 if mmethoddef.mproperty.is_new then
1230 ret = arguments.first.mtype
1231 res = self.new_var(ret)
1232 else if ret == null then
1233 res = null
1234 else
1235 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1236 res = self.new_var(ret)
1237 end
1238
1239 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1240 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1241 compiler.modelbuilder.nb_invok_by_inline += 1
1242 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1243 var frame = new Frame(self, mmethoddef, recvtype, arguments)
1244 frame.returnlabel = self.get_name("RET_LABEL")
1245 frame.returnvar = res
1246 var old_frame = self.frame
1247 self.frame = frame
1248 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1249 mmethoddef.compile_inside_to_c(self, arguments)
1250 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1251 self.add("\}")
1252 self.frame = old_frame
1253 return res
1254 end
1255 compiler.modelbuilder.nb_invok_by_direct += 1
1256 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1257
1258 # Autobox arguments
1259 self.adapt_signature(mmethoddef, arguments)
1260
1261 self.require_declaration(mmethoddef.c_name)
1262 if res == null then
1263 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1264 return null
1265 else
1266 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1267 end
1268
1269 return res
1270 end
1271
1272 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1273 do
1274 if arguments.first.mcasttype.ctype != "val*" then
1275 # In order to shortcut the primitive, we need to find the most specific method
1276 # However, because of performance (no flattening), we always work on the realmainmodule
1277 var main = self.compiler.mainmodule
1278 self.compiler.mainmodule = self.compiler.realmainmodule
1279 var res = self.monomorphic_super_send(m, recvtype, arguments)
1280 self.compiler.mainmodule = main
1281 return res
1282 end
1283 return table_send(m.mproperty, arguments, m.const_color)
1284 end
1285
1286 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1287 do
1288 # A vararg must be stored into an new array
1289 # The trick is that the dymaic type of the array may depends on the receiver
1290 # of the method (ie recv) if the static type is unresolved
1291 # This is more complex than usual because the unresolved type must not be resolved
1292 # with the current receiver (ie self).
1293 # Therefore to isolate the resolution from self, a local Frame is created.
1294 # One can see this implementation as an inlined method of the receiver whose only
1295 # job is to allocate the array
1296 var old_frame = self.frame
1297 var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1298 self.frame = frame
1299 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1300 var res = self.array_instance(varargs, elttype)
1301 self.frame = old_frame
1302 return res
1303 end
1304
1305 redef fun isset_attribute(a, recv)
1306 do
1307 self.check_recv_notnull(recv)
1308 var res = self.new_var(bool_type)
1309
1310 # What is the declared type of the attribute?
1311 var mtype = a.intro.static_mtype.as(not null)
1312 var intromclassdef = a.intro.mclassdef
1313 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1314
1315 if mtype isa MNullableType then
1316 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1317 return res
1318 end
1319
1320 self.require_declaration(a.const_color)
1321 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1322 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1323 else
1324
1325 if mtype.ctype == "val*" then
1326 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1327 else
1328 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1329 end
1330 end
1331 return res
1332 end
1333
1334 redef fun read_attribute(a, recv)
1335 do
1336 self.check_recv_notnull(recv)
1337
1338 # What is the declared type of the attribute?
1339 var ret = a.intro.static_mtype.as(not null)
1340 var intromclassdef = a.intro.mclassdef
1341 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1342
1343 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1344 self.compiler.attr_read_count += 1
1345 self.add("count_attr_reads++;")
1346 end
1347
1348 self.require_declaration(a.const_color)
1349 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1350 # Get the attribute or a box (ie. always a val*)
1351 var cret = self.object_type.as_nullable
1352 var res = self.new_var(cret)
1353 res.mcasttype = ret
1354
1355 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1356
1357 # Check for Uninitialized attribute
1358 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1359 self.add("if (unlikely({res} == NULL)) \{")
1360 self.add_abort("Uninitialized attribute {a.name}")
1361 self.add("\}")
1362
1363 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1364 self.compiler.isset_checks_count += 1
1365 self.add("count_isset_checks++;")
1366 end
1367 end
1368
1369 # Return the attribute or its unboxed version
1370 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1371 return self.autobox(res, ret)
1372 else
1373 var res = self.new_var(ret)
1374 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1375
1376 # Check for Uninitialized attribute
1377 if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1378 self.add("if (unlikely({res} == NULL)) \{")
1379 self.add_abort("Uninitialized attribute {a.name}")
1380 self.add("\}")
1381 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1382 self.compiler.isset_checks_count += 1
1383 self.add("count_isset_checks++;")
1384 end
1385 end
1386
1387 return res
1388 end
1389 end
1390
1391 redef fun write_attribute(a, recv, value)
1392 do
1393 self.check_recv_notnull(recv)
1394
1395 # What is the declared type of the attribute?
1396 var mtype = a.intro.static_mtype.as(not null)
1397 var intromclassdef = a.intro.mclassdef
1398 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1399
1400 # Adapt the value to the declared type
1401 value = self.autobox(value, mtype)
1402
1403 self.require_declaration(a.const_color)
1404 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1405 var attr = "{recv}->attrs[{a.const_color}]"
1406 if mtype.ctype != "val*" then
1407 assert mtype isa MClassType
1408 # The attribute is primitive, thus we store it in a box
1409 # The trick is to create the box the first time then resuse the box
1410 self.add("if ({attr} != NULL) \{")
1411 self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1412 self.add("\} else \{")
1413 value = self.autobox(value, self.object_type.as_nullable)
1414 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1415 self.add("\}")
1416 else
1417 # The attribute is not primitive, thus store it direclty
1418 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1419 end
1420 else
1421 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1422 end
1423 end
1424
1425 # Check that mtype is a live open type
1426 fun hardening_live_open_type(mtype: MType)
1427 do
1428 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1429 self.require_declaration(mtype.const_color)
1430 var col = mtype.const_color
1431 self.add("if({col} == -1) \{")
1432 self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1433 self.add_abort("open type dead")
1434 self.add("\}")
1435 end
1436
1437 # Check that mtype it a pointer to a live cast type
1438 fun hardening_cast_type(t: String)
1439 do
1440 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1441 add("if({t} == NULL) \{")
1442 add_abort("cast type null")
1443 add("\}")
1444 add("if({t}->id == -1 || {t}->color == -1) \{")
1445 add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1446 add_abort("cast type dead")
1447 add("\}")
1448 end
1449
1450 redef fun init_instance(mtype)
1451 do
1452 self.require_declaration("NEW_{mtype.mclass.c_name}")
1453 var compiler = self.compiler
1454 if mtype isa MGenericType and mtype.need_anchor then
1455 hardening_live_open_type(mtype)
1456 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1457 var recv = self.frame.arguments.first
1458 var recv_type_info = self.type_info(recv)
1459 self.require_declaration(mtype.const_color)
1460 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1461 end
1462 compiler.undead_types.add(mtype)
1463 self.require_declaration("type_{mtype.c_name}")
1464 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1465 end
1466
1467 redef fun type_test(value, mtype, tag)
1468 do
1469 self.add("/* {value.inspect} isa {mtype} */")
1470 var compiler = self.compiler
1471
1472 var recv = self.frame.arguments.first
1473 var recv_type_info = self.type_info(recv)
1474
1475 var res = self.new_var(bool_type)
1476
1477 var cltype = self.get_name("cltype")
1478 self.add_decl("int {cltype};")
1479 var idtype = self.get_name("idtype")
1480 self.add_decl("int {idtype};")
1481
1482 var maybe_null = self.maybe_null(value)
1483 var accept_null = "0"
1484 var ntype = mtype
1485 if ntype isa MNullableType then
1486 ntype = ntype.mtype
1487 accept_null = "1"
1488 end
1489
1490 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1491 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1492 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1493 self.compiler.count_type_test_skipped[tag] += 1
1494 self.add("count_type_test_skipped_{tag}++;")
1495 end
1496 return res
1497 end
1498
1499 if ntype.need_anchor then
1500 var type_struct = self.get_name("type_struct")
1501 self.add_decl("const struct type* {type_struct};")
1502
1503 # Either with resolution_table with a direct resolution
1504 hardening_live_open_type(mtype)
1505 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1506 self.require_declaration(mtype.const_color)
1507 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1508 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1509 self.compiler.count_type_test_unresolved[tag] += 1
1510 self.add("count_type_test_unresolved_{tag}++;")
1511 end
1512 hardening_cast_type(type_struct)
1513 self.add("{cltype} = {type_struct}->color;")
1514 self.add("{idtype} = {type_struct}->id;")
1515 if maybe_null and accept_null == "0" then
1516 var is_nullable = self.get_name("is_nullable")
1517 self.add_decl("short int {is_nullable};")
1518 self.add("{is_nullable} = {type_struct}->is_nullable;")
1519 accept_null = is_nullable.to_s
1520 end
1521 else if ntype isa MClassType then
1522 compiler.undead_types.add(mtype)
1523 self.require_declaration("type_{mtype.c_name}")
1524 hardening_cast_type("(&type_{mtype.c_name})")
1525 self.add("{cltype} = type_{mtype.c_name}.color;")
1526 self.add("{idtype} = type_{mtype.c_name}.id;")
1527 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1528 self.compiler.count_type_test_resolved[tag] += 1
1529 self.add("count_type_test_resolved_{tag}++;")
1530 end
1531 else
1532 self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);")
1533 end
1534
1535 # check color is in table
1536 if maybe_null then
1537 self.add("if({value} == NULL) \{")
1538 self.add("{res} = {accept_null};")
1539 self.add("\} else \{")
1540 end
1541 var value_type_info = self.type_info(value)
1542 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1543 self.add("{res} = 0;")
1544 self.add("\} else \{")
1545 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1546 self.add("\}")
1547 if maybe_null then
1548 self.add("\}")
1549 end
1550
1551 return res
1552 end
1553
1554 redef fun is_same_type_test(value1, value2)
1555 do
1556 var res = self.new_var(bool_type)
1557 # Swap values to be symetric
1558 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1559 var tmp = value1
1560 value1 = value2
1561 value2 = tmp
1562 end
1563 if value1.mtype.ctype != "val*" then
1564 if value2.mtype == value1.mtype then
1565 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1566 else if value2.mtype.ctype != "val*" then
1567 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1568 else
1569 var mtype1 = value1.mtype.as(MClassType)
1570 self.require_declaration("class_{mtype1.c_name}")
1571 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */")
1572 end
1573 else
1574 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */")
1575 end
1576 return res
1577 end
1578
1579 redef fun class_name_string(value)
1580 do
1581 var res = self.get_name("var_class_name")
1582 self.add_decl("const char* {res};")
1583 if value.mtype.ctype == "val*" then
1584 self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;"
1585 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind and
1586 value.mtype.as(MClassType).name != "NativeString" then
1587 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1588 else
1589 self.require_declaration("type_{value.mtype.c_name}")
1590 self.add "{res} = type_{value.mtype.c_name}.name;"
1591 end
1592 return res
1593 end
1594
1595 redef fun equal_test(value1, value2)
1596 do
1597 var res = self.new_var(bool_type)
1598 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1599 var tmp = value1
1600 value1 = value2
1601 value2 = tmp
1602 end
1603 if value1.mtype.ctype != "val*" then
1604 if value2.mtype == value1.mtype then
1605 self.add("{res} = {value1} == {value2};")
1606 else if value2.mtype.ctype != "val*" then
1607 self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/")
1608 else
1609 var mtype1 = value1.mtype.as(MClassType)
1610 self.require_declaration("class_{mtype1.c_name}")
1611 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});")
1612 self.add("if ({res}) \{")
1613 self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});")
1614 self.add("\}")
1615 end
1616 return res
1617 end
1618 var maybe_null = true
1619 var test = new Array[String]
1620 var t1 = value1.mcasttype
1621 if t1 isa MNullableType then
1622 test.add("{value1} != NULL")
1623 t1 = t1.mtype
1624 else
1625 maybe_null = false
1626 end
1627 var t2 = value2.mcasttype
1628 if t2 isa MNullableType then
1629 test.add("{value2} != NULL")
1630 t2 = t2.mtype
1631 else
1632 maybe_null = false
1633 end
1634
1635 var incompatible = false
1636 var primitive
1637 if t1.ctype != "val*" then
1638 primitive = t1
1639 if t1 == t2 then
1640 # No need to compare class
1641 else if t2.ctype != "val*" then
1642 incompatible = true
1643 else if can_be_primitive(value2) then
1644 test.add("{value1}->class == {value2}->class")
1645 else
1646 incompatible = true
1647 end
1648 else if t2.ctype != "val*" then
1649 primitive = t2
1650 if can_be_primitive(value1) then
1651 test.add("{value1}->class == {value2}->class")
1652 else
1653 incompatible = true
1654 end
1655 else
1656 primitive = null
1657 end
1658
1659 if incompatible then
1660 if maybe_null then
1661 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
1662 return res
1663 else
1664 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
1665 return res
1666 end
1667 end
1668 if primitive != null then
1669 test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value")
1670 else if can_be_primitive(value1) and can_be_primitive(value2) then
1671 test.add("{value1}->class == {value2}->class")
1672 var s = new Array[String]
1673 for t, v in self.compiler.box_kinds do
1674 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)"
1675 end
1676 test.add("({s.join(" || ")})")
1677 else
1678 self.add("{res} = {value1} == {value2};")
1679 return res
1680 end
1681 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
1682 return res
1683 end
1684
1685 fun can_be_primitive(value: RuntimeVariable): Bool
1686 do
1687 var t = value.mcasttype.as_notnullable
1688 if not t isa MClassType then return false
1689 var k = t.mclass.kind
1690 return k == interface_kind or t.ctype != "val*"
1691 end
1692
1693 fun maybe_null(value: RuntimeVariable): Bool
1694 do
1695 var t = value.mcasttype
1696 return t isa MNullableType or t isa MNullType
1697 end
1698
1699 redef fun array_instance(array, elttype)
1700 do
1701 var nclass = self.get_class("NativeArray")
1702 var arrayclass = self.get_class("Array")
1703 var arraytype = arrayclass.get_mtype([elttype])
1704 var res = self.init_instance(arraytype)
1705 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
1706 var length = self.int_instance(array.length)
1707 var nat = native_array_instance(elttype, length)
1708 for i in [0..array.length[ do
1709 var r = self.autobox(array[i], self.object_type)
1710 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
1711 end
1712 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
1713 self.add("\}")
1714 return res
1715 end
1716
1717 redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable
1718 do
1719 var mtype = self.get_class("NativeArray").get_mtype([elttype])
1720 self.require_declaration("NEW_{mtype.mclass.c_name}")
1721 assert mtype isa MGenericType
1722 var compiler = self.compiler
1723 if mtype.need_anchor then
1724 hardening_live_open_type(mtype)
1725 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1726 var recv = self.frame.arguments.first
1727 var recv_type_info = self.type_info(recv)
1728 self.require_declaration(mtype.const_color)
1729 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1730 end
1731 compiler.undead_types.add(mtype)
1732 self.require_declaration("type_{mtype.c_name}")
1733 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype)
1734 end
1735
1736 redef fun native_array_def(pname, ret_type, arguments)
1737 do
1738 var elttype = arguments.first.mtype
1739 var nclass = self.get_class("NativeArray")
1740 var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values"
1741 if pname == "[]" then
1742 self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null)))
1743 return
1744 else if pname == "[]=" then
1745 self.add("{recv}[{arguments[1]}]={arguments[2]};")
1746 return
1747 else if pname == "length" then
1748 self.ret(self.new_expr("((struct instance_{nclass.c_name}*){arguments[0]})->length", ret_type.as(not null)))
1749 return
1750 else if pname == "copy_to" then
1751 var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values"
1752 self.add("memmove({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
1753 return
1754 end
1755 end
1756
1757 redef fun calloc_array(ret_type, arguments)
1758 do
1759 var mclass = self.get_class("ArrayCapable")
1760 var ft = mclass.mparameters.first
1761 var res = self.native_array_instance(ft, arguments[1])
1762 self.ret(res)
1763 end
1764
1765 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
1766 assert mtype.need_anchor
1767 var compiler = self.compiler
1768 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
1769 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
1770 end
1771 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
1772 end
1773 end
1774
1775 redef class MMethodDef
1776 fun separate_runtime_function: AbstractRuntimeFunction
1777 do
1778 var res = self.separate_runtime_function_cache
1779 if res == null then
1780 res = new SeparateRuntimeFunction(self)
1781 self.separate_runtime_function_cache = res
1782 end
1783 return res
1784 end
1785 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
1786
1787 fun virtual_runtime_function: AbstractRuntimeFunction
1788 do
1789 var res = self.virtual_runtime_function_cache
1790 if res == null then
1791 res = new VirtualRuntimeFunction(self)
1792 self.virtual_runtime_function_cache = res
1793 end
1794 return res
1795 end
1796 private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction
1797 end
1798
1799 # The C function associated to a methoddef separately compiled
1800 class SeparateRuntimeFunction
1801 super AbstractRuntimeFunction
1802
1803 redef fun build_c_name: String do return "{mmethoddef.c_name}"
1804
1805 redef fun to_s do return self.mmethoddef.to_s
1806
1807 redef fun compile_to_c(compiler)
1808 do
1809 var mmethoddef = self.mmethoddef
1810
1811 var recv = self.mmethoddef.mclassdef.bound_mtype
1812 var v = compiler.new_visitor
1813 var selfvar = new RuntimeVariable("self", recv, recv)
1814 var arguments = new Array[RuntimeVariable]
1815 var frame = new Frame(v, mmethoddef, recv, arguments)
1816 v.frame = frame
1817
1818 var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1819
1820 var sig = new FlatBuffer
1821 var comment = new FlatBuffer
1822 var ret = msignature.return_mtype
1823 if ret != null then
1824 sig.append("{ret.ctype} ")
1825 else if mmethoddef.mproperty.is_new then
1826 ret = recv
1827 sig.append("{ret.ctype} ")
1828 else
1829 sig.append("void ")
1830 end
1831 sig.append(self.c_name)
1832 sig.append("({selfvar.mtype.ctype} {selfvar}")
1833 comment.append("({selfvar}: {selfvar.mtype}")
1834 arguments.add(selfvar)
1835 for i in [0..msignature.arity[ do
1836 var mtype = msignature.mparameters[i].mtype
1837 if i == msignature.vararg_rank then
1838 mtype = v.get_class("Array").get_mtype([mtype])
1839 end
1840 comment.append(", {mtype}")
1841 sig.append(", {mtype.ctype} p{i}")
1842 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1843 arguments.add(argvar)
1844 end
1845 sig.append(")")
1846 comment.append(")")
1847 if ret != null then
1848 comment.append(": {ret}")
1849 end
1850 compiler.provide_declaration(self.c_name, "{sig};")
1851
1852 v.add_decl("/* method {self} for {comment} */")
1853 v.add_decl("{sig} \{")
1854 if ret != null then
1855 frame.returnvar = v.new_var(ret)
1856 end
1857 frame.returnlabel = v.get_name("RET_LABEL")
1858
1859 if recv != arguments.first.mtype then
1860 #print "{self} {recv} {arguments.first}"
1861 end
1862 mmethoddef.compile_inside_to_c(v, arguments)
1863
1864 v.add("{frame.returnlabel.as(not null)}:;")
1865 if ret != null then
1866 v.add("return {frame.returnvar.as(not null)};")
1867 end
1868 v.add("\}")
1869 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
1870 end
1871 end
1872
1873 # The C function associated to a methoddef on a primitive type, stored into a VFT of a class
1874 # The first parameter (the reciever) is always typed by val* in order to accept an object value
1875 class VirtualRuntimeFunction
1876 super AbstractRuntimeFunction
1877
1878 redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}"
1879
1880 redef fun to_s do return self.mmethoddef.to_s
1881
1882 redef fun compile_to_c(compiler)
1883 do
1884 var mmethoddef = self.mmethoddef
1885
1886 var recv = self.mmethoddef.mclassdef.bound_mtype
1887 var v = compiler.new_visitor
1888 var selfvar = new RuntimeVariable("self", v.object_type, recv)
1889 var arguments = new Array[RuntimeVariable]
1890 var frame = new Frame(v, mmethoddef, recv, arguments)
1891 v.frame = frame
1892
1893 var sig = new FlatBuffer
1894 var comment = new FlatBuffer
1895
1896 # Because the function is virtual, the signature must match the one of the original class
1897 var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef
1898 var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1899 var ret = msignature.return_mtype
1900 if ret != null then
1901 sig.append("{ret.ctype} ")
1902 else if mmethoddef.mproperty.is_new then
1903 ret = recv
1904 sig.append("{ret.ctype} ")
1905 else
1906 sig.append("void ")
1907 end
1908 sig.append(self.c_name)
1909 sig.append("({selfvar.mtype.ctype} {selfvar}")
1910 comment.append("({selfvar}: {selfvar.mtype}")
1911 arguments.add(selfvar)
1912 for i in [0..msignature.arity[ do
1913 var mtype = msignature.mparameters[i].mtype
1914 if i == msignature.vararg_rank then
1915 mtype = v.get_class("Array").get_mtype([mtype])
1916 end
1917 comment.append(", {mtype}")
1918 sig.append(", {mtype.ctype} p{i}")
1919 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1920 arguments.add(argvar)
1921 end
1922 sig.append(")")
1923 comment.append(")")
1924 if ret != null then
1925 comment.append(": {ret}")
1926 end
1927 compiler.provide_declaration(self.c_name, "{sig};")
1928
1929 v.add_decl("/* method {self} for {comment} */")
1930 v.add_decl("{sig} \{")
1931 if ret != null then
1932 frame.returnvar = v.new_var(ret)
1933 end
1934 frame.returnlabel = v.get_name("RET_LABEL")
1935
1936 var subret = v.call(mmethoddef, recv, arguments)
1937 if ret != null then
1938 assert subret != null
1939 v.assign(frame.returnvar.as(not null), subret)
1940 end
1941
1942 v.add("{frame.returnlabel.as(not null)}:;")
1943 if ret != null then
1944 v.add("return {frame.returnvar.as(not null)};")
1945 end
1946 v.add("\}")
1947 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})"
1948 end
1949
1950 # TODO ?
1951 redef fun call(v, arguments) do abort
1952 end
1953
1954 redef class MType
1955 fun const_color: String do return "COLOR_{c_name}"
1956 end
1957
1958 interface PropertyLayoutElement end
1959
1960 redef class MProperty
1961 super PropertyLayoutElement
1962 fun const_color: String do return "COLOR_{c_name}"
1963 end
1964
1965 redef class MPropDef
1966 super PropertyLayoutElement
1967 fun const_color: String do return "COLOR_{c_name}"
1968 end
1969
1970 redef class AMethPropdef
1971 # The semi-global compilation does not support inlining calls to extern news
1972 redef fun can_inline
1973 do
1974 var m = mpropdef
1975 if m != null and m.mproperty.is_init and m.is_extern then return false
1976 return super
1977 end
1978 end