model: bring back call site doc to highlight as `CallSite::mdoc_or_fallback`
[nit.git] / src / semantize / typing.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Intraprocedural resolution of static types and OO-services
18 # By OO-services we mean message sending, attribute access, instantiation, etc.
19 module typing
20
21 import modelize
22 import local_var_init
23 import literal
24
25 redef class ToolContext
26 var typing_phase: Phase = new TypingPhase(self, [flow_phase, modelize_property_phase, local_var_init_phase])
27 end
28
29 private class TypingPhase
30 super Phase
31 redef fun process_npropdef(npropdef) do npropdef.do_typing(toolcontext.modelbuilder)
32 end
33
34 private class TypeVisitor
35 var modelbuilder: ModelBuilder
36
37 # The module of the analysis
38 # Used to correctly query the model
39 var mmodule: MModule
40
41 # The static type of the receiver
42 # Mainly used for type tests and type resolutions
43 var anchor: nullable MClassType = null
44
45 # The analyzed mclassdef
46 var mclassdef: nullable MClassDef = null
47
48 # The analyzed property
49 var mpropdef: nullable MPropDef
50
51 var selfvariable = new Variable("self")
52
53 # Is `self` use restricted?
54 # * no explicit `self`
55 # * method called on the implicit self must be top-level
56 # Currently only used for `new` factory since there is no valid receiver inside
57 var is_toplevel_context = false
58
59 init
60 do
61 var mpropdef = self.mpropdef
62
63 if mpropdef != null then
64 self.mpropdef = mpropdef
65 var mclassdef = mpropdef.mclassdef
66 self.mclassdef = mclassdef
67 self.anchor = mclassdef.bound_mtype
68
69 var mclass = mclassdef.mclass
70
71 var selfvariable = new Variable("self")
72 self.selfvariable = selfvariable
73 selfvariable.declared_type = mclass.mclass_type
74
75 var mprop = mpropdef.mproperty
76 if mprop isa MMethod and mprop.is_new then
77 is_toplevel_context = true
78 end
79 end
80 end
81
82 fun anchor_to(mtype: MType): MType
83 do
84 return mtype.anchor_to(mmodule, anchor)
85 end
86
87 fun is_subtype(sub, sup: MType): Bool
88 do
89 return sub.is_subtype(mmodule, anchor, sup)
90 end
91
92 fun resolve_for(mtype, subtype: MType, for_self: Bool): MType
93 do
94 #print "resolve_for {mtype} sub={subtype} forself={for_self} mmodule={mmodule} anchor={anchor}"
95 var res = mtype.resolve_for(subtype, anchor, mmodule, not for_self)
96 return res
97 end
98
99 # Check that `sub` is a subtype of `sup`.
100 # If `sub` is not a valid suptype, then display an error on `node` and return `null`.
101 # If `sub` is a safe subtype of `sup`, then return `sub`.
102 # If `sub` is an unsafe subtype (i.e., an implicit cast is required), then return `sup`.
103 #
104 # The point of the return type is to determinate the usable type on an expression when `autocast` is true:
105 # If the suptype is safe, then the return type is the one on the expression typed by `sub`.
106 # Is the subtype is unsafe, then the return type is the one of an implicit cast on `sup`.
107 fun check_subtype(node: ANode, sub, sup: MType, autocast: Bool): nullable MType
108 do
109 if self.is_subtype(sub, sup) then return sub
110 if autocast and self.is_subtype(sub, self.anchor_to(sup)) then
111 # FIXME workaround to the current unsafe typing policy. To remove once fixed virtual types exists.
112 #node.debug("Unsafe typing: expected {sup}, got {sub}")
113 return sup
114 end
115 if sup isa MErrorType then return null # Skip error
116 if sub.need_anchor then
117 var u = anchor_to(sub)
118 self.modelbuilder.error(node, "Type Error: expected `{sup}`, got `{sub}: {u}`.")
119 else
120 self.modelbuilder.error(node, "Type Error: expected `{sup}`, got `{sub}`.")
121 end
122 return null
123 end
124
125 # Visit an expression and do not care about the return value
126 fun visit_stmt(nexpr: nullable AExpr)
127 do
128 if nexpr == null then return
129 nexpr.accept_typing(self)
130 end
131
132 # Visit an expression and expects that it is not a statement
133 # Return the type of the expression
134 # Display an error and return null if:
135 # * the type cannot be determined or
136 # * `nexpr` is a statement
137 fun visit_expr(nexpr: AExpr): nullable MType
138 do
139 nexpr.accept_typing(self)
140 var mtype = nexpr.mtype
141 if mtype != null then return mtype
142 if not nexpr.is_typed then
143 if not self.modelbuilder.toolcontext.error_count > 0 then # check that there is really an error
144 if self.modelbuilder.toolcontext.verbose_level > 1 then
145 nexpr.debug("No return type but no error.")
146 end
147 end
148 return null # forward error
149 end
150 var more_message = null
151 var p = nexpr.parent
152 if p != null then more_message = p.bad_expr_message(nexpr)
153 if more_message == null then more_message = "" else more_message = " " + more_message
154 self.error(nexpr, "Error: expected an expression{more_message}.")
155 return null
156 end
157
158 # Visit an expression and expect its static type is a least a `sup`
159 # Return the type of the expression or null if
160 # * the type cannot be determined or
161 # * `nexpr` is a statement or
162 # * `nexpr` is not a `sup`
163 fun visit_expr_subtype(nexpr: AExpr, sup: nullable MType): nullable MType
164 do
165 var sub = visit_expr(nexpr)
166 if sub == null then return null # Forward error
167
168 if sup == null then return null # Forward error
169
170 var res = check_subtype(nexpr, sub, sup, true)
171 if res != sub then
172 nexpr.implicit_cast_to = res
173 end
174 return res
175 end
176
177 # Visit an expression and expect its static type is a `Bool`
178 # Return the type of the expression or null if
179 # * the type cannot be determined or
180 # * `nexpr` is a statement or
181 # * `nexpr` is not a `Bool`
182 fun visit_expr_bool(nexpr: AExpr): nullable MType
183 do
184 return self.visit_expr_subtype(nexpr, self.type_bool(nexpr))
185 end
186
187
188 fun check_expr_cast(node: ANode, nexpr: AExpr, ntype: AType): nullable MType
189 do
190 var sub = nexpr.mtype
191 if sub == null then return null # Forward error
192
193 var sup = ntype.mtype
194 if sup == null then return null # Forward error
195
196 if sup == sub then
197 self.modelbuilder.warning(node, "useless-type-test", "Warning: expression is already a `{sup}`.")
198 else if self.is_subtype(sub, sup) then
199 self.modelbuilder.warning(node, "useless-type-test", "Warning: expression is already a `{sup}` since it is a `{sub}`.")
200 end
201 return sup
202 end
203
204 # Can `mtype` be null (up to the current knowledge)?
205 fun can_be_null(mtype: MType): Bool
206 do
207 if mtype isa MNullableType or mtype isa MNullType then return true
208 if mtype isa MFormalType then
209 var x = anchor_to(mtype)
210 if x isa MNullableType or x isa MNullType then return true
211 end
212 return false
213 end
214
215 # Check that `mtype` can be null (up to the current knowledge).
216 #
217 # If not then display a `useless-null-test` warning on node and return false.
218 # Else return true.
219 fun check_can_be_null(anode: ANode, mtype: MType): Bool
220 do
221 if mtype isa MNullType then
222 modelbuilder.warning(anode, "useless-null-test", "Warning: expression is always `null`.")
223 return true
224 end
225 if can_be_null(mtype) then return true
226
227 if mtype isa MFormalType then
228 var res = anchor_to(mtype)
229 modelbuilder.warning(anode, "useless-null-test", "Warning: expression is not null, since it is a `{mtype}: {res}`.")
230 else
231 modelbuilder.warning(anode, "useless-null-test", "Warning: expression is not null, since it is a `{mtype}`.")
232 end
233 return false
234 end
235
236 # Special verification on != and == for null
237 # Return true
238 fun null_test(anode: ABinopExpr)
239 do
240 var mtype = anode.n_expr.mtype
241 var mtype2 = anode.n_expr2.mtype
242
243 if mtype == null or mtype2 == null then return
244
245 if not mtype2 isa MNullType then return
246
247 # Check of useless null
248 if not can_be_null(mtype) then return
249
250 if mtype isa MNullType then
251 # Because of type adaptation, we cannot just stop here
252 # so return use `null` as a bottom type that will be merged easily (cf) `merge_types`
253 mtype = null
254 else
255 mtype = mtype.as_notnull
256 end
257
258 # Check for type adaptation
259 var variable = anode.n_expr.its_variable
260 if variable == null then return
261
262 # One is null (mtype2 see above) the other is not null
263 if anode isa AEqExpr then
264 anode.after_flow_context.when_true.set_var(self, variable, mtype2)
265 anode.after_flow_context.when_false.set_var(self, variable, mtype)
266 else if anode isa ANeExpr then
267 anode.after_flow_context.when_false.set_var(self, variable, mtype2)
268 anode.after_flow_context.when_true.set_var(self, variable, mtype)
269 else
270 abort
271 end
272 end
273
274 fun try_get_mproperty_by_name2(anode: ANode, mtype: MType, name: String): nullable MProperty
275 do
276 return self.modelbuilder.try_get_mproperty_by_name2(anode, mmodule, mtype, name)
277 end
278
279 fun resolve_mtype(node: AType): nullable MType
280 do
281 return self.modelbuilder.resolve_mtype(mmodule, mclassdef, node)
282 end
283
284 fun try_get_mclass(node: ANode, name: String): nullable MClass
285 do
286 var mclass = modelbuilder.try_get_mclass_by_name(node, mmodule, name)
287 return mclass
288 end
289
290 fun get_mclass(node: ANode, name: String): nullable MClass
291 do
292 var mclass = modelbuilder.get_mclass_by_name(node, mmodule, name)
293 return mclass
294 end
295
296 fun type_bool(node: ANode): nullable MType
297 do
298 var mclass = self.get_mclass(node, "Bool")
299 if mclass == null then return null
300 return mclass.mclass_type
301 end
302
303 fun get_method(node: ANode, recvtype: MType, name: String, recv_is_self: Bool): nullable CallSite
304 do
305 var unsafe_type = self.anchor_to(recvtype)
306
307 #debug("recv: {recvtype} (aka {unsafe_type})")
308 if recvtype isa MNullType then
309 var objclass = get_mclass(node, "Object")
310 if objclass == null then return null # Forward error
311 unsafe_type = objclass.mclass_type
312 end
313
314 var mproperty = self.try_get_mproperty_by_name2(node, unsafe_type, name)
315 if name == "new" and mproperty == null then
316 name = "init"
317 mproperty = self.try_get_mproperty_by_name2(node, unsafe_type, name)
318 end
319
320 if mproperty == null then
321 if recv_is_self then
322 self.modelbuilder.error(node, "Error: method or variable `{name}` unknown in `{recvtype}`.")
323 else if recvtype.need_anchor then
324 self.modelbuilder.error(node, "Error: method `{name}` does not exists in `{recvtype}: {unsafe_type}`.")
325 else
326 self.modelbuilder.error(node, "Error: method `{name}` does not exists in `{recvtype}`.")
327 end
328 return null
329 end
330
331 assert mproperty isa MMethod
332
333 # `null` only accepts some methods of object.
334 if recvtype isa MNullType and not mproperty.is_null_safe then
335 self.error(node, "Error: method `{name}` called on `null`.")
336 return null
337 else if unsafe_type isa MNullableType and not mproperty.is_null_safe then
338 modelbuilder.advice(node, "call-on-nullable", "Warning: method call on a nullable receiver `{recvtype}`.")
339 end
340
341 if is_toplevel_context and recv_is_self and not mproperty.is_toplevel then
342 error(node, "Error: `{name}` is not a top-level method, thus need a receiver.")
343 end
344 if not recv_is_self and mproperty.is_toplevel then
345 error(node, "Error: cannot call `{name}`, a top-level method, with a receiver.")
346 end
347
348 if mproperty.visibility == protected_visibility and not recv_is_self and self.mmodule.visibility_for(mproperty.intro_mclassdef.mmodule) < intrude_visibility and not modelbuilder.toolcontext.opt_ignore_visibility.value then
349 self.modelbuilder.error(node, "Error: method `{name}` is protected and can only accessed by `self`.")
350 return null
351 end
352
353 var info = mproperty.deprecation
354 if info != null and self.mpropdef.mproperty.deprecation == null then
355 var mdoc = info.mdoc
356 if mdoc != null then
357 self.modelbuilder.warning(node, "deprecated-method", "Deprecation Warning: method `{name}` is deprecated: {mdoc.content.first}")
358 else
359 self.modelbuilder.warning(node, "deprecated-method", "Deprecation Warning: method `{name}` is deprecated.")
360 end
361 end
362
363 var propdefs = mproperty.lookup_definitions(self.mmodule, unsafe_type)
364 var mpropdef
365 if propdefs.length == 0 then
366 self.modelbuilder.error(node, "Type Error: no definition found for property `{name}` in `{unsafe_type}`.")
367 return null
368 else if propdefs.length == 1 then
369 mpropdef = propdefs.first
370 else
371 self.modelbuilder.warning(node, "property-conflict", "Warning: conflicting property definitions for property `{name}` in `{unsafe_type}`: {propdefs.join(" ")}")
372 mpropdef = mproperty.intro
373 end
374
375
376 var msignature = mpropdef.new_msignature or else mpropdef.msignature
377 if msignature == null then return null # skip error
378 msignature = resolve_for(msignature, recvtype, recv_is_self).as(MSignature)
379
380 var erasure_cast = false
381 var rettype = mpropdef.msignature.return_mtype
382 if not recv_is_self and rettype != null then
383 rettype = rettype.undecorate
384 if rettype isa MParameterType then
385 var erased_rettype = msignature.return_mtype
386 assert erased_rettype != null
387 #node.debug("Erasure cast: Really a {rettype} but unsafely a {erased_rettype}")
388 erasure_cast = true
389 end
390 end
391
392 var callsite = new CallSite(node.hot_location, recvtype, mmodule, anchor, recv_is_self, mproperty, mpropdef, msignature, erasure_cast)
393 return callsite
394 end
395
396 fun try_get_method(node: ANode, recvtype: MType, name: String, recv_is_self: Bool): nullable CallSite
397 do
398 var unsafe_type = self.anchor_to(recvtype)
399 var mproperty = self.try_get_mproperty_by_name2(node, unsafe_type, name)
400 if mproperty == null then return null
401 return get_method(node, recvtype, name, recv_is_self)
402 end
403
404
405 # Visit the expressions of args and check their conformity with the corresponding type in signature
406 # The point of this method is to handle varargs correctly
407 # Note: The signature must be correctly adapted
408 fun check_signature(node: ANode, args: Array[AExpr], mproperty: MProperty, msignature: MSignature): nullable SignatureMap
409 do
410 var vararg_rank = msignature.vararg_rank
411 if vararg_rank >= 0 then
412 if args.length < msignature.arity then
413 modelbuilder.error(node, "Error: expected at least {msignature.arity} argument(s) for `{mproperty}{msignature}`; got {args.length}. See introduction at `{mproperty.full_name}`.")
414 return null
415 end
416 else if args.length != msignature.arity then
417 # Too much argument
418 if args.length > msignature.arity then
419 modelbuilder.error(node, "Error: expected {msignature.arity} argument(s) for `{mproperty}{msignature}`; got {args.length}. See introduction at `{mproperty.full_name}`.")
420 return null
421 end
422 # Other cases are managed later
423 end
424
425
426 #debug("CALL {unsafe_type}.{msignature}")
427
428 # Associate each parameter to a position in the arguments
429 var map = new SignatureMap
430
431 # Special case for the isolated last argument
432 # TODO: reify this method characteristics (where? the param, the signature, the method?)
433 var last_is_padded = mproperty.name.chars.last == '='
434 var nbargs = args.length
435 if last_is_padded then
436 nbargs -= 1
437 assert not args.last isa ANamedargExpr
438 map.map[msignature.arity - 1] = args.length - 1
439 self.visit_expr_subtype(args.last, msignature.mparameters.last.mtype)
440 end
441
442 # First, handle named arguments
443 for i in [0..args.length[ do
444 var e = args[i]
445 if not e isa ANamedargExpr then continue
446 var name = e.n_id.text
447 var param = msignature.mparameter_by_name(name)
448 if param == null then
449 modelbuilder.error(e.n_id, "Error: no parameter `{name}` for `{mproperty}{msignature}`.")
450 return null
451 end
452 var idx = msignature.mparameters.index_of(param)
453 var prev = map.map.get_or_null(idx)
454 if prev != null then
455 modelbuilder.error(e, "Error: parameter `{name}` already associated with argument #{prev} for `{mproperty}{msignature}`.")
456 return null
457 end
458 map.map[idx] = i
459 e.mtype = self.visit_expr_subtype(e.n_expr, param.mtype)
460 end
461
462 # Number of minimum mandatory remaining parameters
463 var min_arity = 0
464
465 # Second, associate remaining parameters
466 var vararg_decl = args.length - msignature.arity
467 var j = 0
468 for i in [0..msignature.arity[ do
469 # Skip parameters associated by name
470 if map.map.has_key(i) then continue
471
472 var param = msignature.mparameters[i]
473
474 # Search the next free argument: skip named arguments since they are already associated
475 while j < nbargs and args[j] isa ANamedargExpr do j += 1
476 if j >= nbargs then
477 if not param.mtype isa MNullableType then
478 min_arity = j + 1
479 end
480 j += 1
481 continue
482 end
483 var arg = args[j]
484 map.map[i] = j
485 j += 1
486
487 if i == vararg_rank then
488 j += vararg_decl
489 continue # skip the vararg
490 end
491
492 if not param.is_vararg then
493 var paramtype = param.mtype
494 self.visit_expr_subtype(arg, paramtype)
495 else
496 check_one_vararg(arg, param)
497 end
498 end
499
500 if min_arity > 0 then
501 if last_is_padded then min_arity += 1
502 if min_arity < msignature.arity then
503 modelbuilder.error(node, "Error: expected at least {min_arity} argument(s) for `{mproperty}{msignature}`; got {args.length}. See introduction at `{mproperty.full_name}`.")
504 else
505 modelbuilder.error(node, "Error: expected {min_arity} argument(s) for `{mproperty}{msignature}`; got {args.length}. See introduction at `{mproperty.full_name}`.")
506 end
507 return null
508 end
509
510 # Third, check varargs
511 if vararg_rank >= 0 then
512 var paramtype = msignature.mparameters[vararg_rank].mtype
513 var first = args[vararg_rank]
514 if vararg_decl == 0 then
515 if not check_one_vararg(first, msignature.mparameters[vararg_rank]) then return null
516 else
517 first.vararg_decl = vararg_decl + 1
518 for i in [vararg_rank..vararg_rank+vararg_decl] do
519 self.visit_expr_subtype(args[i], paramtype)
520 end
521 end
522 end
523
524 return map
525 end
526
527 # Check an expression as a single vararg.
528 # The main point of the method if to handle the case of reversed vararg (see `AVarargExpr`)
529 fun check_one_vararg(arg: AExpr, param: MParameter): Bool
530 do
531 var paramtype = param.mtype
532 var mclass = get_mclass(arg, "Array")
533 if mclass == null then return false # Forward error
534 var array_mtype = mclass.get_mtype([paramtype])
535 if arg isa AVarargExpr then
536 self.visit_expr_subtype(arg.n_expr, array_mtype)
537 arg.mtype = arg.n_expr.mtype
538 else
539 # only one vararg, maybe `...` was forgot, so be gentle!
540 var t = visit_expr(arg)
541 if t == null then return false # Forward error
542 if not is_subtype(t, paramtype) and is_subtype(t, array_mtype) then
543 # Not acceptable but could be a `...`
544 error(arg, "Type Error: expected `{paramtype}`, got `{t}`. Is an ellipsis `...` missing on the argument?")
545 return false
546 end
547 # Standard valid vararg, finish the job
548 arg.vararg_decl = 1
549 self.visit_expr_subtype(arg, paramtype)
550 end
551 return true
552 end
553
554 fun error(node: ANode, message: String)
555 do
556 self.modelbuilder.error(node, message)
557 end
558
559 fun get_variable(node: AExpr, variable: Variable): nullable MType
560 do
561 if not variable.is_adapted then return variable.declared_type
562
563 var flow = node.after_flow_context
564 if flow == null then return null # skip error
565
566 if flow.vars.has_key(variable) then
567 return flow.vars[variable]
568 else
569 #node.debug("*** START Collected for {variable}")
570 var mtypes = flow.collect_types(variable)
571 #node.debug("**** END Collected for {variable}")
572 if mtypes.length == 0 then
573 return variable.declared_type
574 else if mtypes.length == 1 then
575 return mtypes.first
576 else
577 var res = merge_types(node,mtypes)
578 if res == null then
579 res = variable.declared_type
580 # Try to fallback to a non-null version
581 if res != null and can_be_null(res) then do
582 for t in mtypes do
583 if t != null and can_be_null(t) then break label
584 end
585 res = res.as_notnull
586 end label
587 end
588 return res
589 end
590 end
591 end
592
593 # Some variables where type-adapted during the visit
594 var dirty = false
595
596 # Some loops had been visited during the visit
597 var has_loop = false
598
599 fun set_variable(node: AExpr, variable: Variable, mtype: nullable MType)
600 do
601 var flow = node.after_flow_context
602 assert flow != null
603
604 flow.set_var(self, variable, mtype)
605 end
606
607 # Find the exact representable most specific common super-type in `col`.
608 #
609 # Try to find the most specific common type that is a super-type of each types
610 # in `col`.
611 # In most cases, the result is simply the most general type in `col`.
612 # If nullables types are involved, then the nullable information is correctly preserved.
613 # If incomparable super-types exists in `col`, them no solution is given and the `null`
614 # value is returned (since union types are non representable in Nit)
615 #
616 # The `null` values in `col` are ignored, nulltypes (MNullType) are considered.
617 #
618 # Returns the `null` value if:
619 #
620 # * `col` is empty
621 # * `col` only have null values
622 # * there is a conflict
623 #
624 # Example (with a diamond A,B,C,D):
625 #
626 # * merge(A,B,C) -> A, because A is the most general type in {A,B,C}
627 # * merge(C,B) -> null, there is conflict, because `B or C` cannot be represented
628 # * merge(A,nullable B) -> nullable A, because A is the most general type and
629 # the nullable information is preserved
630 fun merge_types(node: ANode, col: Array[nullable MType]): nullable MType
631 do
632 if col.length == 1 then return col.first
633 for t1 in col do
634 if t1 == null then continue # return null
635 var found = true
636 for t2 in col do
637 if t2 == null then continue # return null
638 if can_be_null(t2) and not can_be_null(t1) then
639 t1 = t1.as_nullable
640 end
641 if not is_subtype(t2, t1) then found = false
642 end
643 if found then
644 #print "merge {col.join(" ")} -> {t1}"
645 return t1
646 end
647 end
648 #self.modelbuilder.warning(node, "Type Error: {col.length} conflicting types: <{col.join(", ")}>")
649 return null
650 end
651
652 # Find a most general common subtype between `type1` and `type2`.
653 #
654 # Find the most general type that is a subtype of `type2` and, if possible, a subtype of `type1`.
655 # Basically, this return the most specific type between `type1` and `type2`.
656 # If nullable types are involved, the information is correctly preserved.
657 # If `type1` and `type2` are incomparable then `type2` is preferred (since intersection types
658 # are not representable in Nit).
659 #
660 # The `null` value is returned if both `type1` and `type2` are null.
661 #
662 # Examples (with diamond A,B,C,D):
663 #
664 # * intersect_types(A,B) -> B, because B is a subtype of A
665 # * intersect_types(B,A) -> B, because B is a subtype of A
666 # * intersect_types(B,C) -> C, B and C are incomparable,
667 # `type2` is then preferred (`B and C` cannot be represented)
668 # * intersect_types(nullable B,A) -> B, because B<:A and the non-null information is preserved
669 # * intersect_types(B,nullable C) -> C, `type2` is preferred and the non-null information is preserved
670 fun intersect_types(node: ANode, type1, type2: nullable MType): nullable MType
671 do
672 if type1 == null then return type2
673 if type2 == null then return type1
674
675 if not can_be_null(type2) or not can_be_null(type1) then
676 type1 = type1.as_notnull
677 type2 = type2.as_notnull
678 end
679
680 var res
681 if is_subtype(type1, type2) then
682 res = type1
683 else
684 res = type2
685 end
686 return res
687 end
688
689 # Find a most general type that is a subtype of `type1` but not one of `type2`.
690 #
691 # Basically, this returns `type1`-`type2` but since there is no substraction type
692 # in Nit this just returns `type1` most of the case.
693 #
694 # The few other cases are if `type2` is a super-type and if some nullable information
695 # is present.
696 #
697 # The `null` value is returned if `type1` is null.
698 #
699 # Examples (with diamond A,B,C,D):
700 #
701 # * diff_types(A,B) -> A, because the notB cannot be represented
702 # * diff_types(B,A) -> None (absurd type), because B<:A
703 # * diff_types(nullable A, nullable B) -> A, because null is removed
704 # * diff_types(nullable B, A) -> Null, because anything but null is removed
705 fun diff_types(node: ANode, type1, type2: nullable MType): nullable MType
706 do
707 if type1 == null then return null
708 if type2 == null then return type1
709
710 # if t1 <: t2 then t1-t2 = bottom
711 if is_subtype(type1, type2) then
712 return modelbuilder.model.null_type.as_notnull
713 end
714
715 # else if t1 <: nullable t2 then t1-t2 = nulltype
716 if is_subtype(type1, type2.as_nullable) then
717 return modelbuilder.model.null_type
718 end
719
720 # else t2 can be null and type2 must accept null then null is excluded in t1
721 if can_be_null(type1) and (type2 isa MNullableType or type2 isa MNullType) then
722 return type1.as_notnull
723 end
724
725 return type1
726 end
727 end
728
729 # Mapping between parameters and arguments in a call.
730 #
731 # Parameters and arguments are not stored in the class but referenced by their position (starting from 0)
732 #
733 # The point of this class is to help engine and other things to map arguments in the AST to parameters of the model.
734 class SignatureMap
735 # Associate a parameter to an argument
736 var map = new ArrayMap[Int, Int]
737 end
738
739 # A specific method call site with its associated informations.
740 class CallSite
741 super MEntity
742
743 redef var location: Location
744
745 # The static type of the receiver (possibly unresolved)
746 var recv: MType
747
748 # The module where the callsite is present
749 var mmodule: MModule
750
751 # The anchor to use with `recv` or `msignature`
752 var anchor: nullable MClassType
753
754 # Is the receiver self?
755 # If "for_self", virtual types of the signature are kept
756 # If "not_for_self", virtual type are erased
757 var recv_is_self: Bool
758
759 # The designated method
760 var mproperty: MMethod
761
762 # The statically designated method definition
763 # The most specif one, it is.
764 var mpropdef: MMethodDef
765
766 # The resolved signature for the receiver
767 var msignature: MSignature
768
769 # Is a implicit cast required on erasure typing policy?
770 var erasure_cast: Bool
771
772 # The mapping used on the call to associate arguments to parameters
773 # If null then no specific association is required.
774 var signaturemap: nullable SignatureMap = null
775
776 private fun check_signature(v: TypeVisitor, node: ANode, args: Array[AExpr]): Bool
777 do
778 var map = v.check_signature(node, args, self.mproperty, self.msignature)
779 signaturemap = map
780 if map == null then is_broken = true
781 return map == null
782 end
783
784 # Information about the callsite to display on a node
785 fun dump_info(v: ASTDump): String do
786 return "{recv}.{mpropdef}{msignature}"
787 end
788
789 redef fun mdoc_or_fallback do return mproperty.intro.mdoc
790 end
791
792 redef class Variable
793 # The declared type of the variable
794 var declared_type: nullable MType is writable
795
796 # Was the variable type-adapted?
797 # This is used to speedup type retrieval while it remains `false`
798 private var is_adapted = false
799 end
800
801 redef class FlowContext
802 # Store changes of types because of type evolution
803 private var vars = new HashMap[Variable, nullable MType]
804
805 # Adapt the variable to a static type
806 # Warning1: do not modify vars directly.
807 # Warning2: sub-flow may have cached a unadapted variable
808 private fun set_var(v: TypeVisitor, variable: Variable, mtype: nullable MType)
809 do
810 if variable.declared_type == mtype and not variable.is_adapted then return
811 if vars.has_key(variable) and vars[variable] == mtype then return
812 self.vars[variable] = mtype
813 v.dirty = true
814 variable.is_adapted = true
815 #node.debug "set {variable} to {mtype or else "X"}"
816 end
817
818 # Look in the flow and previous flow and collect all first reachable type adaptation of a local variable
819 private fun collect_types(variable: Variable): Array[nullable MType]
820 do
821 #node.debug "flow for {variable}"
822 var res = new Array[nullable MType]
823
824 var todo = [self]
825 var seen = new HashSet[FlowContext]
826 while not todo.is_empty do
827 var f = todo.pop
828 if f.is_unreachable then continue
829 if seen.has(f) then continue
830 seen.add f
831
832 if f.vars.has_key(variable) then
833 # Found something. Collect it and do not process further on this path
834 res.add f.vars[variable]
835 #f.node.debug "process {variable}: got {f.vars[variable] or else "X"}"
836 else
837 todo.add_all f.previous
838 todo.add_all f.loops
839 if f.previous.is_empty then
840 # Root flowcontext mean a parameter or something related
841 res.add variable.declared_type
842 #f.node.debug "root process {variable}: got {variable.declared_type or else "X"}"
843 end
844 end
845 end
846 #self.node.debug "##### end flow for {variable}: {res.join(" ")}"
847 return res
848 end
849 end
850
851 redef class APropdef
852 # The entry point of the whole typing analysis
853 fun do_typing(modelbuilder: ModelBuilder)
854 do
855 end
856
857 # The variable associated to the receiver (if any)
858 var selfvariable: nullable Variable
859 end
860
861 redef class AMethPropdef
862 redef fun do_typing(modelbuilder: ModelBuilder)
863 do
864 var mpropdef = self.mpropdef
865 if mpropdef == null then return # skip error
866
867 var v = new TypeVisitor(modelbuilder, mpropdef.mclassdef.mmodule, mpropdef)
868 self.selfvariable = v.selfvariable
869
870 var mmethoddef = self.mpropdef.as(not null)
871 var msignature = mmethoddef.msignature
872 if msignature == null then return # skip error
873 for i in [0..msignature.arity[ do
874 var mtype = msignature.mparameters[i].mtype
875 if msignature.vararg_rank == i then
876 var arrayclass = v.get_mclass(self.n_signature.n_params[i], "Array")
877 if arrayclass == null then return # Skip error
878 mtype = arrayclass.get_mtype([mtype])
879 end
880 var variable = self.n_signature.n_params[i].variable
881 assert variable != null
882 variable.declared_type = mtype
883 end
884
885 var nblock = self.n_block
886 if nblock == null then return
887
888 loop
889 v.dirty = false
890 v.visit_stmt(nblock)
891 if not v.has_loop or not v.dirty then break
892 end
893
894 var post_visitor = new PostTypingVisitor(v)
895 post_visitor.enter_visit(self)
896
897 if not nblock.after_flow_context.is_unreachable and msignature.return_mtype != null then
898 # We reach the end of the function without having a return, it is bad
899 v.error(self, "Error: reached end of function; expected `return` with a value.")
900 end
901 end
902 end
903
904 private class PostTypingVisitor
905 super Visitor
906 var type_visitor: TypeVisitor
907 redef fun visit(n) do
908 n.visit_all(self)
909 n.accept_post_typing(type_visitor)
910 if n isa AExpr and n.mtype == null and not n.is_typed then
911 n.is_broken = true
912 end
913 end
914 end
915
916 redef class ANode
917 private fun accept_post_typing(v: TypeVisitor) do end
918
919 # An additional information message to explain the role of a child expression.
920 #
921 # The point of the method is to allow some kind of double dispatch so the parent
922 # choose how to describe its children.
923 private fun bad_expr_message(child: AExpr): nullable String do return null
924 end
925
926 redef class AAttrPropdef
927 redef fun do_typing(modelbuilder: ModelBuilder)
928 do
929 if not has_value then return
930
931 var mpropdef = self.mreadpropdef
932 if mpropdef == null or mpropdef.msignature == null then return # skip error
933
934 var v = new TypeVisitor(modelbuilder, mpropdef.mclassdef.mmodule, mpropdef)
935 self.selfvariable = v.selfvariable
936
937 var nexpr = self.n_expr
938 if nexpr != null then
939 var mtype = self.mtype
940 v.visit_expr_subtype(nexpr, mtype)
941 end
942 var nblock = self.n_block
943 if nblock != null then
944 v.visit_stmt(nblock)
945 if not nblock.after_flow_context.is_unreachable then
946 # We reach the end of the init without having a return, it is bad
947 v.error(self, "Error: reached end of block; expected `return`.")
948 end
949 end
950 end
951 end
952
953 ###
954
955 redef class AExpr
956 # The static type of the expression.
957 # null if self is a statement or in case of error
958 var mtype: nullable MType = null
959
960 # Is the statement correctly typed?
961 # Used to distinguish errors and statements when `mtype == null`
962 var is_typed: Bool = false
963
964 # If required, the following implicit cast `.as(XXX)`
965 # Such a cast may by required after evaluating the expression when
966 # a unsafe operation is detected (silently accepted by the Nit language).
967 # The attribute is computed by `check_subtype`
968 var implicit_cast_to: nullable MType = null
969
970 # Return the variable read (if any)
971 # Used to perform adaptive typing
972 fun its_variable: nullable Variable do return null
973
974 private fun accept_typing(v: TypeVisitor)
975 do
976 v.error(self, "no implemented accept_typing for {self.class_name}")
977 end
978
979 # Is non-null if `self` is a leaf of a comprehension array construction.
980 # In this case, the enclosing literal array node is designated.
981 # The result of the evaluation of `self` must be
982 # stored inside the designated array (there is an implicit `push`)
983 var comprehension: nullable AArrayExpr = null
984
985 # It indicates the number of arguments collected as a vararg.
986 #
987 # When 0, the argument is used as is, without transformation.
988 # When 1, the argument is transformed into an singleton array.
989 # Above 1, the arguments and the next ones are transformed into a common array.
990 #
991 # This attribute is meaning less on expressions not used as attributes.
992 var vararg_decl: Int = 0
993
994 redef fun dump_info(v) do
995 var res = super
996 var mtype = self.mtype
997 if mtype != null then
998 res += v.yellow(":{mtype}")
999 end
1000 var ict = self.implicit_cast_to
1001 if ict != null then
1002 res += v.yellow("(.as({ict}))")
1003 end
1004 return res
1005 end
1006 end
1007
1008 redef class ABlockExpr
1009 redef fun accept_typing(v)
1010 do
1011 for e in self.n_expr do v.visit_stmt(e)
1012 self.is_typed = true
1013 end
1014
1015 # The type of a blockexpr is the one of the last expression (or null if empty)
1016 redef fun mtype
1017 do
1018 if self.n_expr.is_empty then return null
1019 return self.n_expr.last.mtype
1020 end
1021 end
1022
1023 redef class AVardeclExpr
1024 redef fun accept_typing(v)
1025 do
1026 var variable = self.variable
1027 if variable == null then return # Skip error
1028
1029 var ntype = self.n_type
1030 var mtype: nullable MType
1031 if ntype == null then
1032 mtype = null
1033 else
1034 mtype = v.resolve_mtype(ntype)
1035 if mtype == null then return # Skip error
1036 end
1037
1038 var nexpr = self.n_expr
1039 if nexpr != null then
1040 if mtype != null then
1041 var etype = v.visit_expr_subtype(nexpr, mtype)
1042 if etype == mtype then
1043 assert ntype != null
1044 v.modelbuilder.advice(ntype, "useless-type", "Warning: useless type definition for variable `{variable.name}`")
1045 end
1046 else
1047 mtype = v.visit_expr(nexpr)
1048 if mtype == null then return # Skip error
1049 end
1050 end
1051
1052 var decltype = mtype
1053 if mtype == null or mtype isa MNullType then
1054 var objclass = v.get_mclass(self, "Object")
1055 if objclass == null then return # skip error
1056 decltype = objclass.mclass_type.as_nullable
1057 if mtype == null then mtype = decltype
1058 end
1059
1060 variable.declared_type = decltype
1061 v.set_variable(self, variable, mtype)
1062
1063 #debug("var {variable}: {mtype}")
1064
1065 self.mtype = mtype
1066 self.is_typed = true
1067 end
1068 end
1069
1070 redef class AVarExpr
1071 redef fun its_variable do return self.variable
1072 redef fun accept_typing(v)
1073 do
1074 var variable = self.variable
1075 if variable == null then return # Skip error
1076
1077 var mtype = v.get_variable(self, variable)
1078 if mtype != null then
1079 #debug("{variable} is {mtype}")
1080 else
1081 #debug("{variable} is untyped")
1082 end
1083
1084 self.mtype = mtype
1085 end
1086 end
1087
1088 redef class AVarAssignExpr
1089 redef fun accept_typing(v)
1090 do
1091 var variable = self.variable
1092 assert variable != null
1093
1094 var mtype = v.visit_expr_subtype(n_value, variable.declared_type)
1095
1096 v.set_variable(self, variable, mtype)
1097
1098 self.is_typed = true
1099 end
1100 end
1101
1102 redef class AReassignFormExpr
1103 # The method designed by the reassign operator.
1104 var reassign_callsite: nullable CallSite
1105
1106 var read_type: nullable MType = null
1107
1108 # Determine the `reassign_property`
1109 # `readtype` is the type of the reading of the left value.
1110 # `writetype` is the type of the writing of the left value.
1111 # (Because of `ACallReassignExpr`, both can be different.
1112 # Return the static type of the value to store.
1113 private fun resolve_reassignment(v: TypeVisitor, readtype, writetype: MType): nullable MType
1114 do
1115 var reassign_name = self.n_assign_op.operator
1116
1117 self.read_type = readtype
1118
1119 var callsite = v.get_method(self.n_assign_op, readtype, reassign_name, false)
1120 if callsite == null then return null # Skip error
1121 self.reassign_callsite = callsite
1122
1123 var msignature = callsite.msignature
1124 var rettype = msignature.return_mtype
1125 assert msignature.arity == 1 and rettype != null
1126
1127 var value_type = v.visit_expr_subtype(self.n_value, msignature.mparameters.first.mtype)
1128 if value_type == null then return null # Skip error
1129
1130 v.check_subtype(self, rettype, writetype, false)
1131 return rettype
1132 end
1133 end
1134
1135 redef class AVarReassignExpr
1136 redef fun accept_typing(v)
1137 do
1138 var variable = self.variable
1139 assert variable != null
1140
1141 var readtype = v.get_variable(self, variable)
1142 if readtype == null then return
1143
1144 read_type = readtype
1145
1146 var writetype = variable.declared_type
1147 if writetype == null then return
1148
1149 var rettype = self.resolve_reassignment(v, readtype, writetype)
1150
1151 v.set_variable(self, variable, rettype)
1152
1153 self.is_typed = rettype != null
1154 end
1155 end
1156
1157
1158 redef class AContinueExpr
1159 redef fun accept_typing(v)
1160 do
1161 var nexpr = self.n_expr
1162 if nexpr != null then
1163 v.visit_expr(nexpr)
1164 end
1165 self.is_typed = true
1166 end
1167 end
1168
1169 redef class ABreakExpr
1170 redef fun accept_typing(v)
1171 do
1172 var nexpr = self.n_expr
1173 if nexpr != null then
1174 v.visit_expr(nexpr)
1175 end
1176 self.is_typed = true
1177 end
1178 end
1179
1180 redef class AReturnExpr
1181 redef fun accept_typing(v)
1182 do
1183 var nexpr = self.n_expr
1184 var ret_type
1185 var mpropdef = v.mpropdef
1186 if mpropdef isa MMethodDef then
1187 ret_type = mpropdef.msignature.return_mtype
1188 else if mpropdef isa MAttributeDef then
1189 ret_type = mpropdef.static_mtype
1190 else
1191 abort
1192 end
1193 if nexpr != null then
1194 if ret_type != null then
1195 v.visit_expr_subtype(nexpr, ret_type)
1196 else
1197 v.visit_expr(nexpr)
1198 v.error(nexpr, "Error: `return` with value in a procedure.")
1199 return
1200 end
1201 else if ret_type != null then
1202 v.error(self, "Error: `return` without value in a function.")
1203 return
1204 end
1205 self.is_typed = true
1206 end
1207 end
1208
1209 redef class AAbortExpr
1210 redef fun accept_typing(v)
1211 do
1212 self.is_typed = true
1213 end
1214 end
1215
1216 redef class AIfExpr
1217 redef fun accept_typing(v)
1218 do
1219 v.visit_expr_bool(n_expr)
1220
1221 v.visit_stmt(n_then)
1222 v.visit_stmt(n_else)
1223
1224 self.is_typed = true
1225
1226 if n_then != null and n_else == null then
1227 self.mtype = n_then.mtype
1228 end
1229 end
1230 end
1231
1232 redef class AIfexprExpr
1233 redef fun accept_typing(v)
1234 do
1235 v.visit_expr_bool(n_expr)
1236
1237 var t1 = v.visit_expr(n_then)
1238 var t2 = v.visit_expr(n_else)
1239
1240 if t1 == null or t2 == null then
1241 return # Skip error
1242 end
1243
1244 var t = v.merge_types(self, [t1, t2])
1245 if t == null then
1246 v.error(self, "Type Error: ambiguous type `{t1}` vs `{t2}`.")
1247 end
1248 self.mtype = t
1249 end
1250 end
1251
1252 redef class ADoExpr
1253 redef fun accept_typing(v)
1254 do
1255 v.visit_stmt(n_block)
1256 v.visit_stmt(n_catch)
1257 self.is_typed = true
1258 end
1259 end
1260
1261 redef class AWhileExpr
1262 redef fun accept_typing(v)
1263 do
1264 v.has_loop = true
1265 v.visit_expr_bool(n_expr)
1266 v.visit_stmt(n_block)
1267 self.is_typed = true
1268 end
1269 end
1270
1271 redef class ALoopExpr
1272 redef fun accept_typing(v)
1273 do
1274 v.has_loop = true
1275 v.visit_stmt(n_block)
1276 self.is_typed = true
1277 end
1278 end
1279
1280 redef class AForExpr
1281 redef fun accept_typing(v)
1282 do
1283 v.has_loop = true
1284
1285 for g in n_groups do
1286 var mtype = v.visit_expr(g.n_expr)
1287 if mtype == null then return
1288 g.do_type_iterator(v, mtype)
1289 if g.is_broken then is_broken = true
1290 end
1291
1292 v.visit_stmt(n_block)
1293
1294 self.mtype = n_block.mtype
1295 self.is_typed = true
1296 end
1297 end
1298
1299 redef class AForGroup
1300 var coltype: nullable MClassType
1301
1302 var method_iterator: nullable CallSite
1303 var method_is_ok: nullable CallSite
1304 var method_item: nullable CallSite
1305 var method_next: nullable CallSite
1306 var method_key: nullable CallSite
1307 var method_finish: nullable CallSite
1308
1309 var method_lt: nullable CallSite
1310 var method_successor: nullable CallSite
1311
1312 private fun do_type_iterator(v: TypeVisitor, mtype: MType)
1313 do
1314 if mtype isa MNullType then
1315 v.error(self, "Type Error: `for` cannot iterate over `null`.")
1316 return
1317 end
1318
1319 # get obj class
1320 var objcla = v.get_mclass(self, "Object")
1321 if objcla == null then return
1322
1323 # check iterator method
1324 var itdef = v.get_method(self, mtype, "iterator", n_expr isa ASelfExpr)
1325 if itdef == null then
1326 v.error(self, "Type Error: `for` expects a type providing an `iterator` method, got `{mtype}`.")
1327 return
1328 end
1329 self.method_iterator = itdef
1330
1331 # check that iterator return something
1332 var ittype = itdef.msignature.return_mtype
1333 if ittype == null then
1334 v.error(self, "Type Error: `for` expects the method `iterator` to return an `Iterator` or `MapIterator` type.")
1335 return
1336 end
1337
1338 # get iterator type
1339 var colit_cla = v.try_get_mclass(self, "Iterator")
1340 var mapit_cla = v.try_get_mclass(self, "MapIterator")
1341 var is_col = false
1342 var is_map = false
1343
1344 if colit_cla != null and v.is_subtype(ittype, colit_cla.get_mtype([objcla.mclass_type.as_nullable])) then
1345 # Iterator
1346 var coltype = ittype.supertype_to(v.mmodule, v.anchor, colit_cla)
1347 var variables = self.variables
1348 if variables.length != 1 then
1349 v.error(self, "Type Error: `for` expects only one variable when using `Iterator`.")
1350 else
1351 variables.first.declared_type = coltype.arguments.first
1352 end
1353 is_col = true
1354 end
1355
1356 if mapit_cla != null and v.is_subtype(ittype, mapit_cla.get_mtype([objcla.mclass_type.as_nullable, objcla.mclass_type.as_nullable])) then
1357 # Map Iterator
1358 var coltype = ittype.supertype_to(v.mmodule, v.anchor, mapit_cla)
1359 var variables = self.variables
1360 if variables.length != 2 then
1361 v.error(self, "Type Error: `for` expects two variables when using `MapIterator`.")
1362 else
1363 variables[0].declared_type = coltype.arguments[0]
1364 variables[1].declared_type = coltype.arguments[1]
1365 end
1366 is_map = true
1367 end
1368
1369 if not is_col and not is_map then
1370 v.error(self, "Type Error: `for` expects the method `iterator` to return an `Iterator` or `MapIterator` type.")
1371 return
1372 end
1373
1374 # anchor formal and virtual types
1375 if mtype.need_anchor then mtype = v.anchor_to(mtype)
1376
1377 mtype = mtype.undecorate
1378 self.coltype = mtype.as(MClassType)
1379
1380 # get methods is_ok, next, item
1381 var ikdef = v.get_method(self, ittype, "is_ok", false)
1382 if ikdef == null then
1383 v.error(self, "Type Error: `for` expects a method `is_ok` in type `{ittype}`.")
1384 return
1385 end
1386 self.method_is_ok = ikdef
1387
1388 var itemdef = v.get_method(self, ittype, "item", false)
1389 if itemdef == null then
1390 v.error(self, "Type Error: `for` expects a method `item` in type `{ittype}`.")
1391 return
1392 end
1393 self.method_item = itemdef
1394
1395 var nextdef = v.get_method(self, ittype, "next", false)
1396 if nextdef == null then
1397 v.error(self, "Type Error: `for` expects a method `next` in type {ittype}.")
1398 return
1399 end
1400 self.method_next = nextdef
1401
1402 self.method_finish = v.try_get_method(self, ittype, "finish", false)
1403
1404 if is_map then
1405 var keydef = v.get_method(self, ittype, "key", false)
1406 if keydef == null then
1407 v.error(self, "Type Error: `for` expects a method `key` in type `{ittype}`.")
1408 return
1409 end
1410 self.method_key = keydef
1411 end
1412
1413 if self.variables.length == 1 and n_expr isa ARangeExpr then
1414 var variable = variables.first
1415 var vtype = variable.declared_type.as(not null)
1416
1417 if n_expr isa AOrangeExpr then
1418 self.method_lt = v.get_method(self, vtype, "<", false)
1419 else
1420 self.method_lt = v.get_method(self, vtype, "<=", false)
1421 end
1422
1423 self.method_successor = v.get_method(self, vtype, "successor", false)
1424 end
1425 end
1426 end
1427
1428 redef class AWithExpr
1429 var method_start: nullable CallSite
1430 var method_finish: nullable CallSite
1431
1432 redef fun accept_typing(v: TypeVisitor)
1433 do
1434 var mtype = v.visit_expr(n_expr)
1435 if mtype == null then return
1436
1437 method_start = v.get_method(self, mtype, "start", n_expr isa ASelfExpr)
1438 method_finish = v.get_method(self, mtype, "finish", n_expr isa ASelfExpr)
1439
1440 v.visit_stmt(n_block)
1441 self.mtype = n_block.mtype
1442 self.is_typed = true
1443 end
1444 end
1445
1446 redef class AAssertExpr
1447 redef fun accept_typing(v)
1448 do
1449 v.visit_expr_bool(n_expr)
1450
1451 v.visit_stmt(n_else)
1452 self.is_typed = true
1453 end
1454 end
1455
1456 redef class AOrExpr
1457 redef fun accept_typing(v)
1458 do
1459 v.visit_expr_bool(n_expr)
1460 v.visit_expr_bool(n_expr2)
1461 self.mtype = v.type_bool(self)
1462 end
1463 end
1464
1465 redef class AImpliesExpr
1466 redef fun accept_typing(v)
1467 do
1468 v.visit_expr_bool(n_expr)
1469 v.visit_expr_bool(n_expr2)
1470 self.mtype = v.type_bool(self)
1471 end
1472 end
1473
1474 redef class AAndExpr
1475 redef fun accept_typing(v)
1476 do
1477 v.visit_expr_bool(n_expr)
1478 v.visit_expr_bool(n_expr2)
1479 self.mtype = v.type_bool(self)
1480 end
1481 end
1482
1483
1484 redef class ANotExpr
1485 redef fun accept_typing(v)
1486 do
1487 v.visit_expr_bool(n_expr)
1488 self.mtype = v.type_bool(self)
1489 end
1490 end
1491
1492 redef class AOrElseExpr
1493 redef fun accept_typing(v)
1494 do
1495 var t1 = v.visit_expr(n_expr)
1496 var t2 = v.visit_expr(n_expr2)
1497
1498 if t1 == null or t2 == null then
1499 return # Skip error
1500 end
1501
1502 if t1 isa MNullType then
1503 self.mtype = t2
1504 return
1505 else if v.can_be_null(t1) then
1506 t1 = t1.as_notnull
1507 end
1508
1509 var t = v.merge_types(self, [t1, t2])
1510 if t == null then
1511 var c = v.get_mclass(self, "Object")
1512 if c == null then return # forward error
1513 t = c.mclass_type
1514 if v.can_be_null(t2) then
1515 t = t.as_nullable
1516 end
1517 #v.error(self, "Type Error: ambiguous type {t1} vs {t2}")
1518 end
1519 self.mtype = t
1520 end
1521
1522 redef fun accept_post_typing(v)
1523 do
1524 var t1 = n_expr.mtype
1525 if t1 == null then
1526 return
1527 else
1528 v.check_can_be_null(n_expr, t1)
1529 end
1530 end
1531 end
1532
1533 redef class ATrueExpr
1534 redef fun accept_typing(v)
1535 do
1536 self.mtype = v.type_bool(self)
1537 end
1538 end
1539
1540 redef class AFalseExpr
1541 redef fun accept_typing(v)
1542 do
1543 self.mtype = v.type_bool(self)
1544 end
1545 end
1546
1547 redef class AIntegerExpr
1548 redef fun accept_typing(v)
1549 do
1550 var mclass: nullable MClass = null
1551 if value isa Byte then
1552 mclass = v.get_mclass(self, "Byte")
1553 else if value isa Int then
1554 mclass = v.get_mclass(self, "Int")
1555 else if value isa Int8 then
1556 mclass = v.get_mclass(self, "Int8")
1557 else if value isa Int16 then
1558 mclass = v.get_mclass(self, "Int16")
1559 else if value isa UInt16 then
1560 mclass = v.get_mclass(self, "UInt16")
1561 else if value isa Int32 then
1562 mclass = v.get_mclass(self, "Int32")
1563 else if value isa UInt32 then
1564 mclass = v.get_mclass(self, "UInt32")
1565 end
1566 if mclass == null then return # Forward error
1567 self.mtype = mclass.mclass_type
1568 end
1569 end
1570
1571 redef class AFloatExpr
1572 redef fun accept_typing(v)
1573 do
1574 var mclass = v.get_mclass(self, "Float")
1575 if mclass == null then return # Forward error
1576 self.mtype = mclass.mclass_type
1577 end
1578 end
1579
1580 redef class ACharExpr
1581 redef fun accept_typing(v) do
1582 var mclass: nullable MClass = null
1583 if is_ascii then
1584 mclass = v.get_mclass(self, "Byte")
1585 else if is_code_point then
1586 mclass = v.get_mclass(self, "Int")
1587 else
1588 mclass = v.get_mclass(self, "Char")
1589 end
1590 if mclass == null then return # Forward error
1591 self.mtype = mclass.mclass_type
1592 end
1593 end
1594
1595 redef class AugmentedStringFormExpr
1596 super AExpr
1597
1598 # Text::to_re, used for prefix `re`
1599 var to_re: nullable CallSite = null
1600 # Regex::ignore_case, used for suffix `i` on `re`
1601 var ignore_case: nullable CallSite = null
1602 # Regex::newline, used for suffix `m` on `re`
1603 var newline: nullable CallSite = null
1604 # Regex::extended, used for suffix `b` on `re`
1605 var extended: nullable CallSite = null
1606 # CString::to_bytes_with_copy, used for prefix `b`
1607 var to_bytes_with_copy: nullable CallSite = null
1608
1609 redef fun accept_typing(v) do
1610 var mclass = v.get_mclass(self, "String")
1611 if mclass == null then return # Forward error
1612 if is_bytestring then
1613 to_bytes_with_copy = v.get_method(self, v.mmodule.c_string_type, "to_bytes_with_copy", false)
1614 mclass = v.get_mclass(self, "Bytes")
1615 else if is_re then
1616 to_re = v.get_method(self, mclass.mclass_type, "to_re", false)
1617 for i in suffix.chars do
1618 mclass = v.get_mclass(self, "Regex")
1619 if mclass == null then
1620 v.error(self, "Error: `Regex` class unknown")
1621 return
1622 end
1623 var service = ""
1624 if i == 'i' then
1625 service = "ignore_case="
1626 ignore_case = v.get_method(self, mclass.mclass_type, service, false)
1627 else if i == 'm' then
1628 service = "newline="
1629 newline = v.get_method(self, mclass.mclass_type, service, false)
1630 else if i == 'b' then
1631 service = "extended="
1632 extended = v.get_method(self, mclass.mclass_type, service, false)
1633 else
1634 v.error(self, "Type Error: Unrecognized suffix {i} in prefixed Regex")
1635 abort
1636 end
1637 end
1638 end
1639 if mclass == null then return # Forward error
1640 mtype = mclass.mclass_type
1641 end
1642 end
1643
1644 redef class ASuperstringExpr
1645 redef fun accept_typing(v)
1646 do
1647 super
1648 var objclass = v.get_mclass(self, "Object")
1649 if objclass == null then return # Forward error
1650 var objtype = objclass.mclass_type
1651 for nexpr in self.n_exprs do
1652 v.visit_expr_subtype(nexpr, objtype)
1653 end
1654 end
1655 end
1656
1657 redef class AArrayExpr
1658 # The `with_capacity` method on Array
1659 var with_capacity_callsite: nullable CallSite
1660
1661 # The `push` method on arrays
1662 var push_callsite: nullable CallSite
1663
1664 # The element of each type
1665 var element_mtype: nullable MType
1666
1667 # Set that `self` is a part of comprehension array `na`
1668 # If `self` is a `for`, or a `if`, then `set_comprehension` is recursively applied.
1669 private fun set_comprehension(n: nullable AExpr)
1670 do
1671 if n == null then
1672 return
1673 else if n isa AForExpr then
1674 set_comprehension(n.n_block)
1675 else if n isa AIfExpr then
1676 set_comprehension(n.n_then)
1677 set_comprehension(n.n_else)
1678 else
1679 # is a leave
1680 n.comprehension = self
1681 end
1682 end
1683 redef fun accept_typing(v)
1684 do
1685 var mtype: nullable MType = null
1686 var ntype = self.n_type
1687 if ntype != null then
1688 mtype = v.resolve_mtype(ntype)
1689 if mtype == null then return # Skip error
1690 end
1691 var mtypes = new Array[nullable MType]
1692 var useless = false
1693 for e in self.n_exprs do
1694 var t = v.visit_expr(e)
1695 if t == null then
1696 return # Skip error
1697 end
1698 set_comprehension(e)
1699 if mtype != null then
1700 if v.check_subtype(e, t, mtype, false) == null then return # Forward error
1701 if t == mtype then useless = true
1702 else
1703 mtypes.add(t)
1704 end
1705 end
1706 if mtype == null then
1707 # Ensure monotony for type adaptation on loops
1708 if self.element_mtype != null then mtypes.add self.element_mtype
1709 mtype = v.merge_types(self, mtypes)
1710 end
1711 if mtype == null or mtype isa MNullType then
1712 v.error(self, "Type Error: ambiguous array type {mtypes.join(" ")}")
1713 return
1714 end
1715 if useless then
1716 assert ntype != null
1717 v.modelbuilder.warning(ntype, "useless-type", "Warning: useless type declaration `{mtype}` in literal Array since it can be inferred from the elements type.")
1718 end
1719
1720 self.element_mtype = mtype
1721
1722 var mclass = v.get_mclass(self, "Array")
1723 if mclass == null then return # Forward error
1724 var array_mtype = mclass.get_mtype([mtype])
1725
1726 with_capacity_callsite = v.get_method(self, array_mtype, "with_capacity", false)
1727 push_callsite = v.get_method(self, array_mtype, "push", false)
1728
1729 self.mtype = array_mtype
1730 end
1731 end
1732
1733 redef class ARangeExpr
1734 var init_callsite: nullable CallSite
1735
1736 redef fun accept_typing(v)
1737 do
1738 var discrete_class = v.get_mclass(self, "Discrete")
1739 if discrete_class == null then return # Forward error
1740 var discrete_type = discrete_class.intro.bound_mtype
1741 var t1 = v.visit_expr_subtype(self.n_expr, discrete_type)
1742 var t2 = v.visit_expr_subtype(self.n_expr2, discrete_type)
1743 if t1 == null or t2 == null then return
1744 var mclass = v.get_mclass(self, "Range")
1745 if mclass == null then return # Forward error
1746 var mtype
1747 if v.is_subtype(t1, t2) then
1748 mtype = mclass.get_mtype([t2])
1749 else if v.is_subtype(t2, t1) then
1750 mtype = mclass.get_mtype([t1])
1751 else
1752 v.error(self, "Type Error: cannot create range: `{t1}` vs `{t2}`.")
1753 return
1754 end
1755
1756 self.mtype = mtype
1757
1758 # get the constructor
1759 var callsite
1760 if self isa ACrangeExpr then
1761 callsite = v.get_method(self, mtype, "init", false)
1762 else if self isa AOrangeExpr then
1763 callsite = v.get_method(self, mtype, "without_last", false)
1764 else
1765 abort
1766 end
1767 init_callsite = callsite
1768 end
1769 end
1770
1771 redef class ANullExpr
1772 redef fun accept_typing(v)
1773 do
1774 self.mtype = v.mmodule.model.null_type
1775 end
1776 end
1777
1778 redef class AIsaExpr
1779 # The static type to cast to.
1780 # (different from the static type of the expression that is `Bool`).
1781 var cast_type: nullable MType
1782 redef fun accept_typing(v)
1783 do
1784 v.visit_expr(n_expr)
1785
1786 var mtype = v.resolve_mtype(n_type)
1787
1788 self.cast_type = mtype
1789
1790 var variable = self.n_expr.its_variable
1791 if variable != null then
1792 var orig = self.n_expr.mtype
1793 #var from = if orig != null then orig.to_s else "invalid"
1794 #var to = if mtype != null then mtype.to_s else "invalid"
1795 #debug("adapt {variable}: {from} -> {to}")
1796
1797 var thentype = v.intersect_types(self, orig, mtype)
1798 if thentype != orig then
1799 self.after_flow_context.when_true.set_var(v, variable, thentype)
1800 #debug "{variable}:{orig or else "?"} isa {mtype or else "?"} -> then {thentype or else "?"}"
1801 end
1802
1803 var elsetype = v.diff_types(self, orig, mtype)
1804 if elsetype != orig then
1805 self.after_flow_context.when_false.set_var(v, variable, elsetype)
1806 #debug "{variable}:{orig or else "?"} isa {mtype or else "?"} -> else {elsetype or else "?"}"
1807 end
1808 end
1809
1810 self.mtype = v.type_bool(self)
1811 end
1812
1813 redef fun accept_post_typing(v)
1814 do
1815 v.check_expr_cast(self, self.n_expr, self.n_type)
1816 end
1817
1818 redef fun dump_info(v) do
1819 var res = super
1820 var mtype = self.cast_type
1821 if mtype != null then
1822 res += v.yellow(".as({mtype})")
1823 end
1824 return res
1825 end
1826
1827 end
1828
1829 redef class AAsCastExpr
1830 redef fun accept_typing(v)
1831 do
1832 v.visit_expr(n_expr)
1833
1834 self.mtype = v.resolve_mtype(n_type)
1835 end
1836
1837 redef fun accept_post_typing(v)
1838 do
1839 v.check_expr_cast(self, self.n_expr, self.n_type)
1840 end
1841 end
1842
1843 redef class AAsNotnullExpr
1844 redef fun accept_typing(v)
1845 do
1846 var mtype = v.visit_expr(self.n_expr)
1847 if mtype == null then return # Forward error
1848
1849 if mtype isa MNullType then
1850 v.error(self, "Type Error: `as(not null)` on `null`.")
1851 return
1852 end
1853
1854 if v.can_be_null(mtype) then
1855 mtype = mtype.as_notnull
1856 end
1857
1858 self.mtype = mtype
1859 end
1860
1861 redef fun accept_post_typing(v)
1862 do
1863 var mtype = n_expr.mtype
1864 if mtype == null then return
1865 v.check_can_be_null(n_expr, mtype)
1866 end
1867 end
1868
1869 redef class AParExpr
1870 redef fun accept_typing(v)
1871 do
1872 self.mtype = v.visit_expr(self.n_expr)
1873 end
1874 end
1875
1876 redef class AOnceExpr
1877 redef fun accept_typing(v)
1878 do
1879 self.mtype = v.visit_expr(self.n_expr)
1880 end
1881 end
1882
1883 redef class ASelfExpr
1884 redef var its_variable: nullable Variable
1885 redef fun accept_typing(v)
1886 do
1887 if v.is_toplevel_context and not self isa AImplicitSelfExpr then
1888 v.error(self, "Error: `self` cannot be used in top-level method.")
1889 end
1890 var variable = v.selfvariable
1891 self.its_variable = variable
1892 self.mtype = v.get_variable(self, variable)
1893 end
1894 end
1895
1896 redef class AImplicitSelfExpr
1897 # Is the implicit receiver `sys`?
1898 #
1899 # By default, the implicit receiver is `self`.
1900 # But when there is not method for `self`, `sys` is used as a fall-back.
1901 # Is this case this flag is set to `true`.
1902 var is_sys = false
1903 end
1904
1905 ## MESSAGE SENDING AND PROPERTY
1906
1907 redef class ASendExpr
1908 # The property invoked by the send.
1909 var callsite: nullable CallSite
1910
1911 redef fun bad_expr_message(child)
1912 do
1913 if child == self.n_expr then
1914 return "to be the receiver of `{self.property_name}`"
1915 end
1916 return null
1917 end
1918
1919 redef fun accept_typing(v)
1920 do
1921 var nrecv = self.n_expr
1922 var recvtype = v.visit_expr(nrecv)
1923 var name = self.property_name
1924 var node = self.property_node
1925
1926 if recvtype == null then return # Forward error
1927
1928 var callsite = null
1929 var unsafe_type = v.anchor_to(recvtype)
1930 var mproperty = v.try_get_mproperty_by_name2(node, unsafe_type, name)
1931 if mproperty == null and nrecv isa AImplicitSelfExpr then
1932 # Special fall-back search in `sys` when noting found in the implicit receiver.
1933 var sysclass = v.try_get_mclass(node, "Sys")
1934 if sysclass != null then
1935 var systype = sysclass.mclass_type
1936 mproperty = v.try_get_mproperty_by_name2(node, systype, name)
1937 if mproperty != null then
1938 callsite = v.get_method(node, systype, name, false)
1939 if callsite == null then return # Forward error
1940 # Update information, we are looking at `sys` now, not `self`
1941 nrecv.is_sys = true
1942 nrecv.its_variable = null
1943 nrecv.mtype = systype
1944 recvtype = systype
1945 end
1946 end
1947 end
1948 if callsite == null then
1949 # If still nothing, just exit
1950 callsite = v.get_method(node, recvtype, name, nrecv isa ASelfExpr)
1951 if callsite == null then return
1952 end
1953
1954 self.callsite = callsite
1955 var msignature = callsite.msignature
1956
1957 var args = compute_raw_arguments
1958
1959 callsite.check_signature(v, node, args)
1960
1961 if callsite.mproperty.is_init then
1962 var vmpropdef = v.mpropdef
1963 if not (vmpropdef isa MMethodDef and vmpropdef.mproperty.is_init) then
1964 v.error(node, "Error: an `init` can only be called from another `init`.")
1965 end
1966 if vmpropdef isa MMethodDef and vmpropdef.mproperty.is_root_init and not callsite.mproperty.is_root_init then
1967 v.error(node, "Error: `{vmpropdef}` cannot call a factory `{callsite.mproperty}`.")
1968 end
1969 end
1970
1971 var ret = msignature.return_mtype
1972 if ret != null then
1973 self.mtype = ret
1974 else
1975 self.is_typed = true
1976 end
1977 end
1978
1979 # The name of the property
1980 # Each subclass simply provide the correct name.
1981 private fun property_name: String is abstract
1982
1983 # The node identifying the name (id, operator, etc) for messages.
1984 #
1985 # Is `self` by default
1986 private fun property_node: ANode do return self
1987
1988 # An array of all arguments (excluding self)
1989 fun raw_arguments: Array[AExpr] do return compute_raw_arguments
1990
1991 private fun compute_raw_arguments: Array[AExpr] is abstract
1992
1993 redef fun dump_info(v) do
1994 var res = super
1995 var callsite = self.callsite
1996 if callsite != null then
1997 res += v.yellow(" call="+callsite.dump_info(v))
1998 end
1999 return res
2000 end
2001 end
2002
2003 redef class ABinopExpr
2004 redef fun compute_raw_arguments do return [n_expr2]
2005 redef fun property_name do return operator
2006 redef fun property_node do return n_op
2007 end
2008
2009 redef class AEqFormExpr
2010 redef fun accept_typing(v)
2011 do
2012 super
2013 v.null_test(self)
2014 end
2015
2016 redef fun accept_post_typing(v)
2017 do
2018 var mtype = n_expr.mtype
2019 var mtype2 = n_expr2.mtype
2020
2021 if mtype == null or mtype2 == null then return
2022
2023 if not mtype2 isa MNullType then return
2024
2025 v.check_can_be_null(n_expr, mtype)
2026 end
2027 end
2028
2029 redef class AUnaryopExpr
2030 redef fun property_name do return "unary {operator}"
2031 redef fun compute_raw_arguments do return new Array[AExpr]
2032 end
2033
2034
2035 redef class ACallExpr
2036 redef fun property_name do return n_qid.n_id.text
2037 redef fun property_node do return n_qid
2038 redef fun compute_raw_arguments do return n_args.to_a
2039 end
2040
2041 redef class ACallAssignExpr
2042 redef fun property_name do return n_qid.n_id.text + "="
2043 redef fun property_node do return n_qid
2044 redef fun compute_raw_arguments
2045 do
2046 var res = n_args.to_a
2047 res.add(n_value)
2048 return res
2049 end
2050 end
2051
2052 redef class ABraExpr
2053 redef fun property_name do return "[]"
2054 redef fun compute_raw_arguments do return n_args.to_a
2055 end
2056
2057 redef class ABraAssignExpr
2058 redef fun property_name do return "[]="
2059 redef fun compute_raw_arguments
2060 do
2061 var res = n_args.to_a
2062 res.add(n_value)
2063 return res
2064 end
2065 end
2066
2067 redef class ASendReassignFormExpr
2068 # The property invoked for the writing
2069 var write_callsite: nullable CallSite
2070
2071 redef fun accept_typing(v)
2072 do
2073 var recvtype = v.visit_expr(self.n_expr)
2074 var name = self.property_name
2075 var node = self.property_node
2076
2077 if recvtype == null then return # Forward error
2078
2079 var for_self = self.n_expr isa ASelfExpr
2080 var callsite = v.get_method(node, recvtype, name, for_self)
2081
2082 if callsite == null then return
2083 self.callsite = callsite
2084
2085 var args = compute_raw_arguments
2086
2087 callsite.check_signature(v, node, args)
2088
2089 var readtype = callsite.msignature.return_mtype
2090 if readtype == null then
2091 v.error(node, "Error: `{name}` is not a function.")
2092 return
2093 end
2094
2095 var wcallsite = v.get_method(node, recvtype, name + "=", self.n_expr isa ASelfExpr)
2096 if wcallsite == null then return
2097 self.write_callsite = wcallsite
2098
2099 var wtype = self.resolve_reassignment(v, readtype, wcallsite.msignature.mparameters.last.mtype)
2100 if wtype == null then return
2101
2102 args = args.to_a # duplicate so raw_arguments keeps only the getter args
2103 args.add(self.n_value)
2104 wcallsite.check_signature(v, node, args)
2105
2106 self.is_typed = true
2107 end
2108 end
2109
2110 redef class ACallReassignExpr
2111 redef fun property_name do return n_qid.n_id.text
2112 redef fun property_node do return n_qid.n_id
2113 redef fun compute_raw_arguments do return n_args.to_a
2114 end
2115
2116 redef class ABraReassignExpr
2117 redef fun property_name do return "[]"
2118 redef fun compute_raw_arguments do return n_args.to_a
2119 end
2120
2121 redef class AInitExpr
2122 redef fun property_name do return "init"
2123 redef fun property_node do return n_kwinit
2124 redef fun compute_raw_arguments do return n_args.to_a
2125 end
2126
2127 redef class AExprs
2128 fun to_a: Array[AExpr] do return self.n_exprs.to_a
2129 end
2130
2131 ###
2132
2133 redef class ASuperExpr
2134 # The method to call if the super is in fact a 'super init call'
2135 # Note: if the super is a normal call-next-method, then this attribute is null
2136 var callsite: nullable CallSite
2137
2138 # The method to call is the super is a standard `call-next-method` super-call
2139 # Note: if the super is a special super-init-call, then this attribute is null
2140 var mpropdef: nullable MMethodDef
2141
2142 redef fun accept_typing(v)
2143 do
2144 var anchor = v.anchor
2145 assert anchor != null
2146 var recvtype = v.get_variable(self, v.selfvariable)
2147 assert recvtype != null
2148 var mproperty = v.mpropdef.mproperty
2149 if not mproperty isa MMethod then
2150 v.error(self, "Error: `super` only usable in a `method`.")
2151 return
2152 end
2153 var superprops = mproperty.lookup_super_definitions(v.mmodule, anchor)
2154 if superprops.length == 0 then
2155 if mproperty.is_init and v.mpropdef.is_intro then
2156 process_superinit(v)
2157 return
2158 end
2159 v.error(self, "Error: no super method to call for `{mproperty}`.")
2160 return
2161 end
2162 # FIXME: covariance of return type in linear extension?
2163 var superprop = superprops.first
2164
2165 var msignature = superprop.msignature.as(not null)
2166 msignature = v.resolve_for(msignature, recvtype, true).as(MSignature)
2167 var args = self.n_args.to_a
2168 if args.length > 0 then
2169 signaturemap = v.check_signature(self, args, mproperty, msignature)
2170 end
2171 self.mtype = msignature.return_mtype
2172 self.is_typed = true
2173 v.mpropdef.has_supercall = true
2174 mpropdef = v.mpropdef.as(MMethodDef)
2175 end
2176
2177 # The mapping used on the call to associate arguments to parameters.
2178 # If null then no specific association is required.
2179 var signaturemap: nullable SignatureMap
2180
2181 private fun process_superinit(v: TypeVisitor)
2182 do
2183 var anchor = v.anchor
2184 assert anchor != null
2185 var recvtype = v.get_variable(self, v.selfvariable)
2186 assert recvtype != null
2187 var mpropdef = v.mpropdef
2188 assert mpropdef isa MMethodDef
2189 var mproperty = mpropdef.mproperty
2190 var superprop: nullable MMethodDef = null
2191 for msupertype in mpropdef.mclassdef.supertypes do
2192 msupertype = msupertype.anchor_to(v.mmodule, anchor)
2193 var errcount = v.modelbuilder.toolcontext.error_count
2194 var candidate = v.try_get_mproperty_by_name2(self, msupertype, mproperty.name).as(nullable MMethod)
2195 if candidate == null then
2196 if v.modelbuilder.toolcontext.error_count > errcount then return # Forward error
2197 continue # Try next super-class
2198 end
2199 if superprop != null and candidate.is_root_init then
2200 continue
2201 end
2202 if superprop != null and superprop.mproperty != candidate and not superprop.mproperty.is_root_init then
2203 v.error(self, "Error: conflicting super constructor to call for `{mproperty}`: `{candidate.full_name}`, `{superprop.mproperty.full_name}`")
2204 return
2205 end
2206 var candidatedefs = candidate.lookup_definitions(v.mmodule, anchor)
2207 if superprop != null and superprop.mproperty == candidate then
2208 if superprop == candidatedefs.first then continue
2209 candidatedefs.add(superprop)
2210 end
2211 if candidatedefs.length > 1 then
2212 v.error(self, "Error: conflicting property definitions for property `{mproperty}` in `{recvtype}`: {candidatedefs.join(", ")}")
2213 return
2214 end
2215 superprop = candidatedefs.first
2216 end
2217 if superprop == null then
2218 v.error(self, "Error: no super method to call for `{mproperty}`.")
2219 return
2220 end
2221
2222 var msignature = superprop.new_msignature or else superprop.msignature.as(not null)
2223 msignature = v.resolve_for(msignature, recvtype, true).as(MSignature)
2224
2225 var callsite = new CallSite(hot_location, recvtype, v.mmodule, v.anchor, true, superprop.mproperty, superprop, msignature, false)
2226 self.callsite = callsite
2227
2228 var args = self.n_args.to_a
2229 if args.length > 0 then
2230 callsite.check_signature(v, self, args)
2231 else
2232 # Check there is at least enough parameters
2233 if mpropdef.msignature.arity < msignature.arity then
2234 v.error(self, "Error: not enough implicit arguments to pass. Got `{mpropdef.msignature.arity}`, expected at least `{msignature.arity}`. Signature is `{msignature}`.")
2235 return
2236 end
2237 # Check that each needed parameter is conform
2238 var i = 0
2239 for sp in msignature.mparameters do
2240 var p = mpropdef.msignature.mparameters[i]
2241 if not v.is_subtype(p.mtype, sp.mtype) then
2242 v.error(self, "Type Error: expected argument #{i} of type `{sp.mtype}`, got implicit argument `{p.name}` of type `{p.mtype}`. Signature is {msignature}")
2243 return
2244 end
2245 i += 1
2246 end
2247 end
2248
2249 self.is_typed = true
2250 end
2251
2252 redef fun dump_info(v) do
2253 var res = super
2254 var callsite = self.callsite
2255 if callsite != null then
2256 res += v.yellow(" super-init="+callsite.dump_info(v))
2257 end
2258 var mpropdef = self.mpropdef
2259 if mpropdef != null then
2260 res += v.yellow(" call-next-method="+mpropdef.to_s)
2261 end
2262 return res
2263 end
2264 end
2265
2266 ####
2267
2268 redef class ANewExpr
2269 # The constructor invoked by the new.
2270 var callsite: nullable CallSite
2271
2272 # The designated type
2273 var recvtype: nullable MClassType
2274
2275 redef fun accept_typing(v)
2276 do
2277 var recvtype = v.resolve_mtype(self.n_type)
2278 if recvtype == null then return
2279
2280 if not recvtype isa MClassType then
2281 if recvtype isa MNullableType then
2282 v.error(self, "Type Error: cannot instantiate the nullable type `{recvtype}`.")
2283 return
2284 else if recvtype isa MFormalType then
2285 v.error(self, "Type Error: cannot instantiate the formal type `{recvtype}`.")
2286 return
2287 else
2288 v.error(self, "Type Error: cannot instantiate the type `{recvtype}`.")
2289 return
2290 end
2291 end
2292
2293 self.recvtype = recvtype
2294 var kind = recvtype.mclass.kind
2295
2296 var name: String
2297 var nqid = self.n_qid
2298 var node: ANode
2299 if nqid != null then
2300 name = nqid.n_id.text
2301 node = nqid
2302 else
2303 name = "new"
2304 node = self.n_kwnew
2305 end
2306 if name == "intern" then
2307 if kind != concrete_kind then
2308 v.error(self, "Type Error: cannot instantiate {kind} {recvtype}.")
2309 return
2310 end
2311 if n_args.n_exprs.not_empty then
2312 v.error(n_args, "Type Error: the intern constructor expects no arguments.")
2313 return
2314 end
2315 # Our job is done
2316 self.mtype = recvtype
2317 return
2318 end
2319
2320 var callsite = v.get_method(node, recvtype, name, false)
2321 if callsite == null then return
2322
2323 if not callsite.mproperty.is_new then
2324 if kind != concrete_kind then
2325 v.error(self, "Type Error: cannot instantiate {kind} `{recvtype}`.")
2326 return
2327 end
2328 self.mtype = recvtype
2329 else
2330 self.mtype = callsite.msignature.return_mtype
2331 assert self.mtype != null
2332 end
2333
2334 self.callsite = callsite
2335
2336 if not callsite.mproperty.is_init_for(recvtype.mclass) then
2337 v.error(self, "Error: `{name}` is not a constructor.")
2338 return
2339 end
2340
2341 var args = n_args.to_a
2342 callsite.check_signature(v, node, args)
2343 end
2344
2345 redef fun dump_info(v) do
2346 var res = super
2347 var callsite = self.callsite
2348 if callsite != null then
2349 res += v.yellow(" call="+callsite.dump_info(v))
2350 end
2351 return res
2352 end
2353 end
2354
2355 ####
2356
2357 redef class AAttrFormExpr
2358 # The attribute accessed.
2359 var mproperty: nullable MAttribute
2360
2361 # The static type of the attribute.
2362 var attr_type: nullable MType
2363
2364 # Resolve the attribute accessed.
2365 private fun resolve_property(v: TypeVisitor)
2366 do
2367 var recvtype = v.visit_expr(self.n_expr)
2368 if recvtype == null then return # Skip error
2369 var node = self.n_id
2370 var name = node.text
2371 if recvtype isa MNullType then
2372 v.error(node, "Error: attribute `{name}` access on `null`.")
2373 return
2374 end
2375
2376 var unsafe_type = v.anchor_to(recvtype)
2377 var mproperty = v.try_get_mproperty_by_name2(node, unsafe_type, name)
2378 if mproperty == null then
2379 v.modelbuilder.error(node, "Error: attribute `{name}` does not exist in `{recvtype}`.")
2380 return
2381 end
2382 assert mproperty isa MAttribute
2383 self.mproperty = mproperty
2384
2385 var mpropdefs = mproperty.lookup_definitions(v.mmodule, unsafe_type)
2386 assert mpropdefs.length == 1
2387 var mpropdef = mpropdefs.first
2388 var attr_type = mpropdef.static_mtype
2389 if attr_type == null then return # skip error
2390 attr_type = v.resolve_for(attr_type, recvtype, self.n_expr isa ASelfExpr)
2391 self.attr_type = attr_type
2392 end
2393
2394 redef fun dump_info(v) do
2395 var res = super
2396 var mproperty = self.mproperty
2397 var attr_type = self.attr_type
2398 if mproperty != null then
2399 res += v.yellow(" attr={mproperty}:{attr_type or else "BROKEN"}")
2400 end
2401 return res
2402 end
2403 end
2404
2405 redef class AAttrExpr
2406 redef fun accept_typing(v)
2407 do
2408 self.resolve_property(v)
2409 self.mtype = self.attr_type
2410 end
2411 end
2412
2413
2414 redef class AAttrAssignExpr
2415 redef fun accept_typing(v)
2416 do
2417 self.resolve_property(v)
2418 var mtype = self.attr_type
2419
2420 v.visit_expr_subtype(self.n_value, mtype)
2421 self.is_typed = mtype != null
2422 end
2423 end
2424
2425 redef class AAttrReassignExpr
2426 redef fun accept_typing(v)
2427 do
2428 self.resolve_property(v)
2429 var mtype = self.attr_type
2430 if mtype == null then return # Skip error
2431
2432 var rettype = self.resolve_reassignment(v, mtype, mtype)
2433
2434 self.is_typed = rettype != null
2435 end
2436 end
2437
2438 redef class AIssetAttrExpr
2439 redef fun accept_typing(v)
2440 do
2441 self.resolve_property(v)
2442 var mtype = self.attr_type
2443 if mtype == null then return # Skip error
2444
2445 var recvtype = self.n_expr.mtype.as(not null)
2446 var bound = v.resolve_for(mtype, recvtype, false)
2447 if bound isa MNullableType then
2448 v.error(n_id, "Type Error: `isset` on a nullable attribute.")
2449 end
2450 self.mtype = v.type_bool(self)
2451 end
2452 end
2453
2454 redef class AVarargExpr
2455 redef fun accept_typing(v)
2456 do
2457 # This kind of pseudo-expression can be only processed trough a signature
2458 # See `check_signature`
2459 # Other cases are a syntax error.
2460 v.error(self, "Syntax Error: unexpected `...`.")
2461 end
2462 end
2463
2464 ###
2465
2466 redef class ADebugTypeExpr
2467 redef fun accept_typing(v)
2468 do
2469 var expr = v.visit_expr(self.n_expr)
2470 if expr == null then return
2471 var unsafe = v.anchor_to(expr)
2472 var ntype = self.n_type
2473 var mtype = v.resolve_mtype(ntype)
2474 if mtype != null and mtype != expr then
2475 var umtype = v.anchor_to(mtype)
2476 v.modelbuilder.warning(self, "debug", "Found type {expr} (-> {unsafe}), expected {mtype} (-> {umtype})")
2477 end
2478 self.is_typed = true
2479 end
2480 end