model: all extern classes are subclasses of Pointer
[nit.git] / lib / md5 / md5.nit.c
1 /* This file is part of NIT ( http://www.nitlanguage.org ).
2 *
3 * Copyright 2011 Alexis Laferrière <alexis.laf@xymus.net>
4 *
5 * This file is free software, which comes along with NIT. This software is
6 * distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
7 * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
8 * PARTICULAR PURPOSE. You can modify it is you want, provided this header
9 * is kept unaltered, and a notification of the changes is added.
10 * You are allowed to redistribute it and sell it, alone or is a part of
11 * another product.
12 */
13
14 #include "md5.nit.h"
15
16 /*
17 C implementation of md5::String::md5_digest
18
19 Imported methods signatures:
20 char * String_to_cstring( String recv ) for string::String::to_cstring
21 String new_String_from_cstring( char * str ) for string::String::from_cstring
22 */
23 String String_md5___impl( String recv )
24 {
25 md5_state_t state;
26 md5_byte_t digest[16]; /* result */
27 char *hex_output = malloc( 33*sizeof( char ) );
28 int di;
29 char *in_text;
30
31 in_text = String_to_cstring( recv );
32
33 md5_init(&state);
34 md5_append(&state, (const md5_byte_t *)in_text, strlen(in_text) );
35 md5_finish(&state, digest);
36
37 for (di = 0; di < 16; ++di)
38 sprintf(hex_output + di * 2, "%02x", digest[di]);
39 hex_output[ 32 ] = '\0';
40
41 return new_String_from_cstring( hex_output );
42 }
43
44
45 /*
46 Following lines have a different source.
47
48 Copyright (C) 1999, 2000, 2002 Aladdin Enterprises. All rights reserved.
49
50 This software is provided 'as-is', without any express or implied
51 warranty. In no event will the authors be held liable for any damages
52 arising from the use of this software.
53
54 Permission is granted to anyone to use this software for any purpose,
55 including commercial applications, and to alter it and redistribute it
56 freely, subject to the following restrictions:
57
58 1. The origin of this software must not be misrepresented; you must not
59 claim that you wrote the original software. If you use this software
60 in a product, an acknowledgment in the product documentation would be
61 appreciated but is not required.
62 2. Altered source versions must be plainly marked as such, and must not be
63 misrepresented as being the original software.
64 3. This notice may not be removed or altered from any source distribution.
65
66 L. Peter Deutsch
67 ghost@aladdin.com
68
69 */
70 /* $Id: md5.c,v 1.6 2002/04/13 19:20:28 lpd Exp $ */
71 /*
72 Independent implementation of MD5 (RFC 1321).
73
74 This code implements the MD5 Algorithm defined in RFC 1321, whose
75 text is available at
76 http://www.ietf.org/rfc/rfc1321.txt
77 The code is derived from the text of the RFC, including the test suite
78 (section A.5) but excluding the rest of Appendix A. It does not include
79 any code or documentation that is identified in the RFC as being
80 copyrighted.
81
82 The original and principal author of md5.c is L. Peter Deutsch
83 <ghost@aladdin.com>. Other authors are noted in the change history
84 that follows (in reverse chronological order):
85
86 2002-04-13 lpd Clarified derivation from RFC 1321; now handles byte order
87 either statically or dynamically; added missing #include <string.h>
88 in library.
89 2002-03-11 lpd Corrected argument list for main(), and added int return
90 type, in test program and T value program.
91 2002-02-21 lpd Added missing #include <stdio.h> in test program.
92 2000-07-03 lpd Patched to eliminate warnings about "constant is
93 unsigned in ANSI C, signed in traditional"; made test program
94 self-checking.
95 1999-11-04 lpd Edited comments slightly for automatic TOC extraction.
96 1999-10-18 lpd Fixed typo in header comment (ansi2knr rather than md5).
97 1999-05-03 lpd Original version.
98 */
99
100 #include <string.h>
101
102 #undef BYTE_ORDER /* 1 = big-endian, -1 = little-endian, 0 = unknown */
103 #ifdef ARCH_IS_BIG_ENDIAN
104 # define BYTE_ORDER (ARCH_IS_BIG_ENDIAN ? 1 : -1)
105 #else
106 # define BYTE_ORDER 0
107 #endif
108
109 #define T_MASK ((md5_word_t)~0)
110 #define T1 /* 0xd76aa478 */ (T_MASK ^ 0x28955b87)
111 #define T2 /* 0xe8c7b756 */ (T_MASK ^ 0x173848a9)
112 #define T3 0x242070db
113 #define T4 /* 0xc1bdceee */ (T_MASK ^ 0x3e423111)
114 #define T5 /* 0xf57c0faf */ (T_MASK ^ 0x0a83f050)
115 #define T6 0x4787c62a
116 #define T7 /* 0xa8304613 */ (T_MASK ^ 0x57cfb9ec)
117 #define T8 /* 0xfd469501 */ (T_MASK ^ 0x02b96afe)
118 #define T9 0x698098d8
119 #define T10 /* 0x8b44f7af */ (T_MASK ^ 0x74bb0850)
120 #define T11 /* 0xffff5bb1 */ (T_MASK ^ 0x0000a44e)
121 #define T12 /* 0x895cd7be */ (T_MASK ^ 0x76a32841)
122 #define T13 0x6b901122
123 #define T14 /* 0xfd987193 */ (T_MASK ^ 0x02678e6c)
124 #define T15 /* 0xa679438e */ (T_MASK ^ 0x5986bc71)
125 #define T16 0x49b40821
126 #define T17 /* 0xf61e2562 */ (T_MASK ^ 0x09e1da9d)
127 #define T18 /* 0xc040b340 */ (T_MASK ^ 0x3fbf4cbf)
128 #define T19 0x265e5a51
129 #define T20 /* 0xe9b6c7aa */ (T_MASK ^ 0x16493855)
130 #define T21 /* 0xd62f105d */ (T_MASK ^ 0x29d0efa2)
131 #define T22 0x02441453
132 #define T23 /* 0xd8a1e681 */ (T_MASK ^ 0x275e197e)
133 #define T24 /* 0xe7d3fbc8 */ (T_MASK ^ 0x182c0437)
134 #define T25 0x21e1cde6
135 #define T26 /* 0xc33707d6 */ (T_MASK ^ 0x3cc8f829)
136 #define T27 /* 0xf4d50d87 */ (T_MASK ^ 0x0b2af278)
137 #define T28 0x455a14ed
138 #define T29 /* 0xa9e3e905 */ (T_MASK ^ 0x561c16fa)
139 #define T30 /* 0xfcefa3f8 */ (T_MASK ^ 0x03105c07)
140 #define T31 0x676f02d9
141 #define T32 /* 0x8d2a4c8a */ (T_MASK ^ 0x72d5b375)
142 #define T33 /* 0xfffa3942 */ (T_MASK ^ 0x0005c6bd)
143 #define T34 /* 0x8771f681 */ (T_MASK ^ 0x788e097e)
144 #define T35 0x6d9d6122
145 #define T36 /* 0xfde5380c */ (T_MASK ^ 0x021ac7f3)
146 #define T37 /* 0xa4beea44 */ (T_MASK ^ 0x5b4115bb)
147 #define T38 0x4bdecfa9
148 #define T39 /* 0xf6bb4b60 */ (T_MASK ^ 0x0944b49f)
149 #define T40 /* 0xbebfbc70 */ (T_MASK ^ 0x4140438f)
150 #define T41 0x289b7ec6
151 #define T42 /* 0xeaa127fa */ (T_MASK ^ 0x155ed805)
152 #define T43 /* 0xd4ef3085 */ (T_MASK ^ 0x2b10cf7a)
153 #define T44 0x04881d05
154 #define T45 /* 0xd9d4d039 */ (T_MASK ^ 0x262b2fc6)
155 #define T46 /* 0xe6db99e5 */ (T_MASK ^ 0x1924661a)
156 #define T47 0x1fa27cf8
157 #define T48 /* 0xc4ac5665 */ (T_MASK ^ 0x3b53a99a)
158 #define T49 /* 0xf4292244 */ (T_MASK ^ 0x0bd6ddbb)
159 #define T50 0x432aff97
160 #define T51 /* 0xab9423a7 */ (T_MASK ^ 0x546bdc58)
161 #define T52 /* 0xfc93a039 */ (T_MASK ^ 0x036c5fc6)
162 #define T53 0x655b59c3
163 #define T54 /* 0x8f0ccc92 */ (T_MASK ^ 0x70f3336d)
164 #define T55 /* 0xffeff47d */ (T_MASK ^ 0x00100b82)
165 #define T56 /* 0x85845dd1 */ (T_MASK ^ 0x7a7ba22e)
166 #define T57 0x6fa87e4f
167 #define T58 /* 0xfe2ce6e0 */ (T_MASK ^ 0x01d3191f)
168 #define T59 /* 0xa3014314 */ (T_MASK ^ 0x5cfebceb)
169 #define T60 0x4e0811a1
170 #define T61 /* 0xf7537e82 */ (T_MASK ^ 0x08ac817d)
171 #define T62 /* 0xbd3af235 */ (T_MASK ^ 0x42c50dca)
172 #define T63 0x2ad7d2bb
173 #define T64 /* 0xeb86d391 */ (T_MASK ^ 0x14792c6e)
174
175
176 static void
177 md5_process(md5_state_t *pms, const md5_byte_t *data /*[64]*/)
178 {
179 md5_word_t
180 a = pms->abcd[0], b = pms->abcd[1],
181 c = pms->abcd[2], d = pms->abcd[3];
182 md5_word_t t;
183 #if BYTE_ORDER > 0
184 /* Define storage only for big-endian CPUs. */
185 md5_word_t X[16];
186 #else
187 /* Define storage for little-endian or both types of CPUs. */
188 md5_word_t xbuf[16];
189 const md5_word_t *X;
190 #endif
191
192 {
193 #if BYTE_ORDER == 0
194 /*
195 * Determine dynamically whether this is a big-endian or
196 * little-endian machine, since we can use a more efficient
197 * algorithm on the latter.
198 */
199 static const int w = 1;
200
201 if (*((const md5_byte_t *)&w)) /* dynamic little-endian */
202 #endif
203 #if BYTE_ORDER <= 0 /* little-endian */
204 {
205 /*
206 * On little-endian machines, we can process properly aligned
207 * data without copying it.
208 */
209 if (!((data - (const md5_byte_t *)0) & 3)) {
210 /* data are properly aligned */
211 X = (const md5_word_t *)data;
212 } else {
213 /* not aligned */
214 memcpy(xbuf, data, 64);
215 X = xbuf;
216 }
217 }
218 #endif
219 #if BYTE_ORDER == 0
220 else /* dynamic big-endian */
221 #endif
222 #if BYTE_ORDER >= 0 /* big-endian */
223 {
224 /*
225 * On big-endian machines, we must arrange the bytes in the
226 * right order.
227 */
228 const md5_byte_t *xp = data;
229 int i;
230
231 # if BYTE_ORDER == 0
232 X = xbuf; /* (dynamic only) */
233 # else
234 # define xbuf X /* (static only) */
235 # endif
236 for (i = 0; i < 16; ++i, xp += 4)
237 xbuf[i] = xp[0] + (xp[1] << 8) + (xp[2] << 16) + (xp[3] << 24);
238 }
239 #endif
240 }
241
242 #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
243
244 /* Round 1. */
245 /* Let [abcd k s i] denote the operation
246 a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
247 #define F(x, y, z) (((x) & (y)) | (~(x) & (z)))
248 #define SET(a, b, c, d, k, s, Ti)\
249 t = a + F(b,c,d) + X[k] + Ti;\
250 a = ROTATE_LEFT(t, s) + b
251 /* Do the following 16 operations. */
252 SET(a, b, c, d, 0, 7, T1);
253 SET(d, a, b, c, 1, 12, T2);
254 SET(c, d, a, b, 2, 17, T3);
255 SET(b, c, d, a, 3, 22, T4);
256 SET(a, b, c, d, 4, 7, T5);
257 SET(d, a, b, c, 5, 12, T6);
258 SET(c, d, a, b, 6, 17, T7);
259 SET(b, c, d, a, 7, 22, T8);
260 SET(a, b, c, d, 8, 7, T9);
261 SET(d, a, b, c, 9, 12, T10);
262 SET(c, d, a, b, 10, 17, T11);
263 SET(b, c, d, a, 11, 22, T12);
264 SET(a, b, c, d, 12, 7, T13);
265 SET(d, a, b, c, 13, 12, T14);
266 SET(c, d, a, b, 14, 17, T15);
267 SET(b, c, d, a, 15, 22, T16);
268 #undef SET
269
270 /* Round 2. */
271 /* Let [abcd k s i] denote the operation
272 a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
273 #define G(x, y, z) (((x) & (z)) | ((y) & ~(z)))
274 #define SET(a, b, c, d, k, s, Ti)\
275 t = a + G(b,c,d) + X[k] + Ti;\
276 a = ROTATE_LEFT(t, s) + b
277 /* Do the following 16 operations. */
278 SET(a, b, c, d, 1, 5, T17);
279 SET(d, a, b, c, 6, 9, T18);
280 SET(c, d, a, b, 11, 14, T19);
281 SET(b, c, d, a, 0, 20, T20);
282 SET(a, b, c, d, 5, 5, T21);
283 SET(d, a, b, c, 10, 9, T22);
284 SET(c, d, a, b, 15, 14, T23);
285 SET(b, c, d, a, 4, 20, T24);
286 SET(a, b, c, d, 9, 5, T25);
287 SET(d, a, b, c, 14, 9, T26);
288 SET(c, d, a, b, 3, 14, T27);
289 SET(b, c, d, a, 8, 20, T28);
290 SET(a, b, c, d, 13, 5, T29);
291 SET(d, a, b, c, 2, 9, T30);
292 SET(c, d, a, b, 7, 14, T31);
293 SET(b, c, d, a, 12, 20, T32);
294 #undef SET
295
296 /* Round 3. */
297 /* Let [abcd k s t] denote the operation
298 a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
299 #define H(x, y, z) ((x) ^ (y) ^ (z))
300 #define SET(a, b, c, d, k, s, Ti)\
301 t = a + H(b,c,d) + X[k] + Ti;\
302 a = ROTATE_LEFT(t, s) + b
303 /* Do the following 16 operations. */
304 SET(a, b, c, d, 5, 4, T33);
305 SET(d, a, b, c, 8, 11, T34);
306 SET(c, d, a, b, 11, 16, T35);
307 SET(b, c, d, a, 14, 23, T36);
308 SET(a, b, c, d, 1, 4, T37);
309 SET(d, a, b, c, 4, 11, T38);
310 SET(c, d, a, b, 7, 16, T39);
311 SET(b, c, d, a, 10, 23, T40);
312 SET(a, b, c, d, 13, 4, T41);
313 SET(d, a, b, c, 0, 11, T42);
314 SET(c, d, a, b, 3, 16, T43);
315 SET(b, c, d, a, 6, 23, T44);
316 SET(a, b, c, d, 9, 4, T45);
317 SET(d, a, b, c, 12, 11, T46);
318 SET(c, d, a, b, 15, 16, T47);
319 SET(b, c, d, a, 2, 23, T48);
320 #undef SET
321
322 /* Round 4. */
323 /* Let [abcd k s t] denote the operation
324 a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
325 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
326 #define SET(a, b, c, d, k, s, Ti)\
327 t = a + I(b,c,d) + X[k] + Ti;\
328 a = ROTATE_LEFT(t, s) + b
329 /* Do the following 16 operations. */
330 SET(a, b, c, d, 0, 6, T49);
331 SET(d, a, b, c, 7, 10, T50);
332 SET(c, d, a, b, 14, 15, T51);
333 SET(b, c, d, a, 5, 21, T52);
334 SET(a, b, c, d, 12, 6, T53);
335 SET(d, a, b, c, 3, 10, T54);
336 SET(c, d, a, b, 10, 15, T55);
337 SET(b, c, d, a, 1, 21, T56);
338 SET(a, b, c, d, 8, 6, T57);
339 SET(d, a, b, c, 15, 10, T58);
340 SET(c, d, a, b, 6, 15, T59);
341 SET(b, c, d, a, 13, 21, T60);
342 SET(a, b, c, d, 4, 6, T61);
343 SET(d, a, b, c, 11, 10, T62);
344 SET(c, d, a, b, 2, 15, T63);
345 SET(b, c, d, a, 9, 21, T64);
346 #undef SET
347
348 /* Then perform the following additions. (That is increment each
349 of the four registers by the value it had before this block
350 was started.) */
351 pms->abcd[0] += a;
352 pms->abcd[1] += b;
353 pms->abcd[2] += c;
354 pms->abcd[3] += d;
355 }
356
357 void
358 md5_init(md5_state_t *pms)
359 {
360 pms->count[0] = pms->count[1] = 0;
361 pms->abcd[0] = 0x67452301;
362 pms->abcd[1] = /*0xefcdab89*/ T_MASK ^ 0x10325476;
363 pms->abcd[2] = /*0x98badcfe*/ T_MASK ^ 0x67452301;
364 pms->abcd[3] = 0x10325476;
365 }
366
367 void
368 md5_append(md5_state_t *pms, const md5_byte_t *data, int nbytes)
369 {
370 const md5_byte_t *p = data;
371 int left = nbytes;
372 int offset = (pms->count[0] >> 3) & 63;
373 md5_word_t nbits = (md5_word_t)(nbytes << 3);
374
375 if (nbytes <= 0)
376 return;
377
378 /* Update the message length. */
379 pms->count[1] += nbytes >> 29;
380 pms->count[0] += nbits;
381 if (pms->count[0] < nbits)
382 pms->count[1]++;
383
384 /* Process an initial partial block. */
385 if (offset) {
386 int copy = (offset + nbytes > 64 ? 64 - offset : nbytes);
387
388 memcpy(pms->buf + offset, p, copy);
389 if (offset + copy < 64)
390 return;
391 p += copy;
392 left -= copy;
393 md5_process(pms, pms->buf);
394 }
395
396 /* Process full blocks. */
397 for (; left >= 64; p += 64, left -= 64)
398 md5_process(pms, p);
399
400 /* Process a final partial block. */
401 if (left)
402 memcpy(pms->buf, p, left);
403 }
404
405 void
406 md5_finish(md5_state_t *pms, md5_byte_t digest[16])
407 {
408 static const md5_byte_t pad[64] = {
409 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
410 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
411 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
412 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
413 };
414 md5_byte_t data[8];
415 int i;
416
417 /* Save the length before padding. */
418 for (i = 0; i < 8; ++i)
419 data[i] = (md5_byte_t)(pms->count[i >> 2] >> ((i & 3) << 3));
420 /* Pad to 56 bytes mod 64. */
421 md5_append(pms, pad, ((55 - (pms->count[0] >> 3)) & 63) + 1);
422 /* Append the length. */
423 md5_append(pms, data, 8);
424 for (i = 0; i < 16; ++i)
425 digest[i] = (md5_byte_t)(pms->abcd[i >> 2] >> ((i & 3) << 3));
426 }