separate_compiler: always compile stub of methods to avoid unresolved symbols
[nit.git] / src / compiler / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import coloring
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --no-tag-primitives
33 var opt_no_tag_primitives = new OptionBool("Use only boxes for primitive types", "--no-tag-primitives")
34
35 # --colors-are-symbols
36 var opt_colors_are_symbols = new OptionBool("Store colors as symbols (link-boost)", "--colors-are-symbols")
37 # --trampoline-call
38 var opt_trampoline_call = new OptionBool("Use an indirection when calling", "--trampoline-call")
39 # --guard-call
40 var opt_guard_call = new OptionBool("Guard VFT calls with a direct call", "--guard-call")
41 # --substitute-monomorph
42 var opt_substitute_monomorph = new OptionBool("Replace monomorph trampoline with direct call (link-boost)", "--substitute-monomorph")
43 # --link-boost
44 var opt_link_boost = new OptionBool("Enable all link-boost optimizations", "--link-boost")
45
46 # --inline-coloring-numbers
47 var opt_inline_coloring_numbers = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
48 # --inline-some-methods
49 var opt_inline_some_methods = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
50 # --direct-call-monomorph
51 var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph")
52 # --direct-call-monomorph0
53 var opt_direct_call_monomorph0 = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph0")
54 # --skip-dead-methods
55 var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods")
56 # --semi-global
57 var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global")
58 # --no-colo-dead-methods
59 var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods")
60 # --tables-metrics
61 var opt_tables_metrics = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
62 # --type-poset
63 var opt_type_poset = new OptionBool("Build a poset of types to create more condensed tables.", "--type-poset")
64
65 redef init
66 do
67 super
68 self.option_context.add_option(self.opt_separate)
69 self.option_context.add_option(self.opt_no_inline_intern)
70 self.option_context.add_option(self.opt_no_union_attribute)
71 self.option_context.add_option(self.opt_no_shortcut_equate)
72 self.option_context.add_option(self.opt_no_tag_primitives)
73 self.option_context.add_option(opt_colors_are_symbols, opt_trampoline_call, opt_guard_call, opt_direct_call_monomorph0, opt_substitute_monomorph, opt_link_boost)
74 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global)
75 self.option_context.add_option(self.opt_colo_dead_methods)
76 self.option_context.add_option(self.opt_tables_metrics)
77 self.option_context.add_option(self.opt_type_poset)
78 end
79
80 redef fun process_options(args)
81 do
82 super
83
84 var tc = self
85 if tc.opt_semi_global.value then
86 tc.opt_inline_coloring_numbers.value = true
87 tc.opt_inline_some_methods.value = true
88 tc.opt_direct_call_monomorph.value = true
89 tc.opt_skip_dead_methods.value = true
90 end
91 if tc.opt_link_boost.value then
92 tc.opt_colors_are_symbols.value = true
93 tc.opt_substitute_monomorph.value = true
94 end
95 if tc.opt_substitute_monomorph.value then
96 tc.opt_trampoline_call.value = true
97 end
98 end
99
100 var separate_compiler_phase = new SeparateCompilerPhase(self, null)
101 end
102
103 class SeparateCompilerPhase
104 super Phase
105 redef fun process_mainmodule(mainmodule, given_mmodules) do
106 if not toolcontext.opt_separate.value then return
107
108 var modelbuilder = toolcontext.modelbuilder
109 var analysis = modelbuilder.do_rapid_type_analysis(mainmodule)
110 modelbuilder.run_separate_compiler(mainmodule, analysis)
111 end
112 end
113
114 redef class ModelBuilder
115 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
116 do
117 var time0 = get_time
118 self.toolcontext.info("*** GENERATING C ***", 1)
119
120 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
121 compiler.do_compilation
122 compiler.display_stats
123
124 var time1 = get_time
125 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
126 write_and_make(compiler)
127 end
128
129 # Count number of invocations by VFT
130 private var nb_invok_by_tables = 0
131 # Count number of invocations by direct call
132 private var nb_invok_by_direct = 0
133 # Count number of invocations by inlining
134 private var nb_invok_by_inline = 0
135 end
136
137 # Singleton that store the knowledge about the separate compilation process
138 class SeparateCompiler
139 super AbstractCompiler
140
141 redef type VISITOR: SeparateCompilerVisitor
142
143 # The result of the RTA (used to know live types and methods)
144 var runtime_type_analysis: nullable RapidTypeAnalysis
145
146 private var undead_types: Set[MType] = new HashSet[MType]
147 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
148
149 private var type_ids: Map[MType, Int] is noinit
150 private var type_colors: Map[MType, Int] is noinit
151 private var opentype_colors: Map[MType, Int] is noinit
152
153 init do
154 var file = new_file("nit.common")
155 self.header = new CodeWriter(file)
156 self.compile_box_kinds
157 end
158
159 redef fun do_compilation
160 do
161 var compiler = self
162 compiler.compile_header
163
164 var c_name = mainmodule.c_name
165
166 # compile class structures
167 modelbuilder.toolcontext.info("Property coloring", 2)
168 compiler.new_file("{c_name}.classes")
169 compiler.do_property_coloring
170 compiler.compile_class_infos
171 for m in mainmodule.in_importation.greaters do
172 for mclass in m.intro_mclasses do
173 #if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
174 compiler.compile_class_to_c(mclass)
175 end
176 end
177
178 # The main function of the C
179 compiler.new_file("{c_name}.main")
180 compiler.compile_nitni_global_ref_functions
181 compiler.compile_main_function
182 compiler.compile_finalizer_function
183 compiler.link_mmethods
184
185 # compile methods
186 for m in mainmodule.in_importation.greaters do
187 modelbuilder.toolcontext.info("Generate C for module {m.full_name}", 2)
188 compiler.new_file("{m.c_name}.sep")
189 compiler.compile_module_to_c(m)
190 end
191
192 # compile live & cast type structures
193 modelbuilder.toolcontext.info("Type coloring", 2)
194 compiler.new_file("{c_name}.types")
195 compiler.compile_types
196 end
197
198 # Color and compile type structures and cast information
199 fun compile_types
200 do
201 var compiler = self
202
203 var mtypes = compiler.do_type_coloring
204 for t in mtypes do
205 compiler.compile_type_to_c(t)
206 end
207 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
208 for t in compiler.undead_types do
209 if mtypes.has(t) then continue
210 compiler.compile_type_to_c(t)
211 end
212
213 end
214
215 redef fun compile_header_structs do
216 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
217 self.compile_header_attribute_structs
218 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
219
220 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
221 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
222 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
223 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
224 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
225
226 if not modelbuilder.toolcontext.opt_no_tag_primitives.value then
227 self.header.add_decl("extern const struct class *class_info[];")
228 self.header.add_decl("extern const struct type *type_info[];")
229 end
230 end
231
232 fun compile_header_attribute_structs
233 do
234 if modelbuilder.toolcontext.opt_no_union_attribute.value then
235 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
236 else
237 self.header.add_decl("typedef union \{")
238 self.header.add_decl("void* val;")
239 for c, v in self.box_kinds do
240 var t = c.mclass_type
241
242 # `Pointer` reuse the `val` field
243 if t.mclass.name == "Pointer" then continue
244
245 self.header.add_decl("{t.ctype_extern} {t.ctypename};")
246 end
247 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
248 end
249 end
250
251 fun compile_box_kinds
252 do
253 # Collect all bas box class
254 # FIXME: this is not completely fine with a separate compilation scheme
255 for classname in ["Int", "Bool", "Byte", "Char", "Float", "NativeString", "Pointer"] do
256 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
257 if classes == null then continue
258 assert classes.length == 1 else print classes.join(", ")
259 self.box_kinds[classes.first] = self.box_kinds.length + 1
260 end
261 end
262
263 var box_kinds = new HashMap[MClass, Int]
264
265 fun box_kind_of(mclass: MClass): Int
266 do
267 #var pointer_type = self.mainmodule.pointer_type
268 #if mclass.mclass_type.ctype == "val*" or mclass.mclass_type.is_subtype(self.mainmodule, mclass.mclass_type pointer_type) then
269 if mclass.mclass_type.ctype_extern == "val*" then
270 return 0
271 else if mclass.kind == extern_kind and mclass.name != "NativeString" then
272 return self.box_kinds[self.mainmodule.pointer_type.mclass]
273 else
274 return self.box_kinds[mclass]
275 end
276
277 end
278
279 fun compile_color_consts(colors: Map[Object, Int]) do
280 var v = new_visitor
281 for m, c in colors do
282 compile_color_const(v, m, c)
283 end
284 end
285
286 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
287 if color_consts_done.has(m) then return
288 if m isa MEntity then
289 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
290 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
291 else if not modelbuilder.toolcontext.opt_colors_are_symbols.value or not v.compiler.target_platform.supports_linker_script then
292 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
293 v.add("const int {m.const_color} = {color};")
294 else
295 # The color 'C' is the ``address'' of a false static variable 'XC'
296 self.provide_declaration(m.const_color, "#define {m.const_color} ((long)&X{m.const_color})\nextern const void X{m.const_color};")
297 if color == -1 then color = 0 # Symbols cannot be negative, so just use 0 for dead things
298 # Teach the linker that the address of 'XC' is `color`.
299 linker_script.add("X{m.const_color} = {color};")
300 end
301 else
302 abort
303 end
304 color_consts_done.add(m)
305 end
306
307 private var color_consts_done = new HashSet[Object]
308
309 # The conflict graph of classes used for coloration
310 var class_conflict_graph: POSetConflictGraph[MClass] is noinit
311
312 # colorize classe properties
313 fun do_property_coloring do
314
315 var rta = runtime_type_analysis
316
317 # Class graph
318 var mclasses = mainmodule.flatten_mclass_hierarchy
319 class_conflict_graph = mclasses.to_conflict_graph
320
321 # Prepare to collect elements to color and build layout with
322 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
323 var mattributes = new HashMap[MClass, Set[MAttribute]]
324
325 # The dead methods and super-call, still need to provide a dead color symbol
326 var dead_methods = new Array[PropertyLayoutElement]
327
328 for mclass in mclasses do
329 mmethods[mclass] = new HashSet[PropertyLayoutElement]
330 mattributes[mclass] = new HashSet[MAttribute]
331 end
332
333 # Pre-collect known live things
334 if rta != null then
335 for m in rta.live_methods do
336 mmethods[m.intro_mclassdef.mclass].add m
337 end
338 for m in rta.live_super_sends do
339 var mclass = m.mclassdef.mclass
340 mmethods[mclass].add m
341 end
342 end
343
344 for m in mainmodule.in_importation.greaters do for cd in m.mclassdefs do
345 var mclass = cd.mclass
346 # Collect methods ad attributes
347 for p in cd.intro_mproperties do
348 if p isa MMethod then
349 if rta == null then
350 mmethods[mclass].add p
351 else if not rta.live_methods.has(p) then
352 dead_methods.add p
353 end
354 else if p isa MAttribute then
355 mattributes[mclass].add p
356 end
357 end
358
359 # Collect all super calls (dead or not)
360 for mpropdef in cd.mpropdefs do
361 if not mpropdef isa MMethodDef then continue
362 if mpropdef.has_supercall then
363 if rta == null then
364 mmethods[mclass].add mpropdef
365 else if not rta.live_super_sends.has(mpropdef) then
366 dead_methods.add mpropdef
367 end
368 end
369 end
370 end
371
372 # methods coloration
373 var meth_colorer = new POSetGroupColorer[MClass, PropertyLayoutElement](class_conflict_graph, mmethods)
374 var method_colors = meth_colorer.colors
375 compile_color_consts(method_colors)
376
377 # give null color to dead methods and supercalls
378 for mproperty in dead_methods do compile_color_const(new_visitor, mproperty, -1)
379
380 # attribute coloration
381 var attr_colorer = new POSetGroupColorer[MClass, MAttribute](class_conflict_graph, mattributes)
382 var attr_colors = attr_colorer.colors#ize(poset, mattributes)
383 compile_color_consts(attr_colors)
384
385 # Build method and attribute tables
386 method_tables = new HashMap[MClass, Array[nullable MPropDef]]
387 attr_tables = new HashMap[MClass, Array[nullable MProperty]]
388 for mclass in mclasses do
389 if not mclass.has_new_factory and (mclass.kind == abstract_kind or mclass.kind == interface_kind) then continue
390 if rta != null and not rta.live_classes.has(mclass) then continue
391
392 var mtype = mclass.intro.bound_mtype
393
394 # Resolve elements in the layout to get the final table
395 var meth_layout = meth_colorer.build_layout(mclass)
396 var meth_table = new Array[nullable MPropDef].with_capacity(meth_layout.length)
397 method_tables[mclass] = meth_table
398 for e in meth_layout do
399 if e == null then
400 meth_table.add null
401 else if e isa MMethod then
402 # Standard method call of `e`
403 meth_table.add e.lookup_first_definition(mainmodule, mtype)
404 else if e isa MMethodDef then
405 # Super-call in the methoddef `e`
406 meth_table.add e.lookup_next_definition(mainmodule, mtype)
407 else
408 abort
409 end
410 end
411
412 # Do not need to resolve attributes as only the position is used
413 attr_tables[mclass] = attr_colorer.build_layout(mclass)
414 end
415
416
417 end
418
419 # colorize live types of the program
420 private fun do_type_coloring: Collection[MType] do
421 # Collect types to colorize
422 var live_types = runtime_type_analysis.live_types
423 var live_cast_types = runtime_type_analysis.live_cast_types
424
425 var res = new HashSet[MType]
426 res.add_all live_types
427 res.add_all live_cast_types
428
429 if modelbuilder.toolcontext.opt_type_poset.value then
430 # Compute colors with a type poset
431 var poset = poset_from_mtypes(live_types, live_cast_types)
432 var colorer = new POSetColorer[MType]
433 colorer.colorize(poset)
434 type_ids = colorer.ids
435 type_colors = colorer.colors
436 type_tables = build_type_tables(poset)
437 else
438 # Compute colors using the class poset
439 # Faster to compute but the number of holes can degenerate
440 compute_type_test_layouts(live_types, live_cast_types)
441
442 type_ids = new HashMap[MType, Int]
443 for x in res do type_ids[x] = type_ids.length + 1
444 end
445
446 # VT and FT are stored with other unresolved types in the big resolution_tables
447 self.compute_resolution_tables(live_types)
448
449 return res
450 end
451
452 private fun poset_from_mtypes(mtypes, cast_types: Set[MType]): POSet[MType] do
453 var poset = new POSet[MType]
454
455 # Instead of doing the full matrix mtypes X cast_types,
456 # a grouping is done by the base classes of the type so
457 # that we compare only types whose base classes are in inheritance.
458
459 var mtypes_by_class = new MultiHashMap[MClass, MType]
460 for e in mtypes do
461 var c = e.undecorate.as(MClassType).mclass
462 mtypes_by_class[c].add(e)
463 poset.add_node(e)
464 end
465
466 var casttypes_by_class = new MultiHashMap[MClass, MType]
467 for e in cast_types do
468 var c = e.undecorate.as(MClassType).mclass
469 casttypes_by_class[c].add(e)
470 poset.add_node(e)
471 end
472
473 for c1, ts1 in mtypes_by_class do
474 for c2 in c1.in_hierarchy(mainmodule).greaters do
475 var ts2 = casttypes_by_class[c2]
476 for e in ts1 do
477 for o in ts2 do
478 if e == o then continue
479 if e.is_subtype(mainmodule, null, o) then
480 poset.add_edge(e, o)
481 end
482 end
483 end
484 end
485 end
486 return poset
487 end
488
489 # Build type tables
490 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
491 var tables = new HashMap[MType, Array[nullable MType]]
492 for mtype in mtypes do
493 var table = new Array[nullable MType]
494 for sup in mtypes[mtype].greaters do
495 var color = type_colors[sup]
496 if table.length <= color then
497 for i in [table.length .. color[ do
498 table[i] = null
499 end
500 end
501 table[color] = sup
502 end
503 tables[mtype] = table
504 end
505 return tables
506 end
507
508
509 private fun compute_type_test_layouts(mtypes: Set[MClassType], cast_types: Set[MType]) do
510 # Group cast_type by their classes
511 var bucklets = new HashMap[MClass, Set[MType]]
512 for e in cast_types do
513 var c = e.undecorate.as(MClassType).mclass
514 if not bucklets.has_key(c) then
515 bucklets[c] = new HashSet[MType]
516 end
517 bucklets[c].add(e)
518 end
519
520 # Colorize cast_types from the class hierarchy
521 var colorer = new POSetGroupColorer[MClass, MType](class_conflict_graph, bucklets)
522 type_colors = colorer.colors
523
524 var layouts = new HashMap[MClass, Array[nullable MType]]
525 for c in runtime_type_analysis.live_classes do
526 layouts[c] = colorer.build_layout(c)
527 end
528
529 # Build the table for each live type
530 for t in mtypes do
531 # A live type use the layout of its class
532 var c = t.mclass
533 var layout = layouts[c]
534 var table = new Array[nullable MType].with_capacity(layout.length)
535 type_tables[t] = table
536
537 # For each potential super-type in the layout
538 for sup in layout do
539 if sup == null then
540 table.add null
541 else if t.is_subtype(mainmodule, null, sup) then
542 table.add sup
543 else
544 table.add null
545 end
546 end
547 end
548 end
549
550 # resolution_tables is used to perform a type resolution at runtime in O(1)
551 private fun compute_resolution_tables(mtypes: Set[MType]) do
552 # During the visit of the body of classes, live_unresolved_types are collected
553 # and associated to
554 # Collect all live_unresolved_types (visited in the body of classes)
555
556 # Determinate fo each livetype what are its possible requested anchored types
557 var mtype2unresolved = new HashMap[MClass, Set[MType]]
558 for mtype in self.runtime_type_analysis.live_types do
559 var mclass = mtype.mclass
560 var set = mtype2unresolved.get_or_null(mclass)
561 if set == null then
562 set = new HashSet[MType]
563 mtype2unresolved[mclass] = set
564 end
565 for cd in mtype.collect_mclassdefs(self.mainmodule) do
566 if self.live_unresolved_types.has_key(cd) then
567 set.add_all(self.live_unresolved_types[cd])
568 end
569 end
570 end
571
572 # Compute the table layout with the prefered method
573 var colorer = new BucketsColorer[MClass, MType]
574
575 opentype_colors = colorer.colorize(mtype2unresolved)
576 resolution_tables = self.build_resolution_tables(self.runtime_type_analysis.live_types, mtype2unresolved)
577
578 # Compile a C constant for each collected unresolved type.
579 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
580 var all_unresolved = new HashSet[MType]
581 for t in self.live_unresolved_types.values do
582 all_unresolved.add_all(t)
583 end
584 var all_unresolved_types_colors = new HashMap[MType, Int]
585 for t in all_unresolved do
586 if opentype_colors.has_key(t) then
587 all_unresolved_types_colors[t] = opentype_colors[t]
588 else
589 all_unresolved_types_colors[t] = -1
590 end
591 end
592 self.compile_color_consts(all_unresolved_types_colors)
593
594 #print "tables"
595 #for k, v in unresolved_types_tables.as(not null) do
596 # print "{k}: {v.join(", ")}"
597 #end
598 #print ""
599 end
600
601 fun build_resolution_tables(elements: Set[MClassType], map: Map[MClass, Set[MType]]): Map[MClassType, Array[nullable MType]] do
602 var tables = new HashMap[MClassType, Array[nullable MType]]
603 for mclasstype in elements do
604 var mtypes = map[mclasstype.mclass]
605 var table = new Array[nullable MType]
606 for mtype in mtypes do
607 var color = opentype_colors[mtype]
608 if table.length <= color then
609 for i in [table.length .. color[ do
610 table[i] = null
611 end
612 end
613 table[color] = mtype
614 end
615 tables[mclasstype] = table
616 end
617 return tables
618 end
619
620 # Separately compile all the method definitions of the module
621 fun compile_module_to_c(mmodule: MModule)
622 do
623 var old_module = self.mainmodule
624 self.mainmodule = mmodule
625 for cd in mmodule.mclassdefs do
626 for pd in cd.mpropdefs do
627 if not pd isa MMethodDef then continue
628 if pd.msignature == null then continue # Skip broken method
629 var rta = runtime_type_analysis
630 if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue
631 #print "compile {pd} @ {cd} @ {mmodule}"
632 var r = pd.separate_runtime_function
633 r.compile_to_c(self)
634 var r2 = pd.virtual_runtime_function
635 if r2 != r then r2.compile_to_c(self)
636
637 # Generate trampolines
638 if modelbuilder.toolcontext.opt_trampoline_call.value then
639 r2.compile_trampolines(self)
640 end
641 end
642 end
643 self.mainmodule = old_module
644 end
645
646 # Process all introduced methods and compile some linking information (if needed)
647 fun link_mmethods
648 do
649 if not modelbuilder.toolcontext.opt_substitute_monomorph.value and not modelbuilder.toolcontext.opt_guard_call.value then return
650
651 for mmodule in mainmodule.in_importation.greaters do
652 for cd in mmodule.mclassdefs do
653 for m in cd.intro_mproperties do
654 if not m isa MMethod then continue
655 link_mmethod(m)
656 end
657 end
658 end
659 end
660
661 # Compile some linking information (if needed)
662 fun link_mmethod(m: MMethod)
663 do
664 var n2 = "CALL_" + m.const_color
665
666 # Replace monomorphic call by a direct call to the virtual implementation
667 var md = is_monomorphic(m)
668 if md != null then
669 linker_script.add("{n2} = {md.virtual_runtime_function.c_name};")
670 end
671
672 # If opt_substitute_monomorph then a trampoline is used, else a weak symbol is used
673 if modelbuilder.toolcontext.opt_guard_call.value then
674 var r = m.intro.virtual_runtime_function
675 provide_declaration(n2, "{r.c_ret} {n2}{r.c_sig} __attribute__((weak));")
676 end
677 end
678
679 # The single mmethodef called in case of monomorphism.
680 # Returns nul if dead or polymorphic.
681 fun is_monomorphic(m: MMethod): nullable MMethodDef
682 do
683 var rta = runtime_type_analysis
684 if rta == null then
685 # Without RTA, monomorphic means alone (uniq name)
686 if m.mpropdefs.length == 1 then
687 return m.mpropdefs.first
688 else
689 return null
690 end
691 else
692 # With RTA, monomorphic means only live methoddef
693 var res: nullable MMethodDef = null
694 for md in m.mpropdefs do
695 if rta.live_methoddefs.has(md) then
696 if res != null then return null
697 res = md
698 end
699 end
700 return res
701 end
702 end
703
704 # Globaly compile the type structure of a live type
705 fun compile_type_to_c(mtype: MType)
706 do
707 assert not mtype.need_anchor
708 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
709 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
710 var c_name = mtype.c_name
711 var v = new SeparateCompilerVisitor(self)
712 v.add_decl("/* runtime type {mtype} */")
713
714 # extern const struct type_X
715 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
716
717 # const struct type_X
718 v.add_decl("const struct type type_{c_name} = \{")
719
720 # type id (for cast target)
721 if is_cast_live then
722 v.add_decl("{type_ids[mtype]},")
723 else
724 v.add_decl("-1, /*CAST DEAD*/")
725 end
726
727 # type name
728 v.add_decl("\"{mtype}\", /* class_name_string */")
729
730 # type color (for cast target)
731 if is_cast_live then
732 v.add_decl("{type_colors[mtype]},")
733 else
734 v.add_decl("-1, /*CAST DEAD*/")
735 end
736
737 # is_nullable bit
738 if mtype isa MNullableType then
739 v.add_decl("1,")
740 else
741 v.add_decl("0,")
742 end
743
744 # resolution table (for receiver)
745 if is_live then
746 var mclass_type = mtype.undecorate
747 assert mclass_type isa MClassType
748 if resolution_tables[mclass_type].is_empty then
749 v.add_decl("NULL, /*NO RESOLUTIONS*/")
750 else
751 compile_type_resolution_table(mtype)
752 v.require_declaration("resolution_table_{c_name}")
753 v.add_decl("&resolution_table_{c_name},")
754 end
755 else
756 v.add_decl("NULL, /*DEAD*/")
757 end
758
759 # cast table (for receiver)
760 if is_live then
761 v.add_decl("{self.type_tables[mtype].length},")
762 v.add_decl("\{")
763 for stype in self.type_tables[mtype] do
764 if stype == null then
765 v.add_decl("-1, /* empty */")
766 else
767 v.add_decl("{type_ids[stype]}, /* {stype} */")
768 end
769 end
770 v.add_decl("\},")
771 else
772 # Use -1 to indicate dead type, the info is used by --hardening
773 v.add_decl("-1, \{\}, /*DEAD TYPE*/")
774 end
775 v.add_decl("\};")
776 end
777
778 fun compile_type_resolution_table(mtype: MType) do
779
780 var mclass_type = mtype.undecorate.as(MClassType)
781
782 # extern const struct resolution_table_X resolution_table_X
783 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
784
785 # const struct fts_table_X fts_table_X
786 var v = new_visitor
787 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
788 v.add_decl("0, /* dummy */")
789 v.add_decl("\{")
790 for t in self.resolution_tables[mclass_type] do
791 if t == null then
792 v.add_decl("NULL, /* empty */")
793 else
794 # The table stores the result of the type resolution
795 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
796 # the value stored is tv.
797 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
798 # FIXME: What typeids means here? How can a tv not be live?
799 if type_ids.has_key(tv) then
800 v.require_declaration("type_{tv.c_name}")
801 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
802 else
803 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
804 end
805 end
806 end
807 v.add_decl("\}")
808 v.add_decl("\};")
809 end
810
811 # Globally compile the table of the class mclass
812 # In a link-time optimisation compiler, tables are globally computed
813 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
814 fun compile_class_to_c(mclass: MClass)
815 do
816 var mtype = mclass.intro.bound_mtype
817 var c_name = mclass.c_name
818
819 var v = new_visitor
820
821 var rta = runtime_type_analysis
822 var is_dead = rta != null and not rta.live_classes.has(mclass)
823 # While the class may be dead, some part of separately compiled code may use symbols associated to the class, so
824 # in order to compile and link correctly the C code, these symbols should be declared and defined.
825 var need_corpse = is_dead and mtype.is_c_primitive or mclass.kind == extern_kind or mclass.kind == enum_kind
826
827 v.add_decl("/* runtime class {c_name}: {mclass.full_name} (dead={is_dead}; need_corpse={need_corpse})*/")
828
829 # Build class vft
830 if not is_dead or need_corpse then
831 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
832 v.add_decl("const struct class class_{c_name} = \{")
833 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
834 v.add_decl("\{")
835 var vft = self.method_tables.get_or_null(mclass)
836 if vft != null then for i in [0 .. vft.length[ do
837 var mpropdef = vft[i]
838 if mpropdef == null then
839 v.add_decl("NULL, /* empty */")
840 else
841 assert mpropdef isa MMethodDef
842 if rta != null and not rta.live_methoddefs.has(mpropdef) then
843 v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
844 continue
845 end
846 var rf = mpropdef.virtual_runtime_function
847 v.require_declaration(rf.c_name)
848 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
849 end
850 end
851 v.add_decl("\}")
852 v.add_decl("\};")
853 end
854
855 if mtype.is_c_primitive or mtype.mclass.name == "Pointer" then
856 # Is a primitive type or the Pointer class, not any other extern class
857
858 if mtype.is_tagged then return
859
860 #Build instance struct
861 self.header.add_decl("struct instance_{c_name} \{")
862 self.header.add_decl("const struct type *type;")
863 self.header.add_decl("const struct class *class;")
864 self.header.add_decl("{mtype.ctype_extern} value;")
865 self.header.add_decl("\};")
866
867 # Pointer is needed by extern types, live or not
868 if is_dead and mtype.mclass.name != "Pointer" then return
869
870 #Build BOX
871 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype_extern});")
872 v.add_decl("/* allocate {mtype} */")
873 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype_extern} value) \{")
874 v.add("struct instance_{c_name}*res = nit_alloc(sizeof(struct instance_{c_name}));")
875 v.compiler.undead_types.add(mtype)
876 v.require_declaration("type_{c_name}")
877 v.add("res->type = &type_{c_name};")
878 v.require_declaration("class_{c_name}")
879 v.add("res->class = &class_{c_name};")
880 v.add("res->value = value;")
881 v.add("return (val*)res;")
882 v.add("\}")
883
884 # A Pointer class also need its constructor
885 if mtype.mclass.name != "Pointer" then return
886
887 v = new_visitor
888 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
889 v.add_decl("/* allocate {mtype} */")
890 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
891 if is_dead then
892 v.add_abort("{mclass} is DEAD")
893 else
894 var res = v.new_named_var(mtype, "self")
895 res.is_exact = true
896 v.add("{res} = nit_alloc(sizeof(struct instance_{mtype.c_name}));")
897 v.add("{res}->type = type;")
898 hardening_live_type(v, "type")
899 v.require_declaration("class_{c_name}")
900 v.add("{res}->class = &class_{c_name};")
901 v.add("((struct instance_{mtype.c_name}*){res})->value = NULL;")
902 v.add("return {res};")
903 end
904 v.add("\}")
905 return
906 else if mclass.name == "NativeArray" then
907 #Build instance struct
908 self.header.add_decl("struct instance_{c_name} \{")
909 self.header.add_decl("const struct type *type;")
910 self.header.add_decl("const struct class *class;")
911 # NativeArrays are just a instance header followed by a length and an array of values
912 self.header.add_decl("int length;")
913 self.header.add_decl("val* values[0];")
914 self.header.add_decl("\};")
915
916 #Build NEW
917 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
918 v.add_decl("/* allocate {mtype} */")
919 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
920 var res = v.get_name("self")
921 v.add_decl("struct instance_{c_name} *{res};")
922 var mtype_elt = mtype.arguments.first
923 v.add("{res} = nit_alloc(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));")
924 v.add("{res}->type = type;")
925 hardening_live_type(v, "type")
926 v.require_declaration("class_{c_name}")
927 v.add("{res}->class = &class_{c_name};")
928 v.add("{res}->length = length;")
929 v.add("return (val*){res};")
930 v.add("\}")
931 return
932 else if mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
933 # Is an extern class (other than Pointer and NativeString)
934 # Pointer is caught in a previous `if`, and NativeString is internal
935
936 var pointer_type = mainmodule.pointer_type
937
938 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
939 v.add_decl("/* allocate extern {mtype} */")
940 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
941 if is_dead then
942 v.add_abort("{mclass} is DEAD")
943 else
944 var res = v.new_named_var(mtype, "self")
945 res.is_exact = true
946 v.add("{res} = nit_alloc(sizeof(struct instance_{pointer_type.c_name}));")
947 v.add("{res}->type = type;")
948 hardening_live_type(v, "type")
949 v.require_declaration("class_{c_name}")
950 v.add("{res}->class = &class_{c_name};")
951 v.add("((struct instance_{pointer_type.c_name}*){res})->value = NULL;")
952 v.add("return {res};")
953 end
954 v.add("\}")
955 return
956 end
957
958 #Build NEW
959 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
960 v.add_decl("/* allocate {mtype} */")
961 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
962 if is_dead then
963 v.add_abort("{mclass} is DEAD")
964 else
965 var res = v.new_named_var(mtype, "self")
966 res.is_exact = true
967 var attrs = self.attr_tables.get_or_null(mclass)
968 if attrs == null then
969 v.add("{res} = nit_alloc(sizeof(struct instance));")
970 else
971 v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));")
972 end
973 v.add("{res}->type = type;")
974 hardening_live_type(v, "type")
975 v.require_declaration("class_{c_name}")
976 v.add("{res}->class = &class_{c_name};")
977 if attrs != null then
978 self.generate_init_attr(v, res, mtype)
979 v.set_finalizer res
980 end
981 v.add("return {res};")
982 end
983 v.add("\}")
984 end
985
986 # Compile structures used to map tagged primitive values to their classes and types.
987 # This method also determines which class will be tagged.
988 fun compile_class_infos
989 do
990 if modelbuilder.toolcontext.opt_no_tag_primitives.value then return
991
992 # Note: if you change the tagging scheme, do not forget to update
993 # `autobox` and `extract_tag`
994 var class_info = new Array[nullable MClass].filled_with(null, 4)
995 for t in box_kinds.keys do
996 # Note: a same class can be associated to multiple slots if one want to
997 # use some Huffman coding.
998 if t.name == "Int" then
999 class_info[1] = t
1000 else if t.name == "Char" then
1001 class_info[2] = t
1002 else if t.name == "Bool" then
1003 class_info[3] = t
1004 else
1005 continue
1006 end
1007 t.mclass_type.is_tagged = true
1008 end
1009
1010 # Compile the table for classes. The tag is used as an index
1011 var v = self.new_visitor
1012 v.add_decl "const struct class *class_info[4] = \{"
1013 for t in class_info do
1014 if t == null then
1015 v.add_decl("NULL,")
1016 else
1017 var s = "class_{t.c_name}"
1018 v.require_declaration(s)
1019 v.add_decl("&{s},")
1020 end
1021 end
1022 v.add_decl("\};")
1023
1024 # Compile the table for types. The tag is used as an index
1025 v.add_decl "const struct type *type_info[4] = \{"
1026 for t in class_info do
1027 if t == null then
1028 v.add_decl("NULL,")
1029 else
1030 var s = "type_{t.c_name}"
1031 undead_types.add(t.mclass_type)
1032 v.require_declaration(s)
1033 v.add_decl("&{s},")
1034 end
1035 end
1036 v.add_decl("\};")
1037 end
1038
1039 # Add a dynamic test to ensure that the type referenced by `t` is a live type
1040 fun hardening_live_type(v: VISITOR, t: String)
1041 do
1042 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
1043 v.add("if({t} == NULL) \{")
1044 v.add_abort("type null")
1045 v.add("\}")
1046 v.add("if({t}->table_size < 0) \{")
1047 v.add("PRINT_ERROR(\"Insantiation of a dead type: %s\\n\", {t}->name);")
1048 v.add_abort("type dead")
1049 v.add("\}")
1050 end
1051
1052 redef fun new_visitor do return new SeparateCompilerVisitor(self)
1053
1054 # Stats
1055
1056 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
1057 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
1058 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
1059 protected var attr_tables: Map[MClass, Array[nullable MProperty]] = new HashMap[MClass, Array[nullable MProperty]]
1060
1061 redef fun display_stats
1062 do
1063 super
1064 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
1065 display_sizes
1066 end
1067 if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1068 display_isset_checks
1069 end
1070 var tc = self.modelbuilder.toolcontext
1071 tc.info("# implementation of method invocation",2)
1072 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
1073 tc.info("total number of invocations: {nb_invok_total}",2)
1074 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
1075 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
1076 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
1077 end
1078
1079 fun display_sizes
1080 do
1081 print "# size of subtyping tables"
1082 print "\ttotal \tholes"
1083 var total = 0
1084 var holes = 0
1085 for t, table in type_tables do
1086 total += table.length
1087 for e in table do if e == null then holes += 1
1088 end
1089 print "\t{total}\t{holes}"
1090
1091 print "# size of resolution tables"
1092 print "\ttotal \tholes"
1093 total = 0
1094 holes = 0
1095 for t, table in resolution_tables do
1096 total += table.length
1097 for e in table do if e == null then holes += 1
1098 end
1099 print "\t{total}\t{holes}"
1100
1101 print "# size of methods tables"
1102 print "\ttotal \tholes"
1103 total = 0
1104 holes = 0
1105 for t, table in method_tables do
1106 total += table.length
1107 for e in table do if e == null then holes += 1
1108 end
1109 print "\t{total}\t{holes}"
1110
1111 print "# size of attributes tables"
1112 print "\ttotal \tholes"
1113 total = 0
1114 holes = 0
1115 for t, table in attr_tables do
1116 total += table.length
1117 for e in table do if e == null then holes += 1
1118 end
1119 print "\t{total}\t{holes}"
1120 end
1121
1122 protected var isset_checks_count = 0
1123 protected var attr_read_count = 0
1124
1125 fun display_isset_checks do
1126 print "# total number of compiled attribute reads"
1127 print "\t{attr_read_count}"
1128 print "# total number of compiled isset-checks"
1129 print "\t{isset_checks_count}"
1130 end
1131
1132 redef fun compile_nitni_structs
1133 do
1134 self.header.add_decl """
1135 struct nitni_instance \{
1136 struct nitni_instance *next,
1137 *prev; /* adjacent global references in global list */
1138 int count; /* number of time this global reference has been marked */
1139 struct instance *value;
1140 \};
1141 """
1142 super
1143 end
1144
1145 redef fun finalize_ffi_for_module(mmodule)
1146 do
1147 var old_module = self.mainmodule
1148 self.mainmodule = mmodule
1149 super
1150 self.mainmodule = old_module
1151 end
1152 end
1153
1154 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
1155 class SeparateCompilerVisitor
1156 super AbstractCompilerVisitor
1157
1158 redef type COMPILER: SeparateCompiler
1159
1160 redef fun adapt_signature(m, args)
1161 do
1162 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
1163 var recv = args.first
1164 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
1165 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
1166 end
1167 for i in [0..msignature.arity[ do
1168 var t = msignature.mparameters[i].mtype
1169 if i == msignature.vararg_rank then
1170 t = args[i+1].mtype
1171 end
1172 args[i+1] = self.autobox(args[i+1], t)
1173 end
1174 end
1175
1176 redef fun unbox_signature_extern(m, args)
1177 do
1178 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
1179 if not m.mproperty.is_init and m.is_extern then
1180 args.first = self.unbox_extern(args.first, m.mclassdef.mclass.mclass_type)
1181 end
1182 for i in [0..msignature.arity[ do
1183 var t = msignature.mparameters[i].mtype
1184 if i == msignature.vararg_rank then
1185 t = args[i+1].mtype
1186 end
1187 if m.is_extern then args[i+1] = self.unbox_extern(args[i+1], t)
1188 end
1189 end
1190
1191 redef fun autobox(value, mtype)
1192 do
1193 if value.mtype == mtype then
1194 return value
1195 else if not value.mtype.is_c_primitive and not mtype.is_c_primitive then
1196 return value
1197 else if not value.mtype.is_c_primitive then
1198 if mtype.is_tagged then
1199 if mtype.name == "Int" then
1200 return self.new_expr("(long)({value})>>2", mtype)
1201 else if mtype.name == "Char" then
1202 return self.new_expr("(uint32_t)((long)({value})>>2)", mtype)
1203 else if mtype.name == "Bool" then
1204 return self.new_expr("(short int)((long)({value})>>2)", mtype)
1205 else
1206 abort
1207 end
1208 end
1209 return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
1210 else if not mtype.is_c_primitive then
1211 assert value.mtype == value.mcasttype
1212 if value.mtype.is_tagged then
1213 var res
1214 if value.mtype.name == "Int" then
1215 res = self.new_expr("(val*)({value}<<2|1)", mtype)
1216 else if value.mtype.name == "Char" then
1217 res = self.new_expr("(val*)((long)({value})<<2|2)", mtype)
1218 else if value.mtype.name == "Bool" then
1219 res = self.new_expr("(val*)((long)({value})<<2|3)", mtype)
1220 else
1221 abort
1222 end
1223 # Do not loose type info
1224 res.mcasttype = value.mcasttype
1225 return res
1226 end
1227 var valtype = value.mtype.as(MClassType)
1228 if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
1229 valtype = compiler.mainmodule.pointer_type
1230 end
1231 var res = self.new_var(mtype)
1232 # Do not loose type info
1233 res.mcasttype = value.mcasttype
1234 self.require_declaration("BOX_{valtype.c_name}")
1235 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
1236 return res
1237 else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or
1238 (value.mtype.ctype == "char*" and mtype.ctype == "void*") or
1239 (value.mtype.ctype == "void*" and mtype.ctype == "char*") then
1240 return value
1241 else
1242 # Bad things will appen!
1243 var res = self.new_var(mtype)
1244 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
1245 self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); fatal_exit(1);")
1246 return res
1247 end
1248 end
1249
1250 redef fun unbox_extern(value, mtype)
1251 do
1252 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1253 mtype.mclass.name != "NativeString" then
1254 var pointer_type = compiler.mainmodule.pointer_type
1255 var res = self.new_var_extern(mtype)
1256 self.add "{res} = ((struct instance_{pointer_type.c_name}*){value})->value; /* unboxing {value.mtype} */"
1257 return res
1258 else
1259 return value
1260 end
1261 end
1262
1263 redef fun box_extern(value, mtype)
1264 do
1265 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1266 mtype.mclass.name != "NativeString" then
1267 var valtype = compiler.mainmodule.pointer_type
1268 var res = self.new_var(mtype)
1269 compiler.undead_types.add(mtype)
1270 self.require_declaration("BOX_{valtype.c_name}")
1271 self.add("{res} = BOX_{valtype.c_name}({value}); /* boxing {value.mtype} */")
1272 self.require_declaration("type_{mtype.c_name}")
1273 self.add("{res}->type = &type_{mtype.c_name};")
1274 self.require_declaration("class_{mtype.c_name}")
1275 self.add("{res}->class = &class_{mtype.c_name};")
1276 return res
1277 else
1278 return value
1279 end
1280 end
1281
1282 # Returns a C expression containing the tag of the value as a long.
1283 #
1284 # If the C expression is evaluated to 0, it means there is no tag.
1285 # Thus the expression can be used as a condition.
1286 fun extract_tag(value: RuntimeVariable): String
1287 do
1288 assert not value.mtype.is_c_primitive
1289 return "((long){value}&3)" # Get the two low bits
1290 end
1291
1292 # Returns a C expression of the runtime class structure of the value.
1293 # The point of the method is to work also with primitive types.
1294 fun class_info(value: RuntimeVariable): String
1295 do
1296 if not value.mtype.is_c_primitive then
1297 if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1298 var tag = extract_tag(value)
1299 return "({tag}?class_info[{tag}]:{value}->class)"
1300 end
1301 return "{value}->class"
1302 else
1303 compiler.undead_types.add(value.mtype)
1304 self.require_declaration("class_{value.mtype.c_name}")
1305 return "(&class_{value.mtype.c_name})"
1306 end
1307 end
1308
1309 # Returns a C expression of the runtime type structure of the value.
1310 # The point of the method is to work also with primitive types.
1311 fun type_info(value: RuntimeVariable): String
1312 do
1313 if not value.mtype.is_c_primitive then
1314 if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1315 var tag = extract_tag(value)
1316 return "({tag}?type_info[{tag}]:{value}->type)"
1317 end
1318 return "{value}->type"
1319 else
1320 compiler.undead_types.add(value.mtype)
1321 self.require_declaration("type_{value.mtype.c_name}")
1322 return "(&type_{value.mtype.c_name})"
1323 end
1324 end
1325
1326 redef fun compile_callsite(callsite, args)
1327 do
1328 var rta = compiler.runtime_type_analysis
1329 # TODO: Inlining of new-style constructors with initializers
1330 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and callsite.mpropdef.initializers.is_empty then
1331 var tgs = rta.live_targets(callsite)
1332 if tgs.length == 1 then
1333 return direct_call(tgs.first, args)
1334 end
1335 end
1336 # Shortcut intern methods as they are not usually redefinable
1337 if callsite.mpropdef.is_intern and callsite.mproperty.name != "object_id" then
1338 # `object_id` is the only redefined intern method, so it can not be directly called.
1339 # TODO find a less ugly approach?
1340 return direct_call(callsite.mpropdef, args)
1341 end
1342 return super
1343 end
1344
1345 # Fully and directly call a mpropdef
1346 #
1347 # This method is used by `compile_callsite`
1348 private fun direct_call(mpropdef: MMethodDef, args: Array[RuntimeVariable]): nullable RuntimeVariable
1349 do
1350 var res0 = before_send(mpropdef.mproperty, args)
1351 var res = call(mpropdef, mpropdef.mclassdef.bound_mtype, args)
1352 if res0 != null then
1353 assert res != null
1354 self.assign(res0, res)
1355 res = res0
1356 end
1357 add("\}") # close the before_send
1358 return res
1359 end
1360 redef fun send(mmethod, arguments)
1361 do
1362 if arguments.first.mcasttype.is_c_primitive then
1363 # In order to shortcut the primitive, we need to find the most specific method
1364 # Howverr, because of performance (no flattening), we always work on the realmainmodule
1365 var m = self.compiler.mainmodule
1366 self.compiler.mainmodule = self.compiler.realmainmodule
1367 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
1368 self.compiler.mainmodule = m
1369 return res
1370 end
1371
1372 return table_send(mmethod, arguments, mmethod)
1373 end
1374
1375 # Handle common special cases before doing the effective method invocation
1376 # This methods handle the `==` and `!=` methods and the case of the null receiver.
1377 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
1378 # Client must not forget to close the } after them.
1379 #
1380 # The value returned is the result of the common special cases.
1381 # If not null, client must compile it with the result of their own effective method invocation.
1382 #
1383 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1384 # is generated to cancel the effective method invocation that will follow
1385 # TODO: find a better approach
1386 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1387 do
1388 var res: nullable RuntimeVariable = null
1389 var recv = arguments.first
1390 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_null.value or mmethod.name == "==" or mmethod.name == "!="
1391 var maybenull = (recv.mcasttype isa MNullableType or recv.mcasttype isa MNullType) and consider_null
1392 if maybenull then
1393 self.add("if ({recv} == NULL) \{")
1394 if mmethod.name == "==" or mmethod.name == "is_same_instance" then
1395 res = self.new_var(bool_type)
1396 var arg = arguments[1]
1397 if arg.mcasttype isa MNullableType then
1398 self.add("{res} = ({arg} == NULL);")
1399 else if arg.mcasttype isa MNullType then
1400 self.add("{res} = 1; /* is null */")
1401 else
1402 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1403 end
1404 else if mmethod.name == "!=" then
1405 res = self.new_var(bool_type)
1406 var arg = arguments[1]
1407 if arg.mcasttype isa MNullableType then
1408 self.add("{res} = ({arg} != NULL);")
1409 else if arg.mcasttype isa MNullType then
1410 self.add("{res} = 0; /* is null */")
1411 else
1412 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1413 end
1414 else
1415 self.add_abort("Receiver is null")
1416 end
1417 self.add("\} else \{")
1418 else
1419 self.add("\{")
1420 end
1421 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=" or mmethod.name == "is_same_instance") then
1422 # Recv is not null, thus if arg is, it is easy to conclude (and respect the invariants)
1423 var arg = arguments[1]
1424 if arg.mcasttype isa MNullType then
1425 if res == null then res = self.new_var(bool_type)
1426 if mmethod.name == "!=" then
1427 self.add("{res} = 1; /* arg is null and recv is not */")
1428 else # `==` and `is_same_instance`
1429 self.add("{res} = 0; /* arg is null but recv is not */")
1430 end
1431 self.add("\}") # closes the null case
1432 self.add("if (0) \{") # what follow is useless, CC will drop it
1433 end
1434 end
1435 return res
1436 end
1437
1438 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], mentity: MEntity): nullable RuntimeVariable
1439 do
1440 compiler.modelbuilder.nb_invok_by_tables += 1
1441 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1442
1443 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1444
1445 var res0 = before_send(mmethod, arguments)
1446
1447 var runtime_function = mmethod.intro.virtual_runtime_function
1448 var msignature = runtime_function.called_signature
1449
1450 adapt_signature(mmethod.intro, arguments)
1451
1452 var res: nullable RuntimeVariable
1453 var ret = msignature.return_mtype
1454 if ret == null then
1455 res = null
1456 else
1457 res = self.new_var(ret)
1458 end
1459
1460 var ss = arguments.join(", ")
1461
1462 var const_color = mentity.const_color
1463 var ress
1464 if res != null then
1465 ress = "{res} = "
1466 else
1467 ress = ""
1468 end
1469 if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_direct_call_monomorph0.value then
1470 # opt_direct_call_monomorph0 is used to compare the efficiency of the alternative lookup implementation, ceteris paribus.
1471 # The difference with the non-zero option is that the monomorphism is looked-at on the mmethod level and not at the callsite level.
1472 # TODO: remove this mess and use per callsite service to detect monomorphism in a single place.
1473 var md = compiler.is_monomorphic(mentity)
1474 if md != null then
1475 var callsym = md.virtual_runtime_function.c_name
1476 self.require_declaration(callsym)
1477 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1478 else
1479 self.require_declaration(const_color)
1480 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1481 end
1482 else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_guard_call.value then
1483 var callsym = "CALL_" + const_color
1484 self.require_declaration(callsym)
1485 self.add "if (!{callsym}) \{"
1486 self.require_declaration(const_color)
1487 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1488 self.add "\} else \{"
1489 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1490 self.add "\}"
1491 else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_trampoline_call.value then
1492 var callsym = "CALL_" + const_color
1493 self.require_declaration(callsym)
1494 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1495 else
1496 self.require_declaration(const_color)
1497 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1498 end
1499
1500 if res0 != null then
1501 assert res != null
1502 assign(res0,res)
1503 res = res0
1504 end
1505
1506 self.add("\}") # closes the null case
1507
1508 return res
1509 end
1510
1511 redef fun call(mmethoddef, recvtype, arguments)
1512 do
1513 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1514
1515 var res: nullable RuntimeVariable
1516 var ret = mmethoddef.msignature.return_mtype
1517 if ret == null then
1518 res = null
1519 else
1520 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1521 res = self.new_var(ret)
1522 end
1523
1524 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1525 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1526 compiler.modelbuilder.nb_invok_by_inline += 1
1527 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1528 var frame = new StaticFrame(self, mmethoddef, recvtype, arguments)
1529 frame.returnlabel = self.get_name("RET_LABEL")
1530 frame.returnvar = res
1531 var old_frame = self.frame
1532 self.frame = frame
1533 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1534 mmethoddef.compile_inside_to_c(self, arguments)
1535 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1536 self.add("\}")
1537 self.frame = old_frame
1538 return res
1539 end
1540 compiler.modelbuilder.nb_invok_by_direct += 1
1541 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1542
1543 # Autobox arguments
1544 self.adapt_signature(mmethoddef, arguments)
1545
1546 self.require_declaration(mmethoddef.c_name)
1547 if res == null then
1548 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1549 return null
1550 else
1551 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1552 end
1553
1554 return res
1555 end
1556
1557 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1558 do
1559 if arguments.first.mcasttype.is_c_primitive then
1560 # In order to shortcut the primitive, we need to find the most specific method
1561 # However, because of performance (no flattening), we always work on the realmainmodule
1562 var main = self.compiler.mainmodule
1563 self.compiler.mainmodule = self.compiler.realmainmodule
1564 var res = self.monomorphic_super_send(m, recvtype, arguments)
1565 self.compiler.mainmodule = main
1566 return res
1567 end
1568 return table_send(m.mproperty, arguments, m)
1569 end
1570
1571 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1572 do
1573 # A vararg must be stored into an new array
1574 # The trick is that the dymaic type of the array may depends on the receiver
1575 # of the method (ie recv) if the static type is unresolved
1576 # This is more complex than usual because the unresolved type must not be resolved
1577 # with the current receiver (ie self).
1578 # Therefore to isolate the resolution from self, a local StaticFrame is created.
1579 # One can see this implementation as an inlined method of the receiver whose only
1580 # job is to allocate the array
1581 var old_frame = self.frame
1582 var frame = new StaticFrame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1583 self.frame = frame
1584 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1585 var res = self.array_instance(varargs, elttype)
1586 self.frame = old_frame
1587 return res
1588 end
1589
1590 redef fun isset_attribute(a, recv)
1591 do
1592 self.check_recv_notnull(recv)
1593 var res = self.new_var(bool_type)
1594
1595 # What is the declared type of the attribute?
1596 var mtype = a.intro.static_mtype.as(not null)
1597 var intromclassdef = a.intro.mclassdef
1598 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1599
1600 if mtype isa MNullableType then
1601 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1602 return res
1603 end
1604
1605 self.require_declaration(a.const_color)
1606 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1607 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1608 else
1609
1610 if not mtype.is_c_primitive and not mtype.is_tagged then
1611 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1612 else
1613 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1614 end
1615 end
1616 return res
1617 end
1618
1619 redef fun read_attribute(a, recv)
1620 do
1621 self.check_recv_notnull(recv)
1622
1623 # What is the declared type of the attribute?
1624 var ret = a.intro.static_mtype.as(not null)
1625 var intromclassdef = a.intro.mclassdef
1626 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1627
1628 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1629 self.compiler.attr_read_count += 1
1630 self.add("count_attr_reads++;")
1631 end
1632
1633 self.require_declaration(a.const_color)
1634 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1635 # Get the attribute or a box (ie. always a val*)
1636 var cret = self.object_type.as_nullable
1637 var res = self.new_var(cret)
1638 res.mcasttype = ret
1639
1640 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1641
1642 # Check for Uninitialized attribute
1643 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1644 self.add("if (unlikely({res} == NULL)) \{")
1645 self.add_abort("Uninitialized attribute {a.name}")
1646 self.add("\}")
1647
1648 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1649 self.compiler.isset_checks_count += 1
1650 self.add("count_isset_checks++;")
1651 end
1652 end
1653
1654 # Return the attribute or its unboxed version
1655 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1656 return self.autobox(res, ret)
1657 else
1658 var res = self.new_var(ret)
1659 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1660
1661 # Check for Uninitialized attribute
1662 if not ret.is_c_primitive and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1663 self.add("if (unlikely({res} == NULL)) \{")
1664 self.add_abort("Uninitialized attribute {a.name}")
1665 self.add("\}")
1666 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1667 self.compiler.isset_checks_count += 1
1668 self.add("count_isset_checks++;")
1669 end
1670 end
1671
1672 return res
1673 end
1674 end
1675
1676 redef fun write_attribute(a, recv, value)
1677 do
1678 self.check_recv_notnull(recv)
1679
1680 # What is the declared type of the attribute?
1681 var mtype = a.intro.static_mtype.as(not null)
1682 var intromclassdef = a.intro.mclassdef
1683 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1684
1685 # Adapt the value to the declared type
1686 value = self.autobox(value, mtype)
1687
1688 self.require_declaration(a.const_color)
1689 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1690 var attr = "{recv}->attrs[{a.const_color}]"
1691 if mtype.is_tagged then
1692 # The attribute is not primitive, thus store it as tagged
1693 var tv = autobox(value, compiler.mainmodule.object_type)
1694 self.add("{attr} = {tv}; /* {a} on {recv.inspect} */")
1695 else if mtype.is_c_primitive then
1696 assert mtype isa MClassType
1697 # The attribute is primitive, thus we store it in a box
1698 # The trick is to create the box the first time then resuse the box
1699 self.add("if ({attr} != NULL) \{")
1700 self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1701 self.add("\} else \{")
1702 value = self.autobox(value, self.object_type.as_nullable)
1703 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1704 self.add("\}")
1705 else
1706 # The attribute is not primitive, thus store it direclty
1707 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1708 end
1709 else
1710 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1711 end
1712 end
1713
1714 # Check that mtype is a live open type
1715 fun hardening_live_open_type(mtype: MType)
1716 do
1717 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1718 self.require_declaration(mtype.const_color)
1719 var col = mtype.const_color
1720 self.add("if({col} == -1) \{")
1721 self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1722 self.add_abort("open type dead")
1723 self.add("\}")
1724 end
1725
1726 # Check that mtype it a pointer to a live cast type
1727 fun hardening_cast_type(t: String)
1728 do
1729 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1730 add("if({t} == NULL) \{")
1731 add_abort("cast type null")
1732 add("\}")
1733 add("if({t}->id == -1 || {t}->color == -1) \{")
1734 add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1735 add_abort("cast type dead")
1736 add("\}")
1737 end
1738
1739 redef fun init_instance(mtype)
1740 do
1741 self.require_declaration("NEW_{mtype.mclass.c_name}")
1742 var compiler = self.compiler
1743 if mtype isa MGenericType and mtype.need_anchor then
1744 hardening_live_open_type(mtype)
1745 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1746 var recv = self.frame.arguments.first
1747 var recv_type_info = self.type_info(recv)
1748 self.require_declaration(mtype.const_color)
1749 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1750 end
1751 compiler.undead_types.add(mtype)
1752 self.require_declaration("type_{mtype.c_name}")
1753 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1754 end
1755
1756 redef fun type_test(value, mtype, tag)
1757 do
1758 self.add("/* {value.inspect} isa {mtype} */")
1759 var compiler = self.compiler
1760
1761 var recv = self.frame.arguments.first
1762 var recv_type_info = self.type_info(recv)
1763
1764 var res = self.new_var(bool_type)
1765
1766 var cltype = self.get_name("cltype")
1767 self.add_decl("int {cltype};")
1768 var idtype = self.get_name("idtype")
1769 self.add_decl("int {idtype};")
1770
1771 var maybe_null = self.maybe_null(value)
1772 var accept_null = "0"
1773 var ntype = mtype
1774 if ntype isa MNullableType then
1775 ntype = ntype.mtype
1776 accept_null = "1"
1777 end
1778
1779 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1780 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1781 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1782 self.compiler.count_type_test_skipped[tag] += 1
1783 self.add("count_type_test_skipped_{tag}++;")
1784 end
1785 return res
1786 end
1787
1788 if ntype.need_anchor then
1789 var type_struct = self.get_name("type_struct")
1790 self.add_decl("const struct type* {type_struct};")
1791
1792 # Either with resolution_table with a direct resolution
1793 hardening_live_open_type(mtype)
1794 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1795 self.require_declaration(mtype.const_color)
1796 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1797 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1798 self.compiler.count_type_test_unresolved[tag] += 1
1799 self.add("count_type_test_unresolved_{tag}++;")
1800 end
1801 hardening_cast_type(type_struct)
1802 self.add("{cltype} = {type_struct}->color;")
1803 self.add("{idtype} = {type_struct}->id;")
1804 if maybe_null and accept_null == "0" then
1805 var is_nullable = self.get_name("is_nullable")
1806 self.add_decl("short int {is_nullable};")
1807 self.add("{is_nullable} = {type_struct}->is_nullable;")
1808 accept_null = is_nullable.to_s
1809 end
1810 else if ntype isa MClassType then
1811 compiler.undead_types.add(mtype)
1812 self.require_declaration("type_{mtype.c_name}")
1813 hardening_cast_type("(&type_{mtype.c_name})")
1814 self.add("{cltype} = type_{mtype.c_name}.color;")
1815 self.add("{idtype} = type_{mtype.c_name}.id;")
1816 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1817 self.compiler.count_type_test_resolved[tag] += 1
1818 self.add("count_type_test_resolved_{tag}++;")
1819 end
1820 else
1821 self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); fatal_exit(1);")
1822 end
1823
1824 # check color is in table
1825 if maybe_null then
1826 self.add("if({value} == NULL) \{")
1827 self.add("{res} = {accept_null};")
1828 self.add("\} else \{")
1829 end
1830 var value_type_info = self.type_info(value)
1831 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1832 self.add("{res} = 0;")
1833 self.add("\} else \{")
1834 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1835 self.add("\}")
1836 if maybe_null then
1837 self.add("\}")
1838 end
1839
1840 return res
1841 end
1842
1843 redef fun is_same_type_test(value1, value2)
1844 do
1845 var res = self.new_var(bool_type)
1846 # Swap values to be symetric
1847 if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then
1848 var tmp = value1
1849 value1 = value2
1850 value2 = tmp
1851 end
1852 if value1.mtype.is_c_primitive then
1853 if value2.mtype == value1.mtype then
1854 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1855 else if value2.mtype.is_c_primitive then
1856 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1857 else
1858 var mtype1 = value1.mtype.as(MClassType)
1859 self.require_declaration("class_{mtype1.c_name}")
1860 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */")
1861 end
1862 else
1863 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {class_info(value1)} == {class_info(value2)}); /* is_same_type_test */")
1864 end
1865 return res
1866 end
1867
1868 redef fun class_name_string(value)
1869 do
1870 var res = self.get_name("var_class_name")
1871 self.add_decl("const char* {res};")
1872 if not value.mtype.is_c_primitive then
1873 self.add "{res} = {value} == NULL ? \"null\" : {type_info(value)}->name;"
1874 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind and
1875 value.mtype.as(MClassType).name != "NativeString" then
1876 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1877 else
1878 self.require_declaration("type_{value.mtype.c_name}")
1879 self.add "{res} = type_{value.mtype.c_name}.name;"
1880 end
1881 return res
1882 end
1883
1884 redef fun equal_test(value1, value2)
1885 do
1886 var res = self.new_var(bool_type)
1887 if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then
1888 var tmp = value1
1889 value1 = value2
1890 value2 = tmp
1891 end
1892 if value1.mtype.is_c_primitive then
1893 if value2.mtype == value1.mtype then
1894 self.add("{res} = {value1} == {value2};")
1895 else if value2.mtype.is_c_primitive then
1896 self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/")
1897 else if value1.mtype.is_tagged then
1898 self.add("{res} = ({value2} != NULL) && ({self.autobox(value2, value1.mtype)} == {value1});")
1899 else
1900 var mtype1 = value1.mtype.as(MClassType)
1901 self.require_declaration("class_{mtype1.c_name}")
1902 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});")
1903 self.add("if ({res}) \{")
1904 self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});")
1905 self.add("\}")
1906 end
1907 return res
1908 end
1909 var maybe_null = true
1910 var test = new Array[String]
1911 var t1 = value1.mcasttype
1912 if t1 isa MNullableType then
1913 test.add("{value1} != NULL")
1914 t1 = t1.mtype
1915 else
1916 maybe_null = false
1917 end
1918 var t2 = value2.mcasttype
1919 if t2 isa MNullableType then
1920 test.add("{value2} != NULL")
1921 t2 = t2.mtype
1922 else
1923 maybe_null = false
1924 end
1925
1926 var incompatible = false
1927 var primitive
1928 if t1.is_c_primitive then
1929 primitive = t1
1930 if t1 == t2 then
1931 # No need to compare class
1932 else if t2.is_c_primitive then
1933 incompatible = true
1934 else if can_be_primitive(value2) then
1935 if t1.is_tagged then
1936 self.add("{res} = {value1} == {value2};")
1937 return res
1938 end
1939 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1940 test.add("(!{extract_tag(value2)})")
1941 end
1942 test.add("{value1}->class == {value2}->class")
1943 else
1944 incompatible = true
1945 end
1946 else if t2.is_c_primitive then
1947 primitive = t2
1948 if can_be_primitive(value1) then
1949 if t2.is_tagged then
1950 self.add("{res} = {value1} == {value2};")
1951 return res
1952 end
1953 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1954 test.add("(!{extract_tag(value1)})")
1955 end
1956 test.add("{value1}->class == {value2}->class")
1957 else
1958 incompatible = true
1959 end
1960 else
1961 primitive = null
1962 end
1963
1964 if incompatible then
1965 if maybe_null then
1966 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
1967 return res
1968 else
1969 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
1970 return res
1971 end
1972 end
1973 if primitive != null then
1974 if primitive.is_tagged then
1975 self.add("{res} = {value1} == {value2};")
1976 return res
1977 end
1978 test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value")
1979 else if can_be_primitive(value1) and can_be_primitive(value2) then
1980 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1981 test.add("(!{extract_tag(value1)}) && (!{extract_tag(value2)})")
1982 end
1983 test.add("{value1}->class == {value2}->class")
1984 var s = new Array[String]
1985 for t, v in self.compiler.box_kinds do
1986 if t.mclass_type.is_tagged then continue
1987 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)"
1988 end
1989 if s.is_empty then
1990 self.add("{res} = {value1} == {value2};")
1991 return res
1992 end
1993 test.add("({s.join(" || ")})")
1994 else
1995 self.add("{res} = {value1} == {value2};")
1996 return res
1997 end
1998 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
1999 return res
2000 end
2001
2002 fun can_be_primitive(value: RuntimeVariable): Bool
2003 do
2004 var t = value.mcasttype.undecorate
2005 if not t isa MClassType then return false
2006 var k = t.mclass.kind
2007 return k == interface_kind or t.is_c_primitive
2008 end
2009
2010 fun maybe_null(value: RuntimeVariable): Bool
2011 do
2012 var t = value.mcasttype
2013 return t isa MNullableType or t isa MNullType
2014 end
2015
2016 redef fun array_instance(array, elttype)
2017 do
2018 var nclass = mmodule.native_array_class
2019 var arrayclass = mmodule.array_class
2020 var arraytype = arrayclass.get_mtype([elttype])
2021 var res = self.init_instance(arraytype)
2022 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
2023 var length = self.int_instance(array.length)
2024 var nat = native_array_instance(elttype, length)
2025 for i in [0..array.length[ do
2026 var r = self.autobox(array[i], self.object_type)
2027 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
2028 end
2029 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
2030 self.add("\}")
2031 return res
2032 end
2033
2034 redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable
2035 do
2036 var mtype = mmodule.native_array_type(elttype)
2037 self.require_declaration("NEW_{mtype.mclass.c_name}")
2038 assert mtype isa MGenericType
2039 var compiler = self.compiler
2040 length = autobox(length, compiler.mainmodule.int_type)
2041 if mtype.need_anchor then
2042 hardening_live_open_type(mtype)
2043 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
2044 var recv = self.frame.arguments.first
2045 var recv_type_info = self.type_info(recv)
2046 self.require_declaration(mtype.const_color)
2047 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
2048 end
2049 compiler.undead_types.add(mtype)
2050 self.require_declaration("type_{mtype.c_name}")
2051 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype)
2052 end
2053
2054 redef fun native_array_def(pname, ret_type, arguments)
2055 do
2056 var elttype = arguments.first.mtype
2057 var nclass = mmodule.native_array_class
2058 var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values"
2059 if pname == "[]" then
2060 # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing
2061 var res = self.new_expr("{recv}[{arguments[1]}]", compiler.mainmodule.object_type)
2062 res.mcasttype = ret_type.as(not null)
2063 self.ret(res)
2064 return
2065 else if pname == "[]=" then
2066 self.add("{recv}[{arguments[1]}]={arguments[2]};")
2067 return
2068 else if pname == "length" then
2069 self.ret(self.new_expr("((struct instance_{nclass.c_name}*){arguments[0]})->length", ret_type.as(not null)))
2070 return
2071 else if pname == "copy_to" then
2072 var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values"
2073 self.add("memmove({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
2074 return
2075 end
2076 end
2077
2078 redef fun native_array_get(nat, i)
2079 do
2080 var nclass = mmodule.native_array_class
2081 var recv = "((struct instance_{nclass.c_name}*){nat})->values"
2082 # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing
2083 var res = self.new_expr("{recv}[{i}]", compiler.mainmodule.object_type)
2084 return res
2085 end
2086
2087 redef fun native_array_set(nat, i, val)
2088 do
2089 var nclass = mmodule.native_array_class
2090 var recv = "((struct instance_{nclass.c_name}*){nat})->values"
2091 self.add("{recv}[{i}]={val};")
2092 end
2093
2094 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
2095 assert mtype.need_anchor
2096 var compiler = self.compiler
2097 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
2098 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
2099 end
2100 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
2101 end
2102 end
2103
2104 redef class MMethodDef
2105 # The C function associated to a mmethoddef
2106 fun separate_runtime_function: SeparateRuntimeFunction
2107 do
2108 var res = self.separate_runtime_function_cache
2109 if res == null then
2110 var recv = mclassdef.bound_mtype
2111 var msignature = msignature.resolve_for(recv, recv, mclassdef.mmodule, true)
2112 res = new SeparateRuntimeFunction(self, recv, msignature, c_name)
2113 self.separate_runtime_function_cache = res
2114 end
2115 return res
2116 end
2117 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
2118
2119 # The C function associated to a mmethoddef, that can be stored into a VFT of a class
2120 # The first parameter (the reciever) is always typed by val* in order to accept an object value
2121 # The C-signature is always compatible with the intro
2122 fun virtual_runtime_function: SeparateRuntimeFunction
2123 do
2124 var res = self.virtual_runtime_function_cache
2125 if res == null then
2126 # Because the function is virtual, the signature must match the one of the original class
2127 var intromclassdef = mproperty.intro.mclassdef
2128 var recv = intromclassdef.bound_mtype
2129
2130 res = separate_runtime_function
2131 if res.called_recv == recv then
2132 self.virtual_runtime_function_cache = res
2133 return res
2134 end
2135
2136 var msignature = mproperty.intro.msignature.resolve_for(recv, recv, intromclassdef.mmodule, true)
2137
2138 if recv.ctype == res.called_recv.ctype and msignature.c_equiv(res.called_signature) then
2139 self.virtual_runtime_function_cache = res
2140 return res
2141 end
2142
2143 res = new SeparateRuntimeFunction(self, recv, msignature, "VIRTUAL_{c_name}")
2144 self.virtual_runtime_function_cache = res
2145 res.is_thunk = true
2146 end
2147 return res
2148 end
2149 private var virtual_runtime_function_cache: nullable SeparateRuntimeFunction
2150 end
2151
2152 redef class MSignature
2153 # Does the C-version of `self` the same than the C-version of `other`?
2154 fun c_equiv(other: MSignature): Bool
2155 do
2156 if self == other then return true
2157 if arity != other.arity then return false
2158 for i in [0..arity[ do
2159 if mparameters[i].mtype.ctype != other.mparameters[i].mtype.ctype then return false
2160 end
2161 if return_mtype != other.return_mtype then
2162 if return_mtype == null or other.return_mtype == null then return false
2163 if return_mtype.ctype != other.return_mtype.ctype then return false
2164 end
2165 return true
2166 end
2167 end
2168
2169 # The C function associated to a methoddef separately compiled
2170 class SeparateRuntimeFunction
2171 super AbstractRuntimeFunction
2172
2173 # The call-side static receiver
2174 var called_recv: MType
2175
2176 # The call-side static signature
2177 var called_signature: MSignature
2178
2179 # The name on the compiled method
2180 redef var build_c_name: String
2181
2182 # Statically call the original body instead
2183 var is_thunk = false
2184
2185 redef fun to_s do return self.mmethoddef.to_s
2186
2187 # The C return type (something or `void`)
2188 var c_ret: String is lazy do
2189 var ret = called_signature.return_mtype
2190 if ret != null then
2191 return ret.ctype
2192 else
2193 return "void"
2194 end
2195 end
2196
2197 # The C signature (only the parmeter part)
2198 var c_sig: String is lazy do
2199 var sig = new FlatBuffer
2200 sig.append("({called_recv.ctype} self")
2201 for i in [0..called_signature.arity[ do
2202 var mtype = called_signature.mparameters[i].mtype
2203 if i == called_signature.vararg_rank then
2204 mtype = mmethoddef.mclassdef.mmodule.array_type(mtype)
2205 end
2206 sig.append(", {mtype.ctype} p{i}")
2207 end
2208 sig.append(")")
2209 return sig.to_s
2210 end
2211
2212 # The C type for the function pointer.
2213 var c_funptrtype: String is lazy do return "{c_ret}(*){c_sig}"
2214
2215 redef fun compile_to_c(compiler)
2216 do
2217 var mmethoddef = self.mmethoddef
2218
2219 var sig = "{c_ret} {c_name}{c_sig}"
2220 compiler.provide_declaration(self.c_name, "{sig};")
2221
2222 var rta = compiler.as(SeparateCompiler).runtime_type_analysis
2223
2224 var recv = self.mmethoddef.mclassdef.bound_mtype
2225 var v = compiler.new_visitor
2226 var selfvar = new RuntimeVariable("self", called_recv, recv)
2227 var arguments = new Array[RuntimeVariable]
2228 var frame = new StaticFrame(v, mmethoddef, recv, arguments)
2229 v.frame = frame
2230
2231 var msignature = called_signature
2232 var ret = called_signature.return_mtype
2233
2234 var comment = new FlatBuffer
2235 comment.append("({selfvar}: {selfvar.mtype}")
2236 arguments.add(selfvar)
2237 for i in [0..msignature.arity[ do
2238 var mtype = msignature.mparameters[i].mtype
2239 if i == msignature.vararg_rank then
2240 mtype = v.mmodule.array_type(mtype)
2241 end
2242 comment.append(", {mtype}")
2243 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
2244 arguments.add(argvar)
2245 end
2246 comment.append(")")
2247 if ret != null then
2248 comment.append(": {ret}")
2249 end
2250
2251 v.add_decl("/* method {self} for {comment} */")
2252 v.add_decl("{sig} \{")
2253 if ret != null then
2254 frame.returnvar = v.new_var(ret)
2255 end
2256 frame.returnlabel = v.get_name("RET_LABEL")
2257
2258 if is_thunk then
2259 var subret = v.call(mmethoddef, recv, arguments)
2260 if ret != null then
2261 assert subret != null
2262 v.assign(frame.returnvar.as(not null), subret)
2263 end
2264 else if rta != null and not rta.live_mmodules.has(mmethoddef.mclassdef.mmodule) then
2265 v.add_abort("FATAL: Dead method executed.")
2266 else
2267 mmethoddef.compile_inside_to_c(v, arguments)
2268 end
2269
2270 v.add("{frame.returnlabel.as(not null)}:;")
2271 if ret != null then
2272 v.add("return {frame.returnvar.as(not null)};")
2273 end
2274 v.add("\}")
2275 compiler.names[self.c_name] = "{mmethoddef.full_name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
2276 end
2277
2278 # Compile the trampolines used to implement late-binding.
2279 #
2280 # See `opt_trampoline_call`.
2281 fun compile_trampolines(compiler: SeparateCompiler)
2282 do
2283 var recv = self.mmethoddef.mclassdef.bound_mtype
2284 var selfvar = new RuntimeVariable("self", called_recv, recv)
2285 var ret = called_signature.return_mtype
2286 var arguments = ["self"]
2287 for i in [0..called_signature.arity[ do arguments.add "p{i}"
2288
2289 if mmethoddef.is_intro and not recv.is_c_primitive then
2290 var m = mmethoddef.mproperty
2291 var n2 = "CALL_" + m.const_color
2292 compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};")
2293 var v2 = compiler.new_visitor
2294 v2.add "{c_ret} {n2}{c_sig} \{"
2295 v2.require_declaration(m.const_color)
2296 var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});"
2297 if ret != null then
2298 v2.add "return {call}"
2299 else
2300 v2.add call
2301 end
2302
2303 v2.add "\}"
2304
2305 end
2306 if mmethoddef.has_supercall and not recv.is_c_primitive then
2307 var m = mmethoddef
2308 var n2 = "CALL_" + m.const_color
2309 compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};")
2310 var v2 = compiler.new_visitor
2311 v2.add "{c_ret} {n2}{c_sig} \{"
2312 v2.require_declaration(m.const_color)
2313 var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});"
2314 if ret != null then
2315 v2.add "return {call}"
2316 else
2317 v2.add call
2318 end
2319
2320 v2.add "\}"
2321 end
2322 end
2323 end
2324
2325 redef class MType
2326 # Are values of `self` tagged?
2327 # If false, it means that the type is not primitive, or is boxed.
2328 var is_tagged = false
2329 end
2330
2331 redef class MEntity
2332 var const_color: String is lazy do return "COLOR_{c_name}"
2333 end
2334
2335 interface PropertyLayoutElement end
2336
2337 redef class MProperty
2338 super PropertyLayoutElement
2339 end
2340
2341 redef class MPropDef
2342 super PropertyLayoutElement
2343 end
2344
2345 redef class AMethPropdef
2346 # The semi-global compilation does not support inlining calls to extern news
2347 redef fun can_inline
2348 do
2349 var m = mpropdef
2350 if m != null and m.mproperty.is_init and m.is_extern then return false
2351 return super
2352 end
2353 end
2354
2355 redef class AAttrPropdef
2356 redef fun init_expr(v, recv)
2357 do
2358 super
2359 if is_lazy and v.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
2360 var guard = self.mlazypropdef.mproperty
2361 v.write_attribute(guard, recv, v.bool_instance(false))
2362 end
2363 end
2364 end