complier: `--direct-call-monomorph` works with constructors without initializers
[nit.git] / src / compiler / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import coloring
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --inline-coloring-numbers
33 var opt_inline_coloring_numbers = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
34 # --inline-some-methods
35 var opt_inline_some_methods = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
36 # --direct-call-monomorph
37 var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph")
38 # --skip-dead-methods
39 var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods")
40 # --semi-global
41 var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global")
42 # --no-colo-dead-methods
43 var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods")
44 # --tables-metrics
45 var opt_tables_metrics = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
46
47 redef init
48 do
49 super
50 self.option_context.add_option(self.opt_separate)
51 self.option_context.add_option(self.opt_no_inline_intern)
52 self.option_context.add_option(self.opt_no_union_attribute)
53 self.option_context.add_option(self.opt_no_shortcut_equate)
54 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global)
55 self.option_context.add_option(self.opt_colo_dead_methods)
56 self.option_context.add_option(self.opt_tables_metrics)
57 end
58
59 redef fun process_options(args)
60 do
61 super
62
63 var tc = self
64 if tc.opt_semi_global.value then
65 tc.opt_inline_coloring_numbers.value = true
66 tc.opt_inline_some_methods.value = true
67 tc.opt_direct_call_monomorph.value = true
68 tc.opt_skip_dead_methods.value = true
69 end
70 end
71
72 var separate_compiler_phase = new SeparateCompilerPhase(self, null)
73 end
74
75 class SeparateCompilerPhase
76 super Phase
77 redef fun process_mainmodule(mainmodule, given_mmodules) do
78 if not toolcontext.opt_separate.value then return
79
80 var modelbuilder = toolcontext.modelbuilder
81 var analysis = modelbuilder.do_rapid_type_analysis(mainmodule)
82 modelbuilder.run_separate_compiler(mainmodule, analysis)
83 end
84 end
85
86 redef class ModelBuilder
87 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
88 do
89 var time0 = get_time
90 self.toolcontext.info("*** GENERATING C ***", 1)
91
92 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
93 compiler.compile_header
94
95 var c_name = mainmodule.c_name
96
97 # compile class structures
98 self.toolcontext.info("Property coloring", 2)
99 compiler.new_file("{c_name}.classes")
100 compiler.do_property_coloring
101 for m in mainmodule.in_importation.greaters do
102 for mclass in m.intro_mclasses do
103 #if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
104 compiler.compile_class_to_c(mclass)
105 end
106 end
107
108 # The main function of the C
109 compiler.new_file("{c_name}.main")
110 compiler.compile_nitni_global_ref_functions
111 compiler.compile_main_function
112 compiler.compile_finalizer_function
113
114 # compile methods
115 for m in mainmodule.in_importation.greaters do
116 self.toolcontext.info("Generate C for module {m.full_name}", 2)
117 compiler.new_file("{m.c_name}.sep")
118 compiler.compile_module_to_c(m)
119 end
120
121 # compile live & cast type structures
122 self.toolcontext.info("Type coloring", 2)
123 compiler.new_file("{c_name}.types")
124 var mtypes = compiler.do_type_coloring
125 for t in mtypes do
126 compiler.compile_type_to_c(t)
127 end
128 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
129 for t in compiler.undead_types do
130 if mtypes.has(t) then continue
131 compiler.compile_type_to_c(t)
132 end
133
134 compiler.display_stats
135
136 var time1 = get_time
137 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
138 write_and_make(compiler)
139 end
140
141 # Count number of invocations by VFT
142 private var nb_invok_by_tables = 0
143 # Count number of invocations by direct call
144 private var nb_invok_by_direct = 0
145 # Count number of invocations by inlining
146 private var nb_invok_by_inline = 0
147 end
148
149 # Singleton that store the knowledge about the separate compilation process
150 class SeparateCompiler
151 super AbstractCompiler
152
153 redef type VISITOR: SeparateCompilerVisitor
154
155 # The result of the RTA (used to know live types and methods)
156 var runtime_type_analysis: nullable RapidTypeAnalysis
157
158 private var undead_types: Set[MType] = new HashSet[MType]
159 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
160
161 private var type_ids: Map[MType, Int] is noinit
162 private var type_colors: Map[MType, Int] is noinit
163 private var opentype_colors: Map[MType, Int] is noinit
164 protected var method_colors: Map[PropertyLayoutElement, Int] is noinit
165 protected var attr_colors: Map[MAttribute, Int] is noinit
166
167 init do
168 var file = new_file("nit.common")
169 self.header = new CodeWriter(file)
170 self.compile_box_kinds
171 end
172
173 redef fun compile_header_structs do
174 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
175 self.compile_header_attribute_structs
176 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
177
178 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
179 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
180 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
181 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
182 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
183 end
184
185 fun compile_header_attribute_structs
186 do
187 if modelbuilder.toolcontext.opt_no_union_attribute.value then
188 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
189 else
190 self.header.add_decl("typedef union \{")
191 self.header.add_decl("void* val;")
192 for c, v in self.box_kinds do
193 var t = c.mclass_type
194
195 # `Pointer` reuse the `val` field
196 if t.mclass.name == "Pointer" then continue
197
198 self.header.add_decl("{t.ctype_extern} {t.ctypename};")
199 end
200 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
201 end
202 end
203
204 fun compile_box_kinds
205 do
206 # Collect all bas box class
207 # FIXME: this is not completely fine with a separate compilation scheme
208 for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do
209 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
210 if classes == null then continue
211 assert classes.length == 1 else print classes.join(", ")
212 self.box_kinds[classes.first] = self.box_kinds.length + 1
213 end
214 end
215
216 var box_kinds = new HashMap[MClass, Int]
217
218 fun box_kind_of(mclass: MClass): Int
219 do
220 #var pointer_type = self.mainmodule.pointer_type
221 #if mclass.mclass_type.ctype == "val*" or mclass.mclass_type.is_subtype(self.mainmodule, mclass.mclass_type pointer_type) then
222 if mclass.mclass_type.ctype_extern == "val*" then
223 return 0
224 else if mclass.kind == extern_kind and mclass.name != "NativeString" then
225 return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")]
226 else
227 return self.box_kinds[mclass]
228 end
229
230 end
231
232 fun compile_color_consts(colors: Map[Object, Int]) do
233 var v = new_visitor
234 for m, c in colors do
235 compile_color_const(v, m, c)
236 end
237 end
238
239 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
240 if color_consts_done.has(m) then return
241 if m isa MProperty then
242 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
243 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
244 else
245 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
246 v.add("const int {m.const_color} = {color};")
247 end
248 else if m isa MPropDef then
249 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
250 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
251 else
252 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
253 v.add("const int {m.const_color} = {color};")
254 end
255 else if m isa MType then
256 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
257 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
258 else
259 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
260 v.add("const int {m.const_color} = {color};")
261 end
262 end
263 color_consts_done.add(m)
264 end
265
266 private var color_consts_done = new HashSet[Object]
267
268 # colorize classe properties
269 fun do_property_coloring do
270
271 var rta = runtime_type_analysis
272
273 # Layouts
274 var poset = mainmodule.flatten_mclass_hierarchy
275 var mclasses = new HashSet[MClass].from(poset)
276 var colorer = new POSetColorer[MClass]
277 colorer.colorize(poset)
278
279 # The dead methods, still need to provide a dead color symbol
280 var dead_methods = new Array[MMethod]
281
282 # lookup properties to build layout with
283 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
284 var mattributes = new HashMap[MClass, Set[MAttribute]]
285 for mclass in mclasses do
286 mmethods[mclass] = new HashSet[PropertyLayoutElement]
287 mattributes[mclass] = new HashSet[MAttribute]
288 for mprop in self.mainmodule.properties(mclass) do
289 if mprop isa MMethod then
290 if not modelbuilder.toolcontext.opt_colo_dead_methods.value and rta != null and not rta.live_methods.has(mprop) then
291 dead_methods.add(mprop)
292 continue
293 end
294 mmethods[mclass].add(mprop)
295 else if mprop isa MAttribute then
296 mattributes[mclass].add(mprop)
297 end
298 end
299 end
300
301 # Collect all super calls (dead or not)
302 var all_super_calls = new HashSet[MMethodDef]
303 for mmodule in self.mainmodule.in_importation.greaters do
304 for mclassdef in mmodule.mclassdefs do
305 for mpropdef in mclassdef.mpropdefs do
306 if not mpropdef isa MMethodDef then continue
307 if mpropdef.has_supercall then
308 all_super_calls.add(mpropdef)
309 end
310 end
311 end
312 end
313
314 # lookup super calls and add it to the list of mmethods to build layout with
315 var super_calls
316 if rta != null then
317 super_calls = rta.live_super_sends
318 else
319 super_calls = all_super_calls
320 end
321
322 for mmethoddef in super_calls do
323 var mclass = mmethoddef.mclassdef.mclass
324 mmethods[mclass].add(mmethoddef)
325 for descendant in mclass.in_hierarchy(self.mainmodule).smallers do
326 mmethods[descendant].add(mmethoddef)
327 end
328 end
329
330 # methods coloration
331 var meth_colorer = new POSetBucketsColorer[MClass, PropertyLayoutElement](poset, colorer.conflicts)
332 method_colors = meth_colorer.colorize(mmethods)
333 method_tables = build_method_tables(mclasses, super_calls)
334 compile_color_consts(method_colors)
335
336 # attribute null color to dead methods and supercalls
337 for mproperty in dead_methods do
338 compile_color_const(new_visitor, mproperty, -1)
339 end
340 for mpropdef in all_super_calls do
341 if super_calls.has(mpropdef) then continue
342 compile_color_const(new_visitor, mpropdef, -1)
343 end
344
345 # attributes coloration
346 var attr_colorer = new POSetBucketsColorer[MClass, MAttribute](poset, colorer.conflicts)
347 attr_colors = attr_colorer.colorize(mattributes)
348 attr_tables = build_attr_tables(mclasses)
349 compile_color_consts(attr_colors)
350 end
351
352 fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do
353 var tables = new HashMap[MClass, Array[nullable MPropDef]]
354 for mclass in mclasses do
355 var table = new Array[nullable MPropDef]
356 tables[mclass] = table
357
358 var mproperties = self.mainmodule.properties(mclass)
359 var mtype = mclass.intro.bound_mtype
360
361 for mproperty in mproperties do
362 if not mproperty isa MMethod then continue
363 if not method_colors.has_key(mproperty) then continue
364 var color = method_colors[mproperty]
365 if table.length <= color then
366 for i in [table.length .. color[ do
367 table[i] = null
368 end
369 end
370 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
371 end
372
373 for supercall in super_calls do
374 if not mtype.collect_mclassdefs(mainmodule).has(supercall.mclassdef) then continue
375
376 var color = method_colors[supercall]
377 if table.length <= color then
378 for i in [table.length .. color[ do
379 table[i] = null
380 end
381 end
382 var mmethoddef = supercall.lookup_next_definition(mainmodule, mtype)
383 table[color] = mmethoddef
384 end
385
386 end
387 return tables
388 end
389
390 fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do
391 var tables = new HashMap[MClass, Array[nullable MPropDef]]
392 for mclass in mclasses do
393 var table = new Array[nullable MPropDef]
394 tables[mclass] = table
395
396 var mproperties = self.mainmodule.properties(mclass)
397 var mtype = mclass.intro.bound_mtype
398
399 for mproperty in mproperties do
400 if not mproperty isa MAttribute then continue
401 if not attr_colors.has_key(mproperty) then continue
402 var color = attr_colors[mproperty]
403 if table.length <= color then
404 for i in [table.length .. color[ do
405 table[i] = null
406 end
407 end
408 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
409 end
410 end
411 return tables
412 end
413
414 # colorize live types of the program
415 private fun do_type_coloring: POSet[MType] do
416 # Collect types to colorize
417 var live_types = runtime_type_analysis.live_types
418 var live_cast_types = runtime_type_analysis.live_cast_types
419 var mtypes = new HashSet[MType]
420 mtypes.add_all(live_types)
421 for c in self.box_kinds.keys do
422 mtypes.add(c.mclass_type)
423 end
424
425 # Compute colors
426 var poset = poset_from_mtypes(mtypes, live_cast_types)
427 var colorer = new POSetColorer[MType]
428 colorer.colorize(poset)
429 type_ids = colorer.ids
430 type_colors = colorer.colors
431 type_tables = build_type_tables(poset)
432
433 # VT and FT are stored with other unresolved types in the big resolution_tables
434 self.compile_resolution_tables(mtypes)
435
436 return poset
437 end
438
439 private fun poset_from_mtypes(mtypes, cast_types: Set[MType]): POSet[MType] do
440 var poset = new POSet[MType]
441 for e in mtypes do
442 poset.add_node(e)
443 for o in cast_types do
444 if e == o then continue
445 poset.add_node(o)
446 if e.is_subtype(mainmodule, null, o) then
447 poset.add_edge(e, o)
448 end
449 end
450 end
451 return poset
452 end
453
454 # Build type tables
455 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
456 var tables = new HashMap[MType, Array[nullable MType]]
457 for mtype in mtypes do
458 var table = new Array[nullable MType]
459 for sup in mtypes[mtype].greaters do
460 var color = type_colors[sup]
461 if table.length <= color then
462 for i in [table.length .. color[ do
463 table[i] = null
464 end
465 end
466 table[color] = sup
467 end
468 tables[mtype] = table
469 end
470 return tables
471 end
472
473 protected fun compile_resolution_tables(mtypes: Set[MType]) do
474 # resolution_tables is used to perform a type resolution at runtime in O(1)
475
476 # During the visit of the body of classes, live_unresolved_types are collected
477 # and associated to
478 # Collect all live_unresolved_types (visited in the body of classes)
479
480 # Determinate fo each livetype what are its possible requested anchored types
481 var mtype2unresolved = new HashMap[MClassType, Set[MType]]
482 for mtype in self.runtime_type_analysis.live_types do
483 var set = new HashSet[MType]
484 for cd in mtype.collect_mclassdefs(self.mainmodule) do
485 if self.live_unresolved_types.has_key(cd) then
486 set.add_all(self.live_unresolved_types[cd])
487 end
488 end
489 mtype2unresolved[mtype] = set
490 end
491
492 # Compute the table layout with the prefered method
493 var colorer = new BucketsColorer[MType, MType]
494 opentype_colors = colorer.colorize(mtype2unresolved)
495 resolution_tables = self.build_resolution_tables(mtype2unresolved)
496
497 # Compile a C constant for each collected unresolved type.
498 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
499 var all_unresolved = new HashSet[MType]
500 for t in self.live_unresolved_types.values do
501 all_unresolved.add_all(t)
502 end
503 var all_unresolved_types_colors = new HashMap[MType, Int]
504 for t in all_unresolved do
505 if opentype_colors.has_key(t) then
506 all_unresolved_types_colors[t] = opentype_colors[t]
507 else
508 all_unresolved_types_colors[t] = -1
509 end
510 end
511 self.compile_color_consts(all_unresolved_types_colors)
512
513 #print "tables"
514 #for k, v in unresolved_types_tables.as(not null) do
515 # print "{k}: {v.join(", ")}"
516 #end
517 #print ""
518 end
519
520 fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do
521 var tables = new HashMap[MClassType, Array[nullable MType]]
522 for mclasstype, mtypes in elements do
523 var table = new Array[nullable MType]
524 for mtype in mtypes do
525 var color = opentype_colors[mtype]
526 if table.length <= color then
527 for i in [table.length .. color[ do
528 table[i] = null
529 end
530 end
531 table[color] = mtype
532 end
533 tables[mclasstype] = table
534 end
535 return tables
536 end
537
538 # Separately compile all the method definitions of the module
539 fun compile_module_to_c(mmodule: MModule)
540 do
541 var old_module = self.mainmodule
542 self.mainmodule = mmodule
543 for cd in mmodule.mclassdefs do
544 for pd in cd.mpropdefs do
545 if not pd isa MMethodDef then continue
546 var rta = runtime_type_analysis
547 if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue
548 #print "compile {pd} @ {cd} @ {mmodule}"
549 var r = pd.separate_runtime_function
550 r.compile_to_c(self)
551 var r2 = pd.virtual_runtime_function
552 r2.compile_to_c(self)
553 end
554 end
555 self.mainmodule = old_module
556 end
557
558 # Globaly compile the type structure of a live type
559 fun compile_type_to_c(mtype: MType)
560 do
561 assert not mtype.need_anchor
562 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
563 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
564 var c_name = mtype.c_name
565 var v = new SeparateCompilerVisitor(self)
566 v.add_decl("/* runtime type {mtype} */")
567
568 # extern const struct type_X
569 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
570
571 # const struct type_X
572 v.add_decl("const struct type type_{c_name} = \{")
573
574 # type id (for cast target)
575 if is_cast_live then
576 v.add_decl("{type_ids[mtype]},")
577 else
578 v.add_decl("-1, /*CAST DEAD*/")
579 end
580
581 # type name
582 v.add_decl("\"{mtype}\", /* class_name_string */")
583
584 # type color (for cast target)
585 if is_cast_live then
586 v.add_decl("{type_colors[mtype]},")
587 else
588 v.add_decl("-1, /*CAST DEAD*/")
589 end
590
591 # is_nullable bit
592 if mtype isa MNullableType then
593 v.add_decl("1,")
594 else
595 v.add_decl("0,")
596 end
597
598 # resolution table (for receiver)
599 if is_live then
600 var mclass_type = mtype.as_notnullable
601 assert mclass_type isa MClassType
602 if resolution_tables[mclass_type].is_empty then
603 v.add_decl("NULL, /*NO RESOLUTIONS*/")
604 else
605 compile_type_resolution_table(mtype)
606 v.require_declaration("resolution_table_{c_name}")
607 v.add_decl("&resolution_table_{c_name},")
608 end
609 else
610 v.add_decl("NULL, /*DEAD*/")
611 end
612
613 # cast table (for receiver)
614 if is_live then
615 v.add_decl("{self.type_tables[mtype].length},")
616 v.add_decl("\{")
617 for stype in self.type_tables[mtype] do
618 if stype == null then
619 v.add_decl("-1, /* empty */")
620 else
621 v.add_decl("{type_ids[stype]}, /* {stype} */")
622 end
623 end
624 v.add_decl("\},")
625 else
626 v.add_decl("0, \{\}, /*DEAD TYPE*/")
627 end
628 v.add_decl("\};")
629 end
630
631 fun compile_type_resolution_table(mtype: MType) do
632
633 var mclass_type = mtype.as_notnullable.as(MClassType)
634
635 # extern const struct resolution_table_X resolution_table_X
636 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
637
638 # const struct fts_table_X fts_table_X
639 var v = new_visitor
640 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
641 v.add_decl("0, /* dummy */")
642 v.add_decl("\{")
643 for t in self.resolution_tables[mclass_type] do
644 if t == null then
645 v.add_decl("NULL, /* empty */")
646 else
647 # The table stores the result of the type resolution
648 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
649 # the value stored is tv.
650 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
651 # FIXME: What typeids means here? How can a tv not be live?
652 if type_ids.has_key(tv) then
653 v.require_declaration("type_{tv.c_name}")
654 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
655 else
656 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
657 end
658 end
659 end
660 v.add_decl("\}")
661 v.add_decl("\};")
662 end
663
664 # Globally compile the table of the class mclass
665 # In a link-time optimisation compiler, tables are globally computed
666 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
667 fun compile_class_to_c(mclass: MClass)
668 do
669 var mtype = mclass.intro.bound_mtype
670 var c_name = mclass.c_name
671
672 var vft = self.method_tables[mclass]
673 var attrs = self.attr_tables[mclass]
674 var v = new_visitor
675
676 var rta = runtime_type_analysis
677 var is_dead = rta != null and not rta.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray" and mclass.name != "Pointer"
678
679 v.add_decl("/* runtime class {c_name} */")
680
681 # Build class vft
682 if not is_dead then
683 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
684 v.add_decl("const struct class class_{c_name} = \{")
685 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
686 v.add_decl("\{")
687 for i in [0 .. vft.length[ do
688 var mpropdef = vft[i]
689 if mpropdef == null then
690 v.add_decl("NULL, /* empty */")
691 else
692 assert mpropdef isa MMethodDef
693 if rta != null and not rta.live_methoddefs.has(mpropdef) then
694 v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
695 continue
696 end
697 var rf = mpropdef.virtual_runtime_function
698 v.require_declaration(rf.c_name)
699 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
700 end
701 end
702 v.add_decl("\}")
703 v.add_decl("\};")
704 end
705
706 if mtype.ctype != "val*" or mtype.mclass.name == "Pointer" then
707 # Is a primitive type or the Pointer class, not any other extern class
708
709 #Build instance struct
710 self.header.add_decl("struct instance_{c_name} \{")
711 self.header.add_decl("const struct type *type;")
712 self.header.add_decl("const struct class *class;")
713 self.header.add_decl("{mtype.ctype_extern} value;")
714 self.header.add_decl("\};")
715
716 if not rta.live_types.has(mtype) and mtype.mclass.name != "Pointer" then return
717
718 #Build BOX
719 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype_extern});")
720 v.add_decl("/* allocate {mtype} */")
721 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype_extern} value) \{")
722 v.add("struct instance_{c_name}*res = nit_alloc(sizeof(struct instance_{c_name}));")
723 v.compiler.undead_types.add(mtype)
724 v.require_declaration("type_{c_name}")
725 v.add("res->type = &type_{c_name};")
726 v.require_declaration("class_{c_name}")
727 v.add("res->class = &class_{c_name};")
728 v.add("res->value = value;")
729 v.add("return (val*)res;")
730 v.add("\}")
731
732 if mtype.mclass.name != "Pointer" then return
733
734 v = new_visitor
735 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
736 v.add_decl("/* allocate {mtype} */")
737 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
738 if is_dead then
739 v.add_abort("{mclass} is DEAD")
740 else
741 var res = v.new_named_var(mtype, "self")
742 res.is_exact = true
743 v.add("{res} = nit_alloc(sizeof(struct instance_{mtype.c_name}));")
744 v.add("{res}->type = type;")
745 hardening_live_type(v, "type")
746 v.require_declaration("class_{c_name}")
747 v.add("{res}->class = &class_{c_name};")
748 v.add("((struct instance_{mtype.c_name}*){res})->value = NULL;")
749 v.add("return {res};")
750 end
751 v.add("\}")
752 return
753 else if mclass.name == "NativeArray" then
754 #Build instance struct
755 self.header.add_decl("struct instance_{c_name} \{")
756 self.header.add_decl("const struct type *type;")
757 self.header.add_decl("const struct class *class;")
758 # NativeArrays are just a instance header followed by a length and an array of values
759 self.header.add_decl("int length;")
760 self.header.add_decl("val* values[0];")
761 self.header.add_decl("\};")
762
763 #Build NEW
764 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
765 v.add_decl("/* allocate {mtype} */")
766 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
767 var res = v.get_name("self")
768 v.add_decl("struct instance_{c_name} *{res};")
769 var mtype_elt = mtype.arguments.first
770 v.add("{res} = nit_alloc(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));")
771 v.add("{res}->type = type;")
772 hardening_live_type(v, "type")
773 v.require_declaration("class_{c_name}")
774 v.add("{res}->class = &class_{c_name};")
775 v.add("{res}->length = length;")
776 v.add("return (val*){res};")
777 v.add("\}")
778 return
779 else if mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
780 # Is an extern class (other than Pointer and NativeString)
781 # Pointer is caught in a previous `if`, and NativeString is internal
782
783 var pointer_type = mainmodule.pointer_type
784
785 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
786 v.add_decl("/* allocate {mtype} */")
787 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
788 if is_dead then
789 v.add_abort("{mclass} is DEAD")
790 else
791 var res = v.new_named_var(mtype, "self")
792 res.is_exact = true
793 v.add("{res} = nit_alloc(sizeof(struct instance_{pointer_type.c_name}));")
794 v.add("{res}->type = type;")
795 hardening_live_type(v, "type")
796 v.require_declaration("class_{c_name}")
797 v.add("{res}->class = &class_{c_name};")
798 v.add("((struct instance_{pointer_type.c_name}*){res})->value = NULL;")
799 v.add("return {res};")
800 end
801 v.add("\}")
802 return
803 end
804
805 #Build NEW
806 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
807 v.add_decl("/* allocate {mtype} */")
808 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
809 if is_dead then
810 v.add_abort("{mclass} is DEAD")
811 else
812 var res = v.new_named_var(mtype, "self")
813 res.is_exact = true
814 v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));")
815 v.add("{res}->type = type;")
816 hardening_live_type(v, "type")
817 v.require_declaration("class_{c_name}")
818 v.add("{res}->class = &class_{c_name};")
819 self.generate_init_attr(v, res, mtype)
820 v.set_finalizer res
821 v.add("return {res};")
822 end
823 v.add("\}")
824 end
825
826 # Add a dynamic test to ensure that the type referenced by `t` is a live type
827 fun hardening_live_type(v: VISITOR, t: String)
828 do
829 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
830 v.add("if({t} == NULL) \{")
831 v.add_abort("type null")
832 v.add("\}")
833 v.add("if({t}->table_size == 0) \{")
834 v.add("PRINT_ERROR(\"Insantiation of a dead type: %s\\n\", {t}->name);")
835 v.add_abort("type dead")
836 v.add("\}")
837 end
838
839 redef fun new_visitor do return new SeparateCompilerVisitor(self)
840
841 # Stats
842
843 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
844 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
845 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
846 protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
847
848 redef fun display_stats
849 do
850 super
851 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
852 display_sizes
853 end
854 if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
855 display_isset_checks
856 end
857 var tc = self.modelbuilder.toolcontext
858 tc.info("# implementation of method invocation",2)
859 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
860 tc.info("total number of invocations: {nb_invok_total}",2)
861 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
862 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
863 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
864 end
865
866 fun display_sizes
867 do
868 print "# size of subtyping tables"
869 print "\ttotal \tholes"
870 var total = 0
871 var holes = 0
872 for t, table in type_tables do
873 total += table.length
874 for e in table do if e == null then holes += 1
875 end
876 print "\t{total}\t{holes}"
877
878 print "# size of resolution tables"
879 print "\ttotal \tholes"
880 total = 0
881 holes = 0
882 for t, table in resolution_tables do
883 total += table.length
884 for e in table do if e == null then holes += 1
885 end
886 print "\t{total}\t{holes}"
887
888 print "# size of methods tables"
889 print "\ttotal \tholes"
890 total = 0
891 holes = 0
892 for t, table in method_tables do
893 total += table.length
894 for e in table do if e == null then holes += 1
895 end
896 print "\t{total}\t{holes}"
897
898 print "# size of attributes tables"
899 print "\ttotal \tholes"
900 total = 0
901 holes = 0
902 for t, table in attr_tables do
903 total += table.length
904 for e in table do if e == null then holes += 1
905 end
906 print "\t{total}\t{holes}"
907 end
908
909 protected var isset_checks_count = 0
910 protected var attr_read_count = 0
911
912 fun display_isset_checks do
913 print "# total number of compiled attribute reads"
914 print "\t{attr_read_count}"
915 print "# total number of compiled isset-checks"
916 print "\t{isset_checks_count}"
917 end
918
919 redef fun compile_nitni_structs
920 do
921 self.header.add_decl """
922 struct nitni_instance \{
923 struct nitni_instance *next,
924 *prev; /* adjacent global references in global list */
925 int count; /* number of time this global reference has been marked */
926 struct instance *value;
927 \};
928 """
929 super
930 end
931
932 redef fun finalize_ffi_for_module(mmodule)
933 do
934 var old_module = self.mainmodule
935 self.mainmodule = mmodule
936 super
937 self.mainmodule = old_module
938 end
939 end
940
941 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
942 class SeparateCompilerVisitor
943 super AbstractCompilerVisitor
944
945 redef type COMPILER: SeparateCompiler
946
947 redef fun adapt_signature(m, args)
948 do
949 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
950 var recv = args.first
951 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
952 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
953 end
954 for i in [0..msignature.arity[ do
955 var t = msignature.mparameters[i].mtype
956 if i == msignature.vararg_rank then
957 t = args[i+1].mtype
958 end
959 args[i+1] = self.autobox(args[i+1], t)
960 end
961 end
962
963 redef fun unbox_signature_extern(m, args)
964 do
965 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
966 if not m.mproperty.is_init and m.is_extern then
967 args.first = self.unbox_extern(args.first, m.mclassdef.mclass.mclass_type)
968 end
969 for i in [0..msignature.arity[ do
970 var t = msignature.mparameters[i].mtype
971 if i == msignature.vararg_rank then
972 t = args[i+1].mtype
973 end
974 if m.is_extern then args[i+1] = self.unbox_extern(args[i+1], t)
975 end
976 end
977
978 redef fun autobox(value, mtype)
979 do
980 if value.mtype == mtype then
981 return value
982 else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then
983 return value
984 else if value.mtype.ctype == "val*" then
985 return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
986 else if mtype.ctype == "val*" then
987 var valtype = value.mtype.as(MClassType)
988 if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
989 valtype = compiler.mainmodule.pointer_type
990 end
991 var res = self.new_var(mtype)
992 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then
993 self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */")
994 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);")
995 return res
996 end
997 self.require_declaration("BOX_{valtype.c_name}")
998 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
999 return res
1000 else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or
1001 (value.mtype.ctype == "char*" and mtype.ctype == "void*") or
1002 (value.mtype.ctype == "void*" and mtype.ctype == "char*") then
1003 return value
1004 else
1005 # Bad things will appen!
1006 var res = self.new_var(mtype)
1007 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
1008 self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);")
1009 return res
1010 end
1011 end
1012
1013 redef fun unbox_extern(value, mtype)
1014 do
1015 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1016 mtype.mclass.name != "NativeString" then
1017 var pointer_type = compiler.mainmodule.pointer_type
1018 var res = self.new_var_extern(mtype)
1019 self.add "{res} = ((struct instance_{pointer_type.c_name}*){value})->value; /* unboxing {value.mtype} */"
1020 return res
1021 else
1022 return value
1023 end
1024 end
1025
1026 redef fun box_extern(value, mtype)
1027 do
1028 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1029 mtype.mclass.name != "NativeString" then
1030 var valtype = compiler.mainmodule.pointer_type
1031 var res = self.new_var(mtype)
1032 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(value.mtype.as(MClassType)) then
1033 self.add("/*no boxing of {value.mtype}: {value.mtype} is not live! */")
1034 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);")
1035 return res
1036 end
1037 self.require_declaration("BOX_{valtype.c_name}")
1038 self.add("{res} = BOX_{valtype.c_name}({value}); /* boxing {value.mtype} */")
1039 self.require_declaration("type_{mtype.c_name}")
1040 self.add("{res}->type = &type_{mtype.c_name};")
1041 self.require_declaration("class_{mtype.c_name}")
1042 self.add("{res}->class = &class_{mtype.c_name};")
1043 return res
1044 else
1045 return value
1046 end
1047 end
1048
1049 # Return a C expression returning the runtime type structure of the value
1050 # The point of the method is to works also with primitives types.
1051 fun type_info(value: RuntimeVariable): String
1052 do
1053 if value.mtype.ctype == "val*" then
1054 return "{value}->type"
1055 else
1056 compiler.undead_types.add(value.mtype)
1057 self.require_declaration("type_{value.mtype.c_name}")
1058 return "(&type_{value.mtype.c_name})"
1059 end
1060 end
1061
1062 redef fun compile_callsite(callsite, args)
1063 do
1064 var rta = compiler.runtime_type_analysis
1065 var mmethod = callsite.mproperty
1066 # TODO: Inlining of new-style constructors with initializers
1067 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and callsite.mpropdef.initializers.is_empty then
1068 var tgs = rta.live_targets(callsite)
1069 if tgs.length == 1 then
1070 # DIRECT CALL
1071 var res0 = before_send(mmethod, args)
1072 var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args)
1073 if res0 != null then
1074 assert res != null
1075 self.assign(res0, res)
1076 res = res0
1077 end
1078 add("\}") # close the before_send
1079 return res
1080 end
1081 end
1082 return super
1083 end
1084 redef fun send(mmethod, arguments)
1085 do
1086 if arguments.first.mcasttype.ctype != "val*" then
1087 # In order to shortcut the primitive, we need to find the most specific method
1088 # Howverr, because of performance (no flattening), we always work on the realmainmodule
1089 var m = self.compiler.mainmodule
1090 self.compiler.mainmodule = self.compiler.realmainmodule
1091 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
1092 self.compiler.mainmodule = m
1093 return res
1094 end
1095
1096 return table_send(mmethod, arguments, mmethod.const_color)
1097 end
1098
1099 # Handle common special cases before doing the effective method invocation
1100 # This methods handle the `==` and `!=` methods and the case of the null receiver.
1101 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
1102 # Client must not forget to close the } after them.
1103 #
1104 # The value returned is the result of the common special cases.
1105 # If not null, client must compile it with the result of their own effective method invocation.
1106 #
1107 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1108 # is generated to cancel the effective method invocation that will follow
1109 # TODO: find a better approach
1110 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1111 do
1112 var res: nullable RuntimeVariable = null
1113 var recv = arguments.first
1114 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_null.value or mmethod.name == "==" or mmethod.name == "!="
1115 var maybenull = recv.mcasttype isa MNullableType and consider_null
1116 if maybenull then
1117 self.add("if ({recv} == NULL) \{")
1118 if mmethod.name == "==" then
1119 res = self.new_var(bool_type)
1120 var arg = arguments[1]
1121 if arg.mcasttype isa MNullableType then
1122 self.add("{res} = ({arg} == NULL);")
1123 else if arg.mcasttype isa MNullType then
1124 self.add("{res} = 1; /* is null */")
1125 else
1126 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1127 end
1128 else if mmethod.name == "!=" then
1129 res = self.new_var(bool_type)
1130 var arg = arguments[1]
1131 if arg.mcasttype isa MNullableType then
1132 self.add("{res} = ({arg} != NULL);")
1133 else if arg.mcasttype isa MNullType then
1134 self.add("{res} = 0; /* is null */")
1135 else
1136 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1137 end
1138 else
1139 self.add_abort("Receiver is null")
1140 end
1141 self.add("\} else \{")
1142 else
1143 self.add("\{")
1144 end
1145 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then
1146 if res == null then res = self.new_var(bool_type)
1147 # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants)
1148 var arg = arguments[1]
1149 if arg.mcasttype isa MNullType then
1150 if mmethod.name == "==" then
1151 self.add("{res} = 0; /* arg is null but recv is not */")
1152 else
1153 self.add("{res} = 1; /* arg is null and recv is not */")
1154 end
1155 self.add("\}") # closes the null case
1156 self.add("if (0) \{") # what follow is useless, CC will drop it
1157 end
1158 end
1159 return res
1160 end
1161
1162 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable
1163 do
1164 compiler.modelbuilder.nb_invok_by_tables += 1
1165 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1166
1167 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1168 var recv = arguments.first
1169
1170 var res0 = before_send(mmethod, arguments)
1171
1172 var res: nullable RuntimeVariable
1173 var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true)
1174 var ret = msignature.return_mtype
1175 if ret == null then
1176 res = null
1177 else
1178 res = self.new_var(ret)
1179 end
1180
1181 var s = new FlatBuffer
1182 var ss = new FlatBuffer
1183
1184 s.append("val*")
1185 ss.append("{recv}")
1186 for i in [0..msignature.arity[ do
1187 var a = arguments[i+1]
1188 var t = msignature.mparameters[i].mtype
1189 if i == msignature.vararg_rank then
1190 t = arguments[i+1].mcasttype
1191 end
1192 s.append(", {t.ctype}")
1193 a = self.autobox(a, t)
1194 ss.append(", {a}")
1195 end
1196
1197
1198 var r
1199 if ret == null then r = "void" else r = ret.ctype
1200 self.require_declaration(const_color)
1201 var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/"
1202
1203 if res != null then
1204 self.add("{res} = {call};")
1205 else
1206 self.add("{call};")
1207 end
1208
1209 if res0 != null then
1210 assert res != null
1211 assign(res0,res)
1212 res = res0
1213 end
1214
1215 self.add("\}") # closes the null case
1216
1217 return res
1218 end
1219
1220 redef fun call(mmethoddef, recvtype, arguments)
1221 do
1222 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1223
1224 var res: nullable RuntimeVariable
1225 var ret = mmethoddef.msignature.return_mtype
1226 if ret == null then
1227 res = null
1228 else
1229 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1230 res = self.new_var(ret)
1231 end
1232
1233 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1234 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1235 compiler.modelbuilder.nb_invok_by_inline += 1
1236 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1237 var frame = new Frame(self, mmethoddef, recvtype, arguments)
1238 frame.returnlabel = self.get_name("RET_LABEL")
1239 frame.returnvar = res
1240 var old_frame = self.frame
1241 self.frame = frame
1242 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1243 mmethoddef.compile_inside_to_c(self, arguments)
1244 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1245 self.add("\}")
1246 self.frame = old_frame
1247 return res
1248 end
1249 compiler.modelbuilder.nb_invok_by_direct += 1
1250 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1251
1252 # Autobox arguments
1253 self.adapt_signature(mmethoddef, arguments)
1254
1255 self.require_declaration(mmethoddef.c_name)
1256 if res == null then
1257 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1258 return null
1259 else
1260 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1261 end
1262
1263 return res
1264 end
1265
1266 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1267 do
1268 if arguments.first.mcasttype.ctype != "val*" then
1269 # In order to shortcut the primitive, we need to find the most specific method
1270 # However, because of performance (no flattening), we always work on the realmainmodule
1271 var main = self.compiler.mainmodule
1272 self.compiler.mainmodule = self.compiler.realmainmodule
1273 var res = self.monomorphic_super_send(m, recvtype, arguments)
1274 self.compiler.mainmodule = main
1275 return res
1276 end
1277 return table_send(m.mproperty, arguments, m.const_color)
1278 end
1279
1280 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1281 do
1282 # A vararg must be stored into an new array
1283 # The trick is that the dymaic type of the array may depends on the receiver
1284 # of the method (ie recv) if the static type is unresolved
1285 # This is more complex than usual because the unresolved type must not be resolved
1286 # with the current receiver (ie self).
1287 # Therefore to isolate the resolution from self, a local Frame is created.
1288 # One can see this implementation as an inlined method of the receiver whose only
1289 # job is to allocate the array
1290 var old_frame = self.frame
1291 var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1292 self.frame = frame
1293 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1294 var res = self.array_instance(varargs, elttype)
1295 self.frame = old_frame
1296 return res
1297 end
1298
1299 redef fun isset_attribute(a, recv)
1300 do
1301 self.check_recv_notnull(recv)
1302 var res = self.new_var(bool_type)
1303
1304 # What is the declared type of the attribute?
1305 var mtype = a.intro.static_mtype.as(not null)
1306 var intromclassdef = a.intro.mclassdef
1307 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1308
1309 if mtype isa MNullableType then
1310 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1311 return res
1312 end
1313
1314 self.require_declaration(a.const_color)
1315 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1316 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1317 else
1318
1319 if mtype.ctype == "val*" then
1320 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1321 else
1322 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1323 end
1324 end
1325 return res
1326 end
1327
1328 redef fun read_attribute(a, recv)
1329 do
1330 self.check_recv_notnull(recv)
1331
1332 # What is the declared type of the attribute?
1333 var ret = a.intro.static_mtype.as(not null)
1334 var intromclassdef = a.intro.mclassdef
1335 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1336
1337 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1338 self.compiler.attr_read_count += 1
1339 self.add("count_attr_reads++;")
1340 end
1341
1342 self.require_declaration(a.const_color)
1343 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1344 # Get the attribute or a box (ie. always a val*)
1345 var cret = self.object_type.as_nullable
1346 var res = self.new_var(cret)
1347 res.mcasttype = ret
1348
1349 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1350
1351 # Check for Uninitialized attribute
1352 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1353 self.add("if (unlikely({res} == NULL)) \{")
1354 self.add_abort("Uninitialized attribute {a.name}")
1355 self.add("\}")
1356
1357 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1358 self.compiler.isset_checks_count += 1
1359 self.add("count_isset_checks++;")
1360 end
1361 end
1362
1363 # Return the attribute or its unboxed version
1364 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1365 return self.autobox(res, ret)
1366 else
1367 var res = self.new_var(ret)
1368 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1369
1370 # Check for Uninitialized attribute
1371 if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1372 self.add("if (unlikely({res} == NULL)) \{")
1373 self.add_abort("Uninitialized attribute {a.name}")
1374 self.add("\}")
1375 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1376 self.compiler.isset_checks_count += 1
1377 self.add("count_isset_checks++;")
1378 end
1379 end
1380
1381 return res
1382 end
1383 end
1384
1385 redef fun write_attribute(a, recv, value)
1386 do
1387 self.check_recv_notnull(recv)
1388
1389 # What is the declared type of the attribute?
1390 var mtype = a.intro.static_mtype.as(not null)
1391 var intromclassdef = a.intro.mclassdef
1392 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1393
1394 # Adapt the value to the declared type
1395 value = self.autobox(value, mtype)
1396
1397 self.require_declaration(a.const_color)
1398 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1399 var attr = "{recv}->attrs[{a.const_color}]"
1400 if mtype.ctype != "val*" then
1401 assert mtype isa MClassType
1402 # The attribute is primitive, thus we store it in a box
1403 # The trick is to create the box the first time then resuse the box
1404 self.add("if ({attr} != NULL) \{")
1405 self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1406 self.add("\} else \{")
1407 value = self.autobox(value, self.object_type.as_nullable)
1408 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1409 self.add("\}")
1410 else
1411 # The attribute is not primitive, thus store it direclty
1412 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1413 end
1414 else
1415 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1416 end
1417 end
1418
1419 # Check that mtype is a live open type
1420 fun hardening_live_open_type(mtype: MType)
1421 do
1422 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1423 self.require_declaration(mtype.const_color)
1424 var col = mtype.const_color
1425 self.add("if({col} == -1) \{")
1426 self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1427 self.add_abort("open type dead")
1428 self.add("\}")
1429 end
1430
1431 # Check that mtype it a pointer to a live cast type
1432 fun hardening_cast_type(t: String)
1433 do
1434 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1435 add("if({t} == NULL) \{")
1436 add_abort("cast type null")
1437 add("\}")
1438 add("if({t}->id == -1 || {t}->color == -1) \{")
1439 add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1440 add_abort("cast type dead")
1441 add("\}")
1442 end
1443
1444 redef fun init_instance(mtype)
1445 do
1446 self.require_declaration("NEW_{mtype.mclass.c_name}")
1447 var compiler = self.compiler
1448 if mtype isa MGenericType and mtype.need_anchor then
1449 hardening_live_open_type(mtype)
1450 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1451 var recv = self.frame.arguments.first
1452 var recv_type_info = self.type_info(recv)
1453 self.require_declaration(mtype.const_color)
1454 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1455 end
1456 compiler.undead_types.add(mtype)
1457 self.require_declaration("type_{mtype.c_name}")
1458 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1459 end
1460
1461 redef fun type_test(value, mtype, tag)
1462 do
1463 self.add("/* {value.inspect} isa {mtype} */")
1464 var compiler = self.compiler
1465
1466 var recv = self.frame.arguments.first
1467 var recv_type_info = self.type_info(recv)
1468
1469 var res = self.new_var(bool_type)
1470
1471 var cltype = self.get_name("cltype")
1472 self.add_decl("int {cltype};")
1473 var idtype = self.get_name("idtype")
1474 self.add_decl("int {idtype};")
1475
1476 var maybe_null = self.maybe_null(value)
1477 var accept_null = "0"
1478 var ntype = mtype
1479 if ntype isa MNullableType then
1480 ntype = ntype.mtype
1481 accept_null = "1"
1482 end
1483
1484 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1485 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1486 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1487 self.compiler.count_type_test_skipped[tag] += 1
1488 self.add("count_type_test_skipped_{tag}++;")
1489 end
1490 return res
1491 end
1492
1493 if ntype.need_anchor then
1494 var type_struct = self.get_name("type_struct")
1495 self.add_decl("const struct type* {type_struct};")
1496
1497 # Either with resolution_table with a direct resolution
1498 hardening_live_open_type(mtype)
1499 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1500 self.require_declaration(mtype.const_color)
1501 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1502 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1503 self.compiler.count_type_test_unresolved[tag] += 1
1504 self.add("count_type_test_unresolved_{tag}++;")
1505 end
1506 hardening_cast_type(type_struct)
1507 self.add("{cltype} = {type_struct}->color;")
1508 self.add("{idtype} = {type_struct}->id;")
1509 if maybe_null and accept_null == "0" then
1510 var is_nullable = self.get_name("is_nullable")
1511 self.add_decl("short int {is_nullable};")
1512 self.add("{is_nullable} = {type_struct}->is_nullable;")
1513 accept_null = is_nullable.to_s
1514 end
1515 else if ntype isa MClassType then
1516 compiler.undead_types.add(mtype)
1517 self.require_declaration("type_{mtype.c_name}")
1518 hardening_cast_type("(&type_{mtype.c_name})")
1519 self.add("{cltype} = type_{mtype.c_name}.color;")
1520 self.add("{idtype} = type_{mtype.c_name}.id;")
1521 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1522 self.compiler.count_type_test_resolved[tag] += 1
1523 self.add("count_type_test_resolved_{tag}++;")
1524 end
1525 else
1526 self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);")
1527 end
1528
1529 # check color is in table
1530 if maybe_null then
1531 self.add("if({value} == NULL) \{")
1532 self.add("{res} = {accept_null};")
1533 self.add("\} else \{")
1534 end
1535 var value_type_info = self.type_info(value)
1536 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1537 self.add("{res} = 0;")
1538 self.add("\} else \{")
1539 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1540 self.add("\}")
1541 if maybe_null then
1542 self.add("\}")
1543 end
1544
1545 return res
1546 end
1547
1548 redef fun is_same_type_test(value1, value2)
1549 do
1550 var res = self.new_var(bool_type)
1551 # Swap values to be symetric
1552 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1553 var tmp = value1
1554 value1 = value2
1555 value2 = tmp
1556 end
1557 if value1.mtype.ctype != "val*" then
1558 if value2.mtype == value1.mtype then
1559 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1560 else if value2.mtype.ctype != "val*" then
1561 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1562 else
1563 var mtype1 = value1.mtype.as(MClassType)
1564 self.require_declaration("class_{mtype1.c_name}")
1565 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */")
1566 end
1567 else
1568 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */")
1569 end
1570 return res
1571 end
1572
1573 redef fun class_name_string(value)
1574 do
1575 var res = self.get_name("var_class_name")
1576 self.add_decl("const char* {res};")
1577 if value.mtype.ctype == "val*" then
1578 self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;"
1579 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind and
1580 value.mtype.as(MClassType).name != "NativeString" then
1581 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1582 else
1583 self.require_declaration("type_{value.mtype.c_name}")
1584 self.add "{res} = type_{value.mtype.c_name}.name;"
1585 end
1586 return res
1587 end
1588
1589 redef fun equal_test(value1, value2)
1590 do
1591 var res = self.new_var(bool_type)
1592 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1593 var tmp = value1
1594 value1 = value2
1595 value2 = tmp
1596 end
1597 if value1.mtype.ctype != "val*" then
1598 if value2.mtype == value1.mtype then
1599 self.add("{res} = {value1} == {value2};")
1600 else if value2.mtype.ctype != "val*" then
1601 self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/")
1602 else
1603 var mtype1 = value1.mtype.as(MClassType)
1604 self.require_declaration("class_{mtype1.c_name}")
1605 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});")
1606 self.add("if ({res}) \{")
1607 self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});")
1608 self.add("\}")
1609 end
1610 return res
1611 end
1612 var maybe_null = true
1613 var test = new Array[String]
1614 var t1 = value1.mcasttype
1615 if t1 isa MNullableType then
1616 test.add("{value1} != NULL")
1617 t1 = t1.mtype
1618 else
1619 maybe_null = false
1620 end
1621 var t2 = value2.mcasttype
1622 if t2 isa MNullableType then
1623 test.add("{value2} != NULL")
1624 t2 = t2.mtype
1625 else
1626 maybe_null = false
1627 end
1628
1629 var incompatible = false
1630 var primitive
1631 if t1.ctype != "val*" then
1632 primitive = t1
1633 if t1 == t2 then
1634 # No need to compare class
1635 else if t2.ctype != "val*" then
1636 incompatible = true
1637 else if can_be_primitive(value2) then
1638 test.add("{value1}->class == {value2}->class")
1639 else
1640 incompatible = true
1641 end
1642 else if t2.ctype != "val*" then
1643 primitive = t2
1644 if can_be_primitive(value1) then
1645 test.add("{value1}->class == {value2}->class")
1646 else
1647 incompatible = true
1648 end
1649 else
1650 primitive = null
1651 end
1652
1653 if incompatible then
1654 if maybe_null then
1655 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
1656 return res
1657 else
1658 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
1659 return res
1660 end
1661 end
1662 if primitive != null then
1663 test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value")
1664 else if can_be_primitive(value1) and can_be_primitive(value2) then
1665 test.add("{value1}->class == {value2}->class")
1666 var s = new Array[String]
1667 for t, v in self.compiler.box_kinds do
1668 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)"
1669 end
1670 test.add("({s.join(" || ")})")
1671 else
1672 self.add("{res} = {value1} == {value2};")
1673 return res
1674 end
1675 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
1676 return res
1677 end
1678
1679 fun can_be_primitive(value: RuntimeVariable): Bool
1680 do
1681 var t = value.mcasttype.as_notnullable
1682 if not t isa MClassType then return false
1683 var k = t.mclass.kind
1684 return k == interface_kind or t.ctype != "val*"
1685 end
1686
1687 fun maybe_null(value: RuntimeVariable): Bool
1688 do
1689 var t = value.mcasttype
1690 return t isa MNullableType or t isa MNullType
1691 end
1692
1693 redef fun array_instance(array, elttype)
1694 do
1695 var nclass = self.get_class("NativeArray")
1696 var arrayclass = self.get_class("Array")
1697 var arraytype = arrayclass.get_mtype([elttype])
1698 var res = self.init_instance(arraytype)
1699 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
1700 var length = self.int_instance(array.length)
1701 var nat = native_array_instance(elttype, length)
1702 for i in [0..array.length[ do
1703 var r = self.autobox(array[i], self.object_type)
1704 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
1705 end
1706 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
1707 self.add("\}")
1708 return res
1709 end
1710
1711 redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable
1712 do
1713 var mtype = self.get_class("NativeArray").get_mtype([elttype])
1714 self.require_declaration("NEW_{mtype.mclass.c_name}")
1715 assert mtype isa MGenericType
1716 var compiler = self.compiler
1717 if mtype.need_anchor then
1718 hardening_live_open_type(mtype)
1719 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1720 var recv = self.frame.arguments.first
1721 var recv_type_info = self.type_info(recv)
1722 self.require_declaration(mtype.const_color)
1723 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1724 end
1725 compiler.undead_types.add(mtype)
1726 self.require_declaration("type_{mtype.c_name}")
1727 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype)
1728 end
1729
1730 redef fun native_array_def(pname, ret_type, arguments)
1731 do
1732 var elttype = arguments.first.mtype
1733 var nclass = self.get_class("NativeArray")
1734 var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values"
1735 if pname == "[]" then
1736 self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null)))
1737 return
1738 else if pname == "[]=" then
1739 self.add("{recv}[{arguments[1]}]={arguments[2]};")
1740 return
1741 else if pname == "length" then
1742 self.ret(self.new_expr("((struct instance_{nclass.c_name}*){arguments[0]})->length", ret_type.as(not null)))
1743 return
1744 else if pname == "copy_to" then
1745 var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values"
1746 self.add("memmove({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
1747 return
1748 end
1749 end
1750
1751 redef fun calloc_array(ret_type, arguments)
1752 do
1753 var mclass = self.get_class("ArrayCapable")
1754 var ft = mclass.mparameters.first
1755 var res = self.native_array_instance(ft, arguments[1])
1756 self.ret(res)
1757 end
1758
1759 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
1760 assert mtype.need_anchor
1761 var compiler = self.compiler
1762 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
1763 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
1764 end
1765 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
1766 end
1767 end
1768
1769 redef class MMethodDef
1770 fun separate_runtime_function: AbstractRuntimeFunction
1771 do
1772 var res = self.separate_runtime_function_cache
1773 if res == null then
1774 res = new SeparateRuntimeFunction(self)
1775 self.separate_runtime_function_cache = res
1776 end
1777 return res
1778 end
1779 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
1780
1781 fun virtual_runtime_function: AbstractRuntimeFunction
1782 do
1783 var res = self.virtual_runtime_function_cache
1784 if res == null then
1785 res = new VirtualRuntimeFunction(self)
1786 self.virtual_runtime_function_cache = res
1787 end
1788 return res
1789 end
1790 private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction
1791 end
1792
1793 # The C function associated to a methoddef separately compiled
1794 class SeparateRuntimeFunction
1795 super AbstractRuntimeFunction
1796
1797 redef fun build_c_name: String do return "{mmethoddef.c_name}"
1798
1799 redef fun to_s do return self.mmethoddef.to_s
1800
1801 redef fun compile_to_c(compiler)
1802 do
1803 var mmethoddef = self.mmethoddef
1804
1805 var recv = self.mmethoddef.mclassdef.bound_mtype
1806 var v = compiler.new_visitor
1807 var selfvar = new RuntimeVariable("self", recv, recv)
1808 var arguments = new Array[RuntimeVariable]
1809 var frame = new Frame(v, mmethoddef, recv, arguments)
1810 v.frame = frame
1811
1812 var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1813
1814 var sig = new FlatBuffer
1815 var comment = new FlatBuffer
1816 var ret = msignature.return_mtype
1817 if ret != null then
1818 sig.append("{ret.ctype} ")
1819 else
1820 sig.append("void ")
1821 end
1822 sig.append(self.c_name)
1823 sig.append("({selfvar.mtype.ctype} {selfvar}")
1824 comment.append("({selfvar}: {selfvar.mtype}")
1825 arguments.add(selfvar)
1826 for i in [0..msignature.arity[ do
1827 var mtype = msignature.mparameters[i].mtype
1828 if i == msignature.vararg_rank then
1829 mtype = v.get_class("Array").get_mtype([mtype])
1830 end
1831 comment.append(", {mtype}")
1832 sig.append(", {mtype.ctype} p{i}")
1833 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1834 arguments.add(argvar)
1835 end
1836 sig.append(")")
1837 comment.append(")")
1838 if ret != null then
1839 comment.append(": {ret}")
1840 end
1841 compiler.provide_declaration(self.c_name, "{sig};")
1842
1843 v.add_decl("/* method {self} for {comment} */")
1844 v.add_decl("{sig} \{")
1845 if ret != null then
1846 frame.returnvar = v.new_var(ret)
1847 end
1848 frame.returnlabel = v.get_name("RET_LABEL")
1849
1850 if recv != arguments.first.mtype then
1851 #print "{self} {recv} {arguments.first}"
1852 end
1853 mmethoddef.compile_inside_to_c(v, arguments)
1854
1855 v.add("{frame.returnlabel.as(not null)}:;")
1856 if ret != null then
1857 v.add("return {frame.returnvar.as(not null)};")
1858 end
1859 v.add("\}")
1860 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
1861 end
1862 end
1863
1864 # The C function associated to a methoddef on a primitive type, stored into a VFT of a class
1865 # The first parameter (the reciever) is always typed by val* in order to accept an object value
1866 class VirtualRuntimeFunction
1867 super AbstractRuntimeFunction
1868
1869 redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}"
1870
1871 redef fun to_s do return self.mmethoddef.to_s
1872
1873 redef fun compile_to_c(compiler)
1874 do
1875 var mmethoddef = self.mmethoddef
1876
1877 var recv = self.mmethoddef.mclassdef.bound_mtype
1878 var v = compiler.new_visitor
1879 var selfvar = new RuntimeVariable("self", v.object_type, recv)
1880 var arguments = new Array[RuntimeVariable]
1881 var frame = new Frame(v, mmethoddef, recv, arguments)
1882 v.frame = frame
1883
1884 var sig = new FlatBuffer
1885 var comment = new FlatBuffer
1886
1887 # Because the function is virtual, the signature must match the one of the original class
1888 var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef
1889 var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1890 var ret = msignature.return_mtype
1891 if ret != null then
1892 sig.append("{ret.ctype} ")
1893 else
1894 sig.append("void ")
1895 end
1896 sig.append(self.c_name)
1897 sig.append("({selfvar.mtype.ctype} {selfvar}")
1898 comment.append("({selfvar}: {selfvar.mtype}")
1899 arguments.add(selfvar)
1900 for i in [0..msignature.arity[ do
1901 var mtype = msignature.mparameters[i].mtype
1902 if i == msignature.vararg_rank then
1903 mtype = v.get_class("Array").get_mtype([mtype])
1904 end
1905 comment.append(", {mtype}")
1906 sig.append(", {mtype.ctype} p{i}")
1907 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1908 arguments.add(argvar)
1909 end
1910 sig.append(")")
1911 comment.append(")")
1912 if ret != null then
1913 comment.append(": {ret}")
1914 end
1915 compiler.provide_declaration(self.c_name, "{sig};")
1916
1917 v.add_decl("/* method {self} for {comment} */")
1918 v.add_decl("{sig} \{")
1919 if ret != null then
1920 frame.returnvar = v.new_var(ret)
1921 end
1922 frame.returnlabel = v.get_name("RET_LABEL")
1923
1924 var subret = v.call(mmethoddef, recv, arguments)
1925 if ret != null then
1926 assert subret != null
1927 v.assign(frame.returnvar.as(not null), subret)
1928 end
1929
1930 v.add("{frame.returnlabel.as(not null)}:;")
1931 if ret != null then
1932 v.add("return {frame.returnvar.as(not null)};")
1933 end
1934 v.add("\}")
1935 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})"
1936 end
1937
1938 # TODO ?
1939 redef fun call(v, arguments) do abort
1940 end
1941
1942 redef class MType
1943 fun const_color: String do return "COLOR_{c_name}"
1944 end
1945
1946 interface PropertyLayoutElement end
1947
1948 redef class MProperty
1949 super PropertyLayoutElement
1950 fun const_color: String do return "COLOR_{c_name}"
1951 end
1952
1953 redef class MPropDef
1954 super PropertyLayoutElement
1955 fun const_color: String do return "COLOR_{c_name}"
1956 end
1957
1958 redef class AMethPropdef
1959 # The semi-global compilation does not support inlining calls to extern news
1960 redef fun can_inline
1961 do
1962 var m = mpropdef
1963 if m != null and m.mproperty.is_init and m.is_extern then return false
1964 return super
1965 end
1966 end