nitg & lib: intro `Finalizable` to be called when an object is freed
[nit.git] / src / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import coloring
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate: OptionBool = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern: OptionBool = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute: OptionBool = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate: OptionBool = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --inline-coloring-numbers
33 var opt_inline_coloring_numbers: OptionBool = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
34 # --inline-some-methods
35 var opt_inline_some_methods: OptionBool = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
36 # --direct-call-monomorph
37 var opt_direct_call_monomorph: OptionBool = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph")
38 # --skip-dead-methods
39 var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods")
40 # --semi-global
41 var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global")
42 # --no-colo-dead-methods
43 var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods")
44 # --tables-metrics
45 var opt_tables_metrics: OptionBool = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
46
47 redef init
48 do
49 super
50 self.option_context.add_option(self.opt_separate)
51 self.option_context.add_option(self.opt_no_inline_intern)
52 self.option_context.add_option(self.opt_no_union_attribute)
53 self.option_context.add_option(self.opt_no_shortcut_equate)
54 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global)
55 self.option_context.add_option(self.opt_colo_dead_methods)
56 self.option_context.add_option(self.opt_tables_metrics)
57 end
58
59 redef fun process_options(args)
60 do
61 super
62
63 var tc = self
64 if tc.opt_semi_global.value then
65 tc.opt_inline_coloring_numbers.value = true
66 tc.opt_inline_some_methods.value = true
67 tc.opt_direct_call_monomorph.value = true
68 tc.opt_skip_dead_methods.value = true
69 end
70 end
71
72 var separate_compiler_phase = new SeparateCompilerPhase(self, null)
73 end
74
75 class SeparateCompilerPhase
76 super Phase
77 redef fun process_mainmodule(mainmodule, given_mmodules) do
78 if not toolcontext.opt_separate.value then return
79
80 var modelbuilder = toolcontext.modelbuilder
81 var analysis = modelbuilder.do_rapid_type_analysis(mainmodule)
82 modelbuilder.run_separate_compiler(mainmodule, analysis)
83 end
84 end
85
86 redef class ModelBuilder
87 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
88 do
89 var time0 = get_time
90 self.toolcontext.info("*** GENERATING C ***", 1)
91
92 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
93 compiler.compile_header
94
95 # compile class structures
96 self.toolcontext.info("Property coloring", 2)
97 compiler.new_file("{mainmodule.name}.classes")
98 compiler.do_property_coloring
99 for m in mainmodule.in_importation.greaters do
100 for mclass in m.intro_mclasses do
101 if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
102 compiler.compile_class_to_c(mclass)
103 end
104 end
105
106 # The main function of the C
107 compiler.new_file("{mainmodule.name}.main")
108 compiler.compile_nitni_global_ref_functions
109 compiler.compile_main_function
110 compiler.compile_finalizer_function
111
112 # compile methods
113 for m in mainmodule.in_importation.greaters do
114 self.toolcontext.info("Generate C for module {m}", 2)
115 compiler.new_file("{m.name}.sep")
116 compiler.compile_module_to_c(m)
117 end
118
119 # compile live & cast type structures
120 self.toolcontext.info("Type coloring", 2)
121 compiler.new_file("{mainmodule.name}.types")
122 var mtypes = compiler.do_type_coloring
123 for t in mtypes do
124 compiler.compile_type_to_c(t)
125 end
126 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
127 for t in compiler.undead_types do
128 if mtypes.has(t) then continue
129 compiler.compile_type_to_c(t)
130 end
131
132 compiler.display_stats
133
134 var time1 = get_time
135 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
136 write_and_make(compiler)
137 end
138
139 # Count number of invocations by VFT
140 private var nb_invok_by_tables = 0
141 # Count number of invocations by direct call
142 private var nb_invok_by_direct = 0
143 # Count number of invocations by inlining
144 private var nb_invok_by_inline = 0
145 end
146
147 # Singleton that store the knowledge about the separate compilation process
148 class SeparateCompiler
149 super AbstractCompiler
150
151 redef type VISITOR: SeparateCompilerVisitor
152
153 # The result of the RTA (used to know live types and methods)
154 var runtime_type_analysis: nullable RapidTypeAnalysis
155
156 private var undead_types: Set[MType] = new HashSet[MType]
157 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
158
159 private var type_ids: Map[MType, Int]
160 private var type_colors: Map[MType, Int]
161 private var opentype_colors: Map[MType, Int]
162 protected var method_colors: Map[PropertyLayoutElement, Int]
163 protected var attr_colors: Map[MAttribute, Int]
164
165 init(mainmodule: MModule, mmbuilder: ModelBuilder, runtime_type_analysis: nullable RapidTypeAnalysis) do
166 super(mainmodule, mmbuilder)
167 var file = new_file("nit.common")
168 self.header = new CodeWriter(file)
169 self.runtime_type_analysis = runtime_type_analysis
170 self.compile_box_kinds
171 end
172
173 redef fun compile_header_structs do
174 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
175 self.compile_header_attribute_structs
176 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
177
178 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
179 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
180 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
181 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
182 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
183 end
184
185 fun compile_header_attribute_structs
186 do
187 if modelbuilder.toolcontext.opt_no_union_attribute.value then
188 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
189 else
190 self.header.add_decl("typedef union \{")
191 self.header.add_decl("void* val;")
192 for c, v in self.box_kinds do
193 var t = c.mclass_type
194 self.header.add_decl("{t.ctype} {t.ctypename};")
195 end
196 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
197 end
198 end
199
200 fun compile_box_kinds
201 do
202 # Collect all bas box class
203 # FIXME: this is not completely fine with a separate compilation scheme
204 for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do
205 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
206 if classes == null then continue
207 assert classes.length == 1 else print classes.join(", ")
208 self.box_kinds[classes.first] = self.box_kinds.length + 1
209 end
210 end
211
212 var box_kinds = new HashMap[MClass, Int]
213
214 fun box_kind_of(mclass: MClass): Int
215 do
216 if mclass.mclass_type.ctype == "val*" then
217 return 0
218 else if mclass.kind == extern_kind then
219 return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")]
220 else
221 return self.box_kinds[mclass]
222 end
223
224 end
225
226 fun compile_color_consts(colors: Map[Object, Int]) do
227 var v = new_visitor
228 for m, c in colors do
229 compile_color_const(v, m, c)
230 end
231 end
232
233 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
234 if color_consts_done.has(m) then return
235 if m isa MProperty then
236 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
237 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
238 else
239 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
240 v.add("const int {m.const_color} = {color};")
241 end
242 else if m isa MPropDef then
243 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
244 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
245 else
246 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
247 v.add("const int {m.const_color} = {color};")
248 end
249 else if m isa MType then
250 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
251 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
252 else
253 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
254 v.add("const int {m.const_color} = {color};")
255 end
256 end
257 color_consts_done.add(m)
258 end
259
260 private var color_consts_done = new HashSet[Object]
261
262 # colorize classe properties
263 fun do_property_coloring do
264
265 var rta = runtime_type_analysis
266
267 # Layouts
268 var poset = mainmodule.flatten_mclass_hierarchy
269 var mclasses = new HashSet[MClass].from(poset)
270 var colorer = new POSetColorer[MClass]
271 colorer.colorize(poset)
272
273 # The dead methods, still need to provide a dead color symbol
274 var dead_methods = new Array[MMethod]
275
276 # lookup properties to build layout with
277 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
278 var mattributes = new HashMap[MClass, Set[MAttribute]]
279 for mclass in mclasses do
280 mmethods[mclass] = new HashSet[PropertyLayoutElement]
281 mattributes[mclass] = new HashSet[MAttribute]
282 for mprop in self.mainmodule.properties(mclass) do
283 if mprop isa MMethod then
284 if not modelbuilder.toolcontext.opt_colo_dead_methods.value and rta != null and not rta.live_methods.has(mprop) then
285 dead_methods.add(mprop)
286 continue
287 end
288 mmethods[mclass].add(mprop)
289 else if mprop isa MAttribute then
290 mattributes[mclass].add(mprop)
291 end
292 end
293 end
294
295 # Collect all super calls (dead or not)
296 var all_super_calls = new HashSet[MMethodDef]
297 for mmodule in self.mainmodule.in_importation.greaters do
298 for mclassdef in mmodule.mclassdefs do
299 for mpropdef in mclassdef.mpropdefs do
300 if not mpropdef isa MMethodDef then continue
301 if mpropdef.has_supercall then
302 all_super_calls.add(mpropdef)
303 end
304 end
305 end
306 end
307
308 # lookup super calls and add it to the list of mmethods to build layout with
309 var super_calls
310 if rta != null then
311 super_calls = rta.live_super_sends
312 else
313 super_calls = all_super_calls
314 end
315
316 for mmethoddef in super_calls do
317 var mclass = mmethoddef.mclassdef.mclass
318 mmethods[mclass].add(mmethoddef)
319 for descendant in mclass.in_hierarchy(self.mainmodule).smallers do
320 mmethods[descendant].add(mmethoddef)
321 end
322 end
323
324 # methods coloration
325 var meth_colorer = new POSetBucketsColorer[MClass, PropertyLayoutElement](poset, colorer.conflicts)
326 method_colors = meth_colorer.colorize(mmethods)
327 method_tables = build_method_tables(mclasses, super_calls)
328 compile_color_consts(method_colors)
329
330 # attribute null color to dead methods and supercalls
331 for mproperty in dead_methods do
332 compile_color_const(new_visitor, mproperty, -1)
333 end
334 for mpropdef in all_super_calls do
335 if super_calls.has(mpropdef) then continue
336 compile_color_const(new_visitor, mpropdef, -1)
337 end
338
339 # attributes coloration
340 var attr_colorer = new POSetBucketsColorer[MClass, MAttribute](poset, colorer.conflicts)
341 attr_colors = attr_colorer.colorize(mattributes)
342 attr_tables = build_attr_tables(mclasses)
343 compile_color_consts(attr_colors)
344 end
345
346 fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do
347 var tables = new HashMap[MClass, Array[nullable MPropDef]]
348 for mclass in mclasses do
349 var table = new Array[nullable MPropDef]
350 tables[mclass] = table
351
352 var mproperties = self.mainmodule.properties(mclass)
353 var mtype = mclass.intro.bound_mtype
354
355 for mproperty in mproperties do
356 if not mproperty isa MMethod then continue
357 if not method_colors.has_key(mproperty) then continue
358 var color = method_colors[mproperty]
359 if table.length <= color then
360 for i in [table.length .. color[ do
361 table[i] = null
362 end
363 end
364 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
365 end
366
367 for supercall in super_calls do
368 if not mtype.collect_mclassdefs(mainmodule).has(supercall.mclassdef) then continue
369
370 var color = method_colors[supercall]
371 if table.length <= color then
372 for i in [table.length .. color[ do
373 table[i] = null
374 end
375 end
376 var mmethoddef = supercall.lookup_next_definition(mainmodule, mtype)
377 table[color] = mmethoddef
378 end
379
380 end
381 return tables
382 end
383
384 fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do
385 var tables = new HashMap[MClass, Array[nullable MPropDef]]
386 for mclass in mclasses do
387 var table = new Array[nullable MPropDef]
388 tables[mclass] = table
389
390 var mproperties = self.mainmodule.properties(mclass)
391 var mtype = mclass.intro.bound_mtype
392
393 for mproperty in mproperties do
394 if not mproperty isa MAttribute then continue
395 if not attr_colors.has_key(mproperty) then continue
396 var color = attr_colors[mproperty]
397 if table.length <= color then
398 for i in [table.length .. color[ do
399 table[i] = null
400 end
401 end
402 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
403 end
404 end
405 return tables
406 end
407
408 # colorize live types of the program
409 private fun do_type_coloring: POSet[MType] do
410 # Collect types to colorize
411 var live_types = runtime_type_analysis.live_types
412 var live_cast_types = runtime_type_analysis.live_cast_types
413 var mtypes = new HashSet[MType]
414 mtypes.add_all(live_types)
415 mtypes.add_all(live_cast_types)
416 for c in self.box_kinds.keys do
417 mtypes.add(c.mclass_type)
418 end
419
420 # Compute colors
421 var poset = poset_from_mtypes(mtypes)
422 var colorer = new POSetColorer[MType]
423 colorer.colorize(poset)
424 type_ids = colorer.ids
425 type_colors = colorer.colors
426 type_tables = build_type_tables(poset)
427
428 # VT and FT are stored with other unresolved types in the big resolution_tables
429 self.compile_resolution_tables(mtypes)
430
431 return poset
432 end
433
434 private fun poset_from_mtypes(mtypes: Set[MType]): POSet[MType] do
435 var poset = new POSet[MType]
436 for e in mtypes do
437 poset.add_node(e)
438 for o in mtypes do
439 if e == o then continue
440 if e.is_subtype(mainmodule, null, o) then
441 poset.add_edge(e, o)
442 end
443 end
444 end
445 return poset
446 end
447
448 # Build type tables
449 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
450 var tables = new HashMap[MType, Array[nullable MType]]
451 for mtype in mtypes do
452 var table = new Array[nullable MType]
453 for sup in mtypes[mtype].greaters do
454 var color = type_colors[sup]
455 if table.length <= color then
456 for i in [table.length .. color[ do
457 table[i] = null
458 end
459 end
460 table[color] = sup
461 end
462 tables[mtype] = table
463 end
464 return tables
465 end
466
467 protected fun compile_resolution_tables(mtypes: Set[MType]) do
468 # resolution_tables is used to perform a type resolution at runtime in O(1)
469
470 # During the visit of the body of classes, live_unresolved_types are collected
471 # and associated to
472 # Collect all live_unresolved_types (visited in the body of classes)
473
474 # Determinate fo each livetype what are its possible requested anchored types
475 var mtype2unresolved = new HashMap[MClassType, Set[MType]]
476 for mtype in self.runtime_type_analysis.live_types do
477 var set = new HashSet[MType]
478 for cd in mtype.collect_mclassdefs(self.mainmodule) do
479 if self.live_unresolved_types.has_key(cd) then
480 set.add_all(self.live_unresolved_types[cd])
481 end
482 end
483 mtype2unresolved[mtype] = set
484 end
485
486 # Compute the table layout with the prefered method
487 var colorer = new BucketsColorer[MType, MType]
488 opentype_colors = colorer.colorize(mtype2unresolved)
489 resolution_tables = self.build_resolution_tables(mtype2unresolved)
490
491 # Compile a C constant for each collected unresolved type.
492 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
493 var all_unresolved = new HashSet[MType]
494 for t in self.live_unresolved_types.values do
495 all_unresolved.add_all(t)
496 end
497 var all_unresolved_types_colors = new HashMap[MType, Int]
498 for t in all_unresolved do
499 if opentype_colors.has_key(t) then
500 all_unresolved_types_colors[t] = opentype_colors[t]
501 else
502 all_unresolved_types_colors[t] = -1
503 end
504 end
505 self.compile_color_consts(all_unresolved_types_colors)
506
507 #print "tables"
508 #for k, v in unresolved_types_tables.as(not null) do
509 # print "{k}: {v.join(", ")}"
510 #end
511 #print ""
512 end
513
514 fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do
515 var tables = new HashMap[MClassType, Array[nullable MType]]
516 for mclasstype, mtypes in elements do
517 var table = new Array[nullable MType]
518 for mtype in mtypes do
519 var color = opentype_colors[mtype]
520 if table.length <= color then
521 for i in [table.length .. color[ do
522 table[i] = null
523 end
524 end
525 table[color] = mtype
526 end
527 tables[mclasstype] = table
528 end
529 return tables
530 end
531
532 # Separately compile all the method definitions of the module
533 fun compile_module_to_c(mmodule: MModule)
534 do
535 var old_module = self.mainmodule
536 self.mainmodule = mmodule
537 for cd in mmodule.mclassdefs do
538 for pd in cd.mpropdefs do
539 if not pd isa MMethodDef then continue
540 var rta = runtime_type_analysis
541 if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue
542 #print "compile {pd} @ {cd} @ {mmodule}"
543 var r = pd.separate_runtime_function
544 r.compile_to_c(self)
545 var r2 = pd.virtual_runtime_function
546 r2.compile_to_c(self)
547 end
548 end
549 self.mainmodule = old_module
550 end
551
552 # Globaly compile the type structure of a live type
553 fun compile_type_to_c(mtype: MType)
554 do
555 assert not mtype.need_anchor
556 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
557 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
558 var c_name = mtype.c_name
559 var v = new SeparateCompilerVisitor(self)
560 v.add_decl("/* runtime type {mtype} */")
561
562 # extern const struct type_X
563 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
564
565 # const struct type_X
566 v.add_decl("const struct type type_{c_name} = \{")
567
568 # type id (for cast target)
569 if is_cast_live then
570 v.add_decl("{type_ids[mtype]},")
571 else
572 v.add_decl("-1, /*CAST DEAD*/")
573 end
574
575 # type name
576 v.add_decl("\"{mtype}\", /* class_name_string */")
577
578 # type color (for cast target)
579 if is_cast_live then
580 v.add_decl("{type_colors[mtype]},")
581 else
582 v.add_decl("-1, /*CAST DEAD*/")
583 end
584
585 # is_nullable bit
586 if mtype isa MNullableType then
587 v.add_decl("1,")
588 else
589 v.add_decl("0,")
590 end
591
592 # resolution table (for receiver)
593 if is_live then
594 var mclass_type = mtype.as_notnullable
595 assert mclass_type isa MClassType
596 if resolution_tables[mclass_type].is_empty then
597 v.add_decl("NULL, /*NO RESOLUTIONS*/")
598 else
599 compile_type_resolution_table(mtype)
600 v.require_declaration("resolution_table_{c_name}")
601 v.add_decl("&resolution_table_{c_name},")
602 end
603 else
604 v.add_decl("NULL, /*DEAD*/")
605 end
606
607 # cast table (for receiver)
608 if is_live then
609 v.add_decl("{self.type_tables[mtype].length},")
610 v.add_decl("\{")
611 for stype in self.type_tables[mtype] do
612 if stype == null then
613 v.add_decl("-1, /* empty */")
614 else
615 v.add_decl("{type_ids[stype]}, /* {stype} */")
616 end
617 end
618 v.add_decl("\},")
619 else
620 v.add_decl("0, \{\}, /*DEAD TYPE*/")
621 end
622 v.add_decl("\};")
623 end
624
625 fun compile_type_resolution_table(mtype: MType) do
626
627 var mclass_type = mtype.as_notnullable.as(MClassType)
628
629 # extern const struct resolution_table_X resolution_table_X
630 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
631
632 # const struct fts_table_X fts_table_X
633 var v = new_visitor
634 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
635 v.add_decl("0, /* dummy */")
636 v.add_decl("\{")
637 for t in self.resolution_tables[mclass_type] do
638 if t == null then
639 v.add_decl("NULL, /* empty */")
640 else
641 # The table stores the result of the type resolution
642 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
643 # the value stored is tv.
644 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
645 # FIXME: What typeids means here? How can a tv not be live?
646 if type_ids.has_key(tv) then
647 v.require_declaration("type_{tv.c_name}")
648 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
649 else
650 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
651 end
652 end
653 end
654 v.add_decl("\}")
655 v.add_decl("\};")
656 end
657
658 # Globally compile the table of the class mclass
659 # In a link-time optimisation compiler, tables are globally computed
660 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
661 fun compile_class_to_c(mclass: MClass)
662 do
663 var mtype = mclass.intro.bound_mtype
664 var c_name = mclass.c_name
665 var c_instance_name = mclass.c_instance_name
666
667 var vft = self.method_tables[mclass]
668 var attrs = self.attr_tables[mclass]
669 var v = new_visitor
670
671 var rta = runtime_type_analysis
672 var is_dead = rta != null and not rta.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray"
673
674 v.add_decl("/* runtime class {c_name} */")
675
676 # Build class vft
677 if not is_dead then
678 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
679 v.add_decl("const struct class class_{c_name} = \{")
680 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
681 v.add_decl("\{")
682 for i in [0 .. vft.length[ do
683 var mpropdef = vft[i]
684 if mpropdef == null then
685 v.add_decl("NULL, /* empty */")
686 else
687 assert mpropdef isa MMethodDef
688 if rta != null and not rta.live_methoddefs.has(mpropdef) then
689 v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
690 continue
691 end
692 var rf = mpropdef.virtual_runtime_function
693 v.require_declaration(rf.c_name)
694 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
695 end
696 end
697 v.add_decl("\}")
698 v.add_decl("\};")
699 end
700
701 if mtype.ctype != "val*" then
702 if mtype.mclass.name == "Pointer" or mtype.mclass.kind != extern_kind then
703 #Build instance struct
704 self.header.add_decl("struct instance_{c_instance_name} \{")
705 self.header.add_decl("const struct type *type;")
706 self.header.add_decl("const struct class *class;")
707 self.header.add_decl("{mtype.ctype} value;")
708 self.header.add_decl("\};")
709 end
710
711 if not rta.live_types.has(mtype) then return
712
713 #Build BOX
714 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype});")
715 v.add_decl("/* allocate {mtype} */")
716 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype} value) \{")
717 v.add("struct instance_{c_instance_name}*res = nit_alloc(sizeof(struct instance_{c_instance_name}));")
718 v.require_declaration("type_{c_name}")
719 v.add("res->type = &type_{c_name};")
720 v.require_declaration("class_{c_name}")
721 v.add("res->class = &class_{c_name};")
722 v.add("res->value = value;")
723 v.add("return (val*)res;")
724 v.add("\}")
725 return
726 else if mclass.name == "NativeArray" then
727 #Build instance struct
728 self.header.add_decl("struct instance_{c_instance_name} \{")
729 self.header.add_decl("const struct type *type;")
730 self.header.add_decl("const struct class *class;")
731 # NativeArrays are just a instance header followed by a length and an array of values
732 self.header.add_decl("int length;")
733 self.header.add_decl("val* values[0];")
734 self.header.add_decl("\};")
735
736 #Build NEW
737 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
738 v.add_decl("/* allocate {mtype} */")
739 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
740 var res = v.get_name("self")
741 v.add_decl("struct instance_{c_instance_name} *{res};")
742 var mtype_elt = mtype.arguments.first
743 v.add("{res} = nit_alloc(sizeof(struct instance_{c_instance_name}) + length*sizeof({mtype_elt.ctype}));")
744 v.add("{res}->type = type;")
745 hardening_live_type(v, "type")
746 v.require_declaration("class_{c_name}")
747 v.add("{res}->class = &class_{c_name};")
748 v.add("{res}->length = length;")
749 v.add("return (val*){res};")
750 v.add("\}")
751 return
752 end
753
754 #Build NEW
755 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
756 v.add_decl("/* allocate {mtype} */")
757 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
758 if is_dead then
759 v.add_abort("{mclass} is DEAD")
760 else
761 var res = v.new_named_var(mtype, "self")
762 res.is_exact = true
763 v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));")
764 v.add("{res}->type = type;")
765 hardening_live_type(v, "type")
766 v.require_declaration("class_{c_name}")
767 v.add("{res}->class = &class_{c_name};")
768 self.generate_init_attr(v, res, mtype)
769 v.set_finalizer res
770 v.add("return {res};")
771 end
772 v.add("\}")
773 end
774
775 # Add a dynamic test to ensure that the type referenced by `t` is a live type
776 fun hardening_live_type(v: VISITOR, t: String)
777 do
778 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
779 v.add("if({t} == NULL) \{")
780 v.add_abort("type null")
781 v.add("\}")
782 v.add("if({t}->table_size == 0) \{")
783 v.add("PRINT_ERROR(\"Insantiation of a dead type: %s\\n\", {t}->name);")
784 v.add_abort("type dead")
785 v.add("\}")
786 end
787
788 redef fun new_visitor do return new SeparateCompilerVisitor(self)
789
790 # Stats
791
792 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
793 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
794 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
795 protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
796
797 redef fun display_stats
798 do
799 super
800 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
801 display_sizes
802 end
803 if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
804 display_isset_checks
805 end
806 var tc = self.modelbuilder.toolcontext
807 tc.info("# implementation of method invocation",2)
808 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
809 tc.info("total number of invocations: {nb_invok_total}",2)
810 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
811 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
812 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
813 end
814
815 fun display_sizes
816 do
817 print "# size of subtyping tables"
818 print "\ttotal \tholes"
819 var total = 0
820 var holes = 0
821 for t, table in type_tables do
822 total += table.length
823 for e in table do if e == null then holes += 1
824 end
825 print "\t{total}\t{holes}"
826
827 print "# size of resolution tables"
828 print "\ttotal \tholes"
829 total = 0
830 holes = 0
831 for t, table in resolution_tables do
832 total += table.length
833 for e in table do if e == null then holes += 1
834 end
835 print "\t{total}\t{holes}"
836
837 print "# size of methods tables"
838 print "\ttotal \tholes"
839 total = 0
840 holes = 0
841 for t, table in method_tables do
842 total += table.length
843 for e in table do if e == null then holes += 1
844 end
845 print "\t{total}\t{holes}"
846
847 print "# size of attributes tables"
848 print "\ttotal \tholes"
849 total = 0
850 holes = 0
851 for t, table in attr_tables do
852 total += table.length
853 for e in table do if e == null then holes += 1
854 end
855 print "\t{total}\t{holes}"
856 end
857
858 protected var isset_checks_count = 0
859 protected var attr_read_count = 0
860
861 fun display_isset_checks do
862 print "# total number of compiled attribute reads"
863 print "\t{attr_read_count}"
864 print "# total number of compiled isset-checks"
865 print "\t{isset_checks_count}"
866 end
867
868 redef fun compile_nitni_structs
869 do
870 self.header.add_decl """
871 struct nitni_instance \{
872 struct nitni_instance *next,
873 *prev; /* adjacent global references in global list */
874 int count; /* number of time this global reference has been marked */
875 struct instance *value;
876 \};
877 """
878 super
879 end
880
881 redef fun finalize_ffi_for_module(mmodule)
882 do
883 var old_module = self.mainmodule
884 self.mainmodule = mmodule
885 super
886 self.mainmodule = old_module
887 end
888 end
889
890 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
891 class SeparateCompilerVisitor
892 super AbstractCompilerVisitor
893
894 redef type COMPILER: SeparateCompiler
895
896 redef fun adapt_signature(m, args)
897 do
898 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
899 var recv = args.first
900 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
901 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
902 end
903 for i in [0..msignature.arity[ do
904 var t = msignature.mparameters[i].mtype
905 if i == msignature.vararg_rank then
906 t = args[i+1].mtype
907 end
908 args[i+1] = self.autobox(args[i+1], t)
909 end
910 end
911
912 redef fun autobox(value, mtype)
913 do
914 if value.mtype == mtype then
915 return value
916 else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then
917 return value
918 else if value.mtype.ctype == "val*" then
919 return self.new_expr("((struct instance_{mtype.c_instance_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
920 else if mtype.ctype == "val*" then
921 var valtype = value.mtype.as(MClassType)
922 var res = self.new_var(mtype)
923 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then
924 self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */")
925 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);")
926 return res
927 end
928 self.require_declaration("BOX_{valtype.c_name}")
929 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
930 return res
931 else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or
932 (value.mtype.ctype == "char*" and mtype.ctype == "void*") or
933 (value.mtype.ctype == "void*" and mtype.ctype == "char*") then
934 return value
935 else
936 # Bad things will appen!
937 var res = self.new_var(mtype)
938 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
939 self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);")
940 return res
941 end
942 end
943
944 # Return a C expression returning the runtime type structure of the value
945 # The point of the method is to works also with primitives types.
946 fun type_info(value: RuntimeVariable): String
947 do
948 if value.mtype.ctype == "val*" then
949 return "{value}->type"
950 else
951 compiler.undead_types.add(value.mtype)
952 self.require_declaration("type_{value.mtype.c_name}")
953 return "(&type_{value.mtype.c_name})"
954 end
955 end
956
957 redef fun compile_callsite(callsite, args)
958 do
959 var rta = compiler.runtime_type_analysis
960 var recv = args.first.mtype
961 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null then
962 var tgs = rta.live_targets(callsite)
963 if tgs.length == 1 then
964 # DIRECT CALL
965 var mmethod = callsite.mproperty
966 self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), args)
967 var res0 = before_send(mmethod, args)
968 var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args)
969 if res0 != null then
970 assert res != null
971 self.assign(res0, res)
972 res = res0
973 end
974 add("\}") # close the before_send
975 return res
976 end
977 end
978 return super
979 end
980 redef fun send(mmethod, arguments)
981 do
982 self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), arguments)
983
984 if arguments.first.mcasttype.ctype != "val*" then
985 # In order to shortcut the primitive, we need to find the most specific method
986 # Howverr, because of performance (no flattening), we always work on the realmainmodule
987 var m = self.compiler.mainmodule
988 self.compiler.mainmodule = self.compiler.realmainmodule
989 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
990 self.compiler.mainmodule = m
991 return res
992 end
993
994 return table_send(mmethod, arguments, mmethod.const_color)
995 end
996
997 # Handel common special cases before doing the effective method invocation
998 # This methods handle the `==` and `!=` methods and the case of the null receiver.
999 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
1000 # Client must not forget to close the } after them.
1001 #
1002 # The value returned is the result of the common special cases.
1003 # If not null, client must compine it with the result of their own effective method invocation.
1004 #
1005 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1006 # is generated to cancel the effective method invocation that will follow
1007 # TODO: find a better approach
1008 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1009 do
1010 var res: nullable RuntimeVariable = null
1011 var recv = arguments.first
1012 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_other.value or mmethod.name == "==" or mmethod.name == "!="
1013 var maybenull = recv.mcasttype isa MNullableType and consider_null
1014 if maybenull then
1015 self.add("if ({recv} == NULL) \{")
1016 if mmethod.name == "==" then
1017 res = self.new_var(bool_type)
1018 var arg = arguments[1]
1019 if arg.mcasttype isa MNullableType then
1020 self.add("{res} = ({arg} == NULL);")
1021 else if arg.mcasttype isa MNullType then
1022 self.add("{res} = 1; /* is null */")
1023 else
1024 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1025 end
1026 else if mmethod.name == "!=" then
1027 res = self.new_var(bool_type)
1028 var arg = arguments[1]
1029 if arg.mcasttype isa MNullableType then
1030 self.add("{res} = ({arg} != NULL);")
1031 else if arg.mcasttype isa MNullType then
1032 self.add("{res} = 0; /* is null */")
1033 else
1034 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1035 end
1036 else
1037 self.add_abort("Receiver is null")
1038 end
1039 self.add("\} else \{")
1040 else
1041 self.add("\{")
1042 end
1043 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then
1044 if res == null then res = self.new_var(bool_type)
1045 # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants)
1046 var arg = arguments[1]
1047 if arg.mcasttype isa MNullType then
1048 if mmethod.name == "==" then
1049 self.add("{res} = 0; /* arg is null but recv is not */")
1050 else
1051 self.add("{res} = 1; /* arg is null and recv is not */")
1052 end
1053 self.add("\}") # closes the null case
1054 self.add("if (0) \{") # what follow is useless, CC will drop it
1055 end
1056 end
1057 return res
1058 end
1059
1060 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable
1061 do
1062 compiler.modelbuilder.nb_invok_by_tables += 1
1063 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1064
1065 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1066 var recv = arguments.first
1067
1068 var res0 = before_send(mmethod, arguments)
1069
1070 var res: nullable RuntimeVariable
1071 var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true)
1072 var ret = msignature.return_mtype
1073 if mmethod.is_new then
1074 ret = arguments.first.mtype
1075 res = self.new_var(ret)
1076 else if ret == null then
1077 res = null
1078 else
1079 res = self.new_var(ret)
1080 end
1081
1082 var s = new FlatBuffer
1083 var ss = new FlatBuffer
1084
1085 s.append("val*")
1086 ss.append("{recv}")
1087 for i in [0..msignature.arity[ do
1088 var a = arguments[i+1]
1089 var t = msignature.mparameters[i].mtype
1090 if i == msignature.vararg_rank then
1091 t = arguments[i+1].mcasttype
1092 end
1093 s.append(", {t.ctype}")
1094 a = self.autobox(a, t)
1095 ss.append(", {a}")
1096 end
1097
1098
1099 var r
1100 if ret == null then r = "void" else r = ret.ctype
1101 self.require_declaration(const_color)
1102 var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/"
1103
1104 if res != null then
1105 self.add("{res} = {call};")
1106 else
1107 self.add("{call};")
1108 end
1109
1110 if res0 != null then
1111 assert res != null
1112 assign(res0,res)
1113 res = res0
1114 end
1115
1116 self.add("\}") # closes the null case
1117
1118 return res
1119 end
1120
1121 redef fun call(mmethoddef, recvtype, arguments)
1122 do
1123 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1124
1125 var res: nullable RuntimeVariable
1126 var ret = mmethoddef.msignature.return_mtype
1127 if mmethoddef.mproperty.is_new then
1128 ret = arguments.first.mtype
1129 res = self.new_var(ret)
1130 else if ret == null then
1131 res = null
1132 else
1133 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1134 res = self.new_var(ret)
1135 end
1136
1137 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1138 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1139 compiler.modelbuilder.nb_invok_by_inline += 1
1140 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1141 var frame = new Frame(self, mmethoddef, recvtype, arguments)
1142 frame.returnlabel = self.get_name("RET_LABEL")
1143 frame.returnvar = res
1144 var old_frame = self.frame
1145 self.frame = frame
1146 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1147 mmethoddef.compile_inside_to_c(self, arguments)
1148 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1149 self.add("\}")
1150 self.frame = old_frame
1151 return res
1152 end
1153 compiler.modelbuilder.nb_invok_by_direct += 1
1154 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1155
1156 # Autobox arguments
1157 self.adapt_signature(mmethoddef, arguments)
1158
1159 self.require_declaration(mmethoddef.c_name)
1160 if res == null then
1161 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1162 return null
1163 else
1164 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1165 end
1166
1167 return res
1168 end
1169
1170 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1171 do
1172 if arguments.first.mcasttype.ctype != "val*" then
1173 # In order to shortcut the primitive, we need to find the most specific method
1174 # However, because of performance (no flattening), we always work on the realmainmodule
1175 var main = self.compiler.mainmodule
1176 self.compiler.mainmodule = self.compiler.realmainmodule
1177 var res = self.monomorphic_super_send(m, recvtype, arguments)
1178 self.compiler.mainmodule = main
1179 return res
1180 end
1181 return table_send(m.mproperty, arguments, m.const_color)
1182 end
1183
1184 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1185 do
1186 # A vararg must be stored into an new array
1187 # The trick is that the dymaic type of the array may depends on the receiver
1188 # of the method (ie recv) if the static type is unresolved
1189 # This is more complex than usual because the unresolved type must not be resolved
1190 # with the current receiver (ie self).
1191 # Therefore to isolate the resolution from self, a local Frame is created.
1192 # One can see this implementation as an inlined method of the receiver whose only
1193 # job is to allocate the array
1194 var old_frame = self.frame
1195 var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1196 self.frame = frame
1197 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1198 var res = self.array_instance(varargs, elttype)
1199 self.frame = old_frame
1200 return res
1201 end
1202
1203 redef fun isset_attribute(a, recv)
1204 do
1205 self.check_recv_notnull(recv)
1206 var res = self.new_var(bool_type)
1207
1208 # What is the declared type of the attribute?
1209 var mtype = a.intro.static_mtype.as(not null)
1210 var intromclassdef = a.intro.mclassdef
1211 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1212
1213 if mtype isa MNullableType then
1214 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1215 return res
1216 end
1217
1218 self.require_declaration(a.const_color)
1219 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1220 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1221 else
1222
1223 if mtype.ctype == "val*" then
1224 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1225 else
1226 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1227 end
1228 end
1229 return res
1230 end
1231
1232 redef fun read_attribute(a, recv)
1233 do
1234 self.check_recv_notnull(recv)
1235
1236 # What is the declared type of the attribute?
1237 var ret = a.intro.static_mtype.as(not null)
1238 var intromclassdef = a.intro.mclassdef
1239 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1240
1241 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1242 self.compiler.attr_read_count += 1
1243 self.add("count_attr_reads++;")
1244 end
1245
1246 self.require_declaration(a.const_color)
1247 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1248 # Get the attribute or a box (ie. always a val*)
1249 var cret = self.object_type.as_nullable
1250 var res = self.new_var(cret)
1251 res.mcasttype = ret
1252
1253 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1254
1255 # Check for Uninitialized attribute
1256 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1257 self.add("if (unlikely({res} == NULL)) \{")
1258 self.add_abort("Uninitialized attribute {a.name}")
1259 self.add("\}")
1260
1261 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1262 self.compiler.isset_checks_count += 1
1263 self.add("count_isset_checks++;")
1264 end
1265 end
1266
1267 # Return the attribute or its unboxed version
1268 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1269 return self.autobox(res, ret)
1270 else
1271 var res = self.new_var(ret)
1272 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1273
1274 # Check for Uninitialized attribute
1275 if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1276 self.add("if (unlikely({res} == NULL)) \{")
1277 self.add_abort("Uninitialized attribute {a.name}")
1278 self.add("\}")
1279 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1280 self.compiler.isset_checks_count += 1
1281 self.add("count_isset_checks++;")
1282 end
1283 end
1284
1285 return res
1286 end
1287 end
1288
1289 redef fun write_attribute(a, recv, value)
1290 do
1291 self.check_recv_notnull(recv)
1292
1293 # What is the declared type of the attribute?
1294 var mtype = a.intro.static_mtype.as(not null)
1295 var intromclassdef = a.intro.mclassdef
1296 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1297
1298 # Adapt the value to the declared type
1299 value = self.autobox(value, mtype)
1300
1301 self.require_declaration(a.const_color)
1302 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1303 var attr = "{recv}->attrs[{a.const_color}]"
1304 if mtype.ctype != "val*" then
1305 assert mtype isa MClassType
1306 # The attribute is primitive, thus we store it in a box
1307 # The trick is to create the box the first time then resuse the box
1308 self.add("if ({attr} != NULL) \{")
1309 self.add("((struct instance_{mtype.c_instance_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1310 self.add("\} else \{")
1311 value = self.autobox(value, self.object_type.as_nullable)
1312 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1313 self.add("\}")
1314 else
1315 # The attribute is not primitive, thus store it direclty
1316 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1317 end
1318 else
1319 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1320 end
1321 end
1322
1323 # Check that mtype is a live open type
1324 fun hardening_live_open_type(mtype: MType)
1325 do
1326 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1327 self.require_declaration(mtype.const_color)
1328 var col = mtype.const_color
1329 self.add("if({col} == -1) \{")
1330 self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1331 self.add_abort("open type dead")
1332 self.add("\}")
1333 end
1334
1335 # Check that mtype it a pointer to a live cast type
1336 fun hardening_cast_type(t: String)
1337 do
1338 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1339 add("if({t} == NULL) \{")
1340 add_abort("cast type null")
1341 add("\}")
1342 add("if({t}->id == -1 || {t}->color == -1) \{")
1343 add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1344 add_abort("cast type dead")
1345 add("\}")
1346 end
1347
1348 redef fun init_instance(mtype)
1349 do
1350 self.require_declaration("NEW_{mtype.mclass.c_name}")
1351 var compiler = self.compiler
1352 if mtype isa MGenericType and mtype.need_anchor then
1353 hardening_live_open_type(mtype)
1354 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1355 var recv = self.frame.arguments.first
1356 var recv_type_info = self.type_info(recv)
1357 self.require_declaration(mtype.const_color)
1358 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1359 end
1360 compiler.undead_types.add(mtype)
1361 self.require_declaration("type_{mtype.c_name}")
1362 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1363 end
1364
1365 redef fun type_test(value, mtype, tag)
1366 do
1367 self.add("/* {value.inspect} isa {mtype} */")
1368 var compiler = self.compiler
1369
1370 var recv = self.frame.arguments.first
1371 var recv_type_info = self.type_info(recv)
1372
1373 var res = self.new_var(bool_type)
1374
1375 var cltype = self.get_name("cltype")
1376 self.add_decl("int {cltype};")
1377 var idtype = self.get_name("idtype")
1378 self.add_decl("int {idtype};")
1379
1380 var maybe_null = self.maybe_null(value)
1381 var accept_null = "0"
1382 var ntype = mtype
1383 if ntype isa MNullableType then
1384 ntype = ntype.mtype
1385 accept_null = "1"
1386 end
1387
1388 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1389 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1390 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1391 self.compiler.count_type_test_skipped[tag] += 1
1392 self.add("count_type_test_skipped_{tag}++;")
1393 end
1394 return res
1395 end
1396
1397 if ntype.need_anchor then
1398 var type_struct = self.get_name("type_struct")
1399 self.add_decl("const struct type* {type_struct};")
1400
1401 # Either with resolution_table with a direct resolution
1402 hardening_live_open_type(mtype)
1403 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1404 self.require_declaration(mtype.const_color)
1405 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1406 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1407 self.compiler.count_type_test_unresolved[tag] += 1
1408 self.add("count_type_test_unresolved_{tag}++;")
1409 end
1410 hardening_cast_type(type_struct)
1411 self.add("{cltype} = {type_struct}->color;")
1412 self.add("{idtype} = {type_struct}->id;")
1413 if maybe_null and accept_null == "0" then
1414 var is_nullable = self.get_name("is_nullable")
1415 self.add_decl("short int {is_nullable};")
1416 self.add("{is_nullable} = {type_struct}->is_nullable;")
1417 accept_null = is_nullable.to_s
1418 end
1419 else if ntype isa MClassType then
1420 compiler.undead_types.add(mtype)
1421 self.require_declaration("type_{mtype.c_name}")
1422 hardening_cast_type("(&type_{mtype.c_name})")
1423 self.add("{cltype} = type_{mtype.c_name}.color;")
1424 self.add("{idtype} = type_{mtype.c_name}.id;")
1425 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1426 self.compiler.count_type_test_resolved[tag] += 1
1427 self.add("count_type_test_resolved_{tag}++;")
1428 end
1429 else
1430 self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);")
1431 end
1432
1433 # check color is in table
1434 if maybe_null then
1435 self.add("if({value} == NULL) \{")
1436 self.add("{res} = {accept_null};")
1437 self.add("\} else \{")
1438 end
1439 var value_type_info = self.type_info(value)
1440 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1441 self.add("{res} = 0;")
1442 self.add("\} else \{")
1443 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1444 self.add("\}")
1445 if maybe_null then
1446 self.add("\}")
1447 end
1448
1449 return res
1450 end
1451
1452 redef fun is_same_type_test(value1, value2)
1453 do
1454 var res = self.new_var(bool_type)
1455 # Swap values to be symetric
1456 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1457 var tmp = value1
1458 value1 = value2
1459 value2 = tmp
1460 end
1461 if value1.mtype.ctype != "val*" then
1462 if value2.mtype == value1.mtype then
1463 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1464 else if value2.mtype.ctype != "val*" then
1465 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1466 else
1467 var mtype1 = value1.mtype.as(MClassType)
1468 self.require_declaration("class_{mtype1.c_name}")
1469 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */")
1470 end
1471 else
1472 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */")
1473 end
1474 return res
1475 end
1476
1477 redef fun class_name_string(value)
1478 do
1479 var res = self.get_name("var_class_name")
1480 self.add_decl("const char* {res};")
1481 if value.mtype.ctype == "val*" then
1482 self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;"
1483 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind then
1484 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1485 else
1486 self.require_declaration("type_{value.mtype.c_name}")
1487 self.add "{res} = type_{value.mtype.c_name}.name;"
1488 end
1489 return res
1490 end
1491
1492 redef fun equal_test(value1, value2)
1493 do
1494 var res = self.new_var(bool_type)
1495 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1496 var tmp = value1
1497 value1 = value2
1498 value2 = tmp
1499 end
1500 if value1.mtype.ctype != "val*" then
1501 if value2.mtype == value1.mtype then
1502 self.add("{res} = {value1} == {value2};")
1503 else if value2.mtype.ctype != "val*" then
1504 self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/")
1505 else
1506 var mtype1 = value1.mtype.as(MClassType)
1507 self.require_declaration("class_{mtype1.c_name}")
1508 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});")
1509 self.add("if ({res}) \{")
1510 self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});")
1511 self.add("\}")
1512 end
1513 return res
1514 end
1515 var maybe_null = true
1516 var test = new Array[String]
1517 var t1 = value1.mcasttype
1518 if t1 isa MNullableType then
1519 test.add("{value1} != NULL")
1520 t1 = t1.mtype
1521 else
1522 maybe_null = false
1523 end
1524 var t2 = value2.mcasttype
1525 if t2 isa MNullableType then
1526 test.add("{value2} != NULL")
1527 t2 = t2.mtype
1528 else
1529 maybe_null = false
1530 end
1531
1532 var incompatible = false
1533 var primitive
1534 if t1.ctype != "val*" then
1535 primitive = t1
1536 if t1 == t2 then
1537 # No need to compare class
1538 else if t2.ctype != "val*" then
1539 incompatible = true
1540 else if can_be_primitive(value2) then
1541 test.add("{value1}->class == {value2}->class")
1542 else
1543 incompatible = true
1544 end
1545 else if t2.ctype != "val*" then
1546 primitive = t2
1547 if can_be_primitive(value1) then
1548 test.add("{value1}->class == {value2}->class")
1549 else
1550 incompatible = true
1551 end
1552 else
1553 primitive = null
1554 end
1555
1556 if incompatible then
1557 if maybe_null then
1558 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
1559 return res
1560 else
1561 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
1562 return res
1563 end
1564 end
1565 if primitive != null then
1566 test.add("((struct instance_{primitive.c_instance_name}*){value1})->value == ((struct instance_{primitive.c_instance_name}*){value2})->value")
1567 else if can_be_primitive(value1) and can_be_primitive(value2) then
1568 test.add("{value1}->class == {value2}->class")
1569 var s = new Array[String]
1570 for t, v in self.compiler.box_kinds do
1571 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_instance_name}*){value1})->value == ((struct instance_{t.c_instance_name}*){value2})->value)"
1572 end
1573 test.add("({s.join(" || ")})")
1574 else
1575 self.add("{res} = {value1} == {value2};")
1576 return res
1577 end
1578 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
1579 return res
1580 end
1581
1582 fun can_be_primitive(value: RuntimeVariable): Bool
1583 do
1584 var t = value.mcasttype.as_notnullable
1585 if not t isa MClassType then return false
1586 var k = t.mclass.kind
1587 return k == interface_kind or t.ctype != "val*"
1588 end
1589
1590 fun maybe_null(value: RuntimeVariable): Bool
1591 do
1592 var t = value.mcasttype
1593 return t isa MNullableType or t isa MNullType
1594 end
1595
1596 redef fun array_instance(array, elttype)
1597 do
1598 var nclass = self.get_class("NativeArray")
1599 var arrayclass = self.get_class("Array")
1600 var arraytype = arrayclass.get_mtype([elttype])
1601 var res = self.init_instance(arraytype)
1602 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
1603 var length = self.int_instance(array.length)
1604 var nat = native_array_instance(elttype, length)
1605 for i in [0..array.length[ do
1606 var r = self.autobox(array[i], self.object_type)
1607 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
1608 end
1609 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
1610 self.add("\}")
1611 return res
1612 end
1613
1614 redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable
1615 do
1616 var mtype = self.get_class("NativeArray").get_mtype([elttype])
1617 self.require_declaration("NEW_{mtype.mclass.c_name}")
1618 assert mtype isa MGenericType
1619 var compiler = self.compiler
1620 if mtype.need_anchor then
1621 hardening_live_open_type(mtype)
1622 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1623 var recv = self.frame.arguments.first
1624 var recv_type_info = self.type_info(recv)
1625 self.require_declaration(mtype.const_color)
1626 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1627 end
1628 compiler.undead_types.add(mtype)
1629 self.require_declaration("type_{mtype.c_name}")
1630 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype)
1631 end
1632
1633 redef fun native_array_def(pname, ret_type, arguments)
1634 do
1635 var elttype = arguments.first.mtype
1636 var nclass = self.get_class("NativeArray")
1637 var recv = "((struct instance_{nclass.c_instance_name}*){arguments[0]})->values"
1638 if pname == "[]" then
1639 self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null)))
1640 return
1641 else if pname == "[]=" then
1642 self.add("{recv}[{arguments[1]}]={arguments[2]};")
1643 return
1644 else if pname == "length" then
1645 self.ret(self.new_expr("((struct instance_{nclass.c_instance_name}*){arguments[0]})->length", ret_type.as(not null)))
1646 return
1647 else if pname == "copy_to" then
1648 var recv1 = "((struct instance_{nclass.c_instance_name}*){arguments[1]})->values"
1649 self.add("memcpy({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
1650 return
1651 end
1652 end
1653
1654 redef fun calloc_array(ret_type, arguments)
1655 do
1656 var mclass = self.get_class("ArrayCapable")
1657 var ft = mclass.mclass_type.arguments.first.as(MParameterType)
1658 var res = self.native_array_instance(ft, arguments[1])
1659 self.ret(res)
1660 end
1661
1662 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
1663 assert mtype.need_anchor
1664 var compiler = self.compiler
1665 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
1666 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
1667 end
1668 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
1669 end
1670 end
1671
1672 redef class MMethodDef
1673 fun separate_runtime_function: AbstractRuntimeFunction
1674 do
1675 var res = self.separate_runtime_function_cache
1676 if res == null then
1677 res = new SeparateRuntimeFunction(self)
1678 self.separate_runtime_function_cache = res
1679 end
1680 return res
1681 end
1682 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
1683
1684 fun virtual_runtime_function: AbstractRuntimeFunction
1685 do
1686 var res = self.virtual_runtime_function_cache
1687 if res == null then
1688 res = new VirtualRuntimeFunction(self)
1689 self.virtual_runtime_function_cache = res
1690 end
1691 return res
1692 end
1693 private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction
1694 end
1695
1696 # The C function associated to a methoddef separately compiled
1697 class SeparateRuntimeFunction
1698 super AbstractRuntimeFunction
1699
1700 redef fun build_c_name: String do return "{mmethoddef.c_name}"
1701
1702 redef fun to_s do return self.mmethoddef.to_s
1703
1704 redef fun compile_to_c(compiler)
1705 do
1706 var mmethoddef = self.mmethoddef
1707
1708 var recv = self.mmethoddef.mclassdef.bound_mtype
1709 var v = compiler.new_visitor
1710 var selfvar = new RuntimeVariable("self", recv, recv)
1711 var arguments = new Array[RuntimeVariable]
1712 var frame = new Frame(v, mmethoddef, recv, arguments)
1713 v.frame = frame
1714
1715 var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1716
1717 var sig = new FlatBuffer
1718 var comment = new FlatBuffer
1719 var ret = msignature.return_mtype
1720 if ret != null then
1721 sig.append("{ret.ctype} ")
1722 else if mmethoddef.mproperty.is_new then
1723 ret = recv
1724 sig.append("{ret.ctype} ")
1725 else
1726 sig.append("void ")
1727 end
1728 sig.append(self.c_name)
1729 sig.append("({selfvar.mtype.ctype} {selfvar}")
1730 comment.append("({selfvar}: {selfvar.mtype}")
1731 arguments.add(selfvar)
1732 for i in [0..msignature.arity[ do
1733 var mtype = msignature.mparameters[i].mtype
1734 if i == msignature.vararg_rank then
1735 mtype = v.get_class("Array").get_mtype([mtype])
1736 end
1737 comment.append(", {mtype}")
1738 sig.append(", {mtype.ctype} p{i}")
1739 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1740 arguments.add(argvar)
1741 end
1742 sig.append(")")
1743 comment.append(")")
1744 if ret != null then
1745 comment.append(": {ret}")
1746 end
1747 compiler.provide_declaration(self.c_name, "{sig};")
1748
1749 v.add_decl("/* method {self} for {comment} */")
1750 v.add_decl("{sig} \{")
1751 if ret != null then
1752 frame.returnvar = v.new_var(ret)
1753 end
1754 frame.returnlabel = v.get_name("RET_LABEL")
1755
1756 if recv != arguments.first.mtype then
1757 #print "{self} {recv} {arguments.first}"
1758 end
1759 mmethoddef.compile_inside_to_c(v, arguments)
1760
1761 v.add("{frame.returnlabel.as(not null)}:;")
1762 if ret != null then
1763 v.add("return {frame.returnvar.as(not null)};")
1764 end
1765 v.add("\}")
1766 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
1767 end
1768 end
1769
1770 # The C function associated to a methoddef on a primitive type, stored into a VFT of a class
1771 # The first parameter (the reciever) is always typed by val* in order to accept an object value
1772 class VirtualRuntimeFunction
1773 super AbstractRuntimeFunction
1774
1775 redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}"
1776
1777 redef fun to_s do return self.mmethoddef.to_s
1778
1779 redef fun compile_to_c(compiler)
1780 do
1781 var mmethoddef = self.mmethoddef
1782
1783 var recv = self.mmethoddef.mclassdef.bound_mtype
1784 var v = compiler.new_visitor
1785 var selfvar = new RuntimeVariable("self", v.object_type, recv)
1786 var arguments = new Array[RuntimeVariable]
1787 var frame = new Frame(v, mmethoddef, recv, arguments)
1788 v.frame = frame
1789
1790 var sig = new FlatBuffer
1791 var comment = new FlatBuffer
1792
1793 # Because the function is virtual, the signature must match the one of the original class
1794 var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef
1795 var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1796 var ret = msignature.return_mtype
1797 if ret != null then
1798 sig.append("{ret.ctype} ")
1799 else if mmethoddef.mproperty.is_new then
1800 ret = recv
1801 sig.append("{ret.ctype} ")
1802 else
1803 sig.append("void ")
1804 end
1805 sig.append(self.c_name)
1806 sig.append("({selfvar.mtype.ctype} {selfvar}")
1807 comment.append("({selfvar}: {selfvar.mtype}")
1808 arguments.add(selfvar)
1809 for i in [0..msignature.arity[ do
1810 var mtype = msignature.mparameters[i].mtype
1811 if i == msignature.vararg_rank then
1812 mtype = v.get_class("Array").get_mtype([mtype])
1813 end
1814 comment.append(", {mtype}")
1815 sig.append(", {mtype.ctype} p{i}")
1816 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1817 arguments.add(argvar)
1818 end
1819 sig.append(")")
1820 comment.append(")")
1821 if ret != null then
1822 comment.append(": {ret}")
1823 end
1824 compiler.provide_declaration(self.c_name, "{sig};")
1825
1826 v.add_decl("/* method {self} for {comment} */")
1827 v.add_decl("{sig} \{")
1828 if ret != null then
1829 frame.returnvar = v.new_var(ret)
1830 end
1831 frame.returnlabel = v.get_name("RET_LABEL")
1832
1833 var subret = v.call(mmethoddef, recv, arguments)
1834 if ret != null then
1835 assert subret != null
1836 v.assign(frame.returnvar.as(not null), subret)
1837 end
1838
1839 v.add("{frame.returnlabel.as(not null)}:;")
1840 if ret != null then
1841 v.add("return {frame.returnvar.as(not null)};")
1842 end
1843 v.add("\}")
1844 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})"
1845 end
1846
1847 # TODO ?
1848 redef fun call(v, arguments) do abort
1849 end
1850
1851 redef class MType
1852 fun const_color: String do return "COLOR_{c_name}"
1853
1854 # C name of the instance type to use
1855 fun c_instance_name: String do return c_name
1856 end
1857
1858 redef class MClassType
1859 redef fun c_instance_name do return mclass.c_instance_name
1860 end
1861
1862 redef class MClass
1863 # Extern classes use the C instance of kernel::Pointer
1864 fun c_instance_name: String
1865 do
1866 if kind == extern_kind then
1867 return "kernel__Pointer"
1868 else return c_name
1869 end
1870 end
1871
1872 interface PropertyLayoutElement end
1873
1874 redef class MProperty
1875 super PropertyLayoutElement
1876 fun const_color: String do return "COLOR_{c_name}"
1877 end
1878
1879 redef class MPropDef
1880 super PropertyLayoutElement
1881 fun const_color: String do return "COLOR_{c_name}"
1882 end