compiler: use `adapt_signature` to simplify and clean `table_send`
[nit.git] / src / compiler / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import coloring
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --no-tag-primitives
33 var opt_no_tag_primitives = new OptionBool("Use only boxes for primitive types", "--no-tag-primitives")
34
35 # --colors-are-symbols
36 var opt_colors_are_symbols = new OptionBool("Store colors as symbols (link-boost)", "--colors-are-symbols")
37 # --trampoline-call
38 var opt_trampoline_call = new OptionBool("Use an indirection when calling", "--trampoline-call")
39 # --guard-call
40 var opt_guard_call = new OptionBool("Guard VFT calls with a direct call", "--guard-call")
41 # --substitute-monomorph
42 var opt_substitute_monomorph = new OptionBool("Replace monomorph trampoline with direct call (link-boost)", "--substitute-monomorph")
43 # --link-boost
44 var opt_link_boost = new OptionBool("Enable all link-boost optimizations", "--link-boost")
45
46 # --inline-coloring-numbers
47 var opt_inline_coloring_numbers = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
48 # --inline-some-methods
49 var opt_inline_some_methods = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
50 # --direct-call-monomorph
51 var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph")
52 # --direct-call-monomorph0
53 var opt_direct_call_monomorph0 = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph0")
54 # --skip-dead-methods
55 var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods")
56 # --semi-global
57 var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global")
58 # --no-colo-dead-methods
59 var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods")
60 # --tables-metrics
61 var opt_tables_metrics = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
62 # --type-poset
63 var opt_type_poset = new OptionBool("Build a poset of types to create more condensed tables.", "--type-poset")
64
65 redef init
66 do
67 super
68 self.option_context.add_option(self.opt_separate)
69 self.option_context.add_option(self.opt_no_inline_intern)
70 self.option_context.add_option(self.opt_no_union_attribute)
71 self.option_context.add_option(self.opt_no_shortcut_equate)
72 self.option_context.add_option(self.opt_no_tag_primitives)
73 self.option_context.add_option(opt_colors_are_symbols, opt_trampoline_call, opt_guard_call, opt_direct_call_monomorph0, opt_substitute_monomorph, opt_link_boost)
74 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global)
75 self.option_context.add_option(self.opt_colo_dead_methods)
76 self.option_context.add_option(self.opt_tables_metrics)
77 self.option_context.add_option(self.opt_type_poset)
78 end
79
80 redef fun process_options(args)
81 do
82 super
83
84 var tc = self
85 if tc.opt_semi_global.value then
86 tc.opt_inline_coloring_numbers.value = true
87 tc.opt_inline_some_methods.value = true
88 tc.opt_direct_call_monomorph.value = true
89 tc.opt_skip_dead_methods.value = true
90 end
91 if tc.opt_link_boost.value then
92 tc.opt_colors_are_symbols.value = true
93 tc.opt_substitute_monomorph.value = true
94 end
95 if tc.opt_substitute_monomorph.value then
96 tc.opt_trampoline_call.value = true
97 end
98 end
99
100 var separate_compiler_phase = new SeparateCompilerPhase(self, null)
101 end
102
103 class SeparateCompilerPhase
104 super Phase
105 redef fun process_mainmodule(mainmodule, given_mmodules) do
106 if not toolcontext.opt_separate.value then return
107
108 var modelbuilder = toolcontext.modelbuilder
109 var analysis = modelbuilder.do_rapid_type_analysis(mainmodule)
110 modelbuilder.run_separate_compiler(mainmodule, analysis)
111 end
112 end
113
114 redef class ModelBuilder
115 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
116 do
117 var time0 = get_time
118 self.toolcontext.info("*** GENERATING C ***", 1)
119
120 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
121 compiler.do_compilation
122 compiler.display_stats
123
124 var time1 = get_time
125 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
126 write_and_make(compiler)
127 end
128
129 # Count number of invocations by VFT
130 private var nb_invok_by_tables = 0
131 # Count number of invocations by direct call
132 private var nb_invok_by_direct = 0
133 # Count number of invocations by inlining
134 private var nb_invok_by_inline = 0
135 end
136
137 # Singleton that store the knowledge about the separate compilation process
138 class SeparateCompiler
139 super AbstractCompiler
140
141 redef type VISITOR: SeparateCompilerVisitor
142
143 # The result of the RTA (used to know live types and methods)
144 var runtime_type_analysis: nullable RapidTypeAnalysis
145
146 private var undead_types: Set[MType] = new HashSet[MType]
147 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
148
149 private var type_ids: Map[MType, Int] is noinit
150 private var type_colors: Map[MType, Int] is noinit
151 private var opentype_colors: Map[MType, Int] is noinit
152
153 init do
154 var file = new_file("nit.common")
155 self.header = new CodeWriter(file)
156 self.compile_box_kinds
157 end
158
159 redef fun do_compilation
160 do
161 var compiler = self
162 compiler.compile_header
163
164 var c_name = mainmodule.c_name
165
166 # compile class structures
167 modelbuilder.toolcontext.info("Property coloring", 2)
168 compiler.new_file("{c_name}.classes")
169 compiler.do_property_coloring
170 compiler.compile_class_infos
171 for m in mainmodule.in_importation.greaters do
172 for mclass in m.intro_mclasses do
173 #if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
174 compiler.compile_class_to_c(mclass)
175 end
176 end
177
178 # The main function of the C
179 compiler.new_file("{c_name}.main")
180 compiler.compile_nitni_global_ref_functions
181 compiler.compile_main_function
182 compiler.compile_finalizer_function
183 compiler.link_mmethods
184
185 # compile methods
186 for m in mainmodule.in_importation.greaters do
187 modelbuilder.toolcontext.info("Generate C for module {m.full_name}", 2)
188 compiler.new_file("{m.c_name}.sep")
189 compiler.compile_module_to_c(m)
190 end
191
192 # compile live & cast type structures
193 modelbuilder.toolcontext.info("Type coloring", 2)
194 compiler.new_file("{c_name}.types")
195 compiler.compile_types
196 end
197
198 # Color and compile type structures and cast information
199 fun compile_types
200 do
201 var compiler = self
202
203 var mtypes = compiler.do_type_coloring
204 for t in mtypes do
205 compiler.compile_type_to_c(t)
206 end
207 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
208 for t in compiler.undead_types do
209 if mtypes.has(t) then continue
210 compiler.compile_type_to_c(t)
211 end
212
213 end
214
215 redef fun compile_header_structs do
216 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
217 self.compile_header_attribute_structs
218 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
219
220 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
221 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
222 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
223 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
224 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
225
226 if not modelbuilder.toolcontext.opt_no_tag_primitives.value then
227 self.header.add_decl("extern const struct class *class_info[];")
228 self.header.add_decl("extern const struct type *type_info[];")
229 end
230 end
231
232 fun compile_header_attribute_structs
233 do
234 if modelbuilder.toolcontext.opt_no_union_attribute.value then
235 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
236 else
237 self.header.add_decl("typedef union \{")
238 self.header.add_decl("void* val;")
239 for c, v in self.box_kinds do
240 var t = c.mclass_type
241
242 # `Pointer` reuse the `val` field
243 if t.mclass.name == "Pointer" then continue
244
245 self.header.add_decl("{t.ctype_extern} {t.ctypename};")
246 end
247 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
248 end
249 end
250
251 fun compile_box_kinds
252 do
253 # Collect all bas box class
254 # FIXME: this is not completely fine with a separate compilation scheme
255 for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do
256 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
257 if classes == null then continue
258 assert classes.length == 1 else print classes.join(", ")
259 self.box_kinds[classes.first] = self.box_kinds.length + 1
260 end
261 end
262
263 var box_kinds = new HashMap[MClass, Int]
264
265 fun box_kind_of(mclass: MClass): Int
266 do
267 #var pointer_type = self.mainmodule.pointer_type
268 #if mclass.mclass_type.ctype == "val*" or mclass.mclass_type.is_subtype(self.mainmodule, mclass.mclass_type pointer_type) then
269 if mclass.mclass_type.ctype_extern == "val*" then
270 return 0
271 else if mclass.kind == extern_kind and mclass.name != "NativeString" then
272 return self.box_kinds[self.mainmodule.pointer_type.mclass]
273 else
274 return self.box_kinds[mclass]
275 end
276
277 end
278
279 fun compile_color_consts(colors: Map[Object, Int]) do
280 var v = new_visitor
281 for m, c in colors do
282 compile_color_const(v, m, c)
283 end
284 end
285
286 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
287 if color_consts_done.has(m) then return
288 if m isa MEntity then
289 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
290 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
291 else if not modelbuilder.toolcontext.opt_colors_are_symbols.value or not v.compiler.target_platform.supports_linker_script then
292 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
293 v.add("const int {m.const_color} = {color};")
294 else
295 # The color 'C' is the ``address'' of a false static variable 'XC'
296 self.provide_declaration(m.const_color, "#define {m.const_color} ((long)&X{m.const_color})\nextern const void X{m.const_color};")
297 if color == -1 then color = 0 # Symbols cannot be negative, so just use 0 for dead things
298 # Teach the linker that the address of 'XC' is `color`.
299 linker_script.add("X{m.const_color} = {color};")
300 end
301 else
302 abort
303 end
304 color_consts_done.add(m)
305 end
306
307 private var color_consts_done = new HashSet[Object]
308
309 # The conflict graph of classes used for coloration
310 var class_conflict_graph: POSetConflictGraph[MClass] is noinit
311
312 # colorize classe properties
313 fun do_property_coloring do
314
315 var rta = runtime_type_analysis
316
317 # Class graph
318 var mclasses = mainmodule.flatten_mclass_hierarchy
319 class_conflict_graph = mclasses.to_conflict_graph
320
321 # Prepare to collect elements to color and build layout with
322 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
323 var mattributes = new HashMap[MClass, Set[MAttribute]]
324
325 # The dead methods and super-call, still need to provide a dead color symbol
326 var dead_methods = new Array[PropertyLayoutElement]
327
328 for mclass in mclasses do
329 mmethods[mclass] = new HashSet[PropertyLayoutElement]
330 mattributes[mclass] = new HashSet[MAttribute]
331 end
332
333 # Pre-collect known live things
334 if rta != null then
335 for m in rta.live_methods do
336 mmethods[m.intro_mclassdef.mclass].add m
337 end
338 for m in rta.live_super_sends do
339 var mclass = m.mclassdef.mclass
340 mmethods[mclass].add m
341 end
342 end
343
344 for m in mainmodule.in_importation.greaters do for cd in m.mclassdefs do
345 var mclass = cd.mclass
346 # Collect methods ad attributes
347 for p in cd.intro_mproperties do
348 if p isa MMethod then
349 if rta == null then
350 mmethods[mclass].add p
351 else if not rta.live_methods.has(p) then
352 dead_methods.add p
353 end
354 else if p isa MAttribute then
355 mattributes[mclass].add p
356 end
357 end
358
359 # Collect all super calls (dead or not)
360 for mpropdef in cd.mpropdefs do
361 if not mpropdef isa MMethodDef then continue
362 if mpropdef.has_supercall then
363 if rta == null then
364 mmethods[mclass].add mpropdef
365 else if not rta.live_super_sends.has(mpropdef) then
366 dead_methods.add mpropdef
367 end
368 end
369 end
370 end
371
372 # methods coloration
373 var meth_colorer = new POSetGroupColorer[MClass, PropertyLayoutElement](class_conflict_graph, mmethods)
374 var method_colors = meth_colorer.colors
375 compile_color_consts(method_colors)
376
377 # give null color to dead methods and supercalls
378 for mproperty in dead_methods do compile_color_const(new_visitor, mproperty, -1)
379
380 # attribute coloration
381 var attr_colorer = new POSetGroupColorer[MClass, MAttribute](class_conflict_graph, mattributes)
382 var attr_colors = attr_colorer.colors#ize(poset, mattributes)
383 compile_color_consts(attr_colors)
384
385 # Build method and attribute tables
386 method_tables = new HashMap[MClass, Array[nullable MPropDef]]
387 attr_tables = new HashMap[MClass, Array[nullable MProperty]]
388 for mclass in mclasses do
389 if not mclass.has_new_factory and (mclass.kind == abstract_kind or mclass.kind == interface_kind) then continue
390 if rta != null and not rta.live_classes.has(mclass) then continue
391
392 var mtype = mclass.intro.bound_mtype
393
394 # Resolve elements in the layout to get the final table
395 var meth_layout = meth_colorer.build_layout(mclass)
396 var meth_table = new Array[nullable MPropDef].with_capacity(meth_layout.length)
397 method_tables[mclass] = meth_table
398 for e in meth_layout do
399 if e == null then
400 meth_table.add null
401 else if e isa MMethod then
402 # Standard method call of `e`
403 meth_table.add e.lookup_first_definition(mainmodule, mtype)
404 else if e isa MMethodDef then
405 # Super-call in the methoddef `e`
406 meth_table.add e.lookup_next_definition(mainmodule, mtype)
407 else
408 abort
409 end
410 end
411
412 # Do not need to resolve attributes as only the position is used
413 attr_tables[mclass] = attr_colorer.build_layout(mclass)
414 end
415
416
417 end
418
419 # colorize live types of the program
420 private fun do_type_coloring: Collection[MType] do
421 # Collect types to colorize
422 var live_types = runtime_type_analysis.live_types
423 var live_cast_types = runtime_type_analysis.live_cast_types
424
425 var res = new HashSet[MType]
426 res.add_all live_types
427 res.add_all live_cast_types
428
429 if modelbuilder.toolcontext.opt_type_poset.value then
430 # Compute colors with a type poset
431 var poset = poset_from_mtypes(live_types, live_cast_types)
432 var colorer = new POSetColorer[MType]
433 colorer.colorize(poset)
434 type_ids = colorer.ids
435 type_colors = colorer.colors
436 type_tables = build_type_tables(poset)
437 else
438 # Compute colors using the class poset
439 # Faster to compute but the number of holes can degenerate
440 compute_type_test_layouts(live_types, live_cast_types)
441
442 type_ids = new HashMap[MType, Int]
443 for x in res do type_ids[x] = type_ids.length + 1
444 end
445
446 # VT and FT are stored with other unresolved types in the big resolution_tables
447 self.compute_resolution_tables(live_types)
448
449 return res
450 end
451
452 private fun poset_from_mtypes(mtypes, cast_types: Set[MType]): POSet[MType] do
453 var poset = new POSet[MType]
454
455 # Instead of doing the full matrix mtypes X cast_types,
456 # a grouping is done by the base classes of the type so
457 # that we compare only types whose base classes are in inheritance.
458
459 var mtypes_by_class = new MultiHashMap[MClass, MType]
460 for e in mtypes do
461 var c = e.undecorate.as(MClassType).mclass
462 mtypes_by_class[c].add(e)
463 poset.add_node(e)
464 end
465
466 var casttypes_by_class = new MultiHashMap[MClass, MType]
467 for e in cast_types do
468 var c = e.undecorate.as(MClassType).mclass
469 casttypes_by_class[c].add(e)
470 poset.add_node(e)
471 end
472
473 for c1, ts1 in mtypes_by_class do
474 for c2 in c1.in_hierarchy(mainmodule).greaters do
475 var ts2 = casttypes_by_class[c2]
476 for e in ts1 do
477 for o in ts2 do
478 if e == o then continue
479 if e.is_subtype(mainmodule, null, o) then
480 poset.add_edge(e, o)
481 end
482 end
483 end
484 end
485 end
486 return poset
487 end
488
489 # Build type tables
490 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
491 var tables = new HashMap[MType, Array[nullable MType]]
492 for mtype in mtypes do
493 var table = new Array[nullable MType]
494 for sup in mtypes[mtype].greaters do
495 var color = type_colors[sup]
496 if table.length <= color then
497 for i in [table.length .. color[ do
498 table[i] = null
499 end
500 end
501 table[color] = sup
502 end
503 tables[mtype] = table
504 end
505 return tables
506 end
507
508
509 private fun compute_type_test_layouts(mtypes: Set[MClassType], cast_types: Set[MType]) do
510 # Group cast_type by their classes
511 var bucklets = new HashMap[MClass, Set[MType]]
512 for e in cast_types do
513 var c = e.undecorate.as(MClassType).mclass
514 if not bucklets.has_key(c) then
515 bucklets[c] = new HashSet[MType]
516 end
517 bucklets[c].add(e)
518 end
519
520 # Colorize cast_types from the class hierarchy
521 var colorer = new POSetGroupColorer[MClass, MType](class_conflict_graph, bucklets)
522 type_colors = colorer.colors
523
524 var layouts = new HashMap[MClass, Array[nullable MType]]
525 for c in runtime_type_analysis.live_classes do
526 layouts[c] = colorer.build_layout(c)
527 end
528
529 # Build the table for each live type
530 for t in mtypes do
531 # A live type use the layout of its class
532 var c = t.mclass
533 var layout = layouts[c]
534 var table = new Array[nullable MType].with_capacity(layout.length)
535 type_tables[t] = table
536
537 # For each potential super-type in the layout
538 for sup in layout do
539 if sup == null then
540 table.add null
541 else if t.is_subtype(mainmodule, null, sup) then
542 table.add sup
543 else
544 table.add null
545 end
546 end
547 end
548 end
549
550 # resolution_tables is used to perform a type resolution at runtime in O(1)
551 private fun compute_resolution_tables(mtypes: Set[MType]) do
552 # During the visit of the body of classes, live_unresolved_types are collected
553 # and associated to
554 # Collect all live_unresolved_types (visited in the body of classes)
555
556 # Determinate fo each livetype what are its possible requested anchored types
557 var mtype2unresolved = new HashMap[MClass, Set[MType]]
558 for mtype in self.runtime_type_analysis.live_types do
559 var mclass = mtype.mclass
560 var set = mtype2unresolved.get_or_null(mclass)
561 if set == null then
562 set = new HashSet[MType]
563 mtype2unresolved[mclass] = set
564 end
565 for cd in mtype.collect_mclassdefs(self.mainmodule) do
566 if self.live_unresolved_types.has_key(cd) then
567 set.add_all(self.live_unresolved_types[cd])
568 end
569 end
570 end
571
572 # Compute the table layout with the prefered method
573 var colorer = new BucketsColorer[MClass, MType]
574
575 opentype_colors = colorer.colorize(mtype2unresolved)
576 resolution_tables = self.build_resolution_tables(self.runtime_type_analysis.live_types, mtype2unresolved)
577
578 # Compile a C constant for each collected unresolved type.
579 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
580 var all_unresolved = new HashSet[MType]
581 for t in self.live_unresolved_types.values do
582 all_unresolved.add_all(t)
583 end
584 var all_unresolved_types_colors = new HashMap[MType, Int]
585 for t in all_unresolved do
586 if opentype_colors.has_key(t) then
587 all_unresolved_types_colors[t] = opentype_colors[t]
588 else
589 all_unresolved_types_colors[t] = -1
590 end
591 end
592 self.compile_color_consts(all_unresolved_types_colors)
593
594 #print "tables"
595 #for k, v in unresolved_types_tables.as(not null) do
596 # print "{k}: {v.join(", ")}"
597 #end
598 #print ""
599 end
600
601 fun build_resolution_tables(elements: Set[MClassType], map: Map[MClass, Set[MType]]): Map[MClassType, Array[nullable MType]] do
602 var tables = new HashMap[MClassType, Array[nullable MType]]
603 for mclasstype in elements do
604 var mtypes = map[mclasstype.mclass]
605 var table = new Array[nullable MType]
606 for mtype in mtypes do
607 var color = opentype_colors[mtype]
608 if table.length <= color then
609 for i in [table.length .. color[ do
610 table[i] = null
611 end
612 end
613 table[color] = mtype
614 end
615 tables[mclasstype] = table
616 end
617 return tables
618 end
619
620 # Separately compile all the method definitions of the module
621 fun compile_module_to_c(mmodule: MModule)
622 do
623 var old_module = self.mainmodule
624 self.mainmodule = mmodule
625 for cd in mmodule.mclassdefs do
626 for pd in cd.mpropdefs do
627 if not pd isa MMethodDef then continue
628 var rta = runtime_type_analysis
629 if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue
630 #print "compile {pd} @ {cd} @ {mmodule}"
631 var r = pd.separate_runtime_function
632 r.compile_to_c(self)
633 var r2 = pd.virtual_runtime_function
634 if r2 != r then r2.compile_to_c(self)
635
636 # Generate trampolines
637 if modelbuilder.toolcontext.opt_trampoline_call.value then
638 r2.compile_trampolines(self)
639 end
640 end
641 end
642 self.mainmodule = old_module
643 end
644
645 # Process all introduced methods and compile some linking information (if needed)
646 fun link_mmethods
647 do
648 if not modelbuilder.toolcontext.opt_substitute_monomorph.value and not modelbuilder.toolcontext.opt_guard_call.value then return
649
650 for mmodule in mainmodule.in_importation.greaters do
651 for cd in mmodule.mclassdefs do
652 for m in cd.intro_mproperties do
653 if not m isa MMethod then continue
654 link_mmethod(m)
655 end
656 end
657 end
658 end
659
660 # Compile some linking information (if needed)
661 fun link_mmethod(m: MMethod)
662 do
663 var n2 = "CALL_" + m.const_color
664
665 # Replace monomorphic call by a direct call to the virtual implementation
666 var md = is_monomorphic(m)
667 if md != null then
668 linker_script.add("{n2} = {md.virtual_runtime_function.c_name};")
669 end
670
671 # If opt_substitute_monomorph then a trampoline is used, else a weak symbol is used
672 if modelbuilder.toolcontext.opt_guard_call.value then
673 var r = m.intro.virtual_runtime_function
674 provide_declaration(n2, "{r.c_ret} {n2}{r.c_sig} __attribute__((weak));")
675 end
676 end
677
678 # The single mmethodef called in case of monomorphism.
679 # Returns nul if dead or polymorphic.
680 fun is_monomorphic(m: MMethod): nullable MMethodDef
681 do
682 var rta = runtime_type_analysis
683 if rta == null then
684 # Without RTA, monomorphic means alone (uniq name)
685 if m.mpropdefs.length == 1 then
686 return m.mpropdefs.first
687 else
688 return null
689 end
690 else
691 # With RTA, monomorphic means only live methoddef
692 var res: nullable MMethodDef = null
693 for md in m.mpropdefs do
694 if rta.live_methoddefs.has(md) then
695 if res != null then return null
696 res = md
697 end
698 end
699 return res
700 end
701 end
702
703 # Globaly compile the type structure of a live type
704 fun compile_type_to_c(mtype: MType)
705 do
706 assert not mtype.need_anchor
707 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
708 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
709 var c_name = mtype.c_name
710 var v = new SeparateCompilerVisitor(self)
711 v.add_decl("/* runtime type {mtype} */")
712
713 # extern const struct type_X
714 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
715
716 # const struct type_X
717 v.add_decl("const struct type type_{c_name} = \{")
718
719 # type id (for cast target)
720 if is_cast_live then
721 v.add_decl("{type_ids[mtype]},")
722 else
723 v.add_decl("-1, /*CAST DEAD*/")
724 end
725
726 # type name
727 v.add_decl("\"{mtype}\", /* class_name_string */")
728
729 # type color (for cast target)
730 if is_cast_live then
731 v.add_decl("{type_colors[mtype]},")
732 else
733 v.add_decl("-1, /*CAST DEAD*/")
734 end
735
736 # is_nullable bit
737 if mtype isa MNullableType then
738 v.add_decl("1,")
739 else
740 v.add_decl("0,")
741 end
742
743 # resolution table (for receiver)
744 if is_live then
745 var mclass_type = mtype.undecorate
746 assert mclass_type isa MClassType
747 if resolution_tables[mclass_type].is_empty then
748 v.add_decl("NULL, /*NO RESOLUTIONS*/")
749 else
750 compile_type_resolution_table(mtype)
751 v.require_declaration("resolution_table_{c_name}")
752 v.add_decl("&resolution_table_{c_name},")
753 end
754 else
755 v.add_decl("NULL, /*DEAD*/")
756 end
757
758 # cast table (for receiver)
759 if is_live then
760 v.add_decl("{self.type_tables[mtype].length},")
761 v.add_decl("\{")
762 for stype in self.type_tables[mtype] do
763 if stype == null then
764 v.add_decl("-1, /* empty */")
765 else
766 v.add_decl("{type_ids[stype]}, /* {stype} */")
767 end
768 end
769 v.add_decl("\},")
770 else
771 v.add_decl("0, \{\}, /*DEAD TYPE*/")
772 end
773 v.add_decl("\};")
774 end
775
776 fun compile_type_resolution_table(mtype: MType) do
777
778 var mclass_type = mtype.undecorate.as(MClassType)
779
780 # extern const struct resolution_table_X resolution_table_X
781 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
782
783 # const struct fts_table_X fts_table_X
784 var v = new_visitor
785 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
786 v.add_decl("0, /* dummy */")
787 v.add_decl("\{")
788 for t in self.resolution_tables[mclass_type] do
789 if t == null then
790 v.add_decl("NULL, /* empty */")
791 else
792 # The table stores the result of the type resolution
793 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
794 # the value stored is tv.
795 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
796 # FIXME: What typeids means here? How can a tv not be live?
797 if type_ids.has_key(tv) then
798 v.require_declaration("type_{tv.c_name}")
799 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
800 else
801 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
802 end
803 end
804 end
805 v.add_decl("\}")
806 v.add_decl("\};")
807 end
808
809 # Globally compile the table of the class mclass
810 # In a link-time optimisation compiler, tables are globally computed
811 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
812 fun compile_class_to_c(mclass: MClass)
813 do
814 var mtype = mclass.intro.bound_mtype
815 var c_name = mclass.c_name
816
817 var v = new_visitor
818
819 var rta = runtime_type_analysis
820 var is_dead = rta != null and not rta.live_classes.has(mclass) and not mtype.is_c_primitive and mclass.name != "NativeArray" and mclass.name != "Pointer"
821
822 v.add_decl("/* runtime class {c_name} */")
823
824 # Build class vft
825 if not is_dead then
826 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
827 v.add_decl("const struct class class_{c_name} = \{")
828 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
829 v.add_decl("\{")
830 var vft = self.method_tables.get_or_null(mclass)
831 if vft != null then for i in [0 .. vft.length[ do
832 var mpropdef = vft[i]
833 if mpropdef == null then
834 v.add_decl("NULL, /* empty */")
835 else
836 assert mpropdef isa MMethodDef
837 if rta != null and not rta.live_methoddefs.has(mpropdef) then
838 v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
839 continue
840 end
841 var rf = mpropdef.virtual_runtime_function
842 v.require_declaration(rf.c_name)
843 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
844 end
845 end
846 v.add_decl("\}")
847 v.add_decl("\};")
848 end
849
850 if mtype.is_c_primitive or mtype.mclass.name == "Pointer" then
851 # Is a primitive type or the Pointer class, not any other extern class
852
853 if mtype.is_tagged then return
854
855 #Build instance struct
856 self.header.add_decl("struct instance_{c_name} \{")
857 self.header.add_decl("const struct type *type;")
858 self.header.add_decl("const struct class *class;")
859 self.header.add_decl("{mtype.ctype_extern} value;")
860 self.header.add_decl("\};")
861
862 if not rta.live_types.has(mtype) and mtype.mclass.name != "Pointer" then return
863
864 #Build BOX
865 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype_extern});")
866 v.add_decl("/* allocate {mtype} */")
867 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype_extern} value) \{")
868 v.add("struct instance_{c_name}*res = nit_alloc(sizeof(struct instance_{c_name}));")
869 v.compiler.undead_types.add(mtype)
870 v.require_declaration("type_{c_name}")
871 v.add("res->type = &type_{c_name};")
872 v.require_declaration("class_{c_name}")
873 v.add("res->class = &class_{c_name};")
874 v.add("res->value = value;")
875 v.add("return (val*)res;")
876 v.add("\}")
877
878 if mtype.mclass.name != "Pointer" then return
879
880 v = new_visitor
881 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
882 v.add_decl("/* allocate {mtype} */")
883 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
884 if is_dead then
885 v.add_abort("{mclass} is DEAD")
886 else
887 var res = v.new_named_var(mtype, "self")
888 res.is_exact = true
889 v.add("{res} = nit_alloc(sizeof(struct instance_{mtype.c_name}));")
890 v.add("{res}->type = type;")
891 hardening_live_type(v, "type")
892 v.require_declaration("class_{c_name}")
893 v.add("{res}->class = &class_{c_name};")
894 v.add("((struct instance_{mtype.c_name}*){res})->value = NULL;")
895 v.add("return {res};")
896 end
897 v.add("\}")
898 return
899 else if mclass.name == "NativeArray" then
900 #Build instance struct
901 self.header.add_decl("struct instance_{c_name} \{")
902 self.header.add_decl("const struct type *type;")
903 self.header.add_decl("const struct class *class;")
904 # NativeArrays are just a instance header followed by a length and an array of values
905 self.header.add_decl("int length;")
906 self.header.add_decl("val* values[0];")
907 self.header.add_decl("\};")
908
909 #Build NEW
910 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
911 v.add_decl("/* allocate {mtype} */")
912 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
913 var res = v.get_name("self")
914 v.add_decl("struct instance_{c_name} *{res};")
915 var mtype_elt = mtype.arguments.first
916 v.add("{res} = nit_alloc(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));")
917 v.add("{res}->type = type;")
918 hardening_live_type(v, "type")
919 v.require_declaration("class_{c_name}")
920 v.add("{res}->class = &class_{c_name};")
921 v.add("{res}->length = length;")
922 v.add("return (val*){res};")
923 v.add("\}")
924 return
925 else if mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
926 # Is an extern class (other than Pointer and NativeString)
927 # Pointer is caught in a previous `if`, and NativeString is internal
928
929 var pointer_type = mainmodule.pointer_type
930
931 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
932 v.add_decl("/* allocate {mtype} */")
933 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
934 if is_dead then
935 v.add_abort("{mclass} is DEAD")
936 else
937 var res = v.new_named_var(mtype, "self")
938 res.is_exact = true
939 v.add("{res} = nit_alloc(sizeof(struct instance_{pointer_type.c_name}));")
940 v.add("{res}->type = type;")
941 hardening_live_type(v, "type")
942 v.require_declaration("class_{c_name}")
943 v.add("{res}->class = &class_{c_name};")
944 v.add("((struct instance_{pointer_type.c_name}*){res})->value = NULL;")
945 v.add("return {res};")
946 end
947 v.add("\}")
948 return
949 end
950
951 #Build NEW
952 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
953 v.add_decl("/* allocate {mtype} */")
954 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
955 if is_dead then
956 v.add_abort("{mclass} is DEAD")
957 else
958 var res = v.new_named_var(mtype, "self")
959 res.is_exact = true
960 var attrs = self.attr_tables.get_or_null(mclass)
961 if attrs == null then
962 v.add("{res} = nit_alloc(sizeof(struct instance));")
963 else
964 v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));")
965 end
966 v.add("{res}->type = type;")
967 hardening_live_type(v, "type")
968 v.require_declaration("class_{c_name}")
969 v.add("{res}->class = &class_{c_name};")
970 if attrs != null then
971 self.generate_init_attr(v, res, mtype)
972 v.set_finalizer res
973 end
974 v.add("return {res};")
975 end
976 v.add("\}")
977 end
978
979 # Compile structures used to map tagged primitive values to their classes and types.
980 # This method also determines which class will be tagged.
981 fun compile_class_infos
982 do
983 if modelbuilder.toolcontext.opt_no_tag_primitives.value then return
984
985 # Note: if you change the tagging scheme, do not forget to update
986 # `autobox` and `extract_tag`
987 var class_info = new Array[nullable MClass].filled_with(null, 4)
988 for t in box_kinds.keys do
989 # Note: a same class can be associated to multiple slots if one want to
990 # use some Huffman coding.
991 if t.name == "Int" then
992 class_info[1] = t
993 else if t.name == "Char" then
994 class_info[2] = t
995 else if t.name == "Bool" then
996 class_info[3] = t
997 else
998 continue
999 end
1000 t.mclass_type.is_tagged = true
1001 end
1002
1003 # Compile the table for classes. The tag is used as an index
1004 var v = self.new_visitor
1005 v.add_decl "const struct class *class_info[4] = \{"
1006 for t in class_info do
1007 if t == null then
1008 v.add_decl("NULL,")
1009 else
1010 var s = "class_{t.c_name}"
1011 v.require_declaration(s)
1012 v.add_decl("&{s},")
1013 end
1014 end
1015 v.add_decl("\};")
1016
1017 # Compile the table for types. The tag is used as an index
1018 v.add_decl "const struct type *type_info[4] = \{"
1019 for t in class_info do
1020 if t == null then
1021 v.add_decl("NULL,")
1022 else
1023 var s = "type_{t.c_name}"
1024 undead_types.add(t.mclass_type)
1025 v.require_declaration(s)
1026 v.add_decl("&{s},")
1027 end
1028 end
1029 v.add_decl("\};")
1030 end
1031
1032 # Add a dynamic test to ensure that the type referenced by `t` is a live type
1033 fun hardening_live_type(v: VISITOR, t: String)
1034 do
1035 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
1036 v.add("if({t} == NULL) \{")
1037 v.add_abort("type null")
1038 v.add("\}")
1039 v.add("if({t}->table_size == 0) \{")
1040 v.add("PRINT_ERROR(\"Insantiation of a dead type: %s\\n\", {t}->name);")
1041 v.add_abort("type dead")
1042 v.add("\}")
1043 end
1044
1045 redef fun new_visitor do return new SeparateCompilerVisitor(self)
1046
1047 # Stats
1048
1049 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
1050 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
1051 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
1052 protected var attr_tables: Map[MClass, Array[nullable MProperty]] = new HashMap[MClass, Array[nullable MProperty]]
1053
1054 redef fun display_stats
1055 do
1056 super
1057 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
1058 display_sizes
1059 end
1060 if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1061 display_isset_checks
1062 end
1063 var tc = self.modelbuilder.toolcontext
1064 tc.info("# implementation of method invocation",2)
1065 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
1066 tc.info("total number of invocations: {nb_invok_total}",2)
1067 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
1068 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
1069 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
1070 end
1071
1072 fun display_sizes
1073 do
1074 print "# size of subtyping tables"
1075 print "\ttotal \tholes"
1076 var total = 0
1077 var holes = 0
1078 for t, table in type_tables do
1079 total += table.length
1080 for e in table do if e == null then holes += 1
1081 end
1082 print "\t{total}\t{holes}"
1083
1084 print "# size of resolution tables"
1085 print "\ttotal \tholes"
1086 total = 0
1087 holes = 0
1088 for t, table in resolution_tables do
1089 total += table.length
1090 for e in table do if e == null then holes += 1
1091 end
1092 print "\t{total}\t{holes}"
1093
1094 print "# size of methods tables"
1095 print "\ttotal \tholes"
1096 total = 0
1097 holes = 0
1098 for t, table in method_tables do
1099 total += table.length
1100 for e in table do if e == null then holes += 1
1101 end
1102 print "\t{total}\t{holes}"
1103
1104 print "# size of attributes tables"
1105 print "\ttotal \tholes"
1106 total = 0
1107 holes = 0
1108 for t, table in attr_tables do
1109 total += table.length
1110 for e in table do if e == null then holes += 1
1111 end
1112 print "\t{total}\t{holes}"
1113 end
1114
1115 protected var isset_checks_count = 0
1116 protected var attr_read_count = 0
1117
1118 fun display_isset_checks do
1119 print "# total number of compiled attribute reads"
1120 print "\t{attr_read_count}"
1121 print "# total number of compiled isset-checks"
1122 print "\t{isset_checks_count}"
1123 end
1124
1125 redef fun compile_nitni_structs
1126 do
1127 self.header.add_decl """
1128 struct nitni_instance \{
1129 struct nitni_instance *next,
1130 *prev; /* adjacent global references in global list */
1131 int count; /* number of time this global reference has been marked */
1132 struct instance *value;
1133 \};
1134 """
1135 super
1136 end
1137
1138 redef fun finalize_ffi_for_module(mmodule)
1139 do
1140 var old_module = self.mainmodule
1141 self.mainmodule = mmodule
1142 super
1143 self.mainmodule = old_module
1144 end
1145 end
1146
1147 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
1148 class SeparateCompilerVisitor
1149 super AbstractCompilerVisitor
1150
1151 redef type COMPILER: SeparateCompiler
1152
1153 redef fun adapt_signature(m, args)
1154 do
1155 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
1156 var recv = args.first
1157 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
1158 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
1159 end
1160 for i in [0..msignature.arity[ do
1161 var t = msignature.mparameters[i].mtype
1162 if i == msignature.vararg_rank then
1163 t = args[i+1].mtype
1164 end
1165 args[i+1] = self.autobox(args[i+1], t)
1166 end
1167 end
1168
1169 redef fun unbox_signature_extern(m, args)
1170 do
1171 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
1172 if not m.mproperty.is_init and m.is_extern then
1173 args.first = self.unbox_extern(args.first, m.mclassdef.mclass.mclass_type)
1174 end
1175 for i in [0..msignature.arity[ do
1176 var t = msignature.mparameters[i].mtype
1177 if i == msignature.vararg_rank then
1178 t = args[i+1].mtype
1179 end
1180 if m.is_extern then args[i+1] = self.unbox_extern(args[i+1], t)
1181 end
1182 end
1183
1184 redef fun autobox(value, mtype)
1185 do
1186 if value.mtype == mtype then
1187 return value
1188 else if not value.mtype.is_c_primitive and not mtype.is_c_primitive then
1189 return value
1190 else if not value.mtype.is_c_primitive then
1191 if mtype.is_tagged then
1192 if mtype.name == "Int" then
1193 return self.new_expr("(long)({value})>>2", mtype)
1194 else if mtype.name == "Char" then
1195 return self.new_expr("(char)((long)({value})>>2)", mtype)
1196 else if mtype.name == "Bool" then
1197 return self.new_expr("(short int)((long)({value})>>2)", mtype)
1198 else
1199 abort
1200 end
1201 end
1202 return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
1203 else if not mtype.is_c_primitive then
1204 if value.mtype.is_tagged then
1205 if value.mtype.name == "Int" then
1206 return self.new_expr("(val*)({value}<<2|1)", mtype)
1207 else if value.mtype.name == "Char" then
1208 return self.new_expr("(val*)((long)({value})<<2|2)", mtype)
1209 else if value.mtype.name == "Bool" then
1210 return self.new_expr("(val*)((long)({value})<<2|3)", mtype)
1211 else
1212 abort
1213 end
1214 end
1215 var valtype = value.mtype.as(MClassType)
1216 if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
1217 valtype = compiler.mainmodule.pointer_type
1218 end
1219 var res = self.new_var(mtype)
1220 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then
1221 self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */")
1222 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); fatal_exit(1);")
1223 return res
1224 end
1225 self.require_declaration("BOX_{valtype.c_name}")
1226 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
1227 return res
1228 else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or
1229 (value.mtype.ctype == "char*" and mtype.ctype == "void*") or
1230 (value.mtype.ctype == "void*" and mtype.ctype == "char*") then
1231 return value
1232 else
1233 # Bad things will appen!
1234 var res = self.new_var(mtype)
1235 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
1236 self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); fatal_exit(1);")
1237 return res
1238 end
1239 end
1240
1241 redef fun unbox_extern(value, mtype)
1242 do
1243 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1244 mtype.mclass.name != "NativeString" then
1245 var pointer_type = compiler.mainmodule.pointer_type
1246 var res = self.new_var_extern(mtype)
1247 self.add "{res} = ((struct instance_{pointer_type.c_name}*){value})->value; /* unboxing {value.mtype} */"
1248 return res
1249 else
1250 return value
1251 end
1252 end
1253
1254 redef fun box_extern(value, mtype)
1255 do
1256 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1257 mtype.mclass.name != "NativeString" then
1258 var valtype = compiler.mainmodule.pointer_type
1259 var res = self.new_var(mtype)
1260 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(value.mtype.as(MClassType)) then
1261 self.add("/*no boxing of {value.mtype}: {value.mtype} is not live! */")
1262 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); fatal_exit(1);")
1263 return res
1264 end
1265 self.require_declaration("BOX_{valtype.c_name}")
1266 self.add("{res} = BOX_{valtype.c_name}({value}); /* boxing {value.mtype} */")
1267 self.require_declaration("type_{mtype.c_name}")
1268 self.add("{res}->type = &type_{mtype.c_name};")
1269 self.require_declaration("class_{mtype.c_name}")
1270 self.add("{res}->class = &class_{mtype.c_name};")
1271 return res
1272 else
1273 return value
1274 end
1275 end
1276
1277 # Returns a C expression containing the tag of the value as a long.
1278 #
1279 # If the C expression is evaluated to 0, it means there is no tag.
1280 # Thus the expression can be used as a condition.
1281 fun extract_tag(value: RuntimeVariable): String
1282 do
1283 assert not value.mtype.is_c_primitive
1284 return "((long){value}&3)" # Get the two low bits
1285 end
1286
1287 # Returns a C expression of the runtime class structure of the value.
1288 # The point of the method is to work also with primitive types.
1289 fun class_info(value: RuntimeVariable): String
1290 do
1291 if not value.mtype.is_c_primitive then
1292 if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1293 var tag = extract_tag(value)
1294 return "({tag}?class_info[{tag}]:{value}->class)"
1295 end
1296 return "{value}->class"
1297 else
1298 compiler.undead_types.add(value.mtype)
1299 self.require_declaration("class_{value.mtype.c_name}")
1300 return "(&class_{value.mtype.c_name})"
1301 end
1302 end
1303
1304 # Returns a C expression of the runtime type structure of the value.
1305 # The point of the method is to work also with primitive types.
1306 fun type_info(value: RuntimeVariable): String
1307 do
1308 if not value.mtype.is_c_primitive then
1309 if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1310 var tag = extract_tag(value)
1311 return "({tag}?type_info[{tag}]:{value}->type)"
1312 end
1313 return "{value}->type"
1314 else
1315 compiler.undead_types.add(value.mtype)
1316 self.require_declaration("type_{value.mtype.c_name}")
1317 return "(&type_{value.mtype.c_name})"
1318 end
1319 end
1320
1321 redef fun compile_callsite(callsite, args)
1322 do
1323 var rta = compiler.runtime_type_analysis
1324 # TODO: Inlining of new-style constructors with initializers
1325 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and callsite.mpropdef.initializers.is_empty then
1326 var tgs = rta.live_targets(callsite)
1327 if tgs.length == 1 then
1328 return direct_call(tgs.first, args)
1329 end
1330 end
1331 # Shortcut intern methods as they are not usually redefinable
1332 if callsite.mpropdef.is_intern and callsite.mproperty.name != "object_id" then
1333 # `object_id` is the only redefined intern method, so it can not be directly called.
1334 # TODO find a less ugly approach?
1335 return direct_call(callsite.mpropdef, args)
1336 end
1337 return super
1338 end
1339
1340 # Fully and directly call a mpropdef
1341 #
1342 # This method is used by `compile_callsite`
1343 private fun direct_call(mpropdef: MMethodDef, args: Array[RuntimeVariable]): nullable RuntimeVariable
1344 do
1345 var res0 = before_send(mpropdef.mproperty, args)
1346 var res = call(mpropdef, mpropdef.mclassdef.bound_mtype, args)
1347 if res0 != null then
1348 assert res != null
1349 self.assign(res0, res)
1350 res = res0
1351 end
1352 add("\}") # close the before_send
1353 return res
1354 end
1355 redef fun send(mmethod, arguments)
1356 do
1357 if arguments.first.mcasttype.is_c_primitive then
1358 # In order to shortcut the primitive, we need to find the most specific method
1359 # Howverr, because of performance (no flattening), we always work on the realmainmodule
1360 var m = self.compiler.mainmodule
1361 self.compiler.mainmodule = self.compiler.realmainmodule
1362 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
1363 self.compiler.mainmodule = m
1364 return res
1365 end
1366
1367 return table_send(mmethod, arguments, mmethod)
1368 end
1369
1370 # Handle common special cases before doing the effective method invocation
1371 # This methods handle the `==` and `!=` methods and the case of the null receiver.
1372 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
1373 # Client must not forget to close the } after them.
1374 #
1375 # The value returned is the result of the common special cases.
1376 # If not null, client must compile it with the result of their own effective method invocation.
1377 #
1378 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1379 # is generated to cancel the effective method invocation that will follow
1380 # TODO: find a better approach
1381 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1382 do
1383 var res: nullable RuntimeVariable = null
1384 var recv = arguments.first
1385 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_null.value or mmethod.name == "==" or mmethod.name == "!="
1386 var maybenull = (recv.mcasttype isa MNullableType or recv.mcasttype isa MNullType) and consider_null
1387 if maybenull then
1388 self.add("if ({recv} == NULL) \{")
1389 if mmethod.name == "==" or mmethod.name == "is_same_instance" then
1390 res = self.new_var(bool_type)
1391 var arg = arguments[1]
1392 if arg.mcasttype isa MNullableType then
1393 self.add("{res} = ({arg} == NULL);")
1394 else if arg.mcasttype isa MNullType then
1395 self.add("{res} = 1; /* is null */")
1396 else
1397 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1398 end
1399 else if mmethod.name == "!=" then
1400 res = self.new_var(bool_type)
1401 var arg = arguments[1]
1402 if arg.mcasttype isa MNullableType then
1403 self.add("{res} = ({arg} != NULL);")
1404 else if arg.mcasttype isa MNullType then
1405 self.add("{res} = 0; /* is null */")
1406 else
1407 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1408 end
1409 else
1410 self.add_abort("Receiver is null")
1411 end
1412 self.add("\} else \{")
1413 else
1414 self.add("\{")
1415 end
1416 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=" or mmethod.name == "is_same_instance") then
1417 # Recv is not null, thus if arg is, it is easy to conclude (and respect the invariants)
1418 var arg = arguments[1]
1419 if arg.mcasttype isa MNullType then
1420 if res == null then res = self.new_var(bool_type)
1421 if mmethod.name == "!=" then
1422 self.add("{res} = 1; /* arg is null and recv is not */")
1423 else # `==` and `is_same_instance`
1424 self.add("{res} = 0; /* arg is null but recv is not */")
1425 end
1426 self.add("\}") # closes the null case
1427 self.add("if (0) \{") # what follow is useless, CC will drop it
1428 end
1429 end
1430 return res
1431 end
1432
1433 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], mentity: MEntity): nullable RuntimeVariable
1434 do
1435 compiler.modelbuilder.nb_invok_by_tables += 1
1436 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1437
1438 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1439
1440 var res0 = before_send(mmethod, arguments)
1441
1442 var runtime_function = mmethod.intro.virtual_runtime_function
1443 var msignature = runtime_function.called_signature
1444
1445 adapt_signature(mmethod.intro, arguments)
1446
1447 var res: nullable RuntimeVariable
1448 var ret = msignature.return_mtype
1449 if ret == null then
1450 res = null
1451 else
1452 res = self.new_var(ret)
1453 end
1454
1455 var ss = arguments.join(", ")
1456
1457 var const_color = mentity.const_color
1458 var ress
1459 if res != null then
1460 ress = "{res} = "
1461 else
1462 ress = ""
1463 end
1464 if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_direct_call_monomorph0.value then
1465 # opt_direct_call_monomorph0 is used to compare the efficiency of the alternative lookup implementation, ceteris paribus.
1466 # The difference with the non-zero option is that the monomorphism is looked-at on the mmethod level and not at the callsite level.
1467 # TODO: remove this mess and use per callsite service to detect monomorphism in a single place.
1468 var md = compiler.is_monomorphic(mentity)
1469 if md != null then
1470 var callsym = md.virtual_runtime_function.c_name
1471 self.require_declaration(callsym)
1472 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1473 else
1474 self.require_declaration(const_color)
1475 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1476 end
1477 else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_guard_call.value then
1478 var callsym = "CALL_" + const_color
1479 self.require_declaration(callsym)
1480 self.add "if (!{callsym}) \{"
1481 self.require_declaration(const_color)
1482 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1483 self.add "\} else \{"
1484 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1485 self.add "\}"
1486 else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_trampoline_call.value then
1487 var callsym = "CALL_" + const_color
1488 self.require_declaration(callsym)
1489 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1490 else
1491 self.require_declaration(const_color)
1492 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1493 end
1494
1495 if res0 != null then
1496 assert res != null
1497 assign(res0,res)
1498 res = res0
1499 end
1500
1501 self.add("\}") # closes the null case
1502
1503 return res
1504 end
1505
1506 redef fun call(mmethoddef, recvtype, arguments)
1507 do
1508 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1509
1510 var res: nullable RuntimeVariable
1511 var ret = mmethoddef.msignature.return_mtype
1512 if ret == null then
1513 res = null
1514 else
1515 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1516 res = self.new_var(ret)
1517 end
1518
1519 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1520 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1521 compiler.modelbuilder.nb_invok_by_inline += 1
1522 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1523 var frame = new StaticFrame(self, mmethoddef, recvtype, arguments)
1524 frame.returnlabel = self.get_name("RET_LABEL")
1525 frame.returnvar = res
1526 var old_frame = self.frame
1527 self.frame = frame
1528 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1529 mmethoddef.compile_inside_to_c(self, arguments)
1530 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1531 self.add("\}")
1532 self.frame = old_frame
1533 return res
1534 end
1535 compiler.modelbuilder.nb_invok_by_direct += 1
1536 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1537
1538 # Autobox arguments
1539 self.adapt_signature(mmethoddef, arguments)
1540
1541 self.require_declaration(mmethoddef.c_name)
1542 if res == null then
1543 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1544 return null
1545 else
1546 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1547 end
1548
1549 return res
1550 end
1551
1552 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1553 do
1554 if arguments.first.mcasttype.is_c_primitive then
1555 # In order to shortcut the primitive, we need to find the most specific method
1556 # However, because of performance (no flattening), we always work on the realmainmodule
1557 var main = self.compiler.mainmodule
1558 self.compiler.mainmodule = self.compiler.realmainmodule
1559 var res = self.monomorphic_super_send(m, recvtype, arguments)
1560 self.compiler.mainmodule = main
1561 return res
1562 end
1563 return table_send(m.mproperty, arguments, m)
1564 end
1565
1566 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1567 do
1568 # A vararg must be stored into an new array
1569 # The trick is that the dymaic type of the array may depends on the receiver
1570 # of the method (ie recv) if the static type is unresolved
1571 # This is more complex than usual because the unresolved type must not be resolved
1572 # with the current receiver (ie self).
1573 # Therefore to isolate the resolution from self, a local StaticFrame is created.
1574 # One can see this implementation as an inlined method of the receiver whose only
1575 # job is to allocate the array
1576 var old_frame = self.frame
1577 var frame = new StaticFrame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1578 self.frame = frame
1579 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1580 var res = self.array_instance(varargs, elttype)
1581 self.frame = old_frame
1582 return res
1583 end
1584
1585 redef fun isset_attribute(a, recv)
1586 do
1587 self.check_recv_notnull(recv)
1588 var res = self.new_var(bool_type)
1589
1590 # What is the declared type of the attribute?
1591 var mtype = a.intro.static_mtype.as(not null)
1592 var intromclassdef = a.intro.mclassdef
1593 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1594
1595 if mtype isa MNullableType then
1596 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1597 return res
1598 end
1599
1600 self.require_declaration(a.const_color)
1601 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1602 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1603 else
1604
1605 if not mtype.is_c_primitive and not mtype.is_tagged then
1606 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1607 else
1608 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1609 end
1610 end
1611 return res
1612 end
1613
1614 redef fun read_attribute(a, recv)
1615 do
1616 self.check_recv_notnull(recv)
1617
1618 # What is the declared type of the attribute?
1619 var ret = a.intro.static_mtype.as(not null)
1620 var intromclassdef = a.intro.mclassdef
1621 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1622
1623 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1624 self.compiler.attr_read_count += 1
1625 self.add("count_attr_reads++;")
1626 end
1627
1628 self.require_declaration(a.const_color)
1629 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1630 # Get the attribute or a box (ie. always a val*)
1631 var cret = self.object_type.as_nullable
1632 var res = self.new_var(cret)
1633 res.mcasttype = ret
1634
1635 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1636
1637 # Check for Uninitialized attribute
1638 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1639 self.add("if (unlikely({res} == NULL)) \{")
1640 self.add_abort("Uninitialized attribute {a.name}")
1641 self.add("\}")
1642
1643 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1644 self.compiler.isset_checks_count += 1
1645 self.add("count_isset_checks++;")
1646 end
1647 end
1648
1649 # Return the attribute or its unboxed version
1650 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1651 return self.autobox(res, ret)
1652 else
1653 var res = self.new_var(ret)
1654 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1655
1656 # Check for Uninitialized attribute
1657 if not ret.is_c_primitive and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1658 self.add("if (unlikely({res} == NULL)) \{")
1659 self.add_abort("Uninitialized attribute {a.name}")
1660 self.add("\}")
1661 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1662 self.compiler.isset_checks_count += 1
1663 self.add("count_isset_checks++;")
1664 end
1665 end
1666
1667 return res
1668 end
1669 end
1670
1671 redef fun write_attribute(a, recv, value)
1672 do
1673 self.check_recv_notnull(recv)
1674
1675 # What is the declared type of the attribute?
1676 var mtype = a.intro.static_mtype.as(not null)
1677 var intromclassdef = a.intro.mclassdef
1678 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1679
1680 # Adapt the value to the declared type
1681 value = self.autobox(value, mtype)
1682
1683 self.require_declaration(a.const_color)
1684 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1685 var attr = "{recv}->attrs[{a.const_color}]"
1686 if mtype.is_tagged then
1687 # The attribute is not primitive, thus store it as tagged
1688 var tv = autobox(value, compiler.mainmodule.object_type)
1689 self.add("{attr} = {tv}; /* {a} on {recv.inspect} */")
1690 else if mtype.is_c_primitive then
1691 assert mtype isa MClassType
1692 # The attribute is primitive, thus we store it in a box
1693 # The trick is to create the box the first time then resuse the box
1694 self.add("if ({attr} != NULL) \{")
1695 self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1696 self.add("\} else \{")
1697 value = self.autobox(value, self.object_type.as_nullable)
1698 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1699 self.add("\}")
1700 else
1701 # The attribute is not primitive, thus store it direclty
1702 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1703 end
1704 else
1705 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1706 end
1707 end
1708
1709 # Check that mtype is a live open type
1710 fun hardening_live_open_type(mtype: MType)
1711 do
1712 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1713 self.require_declaration(mtype.const_color)
1714 var col = mtype.const_color
1715 self.add("if({col} == -1) \{")
1716 self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1717 self.add_abort("open type dead")
1718 self.add("\}")
1719 end
1720
1721 # Check that mtype it a pointer to a live cast type
1722 fun hardening_cast_type(t: String)
1723 do
1724 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1725 add("if({t} == NULL) \{")
1726 add_abort("cast type null")
1727 add("\}")
1728 add("if({t}->id == -1 || {t}->color == -1) \{")
1729 add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1730 add_abort("cast type dead")
1731 add("\}")
1732 end
1733
1734 redef fun init_instance(mtype)
1735 do
1736 self.require_declaration("NEW_{mtype.mclass.c_name}")
1737 var compiler = self.compiler
1738 if mtype isa MGenericType and mtype.need_anchor then
1739 hardening_live_open_type(mtype)
1740 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1741 var recv = self.frame.arguments.first
1742 var recv_type_info = self.type_info(recv)
1743 self.require_declaration(mtype.const_color)
1744 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1745 end
1746 compiler.undead_types.add(mtype)
1747 self.require_declaration("type_{mtype.c_name}")
1748 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1749 end
1750
1751 redef fun type_test(value, mtype, tag)
1752 do
1753 self.add("/* {value.inspect} isa {mtype} */")
1754 var compiler = self.compiler
1755
1756 var recv = self.frame.arguments.first
1757 var recv_type_info = self.type_info(recv)
1758
1759 var res = self.new_var(bool_type)
1760
1761 var cltype = self.get_name("cltype")
1762 self.add_decl("int {cltype};")
1763 var idtype = self.get_name("idtype")
1764 self.add_decl("int {idtype};")
1765
1766 var maybe_null = self.maybe_null(value)
1767 var accept_null = "0"
1768 var ntype = mtype
1769 if ntype isa MNullableType then
1770 ntype = ntype.mtype
1771 accept_null = "1"
1772 end
1773
1774 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1775 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1776 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1777 self.compiler.count_type_test_skipped[tag] += 1
1778 self.add("count_type_test_skipped_{tag}++;")
1779 end
1780 return res
1781 end
1782
1783 if ntype.need_anchor then
1784 var type_struct = self.get_name("type_struct")
1785 self.add_decl("const struct type* {type_struct};")
1786
1787 # Either with resolution_table with a direct resolution
1788 hardening_live_open_type(mtype)
1789 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1790 self.require_declaration(mtype.const_color)
1791 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1792 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1793 self.compiler.count_type_test_unresolved[tag] += 1
1794 self.add("count_type_test_unresolved_{tag}++;")
1795 end
1796 hardening_cast_type(type_struct)
1797 self.add("{cltype} = {type_struct}->color;")
1798 self.add("{idtype} = {type_struct}->id;")
1799 if maybe_null and accept_null == "0" then
1800 var is_nullable = self.get_name("is_nullable")
1801 self.add_decl("short int {is_nullable};")
1802 self.add("{is_nullable} = {type_struct}->is_nullable;")
1803 accept_null = is_nullable.to_s
1804 end
1805 else if ntype isa MClassType then
1806 compiler.undead_types.add(mtype)
1807 self.require_declaration("type_{mtype.c_name}")
1808 hardening_cast_type("(&type_{mtype.c_name})")
1809 self.add("{cltype} = type_{mtype.c_name}.color;")
1810 self.add("{idtype} = type_{mtype.c_name}.id;")
1811 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1812 self.compiler.count_type_test_resolved[tag] += 1
1813 self.add("count_type_test_resolved_{tag}++;")
1814 end
1815 else
1816 self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); fatal_exit(1);")
1817 end
1818
1819 # check color is in table
1820 if maybe_null then
1821 self.add("if({value} == NULL) \{")
1822 self.add("{res} = {accept_null};")
1823 self.add("\} else \{")
1824 end
1825 var value_type_info = self.type_info(value)
1826 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1827 self.add("{res} = 0;")
1828 self.add("\} else \{")
1829 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1830 self.add("\}")
1831 if maybe_null then
1832 self.add("\}")
1833 end
1834
1835 return res
1836 end
1837
1838 redef fun is_same_type_test(value1, value2)
1839 do
1840 var res = self.new_var(bool_type)
1841 # Swap values to be symetric
1842 if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then
1843 var tmp = value1
1844 value1 = value2
1845 value2 = tmp
1846 end
1847 if value1.mtype.is_c_primitive then
1848 if value2.mtype == value1.mtype then
1849 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1850 else if value2.mtype.is_c_primitive then
1851 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1852 else
1853 var mtype1 = value1.mtype.as(MClassType)
1854 self.require_declaration("class_{mtype1.c_name}")
1855 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */")
1856 end
1857 else
1858 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {class_info(value1)} == {class_info(value2)}); /* is_same_type_test */")
1859 end
1860 return res
1861 end
1862
1863 redef fun class_name_string(value)
1864 do
1865 var res = self.get_name("var_class_name")
1866 self.add_decl("const char* {res};")
1867 if not value.mtype.is_c_primitive then
1868 self.add "{res} = {value} == NULL ? \"null\" : {type_info(value)}->name;"
1869 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind and
1870 value.mtype.as(MClassType).name != "NativeString" then
1871 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1872 else
1873 self.require_declaration("type_{value.mtype.c_name}")
1874 self.add "{res} = type_{value.mtype.c_name}.name;"
1875 end
1876 return res
1877 end
1878
1879 redef fun equal_test(value1, value2)
1880 do
1881 var res = self.new_var(bool_type)
1882 if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then
1883 var tmp = value1
1884 value1 = value2
1885 value2 = tmp
1886 end
1887 if value1.mtype.is_c_primitive then
1888 if value2.mtype == value1.mtype then
1889 self.add("{res} = {value1} == {value2};")
1890 else if value2.mtype.is_c_primitive then
1891 self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/")
1892 else if value1.mtype.is_tagged then
1893 self.add("{res} = ({value2} != NULL) && ({self.autobox(value2, value1.mtype)} == {value1});")
1894 else
1895 var mtype1 = value1.mtype.as(MClassType)
1896 self.require_declaration("class_{mtype1.c_name}")
1897 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});")
1898 self.add("if ({res}) \{")
1899 self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});")
1900 self.add("\}")
1901 end
1902 return res
1903 end
1904 var maybe_null = true
1905 var test = new Array[String]
1906 var t1 = value1.mcasttype
1907 if t1 isa MNullableType then
1908 test.add("{value1} != NULL")
1909 t1 = t1.mtype
1910 else
1911 maybe_null = false
1912 end
1913 var t2 = value2.mcasttype
1914 if t2 isa MNullableType then
1915 test.add("{value2} != NULL")
1916 t2 = t2.mtype
1917 else
1918 maybe_null = false
1919 end
1920
1921 var incompatible = false
1922 var primitive
1923 if t1.is_c_primitive then
1924 primitive = t1
1925 if t1 == t2 then
1926 # No need to compare class
1927 else if t2.is_c_primitive then
1928 incompatible = true
1929 else if can_be_primitive(value2) then
1930 if t1.is_tagged then
1931 self.add("{res} = {value1} == {value2};")
1932 return res
1933 end
1934 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1935 test.add("(!{extract_tag(value2)})")
1936 end
1937 test.add("{value1}->class == {value2}->class")
1938 else
1939 incompatible = true
1940 end
1941 else if t2.is_c_primitive then
1942 primitive = t2
1943 if can_be_primitive(value1) then
1944 if t2.is_tagged then
1945 self.add("{res} = {value1} == {value2};")
1946 return res
1947 end
1948 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1949 test.add("(!{extract_tag(value1)})")
1950 end
1951 test.add("{value1}->class == {value2}->class")
1952 else
1953 incompatible = true
1954 end
1955 else
1956 primitive = null
1957 end
1958
1959 if incompatible then
1960 if maybe_null then
1961 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
1962 return res
1963 else
1964 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
1965 return res
1966 end
1967 end
1968 if primitive != null then
1969 if primitive.is_tagged then
1970 self.add("{res} = {value1} == {value2};")
1971 return res
1972 end
1973 test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value")
1974 else if can_be_primitive(value1) and can_be_primitive(value2) then
1975 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1976 test.add("(!{extract_tag(value1)}) && (!{extract_tag(value2)})")
1977 end
1978 test.add("{value1}->class == {value2}->class")
1979 var s = new Array[String]
1980 for t, v in self.compiler.box_kinds do
1981 if t.mclass_type.is_tagged then continue
1982 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)"
1983 end
1984 if s.is_empty then
1985 self.add("{res} = {value1} == {value2};")
1986 return res
1987 end
1988 test.add("({s.join(" || ")})")
1989 else
1990 self.add("{res} = {value1} == {value2};")
1991 return res
1992 end
1993 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
1994 return res
1995 end
1996
1997 fun can_be_primitive(value: RuntimeVariable): Bool
1998 do
1999 var t = value.mcasttype.undecorate
2000 if not t isa MClassType then return false
2001 var k = t.mclass.kind
2002 return k == interface_kind or t.is_c_primitive
2003 end
2004
2005 fun maybe_null(value: RuntimeVariable): Bool
2006 do
2007 var t = value.mcasttype
2008 return t isa MNullableType or t isa MNullType
2009 end
2010
2011 redef fun array_instance(array, elttype)
2012 do
2013 var nclass = mmodule.native_array_class
2014 var arrayclass = mmodule.array_class
2015 var arraytype = arrayclass.get_mtype([elttype])
2016 var res = self.init_instance(arraytype)
2017 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
2018 var length = self.int_instance(array.length)
2019 var nat = native_array_instance(elttype, length)
2020 for i in [0..array.length[ do
2021 var r = self.autobox(array[i], self.object_type)
2022 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
2023 end
2024 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
2025 self.add("\}")
2026 return res
2027 end
2028
2029 redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable
2030 do
2031 var mtype = mmodule.native_array_type(elttype)
2032 self.require_declaration("NEW_{mtype.mclass.c_name}")
2033 assert mtype isa MGenericType
2034 var compiler = self.compiler
2035 if mtype.need_anchor then
2036 hardening_live_open_type(mtype)
2037 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
2038 var recv = self.frame.arguments.first
2039 var recv_type_info = self.type_info(recv)
2040 self.require_declaration(mtype.const_color)
2041 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
2042 end
2043 compiler.undead_types.add(mtype)
2044 self.require_declaration("type_{mtype.c_name}")
2045 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype)
2046 end
2047
2048 redef fun native_array_def(pname, ret_type, arguments)
2049 do
2050 var elttype = arguments.first.mtype
2051 var nclass = mmodule.native_array_class
2052 var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values"
2053 if pname == "[]" then
2054 # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing
2055 var res = self.new_expr("{recv}[{arguments[1]}]", compiler.mainmodule.object_type)
2056 res.mcasttype = ret_type.as(not null)
2057 self.ret(res)
2058 return
2059 else if pname == "[]=" then
2060 self.add("{recv}[{arguments[1]}]={arguments[2]};")
2061 return
2062 else if pname == "length" then
2063 self.ret(self.new_expr("((struct instance_{nclass.c_name}*){arguments[0]})->length", ret_type.as(not null)))
2064 return
2065 else if pname == "copy_to" then
2066 var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values"
2067 self.add("memmove({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
2068 return
2069 end
2070 end
2071
2072 redef fun native_array_get(nat, i)
2073 do
2074 var nclass = mmodule.native_array_class
2075 var recv = "((struct instance_{nclass.c_name}*){nat})->values"
2076 # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing
2077 var res = self.new_expr("{recv}[{i}]", compiler.mainmodule.object_type)
2078 return res
2079 end
2080
2081 redef fun native_array_set(nat, i, val)
2082 do
2083 var nclass = mmodule.native_array_class
2084 var recv = "((struct instance_{nclass.c_name}*){nat})->values"
2085 self.add("{recv}[{i}]={val};")
2086 end
2087
2088 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
2089 assert mtype.need_anchor
2090 var compiler = self.compiler
2091 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
2092 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
2093 end
2094 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
2095 end
2096 end
2097
2098 redef class MMethodDef
2099 # The C function associated to a mmethoddef
2100 fun separate_runtime_function: SeparateRuntimeFunction
2101 do
2102 var res = self.separate_runtime_function_cache
2103 if res == null then
2104 var recv = mclassdef.bound_mtype
2105 var msignature = msignature.resolve_for(recv, recv, mclassdef.mmodule, true)
2106 res = new SeparateRuntimeFunction(self, recv, msignature, c_name)
2107 self.separate_runtime_function_cache = res
2108 end
2109 return res
2110 end
2111 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
2112
2113 # The C function associated to a mmethoddef, that can be stored into a VFT of a class
2114 # The first parameter (the reciever) is always typed by val* in order to accept an object value
2115 # The C-signature is always compatible with the intro
2116 fun virtual_runtime_function: SeparateRuntimeFunction
2117 do
2118 var res = self.virtual_runtime_function_cache
2119 if res == null then
2120 # Because the function is virtual, the signature must match the one of the original class
2121 var intromclassdef = mproperty.intro.mclassdef
2122 var recv = intromclassdef.bound_mtype
2123
2124 res = separate_runtime_function
2125 if res.called_recv == recv then
2126 self.virtual_runtime_function_cache = res
2127 return res
2128 end
2129
2130 var msignature = mproperty.intro.msignature.resolve_for(recv, recv, intromclassdef.mmodule, true)
2131
2132 if recv.ctype == res.called_recv.ctype and msignature.c_equiv(res.called_signature) then
2133 self.virtual_runtime_function_cache = res
2134 return res
2135 end
2136
2137 res = new SeparateRuntimeFunction(self, recv, msignature, "VIRTUAL_{c_name}")
2138 self.virtual_runtime_function_cache = res
2139 res.is_thunk = true
2140 end
2141 return res
2142 end
2143 private var virtual_runtime_function_cache: nullable SeparateRuntimeFunction
2144 end
2145
2146 redef class MSignature
2147 # Does the C-version of `self` the same than the C-version of `other`?
2148 fun c_equiv(other: MSignature): Bool
2149 do
2150 if self == other then return true
2151 if arity != other.arity then return false
2152 for i in [0..arity[ do
2153 if mparameters[i].mtype.ctype != other.mparameters[i].mtype.ctype then return false
2154 end
2155 if return_mtype != other.return_mtype then
2156 if return_mtype == null or other.return_mtype == null then return false
2157 if return_mtype.ctype != other.return_mtype.ctype then return false
2158 end
2159 return true
2160 end
2161 end
2162
2163 # The C function associated to a methoddef separately compiled
2164 class SeparateRuntimeFunction
2165 super AbstractRuntimeFunction
2166
2167 # The call-side static receiver
2168 var called_recv: MType
2169
2170 # The call-side static signature
2171 var called_signature: MSignature
2172
2173 # The name on the compiled method
2174 redef var build_c_name: String
2175
2176 # Statically call the original body instead
2177 var is_thunk = false
2178
2179 redef fun to_s do return self.mmethoddef.to_s
2180
2181 # The C return type (something or `void`)
2182 var c_ret: String is lazy do
2183 var ret = called_signature.return_mtype
2184 if ret != null then
2185 return ret.ctype
2186 else
2187 return "void"
2188 end
2189 end
2190
2191 # The C signature (only the parmeter part)
2192 var c_sig: String is lazy do
2193 var sig = new FlatBuffer
2194 sig.append("({called_recv.ctype} self")
2195 for i in [0..called_signature.arity[ do
2196 var mtype = called_signature.mparameters[i].mtype
2197 if i == called_signature.vararg_rank then
2198 mtype = mmethoddef.mclassdef.mmodule.array_type(mtype)
2199 end
2200 sig.append(", {mtype.ctype} p{i}")
2201 end
2202 sig.append(")")
2203 return sig.to_s
2204 end
2205
2206 # The C type for the function pointer.
2207 var c_funptrtype: String is lazy do return "{c_ret}(*){c_sig}"
2208
2209 # The arguments, as generated by `compile_to_c`
2210 private var arguments: Array[RuntimeVariable] is noinit
2211
2212 redef fun compile_to_c(compiler)
2213 do
2214 var mmethoddef = self.mmethoddef
2215
2216 var recv = self.mmethoddef.mclassdef.bound_mtype
2217 var v = compiler.new_visitor
2218 var selfvar = new RuntimeVariable("self", called_recv, recv)
2219 var arguments = new Array[RuntimeVariable]
2220 var frame = new StaticFrame(v, mmethoddef, recv, arguments)
2221 v.frame = frame
2222
2223 var msignature = called_signature
2224 var ret = called_signature.return_mtype
2225
2226 var sig = new FlatBuffer
2227 var comment = new FlatBuffer
2228 sig.append(c_ret)
2229 sig.append(" ")
2230 sig.append(self.c_name)
2231 sig.append(c_sig)
2232 comment.append("({selfvar}: {selfvar.mtype}")
2233 arguments.add(selfvar)
2234 for i in [0..msignature.arity[ do
2235 var mtype = msignature.mparameters[i].mtype
2236 if i == msignature.vararg_rank then
2237 mtype = v.mmodule.array_type(mtype)
2238 end
2239 comment.append(", {mtype}")
2240 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
2241 arguments.add(argvar)
2242 end
2243 comment.append(")")
2244 if ret != null then
2245 comment.append(": {ret}")
2246 end
2247 compiler.provide_declaration(self.c_name, "{sig};")
2248 self.arguments = arguments.to_a
2249
2250 v.add_decl("/* method {self} for {comment} */")
2251 v.add_decl("{sig} \{")
2252 if ret != null then
2253 frame.returnvar = v.new_var(ret)
2254 end
2255 frame.returnlabel = v.get_name("RET_LABEL")
2256
2257 if is_thunk then
2258 var subret = v.call(mmethoddef, recv, arguments)
2259 if ret != null then
2260 assert subret != null
2261 v.assign(frame.returnvar.as(not null), subret)
2262 end
2263 else
2264 mmethoddef.compile_inside_to_c(v, arguments)
2265 end
2266
2267 v.add("{frame.returnlabel.as(not null)}:;")
2268 if ret != null then
2269 v.add("return {frame.returnvar.as(not null)};")
2270 end
2271 v.add("\}")
2272 compiler.names[self.c_name] = "{mmethoddef.full_name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
2273 end
2274
2275 # Compile the trampolines used to implement late-binding.
2276 #
2277 # See `opt_trampoline_call`.
2278 fun compile_trampolines(compiler: SeparateCompiler)
2279 do
2280 var recv = self.mmethoddef.mclassdef.bound_mtype
2281 var selfvar = arguments.first
2282 var ret = called_signature.return_mtype
2283
2284 if mmethoddef.is_intro and not recv.is_c_primitive then
2285 var m = mmethoddef.mproperty
2286 var n2 = "CALL_" + m.const_color
2287 compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};")
2288 var v2 = compiler.new_visitor
2289 v2.add "{c_ret} {n2}{c_sig} \{"
2290 v2.require_declaration(m.const_color)
2291 var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});"
2292 if ret != null then
2293 v2.add "return {call}"
2294 else
2295 v2.add call
2296 end
2297
2298 v2.add "\}"
2299
2300 end
2301 if mmethoddef.has_supercall and not recv.is_c_primitive then
2302 var m = mmethoddef
2303 var n2 = "CALL_" + m.const_color
2304 compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};")
2305 var v2 = compiler.new_visitor
2306 v2.add "{c_ret} {n2}{c_sig} \{"
2307 v2.require_declaration(m.const_color)
2308 var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});"
2309 if ret != null then
2310 v2.add "return {call}"
2311 else
2312 v2.add call
2313 end
2314
2315 v2.add "\}"
2316 end
2317 end
2318 end
2319
2320 redef class MType
2321 # Are values of `self` tagged?
2322 # If false, it means that the type is not primitive, or is boxed.
2323 var is_tagged = false
2324 end
2325
2326 redef class MEntity
2327 var const_color: String is lazy do return "COLOR_{c_name}"
2328 end
2329
2330 interface PropertyLayoutElement end
2331
2332 redef class MProperty
2333 super PropertyLayoutElement
2334 end
2335
2336 redef class MPropDef
2337 super PropertyLayoutElement
2338 end
2339
2340 redef class AMethPropdef
2341 # The semi-global compilation does not support inlining calls to extern news
2342 redef fun can_inline
2343 do
2344 var m = mpropdef
2345 if m != null and m.mproperty.is_init and m.is_extern then return false
2346 return super
2347 end
2348 end
2349
2350 redef class AAttrPropdef
2351 redef fun init_expr(v, recv)
2352 do
2353 super
2354 if is_lazy and v.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
2355 var guard = self.mlazypropdef.mproperty
2356 v.write_attribute(guard, recv, v.bool_instance(false))
2357 end
2358 end
2359 end