lib: kill the class ArrayCapable
[nit.git] / lib / standard / collection / array.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2004-2008 Jean Privat <jean@pryen.org>
4 # Copyright 2008 Floréal Morandat <morandat@lirmm.fr>
5 #
6 # This file is free software, which comes along with NIT. This software is
7 # distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
8 # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
9 # PARTICULAR PURPOSE. You can modify it is you want, provided this header
10 # is kept unaltered, and a notification of the changes is added.
11 # You are allowed to redistribute it and sell it, alone or is a part of
12 # another product.
13
14 # This module introduces the standard array structure.
15 # It also implements two other abstract collections : ArrayMap and ArraySet
16 module array
17
18 import abstract_collection
19
20 # One dimension array of objects.
21 abstract class AbstractArrayRead[E]
22 super SequenceRead[E]
23
24 redef var length = 0
25
26 redef fun is_empty do return _length == 0
27
28 redef fun has(item)
29 do
30 var i = 0
31 var l = length
32 while i < l do
33 if self[i] == item then return true
34 i += 1
35 end
36 return false
37 end
38
39 redef fun has_only(item)
40 do
41 var i = 0
42 var l = length
43 while i < l do
44 if self[i] != item then return false
45 i += 1
46 end
47 return true
48 end
49
50 redef fun count(item)
51 do
52 var res = 0
53 var i = 0
54 var l = length
55 while i < l do
56 if self[i] == item then res += 1
57 i += 1
58 end
59 return res
60 end
61
62 redef fun index_of(item) do return index_of_from(item, 0)
63
64 redef fun last_index_of(item: E): Int do return last_index_of_from(item, length-1)
65
66 redef fun index_of_from(item: E, pos: Int): Int
67 do
68 var i = pos
69 var len = length
70 while i < len do
71 if self[i] == item then
72 return i
73 end
74 i += 1
75 end
76 return -1
77 end
78
79 redef fun last_index_of_from(item: E, pos: Int): Int
80 do
81 var i = pos
82 while i >= 0 do
83 if self[i] == item then
84 return i
85 else
86 i -= 1
87 end
88 end
89 return -1
90 end
91
92 # Return a new array that is the reverse of `self`
93 #
94 # assert [1,2,3].reversed == [3, 2, 1]
95 fun reversed: Array[E]
96 do
97 var cmp = _length
98 var result = new Array[E].with_capacity(cmp)
99 while cmp > 0 do
100 cmp -= 1
101 result.add(self[cmp])
102 end
103 return result
104 end
105
106 # Copy a portion of `self` to an other array.
107 #
108 # var a = [1, 2, 3, 4]
109 # var b = [10, 20, 30, 40, 50]
110 # a.copy_to(1, 2, b, 2)
111 # assert b == [10, 20, 2, 3, 50]
112 protected fun copy_to(start: Int, len: Int, dest: AbstractArray[E], new_start: Int)
113 do
114 # TODO native one
115 var i = len
116 while i > 0 do
117 i -= 1
118 dest[new_start+i] = self[start+i]
119 end
120 end
121
122 redef fun output
123 do
124 var i = 0
125 var l = length
126 while i < l do
127 var e = self[i]
128 if e != null then e.output
129 i += 1
130 end
131 end
132
133 redef fun iterator: ArrayIterator[E] do return new ArrayIterator[E](self)
134 redef fun reverse_iterator do return new ArrayReverseIterator[E](self)
135 end
136
137 # Resizable one dimension array of objects.
138 abstract class AbstractArray[E]
139 super AbstractArrayRead[E]
140 super Sequence[E]
141
142 # Force the capacity to be at least `cap`.
143 # The capacity of the array is an internal information.
144 # However, this method can be used to prepare a large amount of add
145 fun enlarge(cap: Int) is abstract
146
147 redef fun push(item) do add(item)
148
149 redef fun pop
150 do
151 assert not_empty: not is_empty
152 var r = last
153 _length -= 1
154 return r
155 end
156
157 redef fun shift
158 do
159 assert not_empty: not is_empty
160 var r = first
161 var i = 1
162 var l = length
163 while i < l do
164 self[i-1] = self[i]
165 i += 1
166 end
167 _length = l - 1
168 return r
169 end
170
171 redef fun unshift(item)
172 do
173 var i = length - 1
174 while i >= 0 do
175 self[i+1] = self[i]
176 i -= 1
177 end
178 self[0] = item
179 end
180
181 redef fun insert(item: E, pos: Int)
182 do
183 enlarge(length + 1)
184 copy_to(pos, length-pos, self, pos + 1)
185 self[pos] = item
186 end
187
188 redef fun insert_all(coll, pos)
189 do
190 var l = coll.length
191 if l == 0 then return
192 enlarge(length + l)
193 _length += l
194 copy_to(pos, length-pos-l, self, pos + l)
195 for c in coll do
196 self[pos] = c
197 pos += 1
198 end
199 end
200
201 redef fun add(item) do self[length] = item
202
203 redef fun clear do _length = 0
204
205 redef fun remove(item) do remove_at(index_of(item))
206
207 redef fun remove_all(item)
208 do
209 var i = index_of(item)
210 while i >= 0 do
211 remove_at(i)
212 i = index_of_from(item, i)
213 end
214 end
215
216 redef fun remove_at(i)
217 do
218 var l = length
219 if i >= 0 and i < l then
220 var j = i + 1
221 while j < l do
222 self[j-1] = self[j]
223 j += 1
224 end
225 _length = l - 1
226 end
227 end
228
229 # Invert two elements in the array
230 #
231 # var a = [10, 20, 30, 40]
232 # a.swap_at(1, 3)
233 # assert a == [10, 40, 30, 20]
234 fun swap_at(a: Int,b: Int)
235 do
236 var e = self[a]
237 self[a] = self[b]
238 self[b] = e
239 end
240 end
241
242 # Resizable one dimension array of objects.
243 #
244 # Arrays have a literal representation.
245 # var a = [12, 32, 8]
246 # # is equivalent with:
247 # var b = new Array[Int]
248 # b.push(12)
249 # b.push(32)
250 # b.push(8)
251 # assert a == b
252 class Array[E]
253 super AbstractArray[E]
254
255 redef fun [](index)
256 do
257 assert index: index >= 0 and index < _length
258 return _items[index]
259 end
260
261 redef fun []=(index, item)
262 do
263 assert index: index >= 0 and index < _length + 1
264 if _capacity <= index then
265 enlarge(index + 1)
266 end
267 if _length <= index then
268 _length = index + 1
269 end
270 _items[index] = item
271 end
272
273 redef fun add(item)
274 do
275 var l = _length
276 if _capacity <= l then
277 enlarge(l + 1)
278 end
279 _length = l + 1
280 _items[l] = item
281 end
282
283 redef fun enlarge(cap)
284 do
285 var c = _capacity
286 if cap <= c then return
287 while c <= cap do c = c * 2 + 2
288 var a = new NativeArray[E](c)
289 if _capacity > 0 then _items.copy_to(a, _length)
290 _items = a
291 _capacity = c
292 end
293
294 # Create an empty array.
295 init
296 do
297 _capacity = 0
298 _length = 0
299 end
300
301 # Create an array from a collection.
302 init from(items: Collection[E]) do
303 with_capacity(items.length)
304 self.add_all(items)
305 end
306
307 # Create an array with some `objects`.
308 init with_items(objects: E...)
309 do
310 _items = objects._items
311 _capacity = objects._capacity
312 _length = objects.length
313 end
314
315 # Create an empty array with a given capacity.
316 init with_capacity(cap: Int)
317 do
318 assert positive: cap >= 0
319 _items = new NativeArray[E](cap)
320 _capacity = cap
321 _length = 0
322 end
323
324 # Create an array of `count` elements
325 init filled_with(value: E, count: Int)
326 do
327 assert positive: count >= 0
328 _items = new NativeArray[E](count)
329 _capacity = count
330 _length = count
331 var i = 0
332 while i < count do
333 self[i] = value
334 i += 1
335 end
336 end
337
338 # Create a array filled with a given native array.
339 init with_native(nat: NativeArray[E], size: Int)
340 do
341 assert positive: size >= 0
342 _items = nat
343 _capacity = size
344 _length = size
345 end
346
347 # The internal storage.
348 private var items: nullable NativeArray[E] = null
349
350 # Do not use this method
351 # FIXME: Remove it once modules can intrude non local modules
352 fun intern_items: NativeArray[E] do return _items.as(not null)
353
354 # The size of `_items`.
355 private var capacity: Int = 0
356
357 redef fun ==(o)
358 do
359 if not o isa Array[nullable Object] then return super
360 # Efficient implementation
361 var l = length
362 if l != o.length then return false
363 var i = 0
364 var it = _items
365 var oit = o._items
366 while i < l do
367 if it[i] != oit[i] then return false
368 i += 1
369 end
370 return true
371 end
372
373 # Concatenation of arrays.
374 #
375 # Returns a new array built by concatenating `self` and `other` together.
376 #
377 # var a1 = [1,2,3]
378 # var a2 = [4,5,6]
379 # var a3 = a1 + a2
380 # assert a3 == [1,2,3,4,5,6]
381 #
382 # Because a new array is always created, future modification on `self` and `other`
383 # does not impact the previously computed result.
384 #
385 # a1.add(30)
386 # a2.add(60)
387 # assert a3 == [1,2,3,4,5,6] # unchanged
388 # assert a1 + a2 == [1,2,3,30,4,5,6,60]
389 fun +(other: Array[E]): Array[E]
390 do
391 var res = new Array[E].with_capacity(length + other.length)
392 res.append(self)
393 res.append(other)
394 return res
395 end
396
397 # Repetition of arrays.
398 #
399 # returns a new array built by concatenating `self` `repeat` times.
400 #
401 # var a = [1,2,3]
402 # assert (a * 0).is_empty
403 # assert a * 1 == [1,2,3]
404 # assert a * 2 == [1,2,3,1,2,3]
405 # assert (a * 10).length == 30
406 fun *(repeat: Int): Array[E]
407 do
408 assert repeat >= 0
409 var res = new Array[E].with_capacity(length * repeat)
410 while repeat > 0 do
411 res.add_all(self)
412 repeat -= 1
413 end
414 return res
415 end
416 end
417
418 # An `Iterator` on `AbstractArray`
419 private class ArrayIterator[E]
420 super IndexedIterator[E]
421
422 redef fun item do return _array[_index]
423
424 # redef fun item=(e) do _array[_index] = e
425
426 redef fun is_ok do return _index < _array.length
427
428 redef fun next do _index += 1
429
430 redef var index = 0
431
432 private var array: AbstractArrayRead[E]
433 end
434
435 private class ArrayReverseIterator[E]
436 super ArrayIterator[E]
437
438 redef fun is_ok do return _index >= 0
439
440 redef fun next do _index -= 1
441
442 init
443 do
444 _index = _array.length - 1
445 end
446 end
447
448 # Others collections ##########################################################
449
450 # A set implemented with an Array.
451 class ArraySet[E: Object]
452 super Set[E]
453
454 # The stored elements.
455 private var array: Array[E] is noinit
456
457 redef fun has(e) do return _array.has(e)
458
459 redef fun add(e) do if not _array.has(e) then _array.add(e)
460
461 redef fun is_empty do return _array.is_empty
462
463 redef fun length do return _array.length
464
465 redef fun first
466 do
467 assert _array.length > 0
468 return _array.first
469 end
470
471 redef fun remove(item)
472 do
473 var i = _array.index_of(item)
474 if i >= 0 then remove_at(i)
475 end
476
477 redef fun remove_all(item) do remove(item)
478
479 redef fun clear do _array.clear
480
481 redef fun iterator do return new ArraySetIterator[E](_array.iterator)
482
483 # Assume the capacity is at least `cap`.
484 fun enlarge(cap: Int) do _array.enlarge(cap)
485
486 private fun remove_at(i: Int)
487 do
488 _array[i] = _array.last
489 _array.pop
490 end
491
492 # Create an empty set
493 init do _array = new Array[E]
494
495 # Create an empty set with a given capacity.
496 init with_capacity(i: Int) do _array = new Array[E].with_capacity(i)
497
498 redef fun new_set do return new ArraySet[E]
499 end
500
501 # Iterators on sets implemented with arrays.
502 private class ArraySetIterator[E: Object]
503 super Iterator[E]
504
505 redef fun is_ok do return _iter.is_ok
506
507 redef fun next do _iter.next
508
509 redef fun item: E do return _iter.item
510
511 private var iter: ArrayIterator[E]
512 end
513
514
515 # Associative arrays implemented with an array of (key, value) pairs.
516 class ArrayMap[K: Object, E]
517 super CoupleMap[K, E]
518
519 # O(n)
520 redef fun [](key)
521 do
522 var i = index(key)
523 if i >= 0 then
524 return _items[i].second
525 else
526 return provide_default_value(key)
527 end
528 end
529
530 # O(n)
531 redef fun []=(key, item)
532 do
533 var i = index(key)
534 if i >= 0 then
535 _items[i].second = item
536 else
537 _items.push(new Couple[K,E](key, item))
538 end
539 end
540
541 redef var keys: RemovableCollection[K] = new ArrayMapKeys[K, E](self)
542 redef var values: RemovableCollection[E] = new ArrayMapValues[K, E](self)
543
544 # O(1)
545 redef fun length do return _items.length
546
547 redef fun couple_iterator do return _items.iterator
548
549 redef fun is_empty do return _items.is_empty
550
551 redef fun clear do _items.clear
552
553 # Assume the capacity to be at least `cap`.
554 fun enlarge(cap: Int) do _items.enlarge(cap)
555
556 redef fun couple_at(key)
557 do
558 var i = index(key)
559 if i >= 0 then
560 return _items[i]
561 else
562 return null
563 end
564 end
565
566 # Internal storage.
567 private var items = new Array[Couple[K,E]]
568
569 # fast remove the ith element of the array
570 private fun remove_at_index(i: Int)
571 do
572 _items[i] = _items.last
573 _items.pop
574 end
575
576 # The last positive result given by a index(1) call
577 private var last_index: Int = 0
578
579 # Where is the `key` in `_item`?
580 # return -1 if not found
581 private fun index(key: K): Int
582 do
583 var l = _last_index
584 if l < _items.length and _items[l].first == key then return l
585
586 var i = 0
587 while i < _items.length do
588 if _items[i].first == key then
589 _last_index = i
590 return i
591 end
592 i += 1
593 end
594 return -1
595 end
596 end
597
598 private class ArrayMapKeys[K: Object, E]
599 super RemovableCollection[K]
600 # The original map
601 var map: ArrayMap[K, E]
602 redef fun count(k) do if self.has(k) then return 1 else return 0
603 redef fun first do return self.map._items.first.first
604 redef fun has(k) do return self.map.index(k) >= 0
605 redef fun has_only(k) do return (self.has(k) and self.length == 1) or self.is_empty
606 redef fun is_empty do return self.map.is_empty
607 redef fun length do return self.map.length
608 redef fun iterator do return new MapKeysIterator[K, E](self.map.iterator)
609 redef fun clear do self.map.clear
610 redef fun remove(key)
611 do
612 var i = self.map.index(key)
613 if i >= 0 then self.map.remove_at_index(i)
614 end
615 redef fun remove_all(key) do self.remove(key)
616 end
617
618 private class ArrayMapValues[K: Object, E]
619 super RemovableCollection[E]
620 # The original map
621 var map: ArrayMap[K, E]
622 redef fun first do return self.map._items.first.second
623 redef fun is_empty do return self.map.is_empty
624 redef fun length do return self.map.length
625 redef fun iterator do return new MapValuesIterator[K, E](self.map.iterator)
626
627 # O(n)
628 redef fun has(item)
629 do
630 for i in self.map._items do if i.second == item then return true
631 return false
632 end
633
634 # O(n)
635 redef fun has_only(item)
636 do
637 for i in self.map._items do if i.second != item then return false
638 return true
639 end
640
641 # O(n)
642 redef fun count(item)
643 do
644 var nb = 0
645 for i in self.map._items do if i.second == item then nb += 1
646 return nb
647 end
648
649 redef fun clear do self.map.clear
650
651 redef fun remove(item)
652 do
653 var map = self.map
654 var i = map._items.length - 1
655 while i >= 0 do
656 if map._items[i].second == item then
657 map.remove_at_index(i)
658 return
659 end
660 i -= 1
661 end
662 end
663
664 redef fun remove_all(item)
665 do
666 var map = self.map
667 var i = map._items.length - 1
668 while i >= 0 do
669 if map._items[i].second == item then
670 map.remove_at_index(i)
671 end
672 i -= 1
673 end
674 end
675 end
676
677 # Comparable array for comparable elements.
678 #
679 # For two arrays, if one is a prefix, then it is lower.
680 #
681 # ~~~
682 # var a12 = new ArrayCmp[nullable Int].with_items(1,2)
683 # var a123 = new ArrayCmp[nullable Int].with_items(1,2,3)
684 # assert a12 < a123
685 # ~~~
686 #
687 # Otherwise, the first element just after the longest
688 # common prefix gives the order between the two arrays.
689 #
690 # ~~~
691 # var a124 = new ArrayCmp[nullable Int].with_items(1,2,4)
692 # var a13 = new ArrayCmp[nullable Int].with_items(1,3)
693 # assert a12 < a123
694 # assert a123 < a13
695 # ~~~
696 #
697 # Obviously, two equal arrays are equal.
698 #
699 # ~~~
700 # var b12 = new ArrayCmp[nullable Int].with_items(1,2)
701 # assert (a12 <=> b12) == 0
702 # ~~~
703 #
704 # `null` is considered lower than any other elements.
705 # But is still greater than no element.
706 #
707 # ~~~
708 # var a12n = new ArrayCmp[nullable Int].with_items(1,2,null)
709 # assert a12n < a123
710 # assert a12 < a12n
711 # ~~~
712 class ArrayCmp[E: nullable Comparable]
713 super Array[E]
714 super Comparable
715 redef type OTHER: ArrayCmp[E] is fixed
716
717 redef fun <(o) do return (self <=> o) < 0
718
719 redef fun <=>(o)
720 do
721 var it = _items
722 var oit = o._items
723 var i = 0
724 var l = length
725 var ol = o.length
726 var len
727 if l < ol then len = l else len = ol
728 while i < len do
729 var a = it[i]
730 var b = oit[i]
731 if a != null then
732 if b == null then return 1
733 var d = a <=> b.as(Comparable)
734 if d != 0 then return d
735 else
736 if b != null then return -1
737 end
738 i += 1
739 end
740 return l <=> ol
741 end
742 end
743
744 # Others tools ################################################################
745
746 redef class Iterator[E]
747 # Interate on `self` and build an array
748 fun to_a: Array[E]
749 do
750 var res = new Array[E]
751 while is_ok do
752 res.add(item)
753 next
754 end
755 return res
756 end
757 end
758
759 redef class Collection[E]
760 # Build a new array from a collection
761 fun to_a: Array[E]
762 do
763 var res = new Array[E].with_capacity(length)
764 res.add_all(self)
765 return res
766 end
767 end
768
769 # Native classes ##############################################################
770
771 # Native Nit array
772 # Access are unchecked and it has a fixed size
773 # Not for public use: may become private.
774 universal NativeArray[E]
775 # Creates a new NativeArray of capacity `length`
776 new(length: Int) is intern
777 # The length of the array
778 fun length: Int is intern
779 # Use `self` to initialize a standard Nit Array.
780 fun to_a: Array[E] do return new Array[E].with_native(self, length)
781 fun [](index: Int): E is intern
782 fun []=(index: Int, item: E) is intern
783 fun copy_to(dest: NativeArray[E], length: Int) is intern
784 #fun =(o: NativeArray[E]): Bool is intern
785 #fun !=(o: NativeArray[E]): Bool is intern
786 end