src: new module annoation to help with annotations
[nit.git] / src / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import coloring
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate: OptionBool = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern: OptionBool = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute: OptionBool = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate: OptionBool = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --inline-coloring-numbers
33 var opt_inline_coloring_numbers: OptionBool = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
34 # --inline-some-methods
35 var opt_inline_some_methods: OptionBool = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
36 # --direct-call-monomorph
37 var opt_direct_call_monomorph: OptionBool = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph")
38 # --skip-dead-methods
39 var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods")
40 # --semi-global
41 var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global")
42 # --no-colo-dead-methods
43 var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods")
44 # --tables-metrics
45 var opt_tables_metrics: OptionBool = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
46
47 redef init
48 do
49 super
50 self.option_context.add_option(self.opt_separate)
51 self.option_context.add_option(self.opt_no_inline_intern)
52 self.option_context.add_option(self.opt_no_union_attribute)
53 self.option_context.add_option(self.opt_no_shortcut_equate)
54 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global)
55 self.option_context.add_option(self.opt_colo_dead_methods)
56 self.option_context.add_option(self.opt_tables_metrics)
57 end
58
59 redef fun process_options(args)
60 do
61 super
62
63 var tc = self
64 if tc.opt_semi_global.value then
65 tc.opt_inline_coloring_numbers.value = true
66 tc.opt_inline_some_methods.value = true
67 tc.opt_direct_call_monomorph.value = true
68 tc.opt_skip_dead_methods.value = true
69 end
70 end
71
72 var separate_compiler_phase = new SeparateCompilerPhase(self, null)
73 end
74
75 class SeparateCompilerPhase
76 super Phase
77 redef fun process_mainmodule(mainmodule, given_mmodules) do
78 if not toolcontext.opt_separate.value then return
79
80 var modelbuilder = toolcontext.modelbuilder
81 var analysis = modelbuilder.do_rapid_type_analysis(mainmodule)
82 modelbuilder.run_separate_compiler(mainmodule, analysis)
83 end
84 end
85
86 redef class ModelBuilder
87 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
88 do
89 var time0 = get_time
90 self.toolcontext.info("*** GENERATING C ***", 1)
91
92 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
93 compiler.compile_header
94
95 # compile class structures
96 self.toolcontext.info("Property coloring", 2)
97 compiler.new_file("{mainmodule.name}.classes")
98 compiler.do_property_coloring
99 for m in mainmodule.in_importation.greaters do
100 for mclass in m.intro_mclasses do
101 if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
102 compiler.compile_class_to_c(mclass)
103 end
104 end
105
106 # The main function of the C
107 compiler.new_file("{mainmodule.name}.main")
108 compiler.compile_main_function
109
110 # compile methods
111 for m in mainmodule.in_importation.greaters do
112 self.toolcontext.info("Generate C for module {m}", 2)
113 compiler.new_file("{m.name}.sep")
114 compiler.compile_module_to_c(m)
115 end
116
117 # compile live & cast type structures
118 self.toolcontext.info("Type coloring", 2)
119 compiler.new_file("{mainmodule.name}.types")
120 var mtypes = compiler.do_type_coloring
121 for t in mtypes do
122 compiler.compile_type_to_c(t)
123 end
124 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
125 for t in compiler.undead_types do
126 if mtypes.has(t) then continue
127 compiler.compile_type_to_c(t)
128 end
129
130 compiler.display_stats
131
132 var time1 = get_time
133 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
134 write_and_make(compiler)
135 end
136
137 # Count number of invocations by VFT
138 private var nb_invok_by_tables = 0
139 # Count number of invocations by direct call
140 private var nb_invok_by_direct = 0
141 # Count number of invocations by inlining
142 private var nb_invok_by_inline = 0
143 end
144
145 # Singleton that store the knowledge about the separate compilation process
146 class SeparateCompiler
147 super AbstractCompiler
148
149 redef type VISITOR: SeparateCompilerVisitor
150
151 # The result of the RTA (used to know live types and methods)
152 var runtime_type_analysis: nullable RapidTypeAnalysis
153
154 private var undead_types: Set[MType] = new HashSet[MType]
155 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
156
157 private var type_ids: Map[MType, Int]
158 private var type_colors: Map[MType, Int]
159 private var opentype_colors: Map[MType, Int]
160 protected var method_colors: Map[PropertyLayoutElement, Int]
161 protected var attr_colors: Map[MAttribute, Int]
162
163 init(mainmodule: MModule, mmbuilder: ModelBuilder, runtime_type_analysis: nullable RapidTypeAnalysis) do
164 super(mainmodule, mmbuilder)
165 var file = new_file("nit.common")
166 self.header = new CodeWriter(file)
167 self.runtime_type_analysis = runtime_type_analysis
168 self.compile_box_kinds
169 end
170
171 redef fun compile_header_structs do
172 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
173 self.compile_header_attribute_structs
174 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
175
176 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
177 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
178 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
179 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
180 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
181 end
182
183 fun compile_header_attribute_structs
184 do
185 if modelbuilder.toolcontext.opt_no_union_attribute.value then
186 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
187 else
188 self.header.add_decl("typedef union \{")
189 self.header.add_decl("void* val;")
190 for c, v in self.box_kinds do
191 var t = c.mclass_type
192 self.header.add_decl("{t.ctype} {t.ctypename};")
193 end
194 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
195 end
196 end
197
198 fun compile_box_kinds
199 do
200 # Collect all bas box class
201 # FIXME: this is not completely fine with a separate compilation scheme
202 for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do
203 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
204 if classes == null then continue
205 assert classes.length == 1 else print classes.join(", ")
206 self.box_kinds[classes.first] = self.box_kinds.length + 1
207 end
208 end
209
210 var box_kinds = new HashMap[MClass, Int]
211
212 fun box_kind_of(mclass: MClass): Int
213 do
214 if mclass.mclass_type.ctype == "val*" then
215 return 0
216 else if mclass.kind == extern_kind then
217 return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")]
218 else
219 return self.box_kinds[mclass]
220 end
221
222 end
223
224 fun compile_color_consts(colors: Map[Object, Int]) do
225 var v = new_visitor
226 for m, c in colors do
227 compile_color_const(v, m, c)
228 end
229 end
230
231 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
232 if color_consts_done.has(m) then return
233 if m isa MProperty then
234 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
235 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
236 else
237 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
238 v.add("const int {m.const_color} = {color};")
239 end
240 else if m isa MPropDef then
241 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
242 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
243 else
244 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
245 v.add("const int {m.const_color} = {color};")
246 end
247 else if m isa MType then
248 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
249 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
250 else
251 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
252 v.add("const int {m.const_color} = {color};")
253 end
254 end
255 color_consts_done.add(m)
256 end
257
258 private var color_consts_done = new HashSet[Object]
259
260 # colorize classe properties
261 fun do_property_coloring do
262
263 var rta = runtime_type_analysis
264
265 # Layouts
266 var poset = mainmodule.flatten_mclass_hierarchy
267 var mclasses = new HashSet[MClass].from(poset)
268 var colorer = new POSetColorer[MClass]
269 colorer.colorize(poset)
270
271 # The dead methods, still need to provide a dead color symbol
272 var dead_methods = new Array[MMethod]
273
274 # lookup properties to build layout with
275 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
276 var mattributes = new HashMap[MClass, Set[MAttribute]]
277 for mclass in mclasses do
278 mmethods[mclass] = new HashSet[PropertyLayoutElement]
279 mattributes[mclass] = new HashSet[MAttribute]
280 for mprop in self.mainmodule.properties(mclass) do
281 if mprop isa MMethod then
282 if not modelbuilder.toolcontext.opt_colo_dead_methods.value and rta != null and not rta.live_methods.has(mprop) then
283 dead_methods.add(mprop)
284 continue
285 end
286 mmethods[mclass].add(mprop)
287 else if mprop isa MAttribute then
288 mattributes[mclass].add(mprop)
289 end
290 end
291 end
292
293 # Collect all super calls (dead or not)
294 var all_super_calls = new HashSet[MMethodDef]
295 for mmodule in self.mainmodule.in_importation.greaters do
296 for mclassdef in mmodule.mclassdefs do
297 for mpropdef in mclassdef.mpropdefs do
298 if not mpropdef isa MMethodDef then continue
299 if mpropdef.has_supercall then
300 all_super_calls.add(mpropdef)
301 end
302 end
303 end
304 end
305
306 # lookup super calls and add it to the list of mmethods to build layout with
307 var super_calls
308 if rta != null then
309 super_calls = rta.live_super_sends
310 else
311 super_calls = all_super_calls
312 end
313
314 for mmethoddef in super_calls do
315 var mclass = mmethoddef.mclassdef.mclass
316 mmethods[mclass].add(mmethoddef)
317 for descendant in mclass.in_hierarchy(self.mainmodule).smallers do
318 mmethods[descendant].add(mmethoddef)
319 end
320 end
321
322 # methods coloration
323 var meth_colorer = new POSetBucketsColorer[MClass, PropertyLayoutElement](poset, colorer.conflicts)
324 method_colors = meth_colorer.colorize(mmethods)
325 method_tables = build_method_tables(mclasses, super_calls)
326 compile_color_consts(method_colors)
327
328 # attribute null color to dead methods and supercalls
329 for mproperty in dead_methods do
330 compile_color_const(new_visitor, mproperty, -1)
331 end
332 for mpropdef in all_super_calls do
333 if super_calls.has(mpropdef) then continue
334 compile_color_const(new_visitor, mpropdef, -1)
335 end
336
337 # attributes coloration
338 var attr_colorer = new POSetBucketsColorer[MClass, MAttribute](poset, colorer.conflicts)
339 attr_colors = attr_colorer.colorize(mattributes)
340 attr_tables = build_attr_tables(mclasses)
341 compile_color_consts(attr_colors)
342 end
343
344 fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do
345 var tables = new HashMap[MClass, Array[nullable MPropDef]]
346 for mclass in mclasses do
347 var table = new Array[nullable MPropDef]
348 tables[mclass] = table
349
350 var mproperties = self.mainmodule.properties(mclass)
351 var mtype = mclass.intro.bound_mtype
352
353 for mproperty in mproperties do
354 if not mproperty isa MMethod then continue
355 if not method_colors.has_key(mproperty) then continue
356 var color = method_colors[mproperty]
357 if table.length <= color then
358 for i in [table.length .. color[ do
359 table[i] = null
360 end
361 end
362 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
363 end
364
365 for supercall in super_calls do
366 if not mtype.collect_mclassdefs(mainmodule).has(supercall.mclassdef) then continue
367
368 var color = method_colors[supercall]
369 if table.length <= color then
370 for i in [table.length .. color[ do
371 table[i] = null
372 end
373 end
374 var mmethoddef = supercall.lookup_next_definition(mainmodule, mtype)
375 table[color] = mmethoddef
376 end
377
378 end
379 return tables
380 end
381
382 fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do
383 var tables = new HashMap[MClass, Array[nullable MPropDef]]
384 for mclass in mclasses do
385 var table = new Array[nullable MPropDef]
386 tables[mclass] = table
387
388 var mproperties = self.mainmodule.properties(mclass)
389 var mtype = mclass.intro.bound_mtype
390
391 for mproperty in mproperties do
392 if not mproperty isa MAttribute then continue
393 if not attr_colors.has_key(mproperty) then continue
394 var color = attr_colors[mproperty]
395 if table.length <= color then
396 for i in [table.length .. color[ do
397 table[i] = null
398 end
399 end
400 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
401 end
402 end
403 return tables
404 end
405
406 # colorize live types of the program
407 private fun do_type_coloring: POSet[MType] do
408 # Collect types to colorize
409 var live_types = runtime_type_analysis.live_types
410 var live_cast_types = runtime_type_analysis.live_cast_types
411 var mtypes = new HashSet[MType]
412 mtypes.add_all(live_types)
413 mtypes.add_all(live_cast_types)
414 for c in self.box_kinds.keys do
415 mtypes.add(c.mclass_type)
416 end
417
418 # Compute colors
419 var poset = poset_from_mtypes(mtypes)
420 var colorer = new POSetColorer[MType]
421 colorer.colorize(poset)
422 type_ids = colorer.ids
423 type_colors = colorer.colors
424 type_tables = build_type_tables(poset)
425
426 # VT and FT are stored with other unresolved types in the big resolution_tables
427 self.compile_resolution_tables(mtypes)
428
429 return poset
430 end
431
432 private fun poset_from_mtypes(mtypes: Set[MType]): POSet[MType] do
433 var poset = new POSet[MType]
434 for e in mtypes do
435 poset.add_node(e)
436 for o in mtypes do
437 if e == o then continue
438 if e.is_subtype(mainmodule, null, o) then
439 poset.add_edge(e, o)
440 end
441 end
442 end
443 return poset
444 end
445
446 # Build type tables
447 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
448 var tables = new HashMap[MType, Array[nullable MType]]
449 for mtype in mtypes do
450 var table = new Array[nullable MType]
451 for sup in mtypes[mtype].greaters do
452 var color = type_colors[sup]
453 if table.length <= color then
454 for i in [table.length .. color[ do
455 table[i] = null
456 end
457 end
458 table[color] = sup
459 end
460 tables[mtype] = table
461 end
462 return tables
463 end
464
465 protected fun compile_resolution_tables(mtypes: Set[MType]) do
466 # resolution_tables is used to perform a type resolution at runtime in O(1)
467
468 # During the visit of the body of classes, live_unresolved_types are collected
469 # and associated to
470 # Collect all live_unresolved_types (visited in the body of classes)
471
472 # Determinate fo each livetype what are its possible requested anchored types
473 var mtype2unresolved = new HashMap[MClassType, Set[MType]]
474 for mtype in self.runtime_type_analysis.live_types do
475 var set = new HashSet[MType]
476 for cd in mtype.collect_mclassdefs(self.mainmodule) do
477 if self.live_unresolved_types.has_key(cd) then
478 set.add_all(self.live_unresolved_types[cd])
479 end
480 end
481 mtype2unresolved[mtype] = set
482 end
483
484 # Compute the table layout with the prefered method
485 var colorer = new BucketsColorer[MType, MType]
486 opentype_colors = colorer.colorize(mtype2unresolved)
487 resolution_tables = self.build_resolution_tables(mtype2unresolved)
488
489 # Compile a C constant for each collected unresolved type.
490 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
491 var all_unresolved = new HashSet[MType]
492 for t in self.live_unresolved_types.values do
493 all_unresolved.add_all(t)
494 end
495 var all_unresolved_types_colors = new HashMap[MType, Int]
496 for t in all_unresolved do
497 if opentype_colors.has_key(t) then
498 all_unresolved_types_colors[t] = opentype_colors[t]
499 else
500 all_unresolved_types_colors[t] = -1
501 end
502 end
503 self.compile_color_consts(all_unresolved_types_colors)
504
505 #print "tables"
506 #for k, v in unresolved_types_tables.as(not null) do
507 # print "{k}: {v.join(", ")}"
508 #end
509 #print ""
510 end
511
512 fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do
513 var tables = new HashMap[MClassType, Array[nullable MType]]
514 for mclasstype, mtypes in elements do
515 var table = new Array[nullable MType]
516 for mtype in mtypes do
517 var color = opentype_colors[mtype]
518 if table.length <= color then
519 for i in [table.length .. color[ do
520 table[i] = null
521 end
522 end
523 table[color] = mtype
524 end
525 tables[mclasstype] = table
526 end
527 return tables
528 end
529
530 # Separately compile all the method definitions of the module
531 fun compile_module_to_c(mmodule: MModule)
532 do
533 var old_module = self.mainmodule
534 self.mainmodule = mmodule
535 for cd in mmodule.mclassdefs do
536 for pd in cd.mpropdefs do
537 if not pd isa MMethodDef then continue
538 var rta = runtime_type_analysis
539 if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue
540 #print "compile {pd} @ {cd} @ {mmodule}"
541 var r = pd.separate_runtime_function
542 r.compile_to_c(self)
543 var r2 = pd.virtual_runtime_function
544 r2.compile_to_c(self)
545 end
546 end
547 self.mainmodule = old_module
548 end
549
550 # Globaly compile the type structure of a live type
551 fun compile_type_to_c(mtype: MType)
552 do
553 assert not mtype.need_anchor
554 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
555 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
556 var c_name = mtype.c_name
557 var v = new SeparateCompilerVisitor(self)
558 v.add_decl("/* runtime type {mtype} */")
559
560 # extern const struct type_X
561 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
562
563 # const struct type_X
564 v.add_decl("const struct type type_{c_name} = \{")
565
566 # type id (for cast target)
567 if is_cast_live then
568 v.add_decl("{type_ids[mtype]},")
569 else
570 v.add_decl("-1, /*CAST DEAD*/")
571 end
572
573 # type name
574 v.add_decl("\"{mtype}\", /* class_name_string */")
575
576 # type color (for cast target)
577 if is_cast_live then
578 v.add_decl("{type_colors[mtype]},")
579 else
580 v.add_decl("-1, /*CAST DEAD*/")
581 end
582
583 # is_nullable bit
584 if mtype isa MNullableType then
585 v.add_decl("1,")
586 else
587 v.add_decl("0,")
588 end
589
590 # resolution table (for receiver)
591 if is_live then
592 var mclass_type = mtype
593 if mclass_type isa MNullableType then mclass_type = mclass_type.mtype
594 assert mclass_type isa MClassType
595 if resolution_tables[mclass_type].is_empty then
596 v.add_decl("NULL, /*NO RESOLUTIONS*/")
597 else
598 compile_type_resolution_table(mtype)
599 v.require_declaration("resolution_table_{c_name}")
600 v.add_decl("&resolution_table_{c_name},")
601 end
602 else
603 v.add_decl("NULL, /*DEAD*/")
604 end
605
606 # cast table (for receiver)
607 if is_live then
608 v.add_decl("{self.type_tables[mtype].length},")
609 v.add_decl("\{")
610 for stype in self.type_tables[mtype] do
611 if stype == null then
612 v.add_decl("-1, /* empty */")
613 else
614 v.add_decl("{type_ids[stype]}, /* {stype} */")
615 end
616 end
617 v.add_decl("\},")
618 else
619 v.add_decl("0, \{\}, /*DEAD TYPE*/")
620 end
621 v.add_decl("\};")
622 end
623
624 fun compile_type_resolution_table(mtype: MType) do
625
626 var mclass_type: MClassType
627 if mtype isa MNullableType then
628 mclass_type = mtype.mtype.as(MClassType)
629 else
630 mclass_type = mtype.as(MClassType)
631 end
632
633 # extern const struct resolution_table_X resolution_table_X
634 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
635
636 # const struct fts_table_X fts_table_X
637 var v = new_visitor
638 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
639 v.add_decl("0, /* dummy */")
640 v.add_decl("\{")
641 for t in self.resolution_tables[mclass_type] do
642 if t == null then
643 v.add_decl("NULL, /* empty */")
644 else
645 # The table stores the result of the type resolution
646 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
647 # the value stored is tv.
648 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
649 # FIXME: What typeids means here? How can a tv not be live?
650 if type_ids.has_key(tv) then
651 v.require_declaration("type_{tv.c_name}")
652 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
653 else
654 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
655 end
656 end
657 end
658 v.add_decl("\}")
659 v.add_decl("\};")
660 end
661
662 # Globally compile the table of the class mclass
663 # In a link-time optimisation compiler, tables are globally computed
664 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
665 fun compile_class_to_c(mclass: MClass)
666 do
667 var mtype = mclass.intro.bound_mtype
668 var c_name = mclass.c_name
669 var c_instance_name = mclass.c_instance_name
670
671 var vft = self.method_tables[mclass]
672 var attrs = self.attr_tables[mclass]
673 var v = new_visitor
674
675 var rta = runtime_type_analysis
676 var is_dead = rta != null and not rta.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray"
677
678 v.add_decl("/* runtime class {c_name} */")
679
680 # Build class vft
681 if not is_dead then
682 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
683 v.add_decl("const struct class class_{c_name} = \{")
684 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
685 v.add_decl("\{")
686 for i in [0 .. vft.length[ do
687 var mpropdef = vft[i]
688 if mpropdef == null then
689 v.add_decl("NULL, /* empty */")
690 else
691 assert mpropdef isa MMethodDef
692 if rta != null and not rta.live_methoddefs.has(mpropdef) then
693 v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
694 continue
695 end
696 var rf = mpropdef.virtual_runtime_function
697 v.require_declaration(rf.c_name)
698 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
699 end
700 end
701 v.add_decl("\}")
702 v.add_decl("\};")
703 end
704
705 if mtype.ctype != "val*" then
706 if mtype.mclass.name == "Pointer" or mtype.mclass.kind != extern_kind then
707 #Build instance struct
708 self.header.add_decl("struct instance_{c_instance_name} \{")
709 self.header.add_decl("const struct type *type;")
710 self.header.add_decl("const struct class *class;")
711 self.header.add_decl("{mtype.ctype} value;")
712 self.header.add_decl("\};")
713 end
714
715 if not rta.live_types.has(mtype) then return
716
717 #Build BOX
718 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype});")
719 v.add_decl("/* allocate {mtype} */")
720 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype} value) \{")
721 v.add("struct instance_{c_instance_name}*res = nit_alloc(sizeof(struct instance_{c_instance_name}));")
722 v.require_declaration("type_{c_name}")
723 v.add("res->type = &type_{c_name};")
724 v.require_declaration("class_{c_name}")
725 v.add("res->class = &class_{c_name};")
726 v.add("res->value = value;")
727 v.add("return (val*)res;")
728 v.add("\}")
729 return
730 else if mclass.name == "NativeArray" then
731 #Build instance struct
732 self.header.add_decl("struct instance_{c_instance_name} \{")
733 self.header.add_decl("const struct type *type;")
734 self.header.add_decl("const struct class *class;")
735 # NativeArrays are just a instance header followed by a length and an array of values
736 self.header.add_decl("int length;")
737 self.header.add_decl("val* values[0];")
738 self.header.add_decl("\};")
739
740 #Build NEW
741 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
742 v.add_decl("/* allocate {mtype} */")
743 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
744 var res = v.get_name("self")
745 v.add_decl("struct instance_{c_instance_name} *{res};")
746 var mtype_elt = mtype.arguments.first
747 v.add("{res} = nit_alloc(sizeof(struct instance_{c_instance_name}) + length*sizeof({mtype_elt.ctype}));")
748 v.add("{res}->type = type;")
749 hardening_live_type(v, "type")
750 v.require_declaration("class_{c_name}")
751 v.add("{res}->class = &class_{c_name};")
752 v.add("{res}->length = length;")
753 v.add("return (val*){res};")
754 v.add("\}")
755 return
756 end
757
758 #Build NEW
759 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
760 v.add_decl("/* allocate {mtype} */")
761 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
762 if is_dead then
763 v.add_abort("{mclass} is DEAD")
764 else
765 var res = v.new_named_var(mtype, "self")
766 res.is_exact = true
767 v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));")
768 v.add("{res}->type = type;")
769 hardening_live_type(v, "type")
770 v.require_declaration("class_{c_name}")
771 v.add("{res}->class = &class_{c_name};")
772 self.generate_init_attr(v, res, mtype)
773 v.add("return {res};")
774 end
775 v.add("\}")
776 end
777
778 # Add a dynamic test to ensure that the type referenced by `t` is a live type
779 fun hardening_live_type(v: VISITOR, t: String)
780 do
781 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
782 v.add("if({t} == NULL) \{")
783 v.add_abort("type null")
784 v.add("\}")
785 v.add("if({t}->table_size == 0) \{")
786 v.add("PRINT_ERROR(\"Insantiation of a dead type: %s\\n\", {t}->name);")
787 v.add_abort("type dead")
788 v.add("\}")
789 end
790
791 redef fun new_visitor do return new SeparateCompilerVisitor(self)
792
793 # Stats
794
795 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
796 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
797 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
798 protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
799
800 redef fun display_stats
801 do
802 super
803 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
804 display_sizes
805 end
806 if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
807 display_isset_checks
808 end
809 var tc = self.modelbuilder.toolcontext
810 tc.info("# implementation of method invocation",2)
811 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
812 tc.info("total number of invocations: {nb_invok_total}",2)
813 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
814 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
815 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
816 end
817
818 fun display_sizes
819 do
820 print "# size of subtyping tables"
821 print "\ttotal \tholes"
822 var total = 0
823 var holes = 0
824 for t, table in type_tables do
825 total += table.length
826 for e in table do if e == null then holes += 1
827 end
828 print "\t{total}\t{holes}"
829
830 print "# size of resolution tables"
831 print "\ttotal \tholes"
832 total = 0
833 holes = 0
834 for t, table in resolution_tables do
835 total += table.length
836 for e in table do if e == null then holes += 1
837 end
838 print "\t{total}\t{holes}"
839
840 print "# size of methods tables"
841 print "\ttotal \tholes"
842 total = 0
843 holes = 0
844 for t, table in method_tables do
845 total += table.length
846 for e in table do if e == null then holes += 1
847 end
848 print "\t{total}\t{holes}"
849
850 print "# size of attributes tables"
851 print "\ttotal \tholes"
852 total = 0
853 holes = 0
854 for t, table in attr_tables do
855 total += table.length
856 for e in table do if e == null then holes += 1
857 end
858 print "\t{total}\t{holes}"
859 end
860
861 protected var isset_checks_count = 0
862 protected var attr_read_count = 0
863
864 fun display_isset_checks do
865 print "# total number of compiled attribute reads"
866 print "\t{attr_read_count}"
867 print "# total number of compiled isset-checks"
868 print "\t{isset_checks_count}"
869 end
870
871 redef fun compile_nitni_structs
872 do
873 self.header.add_decl("struct nitni_instance \{struct instance *value;\};")
874 end
875
876 redef fun finalize_ffi_for_module(mmodule)
877 do
878 var old_module = self.mainmodule
879 self.mainmodule = mmodule
880 super
881 self.mainmodule = old_module
882 end
883 end
884
885 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
886 class SeparateCompilerVisitor
887 super AbstractCompilerVisitor
888
889 redef type COMPILER: SeparateCompiler
890
891 redef fun adapt_signature(m, args)
892 do
893 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
894 var recv = args.first
895 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
896 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
897 end
898 for i in [0..msignature.arity[ do
899 var t = msignature.mparameters[i].mtype
900 if i == msignature.vararg_rank then
901 t = args[i+1].mtype
902 end
903 args[i+1] = self.autobox(args[i+1], t)
904 end
905 end
906
907 redef fun autobox(value, mtype)
908 do
909 if value.mtype == mtype then
910 return value
911 else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then
912 return value
913 else if value.mtype.ctype == "val*" then
914 return self.new_expr("((struct instance_{mtype.c_instance_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
915 else if mtype.ctype == "val*" then
916 var valtype = value.mtype.as(MClassType)
917 var res = self.new_var(mtype)
918 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then
919 self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */")
920 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);")
921 return res
922 end
923 self.require_declaration("BOX_{valtype.c_name}")
924 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
925 return res
926 else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or
927 (value.mtype.ctype == "char*" and mtype.ctype == "void*") or
928 (value.mtype.ctype == "void*" and mtype.ctype == "char*") then
929 return value
930 else
931 # Bad things will appen!
932 var res = self.new_var(mtype)
933 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
934 self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);")
935 return res
936 end
937 end
938
939 # Return a C expression returning the runtime type structure of the value
940 # The point of the method is to works also with primitives types.
941 fun type_info(value: RuntimeVariable): String
942 do
943 if value.mtype.ctype == "val*" then
944 return "{value}->type"
945 else
946 compiler.undead_types.add(value.mtype)
947 self.require_declaration("type_{value.mtype.c_name}")
948 return "(&type_{value.mtype.c_name})"
949 end
950 end
951
952 redef fun compile_callsite(callsite, args)
953 do
954 var rta = compiler.runtime_type_analysis
955 var recv = args.first.mtype
956 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null then
957 var tgs = rta.live_targets(callsite)
958 if tgs.length == 1 then
959 # DIRECT CALL
960 var mmethod = callsite.mproperty
961 self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), args)
962 var res0 = before_send(mmethod, args)
963 var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args)
964 if res0 != null then
965 assert res != null
966 self.assign(res0, res)
967 res = res0
968 end
969 add("\}") # close the before_send
970 return res
971 end
972 end
973 return super
974 end
975 redef fun send(mmethod, arguments)
976 do
977 self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), arguments)
978
979 if arguments.first.mcasttype.ctype != "val*" then
980 # In order to shortcut the primitive, we need to find the most specific method
981 # Howverr, because of performance (no flattening), we always work on the realmainmodule
982 var m = self.compiler.mainmodule
983 self.compiler.mainmodule = self.compiler.realmainmodule
984 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
985 self.compiler.mainmodule = m
986 return res
987 end
988
989 return table_send(mmethod, arguments, mmethod.const_color)
990 end
991
992 # Handel common special cases before doing the effective method invocation
993 # This methods handle the `==` and `!=` methods and the case of the null receiver.
994 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
995 # Client must not forget to close the } after them.
996 #
997 # The value returned is the result of the common special cases.
998 # If not null, client must compine it with the result of their own effective method invocation.
999 #
1000 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1001 # is generated to cancel the effective method invocation that will follow
1002 # TODO: find a better approach
1003 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1004 do
1005 var res: nullable RuntimeVariable = null
1006 var recv = arguments.first
1007 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_other.value or mmethod.name == "==" or mmethod.name == "!="
1008 var maybenull = recv.mcasttype isa MNullableType and consider_null
1009 if maybenull then
1010 self.add("if ({recv} == NULL) \{")
1011 if mmethod.name == "==" then
1012 res = self.new_var(bool_type)
1013 var arg = arguments[1]
1014 if arg.mcasttype isa MNullableType then
1015 self.add("{res} = ({arg} == NULL);")
1016 else if arg.mcasttype isa MNullType then
1017 self.add("{res} = 1; /* is null */")
1018 else
1019 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1020 end
1021 else if mmethod.name == "!=" then
1022 res = self.new_var(bool_type)
1023 var arg = arguments[1]
1024 if arg.mcasttype isa MNullableType then
1025 self.add("{res} = ({arg} != NULL);")
1026 else if arg.mcasttype isa MNullType then
1027 self.add("{res} = 0; /* is null */")
1028 else
1029 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1030 end
1031 else
1032 self.add_abort("Receiver is null")
1033 end
1034 self.add("\} else \{")
1035 else
1036 self.add("\{")
1037 end
1038 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then
1039 if res == null then res = self.new_var(bool_type)
1040 # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants)
1041 var arg = arguments[1]
1042 if arg.mcasttype isa MNullType then
1043 if mmethod.name == "==" then
1044 self.add("{res} = 0; /* arg is null but recv is not */")
1045 else
1046 self.add("{res} = 1; /* arg is null and recv is not */")
1047 end
1048 self.add("\}") # closes the null case
1049 self.add("if (0) \{") # what follow is useless, CC will drop it
1050 end
1051 end
1052 return res
1053 end
1054
1055 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable
1056 do
1057 compiler.modelbuilder.nb_invok_by_tables += 1
1058 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1059
1060 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1061 var recv = arguments.first
1062
1063 var res0 = before_send(mmethod, arguments)
1064
1065 var res: nullable RuntimeVariable
1066 var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true)
1067 var ret = msignature.return_mtype
1068 if mmethod.is_new then
1069 ret = arguments.first.mtype
1070 res = self.new_var(ret)
1071 else if ret == null then
1072 res = null
1073 else
1074 res = self.new_var(ret)
1075 end
1076
1077 var s = new FlatBuffer
1078 var ss = new FlatBuffer
1079
1080 s.append("val*")
1081 ss.append("{recv}")
1082 for i in [0..msignature.arity[ do
1083 var a = arguments[i+1]
1084 var t = msignature.mparameters[i].mtype
1085 if i == msignature.vararg_rank then
1086 t = arguments[i+1].mcasttype
1087 end
1088 s.append(", {t.ctype}")
1089 a = self.autobox(a, t)
1090 ss.append(", {a}")
1091 end
1092
1093
1094 var r
1095 if ret == null then r = "void" else r = ret.ctype
1096 self.require_declaration(const_color)
1097 var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/"
1098
1099 if res != null then
1100 self.add("{res} = {call};")
1101 else
1102 self.add("{call};")
1103 end
1104
1105 if res0 != null then
1106 assert res != null
1107 assign(res0,res)
1108 res = res0
1109 end
1110
1111 self.add("\}") # closes the null case
1112
1113 return res
1114 end
1115
1116 redef fun call(mmethoddef, recvtype, arguments)
1117 do
1118 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1119
1120 var res: nullable RuntimeVariable
1121 var ret = mmethoddef.msignature.return_mtype
1122 if mmethoddef.mproperty.is_new then
1123 ret = arguments.first.mtype
1124 res = self.new_var(ret)
1125 else if ret == null then
1126 res = null
1127 else
1128 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1129 res = self.new_var(ret)
1130 end
1131
1132 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1133 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1134 compiler.modelbuilder.nb_invok_by_inline += 1
1135 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1136 var frame = new Frame(self, mmethoddef, recvtype, arguments)
1137 frame.returnlabel = self.get_name("RET_LABEL")
1138 frame.returnvar = res
1139 var old_frame = self.frame
1140 self.frame = frame
1141 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1142 mmethoddef.compile_inside_to_c(self, arguments)
1143 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1144 self.add("\}")
1145 self.frame = old_frame
1146 return res
1147 end
1148 compiler.modelbuilder.nb_invok_by_direct += 1
1149 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1150
1151 # Autobox arguments
1152 self.adapt_signature(mmethoddef, arguments)
1153
1154 self.require_declaration(mmethoddef.c_name)
1155 if res == null then
1156 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1157 return null
1158 else
1159 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1160 end
1161
1162 return res
1163 end
1164
1165 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1166 do
1167 if arguments.first.mcasttype.ctype != "val*" then
1168 # In order to shortcut the primitive, we need to find the most specific method
1169 # However, because of performance (no flattening), we always work on the realmainmodule
1170 var main = self.compiler.mainmodule
1171 self.compiler.mainmodule = self.compiler.realmainmodule
1172 var res = self.monomorphic_super_send(m, recvtype, arguments)
1173 self.compiler.mainmodule = main
1174 return res
1175 end
1176 return table_send(m.mproperty, arguments, m.const_color)
1177 end
1178
1179 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1180 do
1181 # A vararg must be stored into an new array
1182 # The trick is that the dymaic type of the array may depends on the receiver
1183 # of the method (ie recv) if the static type is unresolved
1184 # This is more complex than usual because the unresolved type must not be resolved
1185 # with the current receiver (ie self).
1186 # Therefore to isolate the resolution from self, a local Frame is created.
1187 # One can see this implementation as an inlined method of the receiver whose only
1188 # job is to allocate the array
1189 var old_frame = self.frame
1190 var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1191 self.frame = frame
1192 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1193 var res = self.array_instance(varargs, elttype)
1194 self.frame = old_frame
1195 return res
1196 end
1197
1198 redef fun isset_attribute(a, recv)
1199 do
1200 self.check_recv_notnull(recv)
1201 var res = self.new_var(bool_type)
1202
1203 # What is the declared type of the attribute?
1204 var mtype = a.intro.static_mtype.as(not null)
1205 var intromclassdef = a.intro.mclassdef
1206 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1207
1208 if mtype isa MNullableType then
1209 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1210 return res
1211 end
1212
1213 self.require_declaration(a.const_color)
1214 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1215 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1216 else
1217
1218 if mtype.ctype == "val*" then
1219 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1220 else
1221 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1222 end
1223 end
1224 return res
1225 end
1226
1227 redef fun read_attribute(a, recv)
1228 do
1229 self.check_recv_notnull(recv)
1230
1231 # What is the declared type of the attribute?
1232 var ret = a.intro.static_mtype.as(not null)
1233 var intromclassdef = a.intro.mclassdef
1234 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1235
1236 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1237 self.compiler.attr_read_count += 1
1238 self.add("count_attr_reads++;")
1239 end
1240
1241 self.require_declaration(a.const_color)
1242 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1243 # Get the attribute or a box (ie. always a val*)
1244 var cret = self.object_type.as_nullable
1245 var res = self.new_var(cret)
1246 res.mcasttype = ret
1247
1248 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1249
1250 # Check for Uninitialized attribute
1251 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1252 self.add("if (unlikely({res} == NULL)) \{")
1253 self.add_abort("Uninitialized attribute {a.name}")
1254 self.add("\}")
1255
1256 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1257 self.compiler.isset_checks_count += 1
1258 self.add("count_isset_checks++;")
1259 end
1260 end
1261
1262 # Return the attribute or its unboxed version
1263 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1264 return self.autobox(res, ret)
1265 else
1266 var res = self.new_var(ret)
1267 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1268
1269 # Check for Uninitialized attribute
1270 if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1271 self.add("if (unlikely({res} == NULL)) \{")
1272 self.add_abort("Uninitialized attribute {a.name}")
1273 self.add("\}")
1274 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1275 self.compiler.isset_checks_count += 1
1276 self.add("count_isset_checks++;")
1277 end
1278 end
1279
1280 return res
1281 end
1282 end
1283
1284 redef fun write_attribute(a, recv, value)
1285 do
1286 self.check_recv_notnull(recv)
1287
1288 # What is the declared type of the attribute?
1289 var mtype = a.intro.static_mtype.as(not null)
1290 var intromclassdef = a.intro.mclassdef
1291 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1292
1293 # Adapt the value to the declared type
1294 value = self.autobox(value, mtype)
1295
1296 self.require_declaration(a.const_color)
1297 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1298 var attr = "{recv}->attrs[{a.const_color}]"
1299 if mtype.ctype != "val*" then
1300 assert mtype isa MClassType
1301 # The attribute is primitive, thus we store it in a box
1302 # The trick is to create the box the first time then resuse the box
1303 self.add("if ({attr} != NULL) \{")
1304 self.add("((struct instance_{mtype.c_instance_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1305 self.add("\} else \{")
1306 value = self.autobox(value, self.object_type.as_nullable)
1307 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1308 self.add("\}")
1309 else
1310 # The attribute is not primitive, thus store it direclty
1311 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1312 end
1313 else
1314 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1315 end
1316 end
1317
1318 # Check that mtype is a live open type
1319 fun hardening_live_open_type(mtype: MType)
1320 do
1321 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1322 self.require_declaration(mtype.const_color)
1323 var col = mtype.const_color
1324 self.add("if({col} == -1) \{")
1325 self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1326 self.add_abort("open type dead")
1327 self.add("\}")
1328 end
1329
1330 # Check that mtype it a pointer to a live cast type
1331 fun hardening_cast_type(t: String)
1332 do
1333 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1334 add("if({t} == NULL) \{")
1335 add_abort("cast type null")
1336 add("\}")
1337 add("if({t}->id == -1 || {t}->color == -1) \{")
1338 add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1339 add_abort("cast type dead")
1340 add("\}")
1341 end
1342
1343 redef fun init_instance(mtype)
1344 do
1345 self.require_declaration("NEW_{mtype.mclass.c_name}")
1346 var compiler = self.compiler
1347 if mtype isa MGenericType and mtype.need_anchor then
1348 hardening_live_open_type(mtype)
1349 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1350 var recv = self.frame.arguments.first
1351 var recv_type_info = self.type_info(recv)
1352 self.require_declaration(mtype.const_color)
1353 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1354 end
1355 compiler.undead_types.add(mtype)
1356 self.require_declaration("type_{mtype.c_name}")
1357 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1358 end
1359
1360 redef fun type_test(value, mtype, tag)
1361 do
1362 self.add("/* {value.inspect} isa {mtype} */")
1363 var compiler = self.compiler
1364
1365 var recv = self.frame.arguments.first
1366 var recv_type_info = self.type_info(recv)
1367
1368 var res = self.new_var(bool_type)
1369
1370 var cltype = self.get_name("cltype")
1371 self.add_decl("int {cltype};")
1372 var idtype = self.get_name("idtype")
1373 self.add_decl("int {idtype};")
1374
1375 var maybe_null = self.maybe_null(value)
1376 var accept_null = "0"
1377 var ntype = mtype
1378 if ntype isa MNullableType then
1379 ntype = ntype.mtype
1380 accept_null = "1"
1381 end
1382
1383 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1384 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1385 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1386 self.compiler.count_type_test_skipped[tag] += 1
1387 self.add("count_type_test_skipped_{tag}++;")
1388 end
1389 return res
1390 end
1391
1392 if ntype.need_anchor then
1393 var type_struct = self.get_name("type_struct")
1394 self.add_decl("const struct type* {type_struct};")
1395
1396 # Either with resolution_table with a direct resolution
1397 hardening_live_open_type(mtype)
1398 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1399 self.require_declaration(mtype.const_color)
1400 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1401 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1402 self.compiler.count_type_test_unresolved[tag] += 1
1403 self.add("count_type_test_unresolved_{tag}++;")
1404 end
1405 hardening_cast_type(type_struct)
1406 self.add("{cltype} = {type_struct}->color;")
1407 self.add("{idtype} = {type_struct}->id;")
1408 if maybe_null and accept_null == "0" then
1409 var is_nullable = self.get_name("is_nullable")
1410 self.add_decl("short int {is_nullable};")
1411 self.add("{is_nullable} = {type_struct}->is_nullable;")
1412 accept_null = is_nullable.to_s
1413 end
1414 else if ntype isa MClassType then
1415 compiler.undead_types.add(mtype)
1416 self.require_declaration("type_{mtype.c_name}")
1417 hardening_cast_type("(&type_{mtype.c_name})")
1418 self.add("{cltype} = type_{mtype.c_name}.color;")
1419 self.add("{idtype} = type_{mtype.c_name}.id;")
1420 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1421 self.compiler.count_type_test_resolved[tag] += 1
1422 self.add("count_type_test_resolved_{tag}++;")
1423 end
1424 else
1425 self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);")
1426 end
1427
1428 # check color is in table
1429 if maybe_null then
1430 self.add("if({value} == NULL) \{")
1431 self.add("{res} = {accept_null};")
1432 self.add("\} else \{")
1433 end
1434 var value_type_info = self.type_info(value)
1435 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1436 self.add("{res} = 0;")
1437 self.add("\} else \{")
1438 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1439 self.add("\}")
1440 if maybe_null then
1441 self.add("\}")
1442 end
1443
1444 return res
1445 end
1446
1447 redef fun is_same_type_test(value1, value2)
1448 do
1449 var res = self.new_var(bool_type)
1450 # Swap values to be symetric
1451 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1452 var tmp = value1
1453 value1 = value2
1454 value2 = tmp
1455 end
1456 if value1.mtype.ctype != "val*" then
1457 if value2.mtype == value1.mtype then
1458 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1459 else if value2.mtype.ctype != "val*" then
1460 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1461 else
1462 var mtype1 = value1.mtype.as(MClassType)
1463 self.require_declaration("class_{mtype1.c_name}")
1464 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */")
1465 end
1466 else
1467 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */")
1468 end
1469 return res
1470 end
1471
1472 redef fun class_name_string(value)
1473 do
1474 var res = self.get_name("var_class_name")
1475 self.add_decl("const char* {res};")
1476 if value.mtype.ctype == "val*" then
1477 self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;"
1478 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind then
1479 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1480 else
1481 self.require_declaration("type_{value.mtype.c_name}")
1482 self.add "{res} = type_{value.mtype.c_name}.name;"
1483 end
1484 return res
1485 end
1486
1487 redef fun equal_test(value1, value2)
1488 do
1489 var res = self.new_var(bool_type)
1490 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1491 var tmp = value1
1492 value1 = value2
1493 value2 = tmp
1494 end
1495 if value1.mtype.ctype != "val*" then
1496 if value2.mtype == value1.mtype then
1497 self.add("{res} = {value1} == {value2};")
1498 else if value2.mtype.ctype != "val*" then
1499 self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/")
1500 else
1501 var mtype1 = value1.mtype.as(MClassType)
1502 self.require_declaration("class_{mtype1.c_name}")
1503 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});")
1504 self.add("if ({res}) \{")
1505 self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});")
1506 self.add("\}")
1507 end
1508 return res
1509 end
1510 var maybe_null = true
1511 var test = new Array[String]
1512 var t1 = value1.mcasttype
1513 if t1 isa MNullableType then
1514 test.add("{value1} != NULL")
1515 t1 = t1.mtype
1516 else
1517 maybe_null = false
1518 end
1519 var t2 = value2.mcasttype
1520 if t2 isa MNullableType then
1521 test.add("{value2} != NULL")
1522 t2 = t2.mtype
1523 else
1524 maybe_null = false
1525 end
1526
1527 var incompatible = false
1528 var primitive
1529 if t1.ctype != "val*" then
1530 primitive = t1
1531 if t1 == t2 then
1532 # No need to compare class
1533 else if t2.ctype != "val*" then
1534 incompatible = true
1535 else if can_be_primitive(value2) then
1536 test.add("{value1}->class == {value2}->class")
1537 else
1538 incompatible = true
1539 end
1540 else if t2.ctype != "val*" then
1541 primitive = t2
1542 if can_be_primitive(value1) then
1543 test.add("{value1}->class == {value2}->class")
1544 else
1545 incompatible = true
1546 end
1547 else
1548 primitive = null
1549 end
1550
1551 if incompatible then
1552 if maybe_null then
1553 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
1554 return res
1555 else
1556 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
1557 return res
1558 end
1559 end
1560 if primitive != null then
1561 test.add("((struct instance_{primitive.c_instance_name}*){value1})->value == ((struct instance_{primitive.c_instance_name}*){value2})->value")
1562 else if can_be_primitive(value1) and can_be_primitive(value2) then
1563 test.add("{value1}->class == {value2}->class")
1564 var s = new Array[String]
1565 for t, v in self.compiler.box_kinds do
1566 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_instance_name}*){value1})->value == ((struct instance_{t.c_instance_name}*){value2})->value)"
1567 end
1568 test.add("({s.join(" || ")})")
1569 else
1570 self.add("{res} = {value1} == {value2};")
1571 return res
1572 end
1573 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
1574 return res
1575 end
1576
1577 fun can_be_primitive(value: RuntimeVariable): Bool
1578 do
1579 var t = value.mcasttype
1580 if t isa MNullableType then t = t.mtype
1581 if not t isa MClassType then return false
1582 var k = t.mclass.kind
1583 return k == interface_kind or t.ctype != "val*"
1584 end
1585
1586 fun maybe_null(value: RuntimeVariable): Bool
1587 do
1588 var t = value.mcasttype
1589 return t isa MNullableType or t isa MNullType
1590 end
1591
1592 redef fun array_instance(array, elttype)
1593 do
1594 var nclass = self.get_class("NativeArray")
1595 var arrayclass = self.get_class("Array")
1596 var arraytype = arrayclass.get_mtype([elttype])
1597 var res = self.init_instance(arraytype)
1598 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
1599 var length = self.int_instance(array.length)
1600 var nat = native_array_instance(elttype, length)
1601 for i in [0..array.length[ do
1602 var r = self.autobox(array[i], self.object_type)
1603 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
1604 end
1605 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
1606 self.add("\}")
1607 return res
1608 end
1609
1610 redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable
1611 do
1612 var mtype = self.get_class("NativeArray").get_mtype([elttype])
1613 self.require_declaration("NEW_{mtype.mclass.c_name}")
1614 assert mtype isa MGenericType
1615 var compiler = self.compiler
1616 if mtype.need_anchor then
1617 hardening_live_open_type(mtype)
1618 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1619 var recv = self.frame.arguments.first
1620 var recv_type_info = self.type_info(recv)
1621 self.require_declaration(mtype.const_color)
1622 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1623 end
1624 compiler.undead_types.add(mtype)
1625 self.require_declaration("type_{mtype.c_name}")
1626 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype)
1627 end
1628
1629 redef fun native_array_def(pname, ret_type, arguments)
1630 do
1631 var elttype = arguments.first.mtype
1632 var nclass = self.get_class("NativeArray")
1633 var recv = "((struct instance_{nclass.c_instance_name}*){arguments[0]})->values"
1634 if pname == "[]" then
1635 self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null)))
1636 return
1637 else if pname == "[]=" then
1638 self.add("{recv}[{arguments[1]}]={arguments[2]};")
1639 return
1640 else if pname == "length" then
1641 self.ret(self.new_expr("((struct instance_{nclass.c_instance_name}*){arguments[0]})->length", ret_type.as(not null)))
1642 return
1643 else if pname == "copy_to" then
1644 var recv1 = "((struct instance_{nclass.c_instance_name}*){arguments[1]})->values"
1645 self.add("memcpy({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
1646 return
1647 end
1648 end
1649
1650 redef fun calloc_array(ret_type, arguments)
1651 do
1652 var mclass = self.get_class("ArrayCapable")
1653 var ft = mclass.mclass_type.arguments.first.as(MParameterType)
1654 var res = self.native_array_instance(ft, arguments[1])
1655 self.ret(res)
1656 end
1657
1658 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
1659 assert mtype.need_anchor
1660 var compiler = self.compiler
1661 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
1662 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
1663 end
1664 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
1665 end
1666 end
1667
1668 redef class MMethodDef
1669 fun separate_runtime_function: AbstractRuntimeFunction
1670 do
1671 var res = self.separate_runtime_function_cache
1672 if res == null then
1673 res = new SeparateRuntimeFunction(self)
1674 self.separate_runtime_function_cache = res
1675 end
1676 return res
1677 end
1678 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
1679
1680 fun virtual_runtime_function: AbstractRuntimeFunction
1681 do
1682 var res = self.virtual_runtime_function_cache
1683 if res == null then
1684 res = new VirtualRuntimeFunction(self)
1685 self.virtual_runtime_function_cache = res
1686 end
1687 return res
1688 end
1689 private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction
1690 end
1691
1692 # The C function associated to a methoddef separately compiled
1693 class SeparateRuntimeFunction
1694 super AbstractRuntimeFunction
1695
1696 redef fun build_c_name: String do return "{mmethoddef.c_name}"
1697
1698 redef fun to_s do return self.mmethoddef.to_s
1699
1700 redef fun compile_to_c(compiler)
1701 do
1702 var mmethoddef = self.mmethoddef
1703
1704 var recv = self.mmethoddef.mclassdef.bound_mtype
1705 var v = compiler.new_visitor
1706 var selfvar = new RuntimeVariable("self", recv, recv)
1707 var arguments = new Array[RuntimeVariable]
1708 var frame = new Frame(v, mmethoddef, recv, arguments)
1709 v.frame = frame
1710
1711 var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1712
1713 var sig = new FlatBuffer
1714 var comment = new FlatBuffer
1715 var ret = msignature.return_mtype
1716 if ret != null then
1717 sig.append("{ret.ctype} ")
1718 else if mmethoddef.mproperty.is_new then
1719 ret = recv
1720 sig.append("{ret.ctype} ")
1721 else
1722 sig.append("void ")
1723 end
1724 sig.append(self.c_name)
1725 sig.append("({selfvar.mtype.ctype} {selfvar}")
1726 comment.append("({selfvar}: {selfvar.mtype}")
1727 arguments.add(selfvar)
1728 for i in [0..msignature.arity[ do
1729 var mtype = msignature.mparameters[i].mtype
1730 if i == msignature.vararg_rank then
1731 mtype = v.get_class("Array").get_mtype([mtype])
1732 end
1733 comment.append(", {mtype}")
1734 sig.append(", {mtype.ctype} p{i}")
1735 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1736 arguments.add(argvar)
1737 end
1738 sig.append(")")
1739 comment.append(")")
1740 if ret != null then
1741 comment.append(": {ret}")
1742 end
1743 compiler.provide_declaration(self.c_name, "{sig};")
1744
1745 v.add_decl("/* method {self} for {comment} */")
1746 v.add_decl("{sig} \{")
1747 if ret != null then
1748 frame.returnvar = v.new_var(ret)
1749 end
1750 frame.returnlabel = v.get_name("RET_LABEL")
1751
1752 if recv != arguments.first.mtype then
1753 #print "{self} {recv} {arguments.first}"
1754 end
1755 mmethoddef.compile_inside_to_c(v, arguments)
1756
1757 v.add("{frame.returnlabel.as(not null)}:;")
1758 if ret != null then
1759 v.add("return {frame.returnvar.as(not null)};")
1760 end
1761 v.add("\}")
1762 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
1763 end
1764 end
1765
1766 # The C function associated to a methoddef on a primitive type, stored into a VFT of a class
1767 # The first parameter (the reciever) is always typed by val* in order to accept an object value
1768 class VirtualRuntimeFunction
1769 super AbstractRuntimeFunction
1770
1771 redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}"
1772
1773 redef fun to_s do return self.mmethoddef.to_s
1774
1775 redef fun compile_to_c(compiler)
1776 do
1777 var mmethoddef = self.mmethoddef
1778
1779 var recv = self.mmethoddef.mclassdef.bound_mtype
1780 var v = compiler.new_visitor
1781 var selfvar = new RuntimeVariable("self", v.object_type, recv)
1782 var arguments = new Array[RuntimeVariable]
1783 var frame = new Frame(v, mmethoddef, recv, arguments)
1784 v.frame = frame
1785
1786 var sig = new FlatBuffer
1787 var comment = new FlatBuffer
1788
1789 # Because the function is virtual, the signature must match the one of the original class
1790 var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef
1791 var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1792 var ret = msignature.return_mtype
1793 if ret != null then
1794 sig.append("{ret.ctype} ")
1795 else if mmethoddef.mproperty.is_new then
1796 ret = recv
1797 sig.append("{ret.ctype} ")
1798 else
1799 sig.append("void ")
1800 end
1801 sig.append(self.c_name)
1802 sig.append("({selfvar.mtype.ctype} {selfvar}")
1803 comment.append("({selfvar}: {selfvar.mtype}")
1804 arguments.add(selfvar)
1805 for i in [0..msignature.arity[ do
1806 var mtype = msignature.mparameters[i].mtype
1807 if i == msignature.vararg_rank then
1808 mtype = v.get_class("Array").get_mtype([mtype])
1809 end
1810 comment.append(", {mtype}")
1811 sig.append(", {mtype.ctype} p{i}")
1812 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1813 arguments.add(argvar)
1814 end
1815 sig.append(")")
1816 comment.append(")")
1817 if ret != null then
1818 comment.append(": {ret}")
1819 end
1820 compiler.provide_declaration(self.c_name, "{sig};")
1821
1822 v.add_decl("/* method {self} for {comment} */")
1823 v.add_decl("{sig} \{")
1824 if ret != null then
1825 frame.returnvar = v.new_var(ret)
1826 end
1827 frame.returnlabel = v.get_name("RET_LABEL")
1828
1829 var subret = v.call(mmethoddef, recv, arguments)
1830 if ret != null then
1831 assert subret != null
1832 v.assign(frame.returnvar.as(not null), subret)
1833 end
1834
1835 v.add("{frame.returnlabel.as(not null)}:;")
1836 if ret != null then
1837 v.add("return {frame.returnvar.as(not null)};")
1838 end
1839 v.add("\}")
1840 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})"
1841 end
1842
1843 # TODO ?
1844 redef fun call(v, arguments) do abort
1845 end
1846
1847 redef class MType
1848 fun const_color: String do return "COLOR_{c_name}"
1849
1850 # C name of the instance type to use
1851 fun c_instance_name: String do return c_name
1852 end
1853
1854 redef class MClassType
1855 redef fun c_instance_name do return mclass.c_instance_name
1856 end
1857
1858 redef class MClass
1859 # Extern classes use the C instance of kernel::Pointer
1860 fun c_instance_name: String
1861 do
1862 if kind == extern_kind then
1863 return "kernel__Pointer"
1864 else return c_name
1865 end
1866 end
1867
1868 interface PropertyLayoutElement end
1869
1870 redef class MProperty
1871 super PropertyLayoutElement
1872 fun const_color: String do return "COLOR_{c_name}"
1873 end
1874
1875 redef class MPropDef
1876 super PropertyLayoutElement
1877 fun const_color: String do return "COLOR_{c_name}"
1878 end