nitc&lib: MapIterator keys can be nullable
[nit.git] / lib / standard / collection / abstract_collection.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2004-2008 Jean Privat <jean@pryen.org>
4 #
5 # This file is free software, which comes along with NIT. This software is
6 # distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
7 # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
8 # PARTICULAR PURPOSE. You can modify it is you want, provided this header
9 # is kept unaltered, and a notification of the changes is added.
10 # You are allowed to redistribute it and sell it, alone or is a part of
11 # another product.
12
13 # Abstract collection classes and services.
14 #
15 # TODO specify the behavior on iterators when collections are modified.
16 module abstract_collection
17
18 import kernel
19
20 # The root of the collection hierarchy.
21 #
22 # Collections modelize finite groups of objects, called elements.
23 #
24 # The specific behavior and representation of collections is determined
25 # by the subclasses of the hierarchy.
26 #
27 # The main service of Collection is to provide a stable `iterator`
28 # method usable to retrieve all the elements of the collection.
29 #
30 # Additional services are provided.
31 # For an implementation point of view, Collection provide a basic
32 # implementation of these services using the `iterator` method.
33 # Subclasses often provide a more efficient implementation.
34 #
35 # Because of the `iterator` method, Collections instances can use
36 # the `for` control structure.
37 #
38 # ~~~nitish
39 # var x: Collection[U]
40 # # ...
41 # for u in x do
42 # # u is a U
43 # # ...
44 # end
45 # ~~~
46 #
47 # that is equivalent with the following:
48 #
49 # ~~~nitish
50 # var x: Collection[U]
51 # # ...
52 # var i = x.iterator
53 # while i.is_ok do
54 # var u = i.item # u is a U
55 # # ...
56 # i.next
57 # end
58 # ~~~
59 interface Collection[E]
60 # Get a new iterator on the collection.
61 fun iterator: Iterator[E] is abstract
62
63 # Is there no item in the collection?
64 #
65 # assert [1,2,3].is_empty == false
66 # assert [1..1[.is_empty == true
67 fun is_empty: Bool do return length == 0
68
69 # Number of items in the collection.
70 #
71 # assert [10,20,30].length == 3
72 # assert [20..30[.length == 10
73 fun length: Int
74 do
75 var nb = 0
76 for i in self do nb += 1
77 return nb
78 end
79
80 # Is `item` in the collection ?
81 # Comparisons are done with ==
82 #
83 # assert [1,2,3].has(2) == true
84 # assert [1,2,3].has(9) == false
85 # assert [1..5[.has(2) == true
86 # assert [1..5[.has(9) == false
87 fun has(item: E): Bool
88 do
89 for i in self do if i == item then return true
90 return false
91 end
92
93 # Is the collection contain only `item`?
94 # Comparisons are done with ==
95 # Return true if the collection is empty.
96 #
97 # assert [1,1,1].has_only(1) == true
98 # assert [1,2,3].has_only(1) == false
99 # assert [1..1].has_only(1) == true
100 # assert [1..3].has_only(1) == false
101 # assert [3..3[.has_only(1) == true # empty collection
102 #
103 # ENSURE `is_empty implies result == true`
104 fun has_only(item: E): Bool
105 do
106 for i in self do if i != item then return false
107 return true
108 end
109
110 # How many occurrences of `item` are in the collection?
111 # Comparisons are done with ==
112 #
113 # assert [10,20,10].count(10) == 2
114 fun count(item: E): Int
115 do
116 var nb = 0
117 for i in self do if i == item then nb += 1
118 return nb
119 end
120
121 # Return the first item of the collection
122 #
123 # assert [1,2,3].first == 1
124 fun first: E
125 do
126 assert length > 0
127 return iterator.item
128 end
129
130 # Does the collection contain at least each element of `other`?
131 #
132 # assert [1,3,4,2].has_all([1..2]) == true
133 # assert [1,3,4,2].has_all([1..5]) == false
134 #
135 # Repeated elements in the collections are not considered.
136 #
137 # assert [1,1,1].has_all([1]) == true
138 # assert [1..5].has_all([1,1,1]) == true
139 #
140 # Note that the default implementation is general and correct for any lawful Collections.
141 # It is memory-efficient but relies on `has` so may be CPU-inefficient for some kind of collections.
142 fun has_all(other: Collection[E]): Bool
143 do
144 for x in other do if not has(x) then return false
145 return true
146 end
147
148 # Does the collection contain exactly all the elements of `other`?
149 #
150 # The same elements must be present in both `self` and `other`,
151 # but the order of the elements in the collections are not considered.
152 #
153 # assert [1..3].has_exactly([3,1,2]) == true # the same elements
154 # assert [1..3].has_exactly([3,1]) == false # 2 is not in the array
155 # assert [1..2].has_exactly([3,1,2]) == false # 3 is not in the range
156 #
157 # Repeated elements must be present in both collections in the same amount.
158 # So basically it is a multi-set comparison.
159 #
160 # assert [1,2,3,2].has_exactly([1,2,2,3]) == true # the same elements
161 # assert [1,2,3,2].has_exactly([1,2,3]) == false # more 2 in the first array
162 # assert [1,2,3].has_exactly([1,2,2,3]) == false # more 2 in the second array
163 #
164 # Note that the default implementation is general and correct for any lawful Collections.
165 # It is memory-efficient but relies on `count` so may be CPU-inefficient for some kind of collections.
166 fun has_exactly(other: Collection[E]): Bool
167 do
168 if length != other.length then return false
169 for e in self do if self.count(e) != other.count(e) then return false
170 return true
171 end
172 end
173
174 # Instances of the Iterator class generates a series of elements, one at a time.
175 # They are mainly used with collections.
176 interface Iterator[E]
177 # The current item.
178 # Require `is_ok`.
179 fun item: E is abstract
180
181 # Jump to the next item.
182 # Require `is_ok`.
183 fun next is abstract
184
185 # Is there a current item ?
186 fun is_ok: Bool is abstract
187
188 # Iterate over `self`
189 fun iterator: Iterator[E] do return self
190
191 # Post-iteration hook.
192 #
193 # Used to inform `self` that the iteration is over.
194 # Specific iterators can use this to free some resources.
195 #
196 # Is automatically invoked at the end of `for` structures.
197 #
198 # Do nothing by default.
199 fun finish do end
200 end
201
202 # A collection that contains only one item.
203 #
204 # Used to pass arguments by reference.
205 #
206 # Also used when one want to give asingle element when a full
207 # collection is expected
208 class Container[E]
209 super Collection[E]
210
211 redef fun first do return item
212
213 redef fun is_empty do return false
214
215 redef fun length do return 1
216
217 redef fun has(an_item) do return item == an_item
218
219 redef fun has_only(an_item) do return item == an_item
220
221 redef fun count(an_item)
222 do
223 if item == an_item then
224 return 1
225 else
226 return 0
227 end
228 end
229
230 redef fun iterator do return new ContainerIterator[E](self)
231
232 # The stored item
233 var item: E is writable
234 end
235
236 # This iterator is quite stupid since it is used for only one item.
237 private class ContainerIterator[E]
238 super Iterator[E]
239 redef fun item do return _container.item
240
241 redef fun next do is_ok = false
242
243 redef var is_ok: Bool = true
244
245 var container: Container[E]
246 end
247
248 # Items can be removed from this collection
249 interface RemovableCollection[E]
250 super Collection[E]
251
252 # Remove all items
253 #
254 # var a = [1,2,3]
255 # a.clear
256 # assert a.length == 0
257 #
258 # ENSURE `is_empty`
259 fun clear is abstract
260
261 # Remove an occucence of `item`
262 #
263 # var a = [1,2,3,1,2,3]
264 # a.remove 2
265 # assert a == [1,3,1,2,3]
266 fun remove(item: E) is abstract
267
268 # Remove all occurences of `item`
269 #
270 # var a = [1,2,3,1,2,3]
271 # a.remove_all 2
272 # assert a == [1,3,1,3]
273 fun remove_all(item: E) do while has(item) do remove(item)
274 end
275
276 # Items can be added to these collections.
277 interface SimpleCollection[E]
278 super RemovableCollection[E]
279
280 # Add an item in a collection.
281 #
282 # var a = [1,2]
283 # a.add 3
284 # assert a.has(3) == true
285 # assert a.has(10) == false
286 #
287 # Ensure col.has(item)
288 fun add(item: E) is abstract
289
290 # Add each item of `coll`.
291 # var a = [1,2]
292 # a.add_all([3..5])
293 # assert a.has(4) == true
294 # assert a.has(10) == false
295 fun add_all(coll: Collection[E]) do for i in coll do add(i)
296 end
297
298 # Abstract sets.
299 #
300 # Set is a collection without duplicates (according to `==`)
301 #
302 # var s: Set[String] = new ArraySet[String]
303 # var a = "Hello"
304 # var b = "Hel" + "lo"
305 # # ...
306 # s.add(a)
307 # assert s.has(b) == true
308 interface Set[E: Object]
309 super SimpleCollection[E]
310
311 redef fun has_only(item)
312 do
313 var l = length
314 if l == 1 then
315 return has(item)
316 else if l == 0 then
317 return true
318 else
319 return false
320 end
321 end
322
323 # Only 0 or 1
324 redef fun count(item)
325 do
326 if has(item) then
327 return 1
328 else
329 return 0
330 end
331 end
332
333 # Synonym of remove since there is only one item
334 redef fun remove_all(item) do remove(item)
335
336 # Equality is defined on set and means that each set contains the same elements
337 redef fun ==(other)
338 do
339 if not other isa Set[Object] then return false
340 if other.length != length then return false
341 return has_all(other)
342 end
343
344 # Because of the law between `==` and `hash`, `hash` is redefined to be the sum of the hash of the elements
345 redef fun hash
346 do
347 # 23 is a magic number empirically determined to be not so bad.
348 var res = 23 + length
349 # Note: the order of the elements must not change the hash value.
350 # So, unlike usual hash functions, the accumulator is not combined with itself.
351 for e in self do res += e.hash
352 return res
353 end
354
355 # Returns the union of this set with the `other` set
356 fun union(other: Set[E]): Set[E]
357 do
358 var nhs = new_set
359 nhs.add_all self
360 nhs.add_all other
361 return nhs
362 end
363
364 # Returns the intersection of this set with the `other` set
365 fun intersection(other: Set[E]): Set[E]
366 do
367 var nhs = new_set
368 for v in self do if other.has(v) then nhs.add(v)
369 return nhs
370 end
371
372 # Returns a new instance of `Set`.
373 #
374 # Depends on the subclass, mainly used for copy services
375 # like `union` or `intersection`.
376 protected fun new_set: Set[E] is abstract
377 end
378
379 # MapRead are abstract associative collections: `key` -> `item`.
380 interface MapRead[K, V]
381 # Get the item at `key`
382 #
383 # var x = new HashMap[String, Int]
384 # x["four"] = 4
385 # assert x["four"] == 4
386 # # assert x["five"] #=> abort
387 #
388 # If the key is not in the map, `provide_default_value` is called (that aborts by default)
389 # See `get_or_null` and `get_or_default` for safe variations.
390 fun [](key: K): V is abstract
391
392 # Get the item at `key` or null if `key` is not in the map.
393 #
394 # var x = new HashMap[String, Int]
395 # x["four"] = 4
396 # assert x.get_or_null("four") == 4
397 # assert x.get_or_null("five") == null
398 #
399 # Note: use `has_key` and `[]` if you need the distinction between a key associated with null, and no key.
400 fun get_or_null(key: K): nullable V
401 do
402 if has_key(key) then return self[key]
403 return null
404 end
405
406 # Get the item at `key` or return `default` if not in map
407 #
408 # var x = new HashMap[String, Int]
409 # x["four"] = 4
410 # assert x.get_or_default("four", 40) == 4
411 # assert x.get_or_default("five", 50) == 50
412 #
413 fun get_or_default(key: K, default: V): V
414 do
415 if has_key(key) then return self[key]
416 return default
417 end
418
419 # Alias for `keys.has`
420 fun has_key(key: K): Bool do return self.keys.has(key)
421
422 # Get a new iterator on the map.
423 fun iterator: MapIterator[K, V] is abstract
424
425 # Return the point of view of self on the values only.
426 # Note that `self` and `values` are views on the same data;
427 # therefore any modification of one is visible on the other.
428 #
429 # var x = new HashMap[String, Int]
430 # x["four"] = 4
431 # assert x.values.has(4) == true
432 # assert x.values.has(5) == false
433 fun values: Collection[V] is abstract
434
435 # Return the point of view of self on the keys only.
436 # Note that `self` and `keys` are views on the same data;
437 # therefore any modification of one is visible on the other.
438 #
439 # var x = new HashMap[String, Int]
440 # x["four"] = 4
441 # assert x.keys.has("four") == true
442 # assert x.keys.has("five") == false
443 fun keys: Collection[K] is abstract
444
445 # Is there no item in the collection?
446 #
447 # var x = new HashMap[String, Int]
448 # assert x.is_empty == true
449 # x["four"] = 4
450 # assert x.is_empty == false
451 fun is_empty: Bool is abstract
452
453 # Number of items in the collection.
454 #
455 # var x = new HashMap[String, Int]
456 # assert x.length == 0
457 # x["four"] = 4
458 # assert x.length == 1
459 # x["five"] = 5
460 # assert x.length == 2
461 fun length: Int is abstract
462
463 # Called by the underling implementation of `[]` to provide a default value when a `key` has no value
464 # By default the behavior is to abort.
465 #
466 # Note: the value is returned *as is*, implementations may want to store the value in the map before returning it
467 # @toimplement
468 protected fun provide_default_value(key: K): V do abort
469 end
470
471 # Maps are associative collections: `key` -> `item`.
472 #
473 # The main operator over maps is [].
474 #
475 # var map: Map[String, Int] = new ArrayMap[String, Int]
476 # # ...
477 # map["one"] = 1 # Associate 'one' to '1'
478 # map["two"] = 2 # Associate 'two' to '2'
479 # assert map["one"] == 1
480 # assert map["two"] == 2
481 #
482 # Instances of maps can be used with the for structure
483 #
484 # for key, value in map do
485 # assert (key == "one" and value == 1) or (key == "two" and value == 2)
486 # end
487 #
488 # The keys and values in the map can also be manipulated directly with the `keys` and `values` methods.
489 #
490 # assert map.keys.has("one") == true
491 # assert map.keys.has("tree") == false
492 # assert map.values.has(1) == true
493 # assert map.values.has(3) == false
494 #
495 interface Map[K, V]
496 super MapRead[K, V]
497
498 # Set the `value` at `key`.
499 #
500 # Values can then get retrieved with `[]`.
501 #
502 # var x = new HashMap[String, Int]
503 # x["four"] = 4
504 # assert x["four"] == 4
505 #
506 # If the key was associated with a value, this old value is discarded
507 # and replaced with the new one.
508 #
509 # x["four"] = 40
510 # assert x["four"] == 40
511 # assert x.values.has(4) == false
512 #
513 fun []=(key: K, value: V) is abstract
514
515 # Add each (key,value) of `map` into `self`.
516 # If a same key exists in `map` and `self`, then the value in self is discarded.
517 #
518 # It is the analogous of `SimpleCollection::add_all`
519 #
520 # var x = new HashMap[String, Int]
521 # x["four"] = 4
522 # x["five"] = 5
523 # var y = new HashMap[String, Int]
524 # y["four"] = 40
525 # y["nine"] = 90
526 # x.recover_with y
527 # assert x["four"] == 40
528 # assert x["five"] == 5
529 # assert x["nine"] == 90
530 fun recover_with(map: MapRead[K, V])
531 do
532 var i = map.iterator
533 while i.is_ok do
534 self[i.key] = i.item
535 i.next
536 end
537 end
538
539 # Remove all items
540 #
541 # var x = new HashMap[String, Int]
542 # x["four"] = 4
543 # x.clear
544 # assert x.keys.has("four") == false
545 #
546 # ENSURE `is_empty`
547 fun clear is abstract
548
549 redef fun values: RemovableCollection[V] is abstract
550
551 redef fun keys: RemovableCollection[K] is abstract
552 end
553
554 # Iterators for Map.
555 interface MapIterator[K, V]
556 # The current item.
557 # Require `is_ok`.
558 fun item: V is abstract
559
560 # The key of the current item.
561 # Require `is_ok`.
562 fun key: K is abstract
563
564 # Jump to the next item.
565 # Require `is_ok`.
566 fun next is abstract
567
568 # Is there a current item ?
569 fun is_ok: Bool is abstract
570
571 # Set a new `item` at `key`.
572 #fun item=(item: E) is abstract
573
574 # Post-iteration hook.
575 #
576 # Used to inform `self` that the iteration is over.
577 # Specific iterators can use this to free some resources.
578 #
579 # Is automatically invoked at the end of `for` structures.
580 #
581 # Do nothing by default.
582 fun finish do end
583 end
584
585 # Iterator on a 'keys' point of view of a map
586 class MapKeysIterator[K, V]
587 super Iterator[K]
588 # The original iterator
589 var original_iterator: MapIterator[K, V]
590
591 redef fun is_ok do return self.original_iterator.is_ok
592 redef fun next do self.original_iterator.next
593 redef fun item do return self.original_iterator.key
594 end
595
596 # Iterator on a 'values' point of view of a map
597 class MapValuesIterator[K, V]
598 super Iterator[V]
599 # The original iterator
600 var original_iterator: MapIterator[K, V]
601
602 redef fun is_ok do return self.original_iterator.is_ok
603 redef fun next do self.original_iterator.next
604 redef fun item do return self.original_iterator.item
605 end
606
607 # Sequences are indexed collections.
608 # The first item is 0. The last is `length-1`.
609 #
610 # The order is the main caracteristic of sequence
611 # and all concrete implementation of sequences are basically interchangeable.
612 interface SequenceRead[E]
613 super Collection[E]
614
615 # Get the first item.
616 # Is equivalent with `self[0]`.
617 #
618 # var a = [1,2,3]
619 # assert a.first == 1
620 #
621 # REQUIRE `not is_empty`
622 redef fun first
623 do
624 assert not_empty: not is_empty
625 return self[0]
626 end
627
628 # Return the index-th element of the sequence.
629 # The first element is 0 and the last is `length-1`
630 # If index is invalid, the program aborts
631 #
632 # var a = [10,20,30]
633 # assert a[0] == 10
634 # assert a[1] == 20
635 # assert a[2] == 30
636 #
637 # REQUIRE `index >= 0 and index < length`
638 fun [](index: Int): E is abstract
639
640 # Get the last item.
641 # Is equivalent with `self[length-1]`.
642 #
643 # var a = [1,2,3]
644 # assert a.last == 3
645 #
646 # REQUIRE `not is_empty`
647 fun last: E
648 do
649 assert not_empty: not is_empty
650 return self[length-1]
651 end
652
653 # The index of the first occurrence of `item`.
654 # Return -1 if `item` is not found.
655 # Comparison is done with `==`.
656 #
657 # var a = [10,20,30,10,20,30]
658 # assert a.index_of(20) == 1
659 # assert a.index_of(40) == -1
660 fun index_of(item: E): Int do return index_of_from(item, 0)
661
662 # The index of the last occurrence of `item`.
663 # Return -1 if `item` is not found.
664 # Comparison is done with `==`.
665 #
666 # var a = [10,20,30,10,20,30]
667 # assert a.last_index_of(20) == 4
668 # assert a.last_index_of(40) == -1
669 fun last_index_of(item: E): Int do return last_index_of_from(item, length-1)
670
671 # The index of the first occurrence of `item`, starting from pos.
672 # Return -1 if `item` is not found.
673 # Comparison is done with `==`.
674 #
675 # var a = [10,20,30,10,20,30]
676 # assert a.index_of_from(20, 3) == 4
677 # assert a.index_of_from(20, 4) == 4
678 # assert a.index_of_from(20, 5) == -1
679 fun index_of_from(item: E, pos: Int): Int
680 do
681 var p = 0
682 var i = iterator
683 while i.is_ok do
684 if p>=pos and i.item == item then return i.index
685 i.next
686 p += 1
687 end
688 return -1
689 end
690
691 # The index of the last occurrence of `item` starting from `pos` and decrementing.
692 # Return -1 if `item` is not found.
693 # Comparison is done with `==`.
694 #
695 # var a = [10,20,30,10,20,30]
696 # assert a.last_index_of_from(20, 2) == 1
697 # assert a.last_index_of_from(20, 1) == 1
698 # assert a.last_index_of_from(20, 0) == -1
699 fun last_index_of_from(item: E, pos: Int): Int
700 do
701 var res = -1
702 var p = 0
703 var i = iterator
704 while i.is_ok do
705 if p>pos then break
706 if i.item == item then res = p
707 i.next
708 p += 1
709 end
710 return res
711 end
712
713 # Two sequences are equals if they have the same items in the same order.
714 #
715 # var a = new List[Int]
716 # a.add(1)
717 # a.add(2)
718 # a.add(3)
719 # assert a == [1,2,3]
720 # assert a != [1,3,2]
721 redef fun ==(o)
722 do
723 if not o isa SequenceRead[nullable Object] then return false
724 var l = length
725 if o.length != l then return false
726 var i = 0
727 while i < l do
728 if self[i] != o[i] then return false
729 i += 1
730 end
731 return true
732 end
733
734 # Because of the law between `==` and `hash`, `hash` is redefined to be the sum of the hash of the elements
735 redef fun hash
736 do
737 # The 17 and 2/3 magic numbers were determined empirically.
738 # Note: the standard hash functions djb2, sbdm and fnv1 were also
739 # tested but were comparable (or worse).
740 var res = 17 + length
741 for e in self do
742 res = res * 3 / 2
743 if e != null then res += e.hash
744 end
745 return res
746 end
747
748 redef fun iterator: IndexedIterator[E] is abstract
749
750 # Gets a new Iterator starting at position `pos`
751 #
752 # var iter = [10,20,30,40,50].iterator_from(2)
753 # assert iter.to_a == [30, 40, 50]
754 fun iterator_from(pos: Int): IndexedIterator[E]
755 do
756 var res = iterator
757 while pos > 0 and res.is_ok do
758 res.next
759 pos -= 1
760 end
761 return res
762 end
763
764 # Gets an iterator starting at the end and going backwards
765 #
766 # var reviter = [1,2,3].reverse_iterator
767 # assert reviter.to_a == [3,2,1]
768 fun reverse_iterator: IndexedIterator[E] is abstract
769
770 # Gets an iterator on the chars of self starting from `pos`
771 #
772 # var reviter = [10,20,30,40,50].reverse_iterator_from(2)
773 # assert reviter.to_a == [30,20,10]
774 fun reverse_iterator_from(pos: Int): IndexedIterator[E]
775 do
776 var res = reverse_iterator
777 while pos > 0 and res.is_ok do
778 res.next
779 pos -= 1
780 end
781 return res
782 end
783 end
784
785 # Sequence are indexed collection.
786 # The first item is 0. The last is `length-1`.
787 interface Sequence[E]
788 super SequenceRead[E]
789 super SimpleCollection[E]
790
791 # Set the first item.
792 # Is equivalent with `self[0] = item`.
793 #
794 # var a = [1,2,3]
795 # a.first = 10
796 # assert a == [10,2,3]
797 fun first=(item: E)
798 do self[0] = item end
799
800 # Set the last item.
801 # Is equivalent with `self[length-1] = item`.
802 #
803 # var a = [1,2,3]
804 # a.last = 10
805 # assert a == [1,2,10]
806 #
807 # If the sequence is empty, `last=` is equivalent with `self[0]=` (thus with `first=`)
808 #
809 # var b = new Array[Int]
810 # b.last = 10
811 # assert b == [10]
812 fun last=(item: E)
813 do
814 var l = length
815 if l > 0 then
816 self[l-1] = item
817 else
818 self[0] = item
819 end
820 end
821
822 # A synonym of `push`
823 redef fun add(e) do push(e)
824
825 # Add an item after the last one.
826 #
827 # var a = [1,2,3]
828 # a.push(10)
829 # a.push(20)
830 # assert a == [1,2,3,10,20]
831 fun push(e: E) is abstract
832
833 # Add each item of `coll` after the last.
834 #
835 # var a = [1,2,3]
836 # a.append([7..9])
837 # assert a == [1,2,3,7,8,9]
838 #
839 # Alias of `add_all`
840 fun append(coll: Collection[E]) do add_all(coll)
841
842 # Remove the last item.
843 #
844 # var a = [1,2,3]
845 # assert a.pop == 3
846 # assert a.pop == 2
847 # assert a == [1]
848 #
849 # REQUIRE `not is_empty`
850 fun pop: E is abstract
851
852 # Add an item before the first one.
853 #
854 # var a = [1,2,3]
855 # a.unshift(10)
856 # a.unshift(20)
857 # assert a == [20,10,1,2,3]
858 fun unshift(e: E) is abstract
859
860 # Add all items of `coll` before the first one.
861 #
862 # var a = [1,2,3]
863 # a.prepend([7..9])
864 # assert a == [7,8,9,1,2,3]
865 #
866 # Alias of `insert_at(coll, 0)`
867 fun prepend(coll: Collection[E]) do insert_all(coll, 0)
868
869 # Remove the first item.
870 # The second item thus become the first.
871 #
872 # var a = [1,2,3]
873 # assert a.shift == 1
874 # assert a.shift == 2
875 # assert a == [3]
876 #
877 # REQUIRE `not is_empty`
878 fun shift: E is abstract
879
880 # Set the `item` at `index`.
881 #
882 # var a = [10,20,30]
883 # a[1] = 200
884 # assert a == [10,200,30]
885 #
886 # like with `[]`, index should be between `0` and `length-1`
887 # However, if `index==length`, `[]=` works like `push`.
888 #
889 # a[3] = 400
890 # assert a == [10,200,30,400]
891 #
892 # REQUIRE `index >= 0 and index <= length`
893 fun []=(index: Int, item: E) is abstract
894
895 # Insert an element at a given position, following elements are shifted.
896 #
897 # var a = [10, 20, 30, 40]
898 # a.insert(100, 2)
899 # assert a == [10, 20, 100, 30, 40]
900 #
901 # REQUIRE `index >= 0 and index <= length`
902 # ENSURE `self[index] == item`
903 fun insert(item: E, index: Int) is abstract
904
905 # Insert all elements at a given position, following elements are shifted.
906 #
907 # var a = [10, 20, 30, 40]
908 # a.insert_all([100..102], 2)
909 # assert a == [10, 20, 100, 101, 102, 30, 40]
910 #
911 # REQUIRE `index >= 0 and index <= length`
912 # ENSURE `self[index] == coll.first`
913 fun insert_all(coll: Collection[E], index: Int)
914 do
915 assert index >= 0 and index < length
916 if index == length then
917 add_all(coll)
918 end
919 for c in coll do
920 insert(c, index)
921 index += 1
922 end
923 end
924
925 # Remove the item at `index` and shift all following elements
926 #
927 # var a = [10,20,30]
928 # a.remove_at(1)
929 # assert a == [10,30]
930 #
931 # REQUIRE `index >= 0 and index < length`
932 fun remove_at(index: Int) is abstract
933 end
934
935 # Iterators on indexed collections.
936 interface IndexedIterator[E]
937 super Iterator[E]
938 # The index of the current item.
939 fun index: Int is abstract
940 end
941
942 # Associative arrays that internally uses couples to represent each (key, value) pairs.
943 # This is an helper class that some specific implementation of Map may implements.
944 interface CoupleMap[K, V]
945 super Map[K, V]
946
947 # Return the couple of the corresponding key
948 # Return null if the key is no associated element
949 protected fun couple_at(key: K): nullable Couple[K, V] is abstract
950
951 # Return a new iteralot on all couples
952 # Used to provide `iterator` and others
953 protected fun couple_iterator: Iterator[Couple[K,V]] is abstract
954
955 redef fun iterator do return new CoupleMapIterator[K,V](couple_iterator)
956
957 redef fun [](key)
958 do
959 var c = couple_at(key)
960 if c == null then
961 return provide_default_value(key)
962 else
963 return c.second
964 end
965 end
966 end
967
968 # Iterator on CoupleMap
969 #
970 # Actually it is a wrapper around an iterator of the internal array of the map.
971 private class CoupleMapIterator[K, V]
972 super MapIterator[K, V]
973 redef fun item do return _iter.item.second
974
975 #redef fun item=(e) do _iter.item.second = e
976
977 redef fun key do return _iter.item.first
978
979 redef fun is_ok do return _iter.is_ok
980
981 redef fun next
982 do
983 _iter.next
984 end
985
986 var iter: Iterator[Couple[K,V]]
987 end
988
989 # Some tools ###################################################################
990
991 # Two objects in a simple structure.
992 class Couple[F, S]
993
994 # The first element of the couple.
995 var first: F is writable
996
997 # The second element of the couple.
998 var second: S is writable
999 end