Merge: doc: fixed some typos and other misc. corrections
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 #
54 # ~~~
55 # var m = new ModelDiamond
56 # assert m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_a)
57 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_a, m.mclassdef_b)
58 # assert not m.mclassdef_hierarchy.has_edge(m.mclassdef_b, m.mclassdef_c)
59 # ~~~
60 var mclassdef_hierarchy = new POSet[MClassDef]
61
62 # Class-type hierarchy restricted to the introduction.
63 #
64 # The idea is that what is true on introduction is always true whatever
65 # the module considered.
66 # Therefore, this hierarchy is used for a fast positive subtype check.
67 #
68 # This poset will evolve in a monotonous way:
69 # * Two non connected nodes will remain unconnected
70 # * New nodes can appear with new edges
71 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
72
73 # Global overlapped class-type hierarchy.
74 # The hierarchy when all modules are combined.
75 # Therefore, this hierarchy is used for a fast negative subtype check.
76 #
77 # This poset will evolve in an anarchic way. Loops can even be created.
78 #
79 # FIXME decide what to do on loops
80 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
81
82 # Collections of classes grouped by their short name
83 private var mclasses_by_name = new MultiHashMap[String, MClass]
84
85 # Return all classes named `name`.
86 #
87 # If such a class does not exist, null is returned
88 # (instead of an empty array)
89 #
90 # Visibility or modules are not considered
91 #
92 # ~~~
93 # var m = new ModelStandalone
94 # assert m.get_mclasses_by_name("Object") == [m.mclass_o]
95 # assert m.get_mclasses_by_name("Fail") == null
96 # ~~~
97 fun get_mclasses_by_name(name: String): nullable Array[MClass]
98 do
99 return mclasses_by_name.get_or_null(name)
100 end
101
102 # Collections of properties grouped by their short name
103 private var mproperties_by_name = new MultiHashMap[String, MProperty]
104
105 # Return all properties named `name`.
106 #
107 # If such a property does not exist, null is returned
108 # (instead of an empty array)
109 #
110 # Visibility or modules are not considered
111 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
112 do
113 return mproperties_by_name.get_or_null(name)
114 end
115
116 # The only null type
117 var null_type = new MNullType(self)
118
119 # The only bottom type
120 var bottom_type: MBottomType = null_type.as_notnull
121
122 # Build an ordered tree with from `concerns`
123 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
124 var seen = new HashSet[MConcern]
125 var res = new ConcernsTree
126
127 var todo = new Array[MConcern]
128 todo.add_all mconcerns
129
130 while not todo.is_empty do
131 var c = todo.pop
132 if seen.has(c) then continue
133 var pc = c.parent_concern
134 if pc == null then
135 res.add(null, c)
136 else
137 res.add(pc, c)
138 todo.add(pc)
139 end
140 seen.add(c)
141 end
142
143 return res
144 end
145 end
146
147 # An OrderedTree bound to MEntity.
148 #
149 # We introduce a new class so it can be easily refined by tools working
150 # with a Model.
151 class MEntityTree
152 super OrderedTree[MEntity]
153 end
154
155 # A MEntityTree borned to MConcern.
156 #
157 # TODO remove when nitdoc is fully merged with model_collect
158 class ConcernsTree
159 super OrderedTree[MConcern]
160 end
161
162 redef class MGroup
163 redef var is_test is lazy do
164 var parent = self.parent
165 if parent != null and parent.is_test then return true
166 return name == "tests"
167 end
168 end
169
170 redef class MModule
171 # All the classes introduced in the module
172 var intro_mclasses = new Array[MClass]
173
174 # All the class definitions of the module
175 # (introduction and refinement)
176 var mclassdefs = new Array[MClassDef]
177
178 private var mclassdef_sorter: MClassDefSorter is lazy do
179 return new MClassDefSorter(self)
180 end
181
182 private var mpropdef_sorter: MPropDefSorter is lazy do
183 return new MPropDefSorter(self)
184 end
185
186 # Does the current module has a given class `mclass`?
187 # Return true if the mmodule introduces, refines or imports a class.
188 # Visibility is not considered.
189 fun has_mclass(mclass: MClass): Bool
190 do
191 return self.in_importation <= mclass.intro_mmodule
192 end
193
194 # Full hierarchy of introduced and imported classes.
195 #
196 # Create a new hierarchy got by flattening the classes for the module
197 # and its imported modules.
198 # Visibility is not considered.
199 #
200 # Note: this function is expensive and is usually used for the main
201 # module of a program only. Do not use it to do your own subtype
202 # functions.
203 fun flatten_mclass_hierarchy: POSet[MClass]
204 do
205 var res = self.flatten_mclass_hierarchy_cache
206 if res != null then return res
207 self.flatten_mclass_hierarchy_cache = new POSet[MClass]
208 for m in self.in_importation.greaters do
209 for cd in m.mclassdefs do
210 unsafe_update_hierarchy_cache(cd)
211 end
212 end
213 return self.flatten_mclass_hierarchy_cache.as(not null)
214 end
215
216 # Adds another class definition in the modue.
217 # Updates the class hierarchy cache.
218 fun add_mclassdef(mclassdef: MClassDef)
219 do
220 self.mclassdefs.add(mclassdef)
221 if self.flatten_mclass_hierarchy_cache != null then
222 unsafe_update_hierarchy_cache(mclassdef)
223 end
224 end
225
226 # Adds a class definition inside `flatten_mclass_hierarchy_cache` without
227 # null check. The caller must have initialized the cache.
228 protected fun unsafe_update_hierarchy_cache(mclassdef: MClassDef)
229 do
230 var hierarchy = self.flatten_mclass_hierarchy_cache.as(not null)
231 # Update the cache
232 var c = mclassdef.mclass
233 hierarchy.add_node(c)
234 for s in mclassdef.supertypes do
235 hierarchy.add_edge(c, s.mclass)
236 end
237 end
238
239 # Sort a given array of classes using the linearization order of the module
240 # The most general is first, the most specific is last
241 fun linearize_mclasses(mclasses: Array[MClass])
242 do
243 self.flatten_mclass_hierarchy.sort(mclasses)
244 end
245
246 # Sort a given array of class definitions using the linearization order of the module
247 # the refinement link is stronger than the specialisation link
248 # The most general is first, the most specific is last
249 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
250 do
251 mclassdef_sorter.sort(mclassdefs)
252 end
253
254 # Sort a given array of property definitions using the linearization order of the module
255 # the refinement link is stronger than the specialisation link
256 # The most general is first, the most specific is last
257 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
258 do
259 mpropdef_sorter.sort(mpropdefs)
260 end
261
262 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
263
264 # The primitive type `Object`, the root of the class hierarchy
265 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
266
267 # The type `Pointer`, super class to all extern classes
268 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
269
270 # The primitive type `Bool`
271 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
272
273 # The primitive type `Int`
274 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
275
276 # The primitive type `Byte`
277 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
278
279 # The primitive type `Int8`
280 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
281
282 # The primitive type `Int16`
283 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
284
285 # The primitive type `UInt16`
286 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
287
288 # The primitive type `Int32`
289 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
290
291 # The primitive type `UInt32`
292 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
293
294 # The primitive type `Char`
295 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
296
297 # The primitive type `Float`
298 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
299
300 # The primitive type `String`
301 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
302
303 # The primitive type `CString`
304 var c_string_type: MClassType = self.get_primitive_class("CString").mclass_type is lazy
305
306 # A primitive type of `Array`
307 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
308
309 # The primitive class `Array`
310 var array_class: MClass = self.get_primitive_class("Array") is lazy
311
312 # A primitive type of `NativeArray`
313 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
314
315 # The primitive class `NativeArray`
316 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
317
318 # The primitive type `Sys`, the main type of the program, if any
319 fun sys_type: nullable MClassType
320 do
321 var clas = self.model.get_mclasses_by_name("Sys")
322 if clas == null then return null
323 return get_primitive_class("Sys").mclass_type
324 end
325
326 # The primitive type `Finalizable`
327 # Used to tag classes that need to be finalized.
328 fun finalizable_type: nullable MClassType
329 do
330 var clas = self.model.get_mclasses_by_name("Finalizable")
331 if clas == null then return null
332 return get_primitive_class("Finalizable").mclass_type
333 end
334
335 # Force to get the primitive class named `name` or abort
336 fun get_primitive_class(name: String): MClass
337 do
338 var cla = self.model.get_mclasses_by_name(name)
339 # Filter classes by introducing module
340 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
341 if cla == null or cla.is_empty then
342 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
343 # Bool is injected because it is needed by engine to code the result
344 # of the implicit casts.
345 var loc = model.no_location
346 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
347 var cladef = new MClassDef(self, c.mclass_type, loc)
348 cladef.set_supertypes([object_type])
349 cladef.add_in_hierarchy
350 return c
351 end
352 print_error("Fatal Error: no primitive class {name} in {self}")
353 exit(1)
354 abort
355 end
356 if cla.length != 1 then
357 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
358 for c in cla do msg += " {c.full_name}"
359 print_error msg
360 #exit(1)
361 end
362 return cla.first
363 end
364
365 # Try to get the primitive method named `name` on the type `recv`
366 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
367 do
368 var props = self.model.get_mproperties_by_name(name)
369 if props == null then return null
370 var res: nullable MMethod = null
371 var recvtype = recv.intro.bound_mtype
372 for mprop in props do
373 assert mprop isa MMethod
374 if not recvtype.has_mproperty(self, mprop) then continue
375 if res == null then
376 res = mprop
377 else if res != mprop then
378 print_error("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
379 abort
380 end
381 end
382 return res
383 end
384 end
385
386 private class MClassDefSorter
387 super Comparator
388 redef type COMPARED: MClassDef
389 var mmodule: MModule
390 redef fun compare(a, b)
391 do
392 var ca = a.mclass
393 var cb = b.mclass
394 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
395 return mmodule.model.mclassdef_hierarchy.compare(a, b)
396 end
397 end
398
399 private class MPropDefSorter
400 super Comparator
401 redef type COMPARED: MPropDef
402 var mmodule: MModule
403
404 redef fun compare(pa, pb)
405 do
406 var a = pa.mclassdef
407 var b = pb.mclassdef
408 return mmodule.mclassdef_sorter.compare(a, b)
409 end
410 end
411
412 # A named class
413 #
414 # `MClass`es are global to the model; it means that a `MClass` is not bound
415 # to a specific `MModule`.
416 #
417 # This characteristic helps the reasoning about classes in a program since a
418 # single `MClass` object always denote the same class.
419 #
420 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
421 # These do not really have properties nor belong to a hierarchy since the property and the
422 # hierarchy of a class depends of the refinement in the modules.
423 #
424 # Most services on classes require the precision of a module, and no one can asks what are
425 # the super-classes of a class nor what are properties of a class without precising what is
426 # the module considered.
427 #
428 # For instance, during the typing of a source-file, the module considered is the module of the file.
429 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
430 # *is the method `foo` exists in the class `Bar` in the current module?*
431 #
432 # During some global analysis, the module considered may be the main module of the program.
433 class MClass
434 super MEntity
435
436 # The module that introduce the class
437 #
438 # While classes are not bound to a specific module,
439 # the introducing module is used for naming and visibility.
440 var intro_mmodule: MModule
441
442 # The short name of the class
443 # In Nit, the name of a class cannot evolve in refinements
444 redef var name
445
446 redef var location
447
448 # The canonical name of the class
449 #
450 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
451 # Example: `"owner::module::MyClass"`
452 redef var full_name is lazy do
453 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
454 end
455
456 redef var c_name is lazy do
457 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
458 end
459
460 # The number of generic formal parameters
461 # 0 if the class is not generic
462 var arity: Int is noinit
463
464 # Each generic formal parameters in order.
465 # is empty if the class is not generic
466 var mparameters = new Array[MParameterType]
467
468 # A string version of the signature a generic class.
469 #
470 # eg. `Map[K: nullable Object, V: nullable Object]`
471 #
472 # If the class in non generic the name is just given.
473 #
474 # eg. `Object`
475 fun signature_to_s: String
476 do
477 if arity == 0 then return name
478 var res = new FlatBuffer
479 res.append name
480 res.append "["
481 for i in [0..arity[ do
482 if i > 0 then res.append ", "
483 res.append mparameters[i].name
484 res.append ": "
485 res.append intro.bound_mtype.arguments[i].to_s
486 end
487 res.append "]"
488 return res.to_s
489 end
490
491 # Initialize `mparameters` from their names.
492 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
493 autoinit
494 do
495 if parameter_names == null then
496 self.arity = 0
497 else
498 self.arity = parameter_names.length
499 end
500
501 # Create the formal parameter types
502 if arity > 0 then
503 assert parameter_names != null
504 var mparametertypes = new Array[MParameterType]
505 for i in [0..arity[ do
506 var mparametertype = new MParameterType(self, i, parameter_names[i])
507 mparametertypes.add(mparametertype)
508 end
509 self.mparameters = mparametertypes
510 var mclass_type = new MGenericType(self, mparametertypes)
511 self.mclass_type = mclass_type
512 self.get_mtype_cache[mparametertypes] = mclass_type
513 else
514 self.mclass_type = new MClassType(self)
515 end
516 end
517
518 # The kind of the class (interface, abstract class, etc.)
519 #
520 # In Nit, the kind of a class cannot evolve in refinements.
521 var kind: MClassKind
522
523 # The visibility of the class
524 #
525 # In Nit, the visibility of a class cannot evolve in refinements.
526 redef var visibility
527
528 init
529 do
530 intro_mmodule.intro_mclasses.add(self)
531 var model = intro_mmodule.model
532 model.mclasses_by_name.add_one(name, self)
533 model.mclasses.add(self)
534 end
535
536 redef fun model do return intro_mmodule.model
537
538 # All class definitions (introduction and refinements)
539 var mclassdefs = new Array[MClassDef]
540
541 # Alias for `name`
542 redef fun to_s do return self.name
543
544 # The definition that introduces the class.
545 #
546 # Warning: such a definition may not exist in the early life of the object.
547 # In this case, the method will abort.
548 #
549 # Use `try_intro` instead.
550 var intro: MClassDef is noinit
551
552 # The definition that introduces the class or `null` if not yet known.
553 #
554 # SEE: `intro`
555 fun try_intro: nullable MClassDef do
556 if isset _intro then return _intro else return null
557 end
558
559 # Return the class `self` in the class hierarchy of the module `mmodule`.
560 #
561 # SEE: `MModule::flatten_mclass_hierarchy`
562 # REQUIRE: `mmodule.has_mclass(self)`
563 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
564 do
565 return mmodule.flatten_mclass_hierarchy[self]
566 end
567
568 # The principal static type of the class.
569 #
570 # For non-generic class, `mclass_type` is the only `MClassType` based
571 # on self.
572 #
573 # For a generic class, the arguments are the formal parameters.
574 # i.e.: for the class `Array[E:Object]`, the `mclass_type` is `Array[E]`.
575 # If you want `Array[Object]`, see `MClassDef::bound_mtype`.
576 #
577 # For generic classes, the mclass_type is also the way to get a formal
578 # generic parameter type.
579 #
580 # To get other types based on a generic class, see `get_mtype`.
581 #
582 # ENSURE: `mclass_type.mclass == self`
583 var mclass_type: MClassType is noinit
584
585 # Return a generic type based on the class
586 # Is the class is not generic, then the result is `mclass_type`
587 #
588 # REQUIRE: `mtype_arguments.length == self.arity`
589 fun get_mtype(mtype_arguments: Array[MType]): MClassType
590 do
591 assert mtype_arguments.length == self.arity
592 if self.arity == 0 then return self.mclass_type
593 var res = get_mtype_cache.get_or_null(mtype_arguments)
594 if res != null then return res
595 res = new MGenericType(self, mtype_arguments)
596 self.get_mtype_cache[mtype_arguments.to_a] = res
597 return res
598 end
599
600 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
601
602 # Is there a `new` factory to allow the pseudo instantiation?
603 var has_new_factory = false is writable
604
605 # Is `self` a standard or abstract class kind?
606 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
607
608 # Is `self` an interface kind?
609 var is_interface: Bool is lazy do return kind == interface_kind
610
611 # Is `self` an enum kind?
612 var is_enum: Bool is lazy do return kind == enum_kind
613
614 # Is `self` and abstract class?
615 var is_abstract: Bool is lazy do return kind == abstract_kind
616
617 redef var is_test is lazy do return intro.is_test
618
619 redef fun mdoc_or_fallback
620 do
621 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
622 # recursion.
623 return intro.mdoc
624 end
625 end
626
627
628 # A definition (an introduction or a refinement) of a class in a module
629 #
630 # A `MClassDef` is associated with an explicit (or almost) definition of a
631 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
632 # a specific class and a specific module, and contains declarations like super-classes
633 # or properties.
634 #
635 # It is the class definitions that are the backbone of most things in the model:
636 # ClassDefs are defined with regard with other classdefs.
637 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
638 #
639 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
640 class MClassDef
641 super MEntity
642
643 # The module where the definition is
644 var mmodule: MModule
645
646 # The associated `MClass`
647 var mclass: MClass is noinit
648
649 # The bounded type associated to the mclassdef
650 #
651 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
652 # are the same type.
653 #
654 # Example:
655 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
656 # If you want Array[E], then see `mclass.mclass_type`
657 #
658 # ENSURE: `bound_mtype.mclass == self.mclass`
659 var bound_mtype: MClassType
660
661 redef var location
662
663 redef fun visibility do return mclass.visibility
664
665 # Internal name combining the module and the class
666 # Example: "mymodule$MyClass"
667 redef var to_s is noinit
668
669 init
670 do
671 self.mclass = bound_mtype.mclass
672 mmodule.add_mclassdef(self)
673 mclass.mclassdefs.add(self)
674 if mclass.intro_mmodule == mmodule then
675 assert not isset mclass._intro
676 mclass.intro = self
677 end
678 self.to_s = "{mmodule}${mclass}"
679 end
680
681 # Actually the name of the `mclass`
682 redef fun name do return mclass.name
683
684 # The module and class name separated by a '$'.
685 #
686 # The short-name of the class is used for introduction.
687 # Example: "my_module$MyClass"
688 #
689 # The full-name of the class is used for refinement.
690 # Example: "my_module$intro_module::MyClass"
691 redef var full_name is lazy do
692 if is_intro then
693 # public gives 'p$A'
694 # private gives 'p::m$A'
695 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
696 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
697 # public gives 'q::n$p::A'
698 # private gives 'q::n$p::m::A'
699 return "{mmodule.full_name}${mclass.full_name}"
700 else if mclass.visibility > private_visibility then
701 # public gives 'p::n$A'
702 return "{mmodule.full_name}${mclass.name}"
703 else
704 # private gives 'p::n$::m::A' (redundant p is omitted)
705 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
706 end
707 end
708
709 redef var c_name is lazy do
710 if is_intro then
711 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
712 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
713 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
714 else
715 return "{mmodule.c_name}___{mclass.c_name}"
716 end
717 end
718
719 redef fun model do return mmodule.model
720
721 # All declared super-types
722 # FIXME: quite ugly but not better idea yet
723 var supertypes = new Array[MClassType]
724
725 # Register some super-types for the class (ie "super SomeType")
726 #
727 # The hierarchy must not already be set
728 # REQUIRE: `self.in_hierarchy == null`
729 fun set_supertypes(supertypes: Array[MClassType])
730 do
731 assert unique_invocation: self.in_hierarchy == null
732 var mmodule = self.mmodule
733 var model = mmodule.model
734 var mtype = self.bound_mtype
735
736 for supertype in supertypes do
737 self.supertypes.add(supertype)
738
739 # Register in full_type_specialization_hierarchy
740 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
741 # Register in intro_type_specialization_hierarchy
742 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
743 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
744 end
745 end
746
747 end
748
749 # Collect the super-types (set by set_supertypes) to build the hierarchy
750 #
751 # This function can only invoked once by class
752 # REQUIRE: `self.in_hierarchy == null`
753 # ENSURE: `self.in_hierarchy != null`
754 fun add_in_hierarchy
755 do
756 assert unique_invocation: self.in_hierarchy == null
757 var model = mmodule.model
758 var res = model.mclassdef_hierarchy.add_node(self)
759 self.in_hierarchy = res
760 var mtype = self.bound_mtype
761
762 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
763 # The simpliest way is to attach it to collect_mclassdefs
764 for mclassdef in mtype.collect_mclassdefs(mmodule) do
765 res.poset.add_edge(self, mclassdef)
766 end
767 end
768
769 # The view of the class definition in `mclassdef_hierarchy`
770 var in_hierarchy: nullable POSetElement[MClassDef] = null
771
772 # Is the definition the one that introduced `mclass`?
773 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
774
775 # All properties introduced by the classdef
776 var intro_mproperties = new Array[MProperty]
777
778 # All property introductions and redefinitions in `self` (not inheritance).
779 var mpropdefs = new Array[MPropDef]
780
781 # The special default_init constructor
782 var default_init: nullable MMethodDef = null is writable
783
784 # All property introductions and redefinitions (not inheritance) in `self` by its associated property.
785 var mpropdefs_by_property = new HashMap[MProperty, MPropDef]
786
787 # Return the direct parent mtype of `self`
788 # Exemple
789 # ~~~nitish
790 # module 1
791 #
792 # class A
793 # class B
794 # super A
795 #
796 # module 2
797 #
798 # redef class A
799 # class C
800 # super B
801 #
802 # mclassdef_C.get_direct_supermtype == [B]
803 # ~~~~
804 fun get_direct_supermtype: Collection[MClassType]
805 do
806 # Get the potentiel direct parents
807 var parents = in_hierarchy.direct_greaters
808 # Stock the potentiel direct parents
809 var res = supertypes
810 for parent in parents do
811 # remove all super parents of the potentiel direct parents
812 res.remove_all(parent.supertypes)
813 # if the length of the potentiel direct parent equal 1 break
814 if res.length == 1 then break
815 end
816 return res
817 end
818
819 redef fun mdoc_or_fallback do return mdoc or else mclass.mdoc_or_fallback
820 end
821
822 # A global static type
823 #
824 # MType are global to the model; it means that a `MType` is not bound to a
825 # specific `MModule`.
826 # This characteristic helps the reasoning about static types in a program
827 # since a single `MType` object always denote the same type.
828 #
829 # However, because a `MType` is global, it does not really have properties
830 # nor have subtypes to a hierarchy since the property and the class hierarchy
831 # depends of a module.
832 # Moreover, virtual types an formal generic parameter types also depends on
833 # a receiver to have sense.
834 #
835 # Therefore, most method of the types require a module and an anchor.
836 # The module is used to know what are the classes and the specialization
837 # links.
838 # The anchor is used to know what is the bound of the virtual types and formal
839 # generic parameter types.
840 #
841 # MType are not directly usable to get properties. See the `anchor_to` method
842 # and the `MClassType` class.
843 #
844 # FIXME: the order of the parameters is not the best. We mus pick on from:
845 # * foo(mmodule, anchor, othertype)
846 # * foo(othertype, anchor, mmodule)
847 # * foo(anchor, mmodule, othertype)
848 # * foo(othertype, mmodule, anchor)
849 abstract class MType
850 super MEntity
851
852 redef fun name do return to_s
853
854 # Return true if `self` is an subtype of `sup`.
855 # The typing is done using the standard typing policy of Nit.
856 #
857 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
858 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
859 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
860 do
861 var sub = self
862 if sub == sup then return true
863
864 #print "1.is {sub} a {sup}? ===="
865
866 if anchor == null then
867 assert not sub.need_anchor
868 assert not sup.need_anchor
869 else
870 # First, resolve the formal types to the simplest equivalent forms in the receiver
871 assert sub.can_resolve_for(anchor, null, mmodule)
872 sub = sub.lookup_fixed(mmodule, anchor)
873 assert sup.can_resolve_for(anchor, null, mmodule)
874 sup = sup.lookup_fixed(mmodule, anchor)
875 end
876
877 # Does `sup` accept null or not?
878 # Discard the nullable marker if it exists
879 var sup_accept_null = false
880 if sup isa MNullableType then
881 sup_accept_null = true
882 sup = sup.mtype
883 else if sup isa MNotNullType then
884 sup = sup.mtype
885 else if sup isa MNullType then
886 sup_accept_null = true
887 end
888
889 # Can `sub` provide null or not?
890 # Thus we can match with `sup_accept_null`
891 # Also discard the nullable marker if it exists
892 var sub_reject_null = false
893 if sub isa MNullableType then
894 if not sup_accept_null then return false
895 sub = sub.mtype
896 else if sub isa MNotNullType then
897 sub_reject_null = true
898 sub = sub.mtype
899 else if sub isa MNullType then
900 return sup_accept_null
901 end
902 # Now the case of direct null and nullable is over.
903
904 # If `sub` is a formal type, then it is accepted if its bound is accepted
905 while sub isa MFormalType do
906 #print "3.is {sub} a {sup}?"
907
908 # A unfixed formal type can only accept itself
909 if sub == sup then return true
910
911 assert anchor != null
912 sub = sub.lookup_bound(mmodule, anchor)
913 if sub_reject_null then sub = sub.as_notnull
914
915 #print "3.is {sub} a {sup}?"
916
917 # Manage the second layer of null/nullable
918 if sub isa MNullableType then
919 if not sup_accept_null and not sub_reject_null then return false
920 sub = sub.mtype
921 else if sub isa MNotNullType then
922 sub_reject_null = true
923 sub = sub.mtype
924 else if sub isa MNullType then
925 return sup_accept_null
926 end
927 end
928 #print "4.is {sub} a {sup}? <- no more resolution"
929
930 if sub isa MBottomType or sub isa MErrorType then
931 return true
932 end
933
934 assert sub isa MClassType else print_error "{sub} <? {sup}" # It is the only remaining type
935
936 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
937 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType or sup isa MErrorType then
938 # These types are not super-types of Class-based types.
939 return false
940 end
941
942 assert sup isa MClassType else print_error "got {sup} {sub.inspect}" # It is the only remaining type
943
944 # Now both are MClassType, we need to dig
945
946 if sub == sup then return true
947
948 if anchor == null then anchor = sub # UGLY: any anchor will work
949 var resolved_sub = sub.anchor_to(mmodule, anchor)
950 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
951 if not res then return false
952 if not sup isa MGenericType then return true
953 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
954 assert sub2.mclass == sup.mclass
955 for i in [0..sup.mclass.arity[ do
956 var sub_arg = sub2.arguments[i]
957 var sup_arg = sup.arguments[i]
958 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
959 if not res then return false
960 end
961 return true
962 end
963
964 # The base class type on which self is based
965 #
966 # This base type is used to get property (an internally to perform
967 # unsafe type comparison).
968 #
969 # Beware: some types (like null) are not based on a class thus this
970 # method will crash
971 #
972 # Basically, this function transform the virtual types and parameter
973 # types to their bounds.
974 #
975 # Example
976 #
977 # class A end
978 # class B super A end
979 # class X end
980 # class Y super X end
981 # class G[T: A]
982 # type U: X
983 # end
984 # class H
985 # super G[B]
986 # redef type U: Y
987 # end
988 #
989 # Map[T,U] anchor_to H #-> Map[B,Y]
990 #
991 # Explanation of the example:
992 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
993 # because "redef type U: Y". Therefore, Map[T, U] is bound to
994 # Map[B, Y]
995 #
996 # REQUIRE: `self.need_anchor implies anchor != null`
997 # ENSURE: `not self.need_anchor implies result == self`
998 # ENSURE: `not result.need_anchor`
999 fun anchor_to(mmodule: MModule, anchor: nullable MClassType): MType
1000 do
1001 if not need_anchor then return self
1002 assert anchor != null and not anchor.need_anchor
1003 # Just resolve to the anchor and clear all the virtual types
1004 var res = self.resolve_for(anchor, null, mmodule, true)
1005 assert not res.need_anchor
1006 return res
1007 end
1008
1009 # Does `self` contain a virtual type or a formal generic parameter type?
1010 # In order to remove those types, you usually want to use `anchor_to`.
1011 fun need_anchor: Bool do return true
1012
1013 # Return the supertype when adapted to a class.
1014 #
1015 # In Nit, for each super-class of a type, there is a equivalent super-type.
1016 #
1017 # Example:
1018 #
1019 # ~~~nitish
1020 # class G[T, U] end
1021 # class H[V] super G[V, Bool] end
1022 #
1023 # H[Int] supertype_to G #-> G[Int, Bool]
1024 # ~~~
1025 #
1026 # REQUIRE: `super_mclass` is a super-class of `self`
1027 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
1028 # ENSURE: `result.mclass = super_mclass`
1029 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
1030 do
1031 if super_mclass.arity == 0 then return super_mclass.mclass_type
1032 if self isa MClassType and self.mclass == super_mclass then return self
1033 var resolved_self
1034 if self.need_anchor then
1035 assert anchor != null
1036 resolved_self = self.anchor_to(mmodule, anchor)
1037 else
1038 resolved_self = self
1039 end
1040 var supertypes = resolved_self.collect_mtypes(mmodule)
1041 for supertype in supertypes do
1042 if supertype.mclass == super_mclass then
1043 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1044 return supertype.resolve_for(self, anchor, mmodule, false)
1045 end
1046 end
1047 abort
1048 end
1049
1050 # Replace formals generic types in self with resolved values in `mtype`
1051 # If `cleanup_virtual` is true, then virtual types are also replaced
1052 # with their bounds.
1053 #
1054 # This function returns self if `need_anchor` is false.
1055 #
1056 # ## Example 1
1057 #
1058 # ~~~
1059 # class G[E] end
1060 # class H[F] super G[F] end
1061 # class X[Z] end
1062 # ~~~
1063 #
1064 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
1065 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
1066 #
1067 # Explanation of the example:
1068 # * Array[E].need_anchor is true because there is a formal generic parameter type E
1069 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
1070 # * Since "H[F] super G[F]", E is in fact F for H
1071 # * More specifically, in H[Int], E is Int
1072 # * So, in H[Int], Array[E] is Array[Int]
1073 #
1074 # This function is mainly used to inherit a signature.
1075 # Because, unlike `anchor_to`, we do not want a full resolution of
1076 # a type but only an adapted version of it.
1077 #
1078 # ## Example 2
1079 #
1080 # ~~~
1081 # class A[E]
1082 # fun foo(e:E):E is abstract
1083 # end
1084 # class B super A[Int] end
1085 # ~~~
1086 #
1087 # The signature on foo is (e: E): E
1088 # If we resolve the signature for B, we get (e:Int):Int
1089 #
1090 # ## Example 3
1091 #
1092 # ~~~nitish
1093 # class A[E]
1094 # fun foo(e:E):E is abstract
1095 # end
1096 # class C[F]
1097 # var a: A[Array[F]]
1098 # fun bar do a.foo(x) # <- x is here
1099 # end
1100 # ~~~
1101 #
1102 # The first question is: is foo available on `a`?
1103 #
1104 # The static type of a is `A[Array[F]]`, that is an open type.
1105 # in order to find a method `foo`, whe must look at a resolved type.
1106 #
1107 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1108 #
1109 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1110 #
1111 # The next question is: what is the accepted types for `x`?
1112 #
1113 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1114 #
1115 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1116 #
1117 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1118 #
1119 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1120 # two function instead of one seems also to be a bad idea.
1121 #
1122 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1123 # ENSURE: `not self.need_anchor implies result == self`
1124 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1125
1126 # Resolve formal type to its verbatim bound.
1127 # If the type is not formal, just return self
1128 #
1129 # The result is returned exactly as declared in the "type" property (verbatim).
1130 # So it could be another formal type.
1131 #
1132 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1133 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1134
1135 # Resolve the formal type to its simplest equivalent form.
1136 #
1137 # Formal types are either free or fixed.
1138 # When it is fixed, it means that it is equivalent with a simpler type.
1139 # When a formal type is free, it means that it is only equivalent with itself.
1140 # This method return the most simple equivalent type of `self`.
1141 #
1142 # This method is mainly used for subtype test in order to sanely compare fixed.
1143 #
1144 # By default, return self.
1145 # See the redefinitions for specific behavior in each kind of type.
1146 #
1147 # In case of conflicts or inconsistencies in the model, the method returns a `MErrorType`.
1148 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1149
1150 # Is the type a `MErrorType` or contains an `MErrorType`?
1151 #
1152 # `MErrorType` are used in result with conflict or inconsistencies.
1153 #
1154 # See `is_legal_in` to check conformity with generic bounds.
1155 fun is_ok: Bool do return true
1156
1157 # Is the type legal in a given `mmodule` (with an optional `anchor`)?
1158 #
1159 # A type is valid if:
1160 #
1161 # * it does not contain a `MErrorType` (see `is_ok`).
1162 # * its generic formal arguments are within their bounds.
1163 fun is_legal_in(mmodule: MModule, anchor: nullable MClassType): Bool do return is_ok
1164
1165 # Can the type be resolved?
1166 #
1167 # In order to resolve open types, the formal types must make sence.
1168 #
1169 # ## Example
1170 #
1171 # class A[E]
1172 # end
1173 # class B[F]
1174 # end
1175 #
1176 # ~~~nitish
1177 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1178 #
1179 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1180 #
1181 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1182 # # B[E] is a red hearing only the E is important,
1183 # # E make sense in A
1184 # ~~~
1185 #
1186 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1187 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1188 # ENSURE: `not self.need_anchor implies result == true`
1189 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1190
1191 # Return the nullable version of the type
1192 # If the type is already nullable then self is returned
1193 fun as_nullable: MType
1194 do
1195 var res = self.as_nullable_cache
1196 if res != null then return res
1197 res = new MNullableType(self)
1198 self.as_nullable_cache = res
1199 return res
1200 end
1201
1202 # Remove the base type of a decorated (proxy) type.
1203 # Is the type is not decorated, then self is returned.
1204 #
1205 # Most of the time it is used to return the not nullable version of a nullable type.
1206 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1207 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1208 # If you really want to exclude the `null` value, then use `as_notnull`
1209 fun undecorate: MType
1210 do
1211 return self
1212 end
1213
1214 # Returns the not null version of the type.
1215 # That is `self` minus the `null` value.
1216 #
1217 # For most types, this return `self`.
1218 # For formal types, this returns a special `MNotNullType`
1219 fun as_notnull: MType do return self
1220
1221 private var as_nullable_cache: nullable MType = null
1222
1223
1224 # The depth of the type seen as a tree.
1225 #
1226 # * A -> 1
1227 # * G[A] -> 2
1228 # * H[A, B] -> 2
1229 # * H[G[A], B] -> 3
1230 #
1231 # Formal types have a depth of 1.
1232 # Only `MClassType` and `MFormalType` nodes are counted.
1233 fun depth: Int
1234 do
1235 return 1
1236 end
1237
1238 # The length of the type seen as a tree.
1239 #
1240 # * A -> 1
1241 # * G[A] -> 2
1242 # * H[A, B] -> 3
1243 # * H[G[A], B] -> 4
1244 #
1245 # Formal types have a length of 1.
1246 # Only `MClassType` and `MFormalType` nodes are counted.
1247 fun length: Int
1248 do
1249 return 1
1250 end
1251
1252 # Compute all the classdefs inherited/imported.
1253 # The returned set contains:
1254 # * the class definitions from `mmodule` and its imported modules
1255 # * the class definitions of this type and its super-types
1256 #
1257 # This function is used mainly internally.
1258 #
1259 # REQUIRE: `not self.need_anchor`
1260 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1261
1262 # Compute all the super-classes.
1263 # This function is used mainly internally.
1264 #
1265 # REQUIRE: `not self.need_anchor`
1266 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1267
1268 # Compute all the declared super-types.
1269 # Super-types are returned as declared in the classdefs (verbatim).
1270 # This function is used mainly internally.
1271 #
1272 # REQUIRE: `not self.need_anchor`
1273 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1274
1275 # Is the property in self for a given module
1276 # This method does not filter visibility or whatever
1277 #
1278 # REQUIRE: `not self.need_anchor`
1279 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1280 do
1281 assert not self.need_anchor
1282 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1283 end
1284 end
1285
1286 # A type based on a class.
1287 #
1288 # `MClassType` have properties (see `has_mproperty`).
1289 class MClassType
1290 super MType
1291
1292 # The associated class
1293 var mclass: MClass
1294
1295 redef fun model do return self.mclass.intro_mmodule.model
1296
1297 redef fun location do return mclass.location
1298
1299 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1300
1301 # The formal arguments of the type
1302 # ENSURE: `result.length == self.mclass.arity`
1303 var arguments = new Array[MType]
1304
1305 redef fun to_s do return mclass.to_s
1306
1307 redef fun full_name do return mclass.full_name
1308
1309 redef fun c_name do return mclass.c_name
1310
1311 redef fun need_anchor do return false
1312
1313 redef fun anchor_to(mmodule, anchor): MClassType
1314 do
1315 return super.as(MClassType)
1316 end
1317
1318 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1319
1320 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1321
1322 redef fun collect_mclassdefs(mmodule)
1323 do
1324 assert not self.need_anchor
1325 var cache = self.collect_mclassdefs_cache
1326 if not cache.has_key(mmodule) then
1327 self.collect_things(mmodule)
1328 end
1329 return cache[mmodule]
1330 end
1331
1332 redef fun collect_mclasses(mmodule)
1333 do
1334 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1335 assert not self.need_anchor
1336 var cache = self.collect_mclasses_cache
1337 if not cache.has_key(mmodule) then
1338 self.collect_things(mmodule)
1339 end
1340 var res = cache[mmodule]
1341 collect_mclasses_last_module = mmodule
1342 collect_mclasses_last_module_cache = res
1343 return res
1344 end
1345
1346 private var collect_mclasses_last_module: nullable MModule = null
1347 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1348
1349 redef fun collect_mtypes(mmodule)
1350 do
1351 assert not self.need_anchor
1352 var cache = self.collect_mtypes_cache
1353 if not cache.has_key(mmodule) then
1354 self.collect_things(mmodule)
1355 end
1356 return cache[mmodule]
1357 end
1358
1359 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1360 private fun collect_things(mmodule: MModule)
1361 do
1362 var res = new HashSet[MClassDef]
1363 var seen = new HashSet[MClass]
1364 var types = new HashSet[MClassType]
1365 seen.add(self.mclass)
1366 var todo = [self.mclass]
1367 while not todo.is_empty do
1368 var mclass = todo.pop
1369 #print "process {mclass}"
1370 for mclassdef in mclass.mclassdefs do
1371 if not mmodule.in_importation <= mclassdef.mmodule then continue
1372 #print " process {mclassdef}"
1373 res.add(mclassdef)
1374 for supertype in mclassdef.supertypes do
1375 types.add(supertype)
1376 var superclass = supertype.mclass
1377 if seen.has(superclass) then continue
1378 #print " add {superclass}"
1379 seen.add(superclass)
1380 todo.add(superclass)
1381 end
1382 end
1383 end
1384 collect_mclassdefs_cache[mmodule] = res
1385 collect_mclasses_cache[mmodule] = seen
1386 collect_mtypes_cache[mmodule] = types
1387 end
1388
1389 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1390 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1391 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1392
1393 redef fun mdoc_or_fallback do return mclass.mdoc_or_fallback
1394 end
1395
1396 # A type based on a generic class.
1397 # A generic type a just a class with additional formal generic arguments.
1398 class MGenericType
1399 super MClassType
1400
1401 redef var arguments
1402
1403 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1404
1405 init
1406 do
1407 assert self.mclass.arity == arguments.length
1408
1409 self.need_anchor = false
1410 for t in arguments do
1411 if t.need_anchor then
1412 self.need_anchor = true
1413 break
1414 end
1415 end
1416
1417 self.to_s = "{mclass}[{arguments.join(", ")}]"
1418 end
1419
1420 # The short-name of the class, then the full-name of each type arguments within brackets.
1421 # Example: `"Map[String, List[Int]]"`
1422 redef var to_s is noinit
1423
1424 # The full-name of the class, then the full-name of each type arguments within brackets.
1425 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1426 redef var full_name is lazy do
1427 var args = new Array[String]
1428 for t in arguments do
1429 args.add t.full_name
1430 end
1431 return "{mclass.full_name}[{args.join(", ")}]"
1432 end
1433
1434 redef var c_name is lazy do
1435 var res = mclass.c_name
1436 # Note: because the arity is known, a prefix notation is enough
1437 for t in arguments do
1438 res += "__"
1439 res += t.c_name
1440 end
1441 return res.to_s
1442 end
1443
1444 redef var need_anchor is noinit
1445
1446 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1447 do
1448 if not need_anchor then return self
1449 assert can_resolve_for(mtype, anchor, mmodule)
1450 var types = new Array[MType]
1451 for t in arguments do
1452 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1453 end
1454 return mclass.get_mtype(types)
1455 end
1456
1457 redef fun can_resolve_for(mtype, anchor, mmodule)
1458 do
1459 if not need_anchor then return true
1460 for t in arguments do
1461 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1462 end
1463 return true
1464 end
1465
1466 redef fun is_ok
1467 do
1468 for t in arguments do if not t.is_ok then return false
1469 return super
1470 end
1471
1472 redef fun is_legal_in(mmodule, anchor)
1473 do
1474 var mtype
1475 if need_anchor then
1476 assert anchor != null
1477 mtype = anchor_to(mmodule, anchor)
1478 else
1479 mtype = self
1480 end
1481 if not mtype.is_ok then return false
1482 return mtype.is_subtype(mmodule, null, mtype.mclass.intro.bound_mtype)
1483 end
1484
1485 redef fun depth
1486 do
1487 var dmax = 0
1488 for a in self.arguments do
1489 var d = a.depth
1490 if d > dmax then dmax = d
1491 end
1492 return dmax + 1
1493 end
1494
1495 redef fun length
1496 do
1497 var res = 1
1498 for a in self.arguments do
1499 res += a.length
1500 end
1501 return res
1502 end
1503 end
1504
1505 # A formal type (either virtual of parametric).
1506 #
1507 # The main issue with formal types is that they offer very little information on their own
1508 # and need a context (anchor and mmodule) to be useful.
1509 abstract class MFormalType
1510 super MType
1511
1512 redef var as_notnull = new MNotNullType(self) is lazy
1513 end
1514
1515 # A virtual formal type.
1516 class MVirtualType
1517 super MFormalType
1518
1519 # The property associated with the type.
1520 # Its the definitions of this property that determine the bound or the virtual type.
1521 var mproperty: MVirtualTypeProp
1522
1523 redef fun location do return mproperty.location
1524
1525 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1526
1527 redef fun lookup_bound(mmodule, resolved_receiver)
1528 do
1529 # There is two possible invalid cases: the vt does not exists in resolved_receiver or the bound is broken
1530 if not resolved_receiver.has_mproperty(mmodule, mproperty) then return new MErrorType(model)
1531 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MErrorType(model)
1532 end
1533
1534 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1535 do
1536 assert not resolved_receiver.need_anchor
1537 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1538 if props.is_empty then
1539 abort
1540 else if props.length == 1 then
1541 return props.first
1542 end
1543 var types = new ArraySet[MType]
1544 var res = props.first
1545 for p in props do
1546 types.add(p.bound.as(not null))
1547 if not res.is_fixed then res = p
1548 end
1549 if types.length == 1 then
1550 return res
1551 end
1552 abort
1553 end
1554
1555 # A VT is fixed when:
1556 # * the VT is (re-)defined with the annotation `is fixed`
1557 # * the receiver is an enum class since there is no subtype that can
1558 # redefine this virtual type
1559 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1560 do
1561 assert not resolved_receiver.need_anchor
1562 resolved_receiver = resolved_receiver.undecorate
1563 assert resolved_receiver isa MClassType # It is the only remaining type
1564
1565 var prop = lookup_single_definition(mmodule, resolved_receiver)
1566 var res = prop.bound
1567 if res == null then return new MErrorType(model)
1568
1569 # Recursively lookup the fixed result
1570 res = res.lookup_fixed(mmodule, resolved_receiver)
1571
1572 # For a fixed VT, return the resolved bound
1573 if prop.is_fixed then return res
1574
1575 # For a enum receiver return the bound
1576 if resolved_receiver.mclass.kind == enum_kind then return res
1577
1578 return self
1579 end
1580
1581 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1582 do
1583 if not cleanup_virtual then return self
1584 assert can_resolve_for(mtype, anchor, mmodule)
1585
1586 if mproperty.is_selftype then return mtype
1587
1588 # self is a virtual type declared (or inherited) in mtype
1589 # The point of the function it to get the bound of the virtual type that make sense for mtype
1590 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1591 #print "{class_name}: {self}/{mtype}/{anchor}?"
1592 var resolved_receiver
1593 if mtype.need_anchor then
1594 assert anchor != null
1595 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1596 else
1597 resolved_receiver = mtype
1598 end
1599 # Now, we can get the bound
1600 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1601 # The bound is exactly as declared in the "type" property, so we must resolve it again
1602 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1603
1604 return res
1605 end
1606
1607 redef fun can_resolve_for(mtype, anchor, mmodule)
1608 do
1609 if mtype.need_anchor then
1610 assert anchor != null
1611 mtype = mtype.anchor_to(mmodule, anchor)
1612 end
1613 return mtype.has_mproperty(mmodule, mproperty)
1614 end
1615
1616 redef fun to_s do return self.mproperty.to_s
1617
1618 redef fun full_name do return self.mproperty.full_name
1619
1620 redef fun c_name do return self.mproperty.c_name
1621
1622 redef fun mdoc_or_fallback do return mproperty.mdoc_or_fallback
1623 end
1624
1625 # The type associated to a formal parameter generic type of a class
1626 #
1627 # Each parameter type is associated to a specific class.
1628 # It means that all refinements of a same class "share" the parameter type,
1629 # but that a generic subclass has its own parameter types.
1630 #
1631 # However, in the sense of the meta-model, a parameter type of a class is
1632 # a valid type in a subclass. The "in the sense of the meta-model" is
1633 # important because, in the Nit language, the programmer cannot refers
1634 # directly to the parameter types of the super-classes.
1635 #
1636 # Example:
1637 #
1638 # class A[E]
1639 # fun e: E is abstract
1640 # end
1641 # class B[F]
1642 # super A[Array[F]]
1643 # end
1644 #
1645 # In the class definition B[F], `F` is a valid type but `E` is not.
1646 # However, `self.e` is a valid method call, and the signature of `e` is
1647 # declared `e: E`.
1648 #
1649 # Note that parameter types are shared among class refinements.
1650 # Therefore parameter only have an internal name (see `to_s` for details).
1651 class MParameterType
1652 super MFormalType
1653
1654 # The generic class where the parameter belong
1655 var mclass: MClass
1656
1657 redef fun model do return self.mclass.intro_mmodule.model
1658
1659 redef fun location do return mclass.location
1660
1661 # The position of the parameter (0 for the first parameter)
1662 # FIXME: is `position` a better name?
1663 var rank: Int
1664
1665 redef var name
1666
1667 redef fun to_s do return name
1668
1669 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1670
1671 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1672
1673 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1674 do
1675 assert not resolved_receiver.need_anchor
1676 resolved_receiver = resolved_receiver.undecorate
1677 assert resolved_receiver isa MClassType # It is the only remaining type
1678 var goalclass = self.mclass
1679 if resolved_receiver.mclass == goalclass then
1680 return resolved_receiver.arguments[self.rank]
1681 end
1682 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1683 for t in supertypes do
1684 if t.mclass == goalclass then
1685 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1686 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1687 var res = t.arguments[self.rank]
1688 return res
1689 end
1690 end
1691 # Cannot found `self` in `resolved_receiver`
1692 return new MErrorType(model)
1693 end
1694
1695 # A PT is fixed when:
1696 # * The `resolved_receiver` is a subclass of `self.mclass`,
1697 # so it is necessarily fixed in a `super` clause, either with a normal type
1698 # or with another PT.
1699 # See `resolve_for` for examples about related issues.
1700 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1701 do
1702 assert not resolved_receiver.need_anchor
1703 resolved_receiver = resolved_receiver.undecorate
1704 assert resolved_receiver isa MClassType # It is the only remaining type
1705 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1706 return res
1707 end
1708
1709 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1710 do
1711 assert can_resolve_for(mtype, anchor, mmodule)
1712 #print "{class_name}: {self}/{mtype}/{anchor}?"
1713
1714 if mtype isa MGenericType and mtype.mclass == self.mclass then
1715 return mtype.arguments[self.rank]
1716 end
1717
1718 # self is a parameter type of mtype (or of a super-class of mtype)
1719 # The point of the function it to get the bound of the virtual type that make sense for mtype
1720 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1721 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1722 var resolved_receiver
1723 if mtype.need_anchor then
1724 assert anchor != null
1725 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1726 else
1727 resolved_receiver = mtype
1728 end
1729 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1730 if resolved_receiver isa MParameterType then
1731 assert anchor != null
1732 assert resolved_receiver.mclass == anchor.mclass
1733 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1734 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1735 end
1736 assert resolved_receiver isa MClassType # It is the only remaining type
1737
1738 # Eh! The parameter is in the current class.
1739 # So we return the corresponding argument, no mater what!
1740 if resolved_receiver.mclass == self.mclass then
1741 var res = resolved_receiver.arguments[self.rank]
1742 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1743 return res
1744 end
1745
1746 if resolved_receiver.need_anchor then
1747 assert anchor != null
1748 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1749 end
1750 # Now, we can get the bound
1751 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1752 # The bound is exactly as declared in the "type" property, so we must resolve it again
1753 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1754
1755 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1756
1757 return res
1758 end
1759
1760 redef fun can_resolve_for(mtype, anchor, mmodule)
1761 do
1762 if mtype.need_anchor then
1763 assert anchor != null
1764 mtype = mtype.anchor_to(mmodule, anchor)
1765 end
1766 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1767 end
1768 end
1769
1770 # A type that decorates another type.
1771 #
1772 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1773 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1774 abstract class MProxyType
1775 super MType
1776 # The base type
1777 var mtype: MType
1778
1779 redef fun location do return mtype.location
1780
1781 redef fun model do return self.mtype.model
1782 redef fun need_anchor do return mtype.need_anchor
1783 redef fun as_nullable do return mtype.as_nullable
1784 redef fun as_notnull do return mtype.as_notnull
1785 redef fun undecorate do return mtype.undecorate
1786 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1787 do
1788 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1789 return res
1790 end
1791
1792 redef fun can_resolve_for(mtype, anchor, mmodule)
1793 do
1794 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1795 end
1796
1797 redef fun is_ok do return mtype.is_ok
1798
1799 redef fun is_legal_in(mmodule, anchor) do return mtype.is_legal_in(mmodule, anchor)
1800
1801 redef fun lookup_fixed(mmodule, resolved_receiver)
1802 do
1803 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1804 return t
1805 end
1806
1807 redef fun depth do return self.mtype.depth
1808
1809 redef fun length do return self.mtype.length
1810
1811 redef fun collect_mclassdefs(mmodule)
1812 do
1813 assert not self.need_anchor
1814 return self.mtype.collect_mclassdefs(mmodule)
1815 end
1816
1817 redef fun collect_mclasses(mmodule)
1818 do
1819 assert not self.need_anchor
1820 return self.mtype.collect_mclasses(mmodule)
1821 end
1822
1823 redef fun collect_mtypes(mmodule)
1824 do
1825 assert not self.need_anchor
1826 return self.mtype.collect_mtypes(mmodule)
1827 end
1828 end
1829
1830 # A type prefixed with "nullable"
1831 class MNullableType
1832 super MProxyType
1833
1834 init
1835 do
1836 self.to_s = "nullable {mtype}"
1837 end
1838
1839 redef var to_s is noinit
1840
1841 redef var full_name is lazy do return "nullable {mtype.full_name}"
1842
1843 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1844
1845 redef fun as_nullable do return self
1846 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1847 do
1848 var res = super
1849 return res.as_nullable
1850 end
1851
1852 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1853 redef fun lookup_fixed(mmodule, resolved_receiver)
1854 do
1855 var t = super
1856 if t == mtype then return self
1857 return t.as_nullable
1858 end
1859
1860 redef fun mdoc_or_fallback do return mtype.mdoc_or_fallback
1861 end
1862
1863 # A non-null version of a formal type.
1864 #
1865 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1866 class MNotNullType
1867 super MProxyType
1868
1869 redef fun to_s do return "not null {mtype}"
1870 redef var full_name is lazy do return "not null {mtype.full_name}"
1871 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1872
1873 redef fun as_notnull do return self
1874
1875 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1876 do
1877 var res = super
1878 return res.as_notnull
1879 end
1880
1881 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1882 redef fun lookup_fixed(mmodule, resolved_receiver)
1883 do
1884 var t = super
1885 if t == mtype then return self
1886 return t.as_notnull
1887 end
1888 end
1889
1890 # The type of the only value null
1891 #
1892 # The is only one null type per model, see `MModel::null_type`.
1893 class MNullType
1894 super MType
1895 redef var model
1896 redef fun to_s do return "null"
1897 redef fun full_name do return "null"
1898 redef fun c_name do return "null"
1899 redef fun as_nullable do return self
1900
1901 redef var as_notnull: MBottomType = new MBottomType(model) is lazy
1902 redef fun need_anchor do return false
1903 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1904 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1905
1906 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1907
1908 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1909
1910 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1911 end
1912
1913 # The special universal most specific type.
1914 #
1915 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1916 # The bottom type can de used to denote things that are dead (no instance).
1917 #
1918 # Semantically it is the singleton `null.as_notnull`.
1919 # Is also means that `self.as_nullable == null`.
1920 class MBottomType
1921 super MType
1922 redef var model
1923 redef fun to_s do return "bottom"
1924 redef fun full_name do return "bottom"
1925 redef fun c_name do return "bottom"
1926 redef fun as_nullable do return model.null_type
1927 redef fun as_notnull do return self
1928 redef fun need_anchor do return false
1929 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1930 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1931
1932 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1933
1934 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1935
1936 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1937 end
1938
1939 # A special type used as a silent error marker when building types.
1940 #
1941 # This type is intended to be only used internally for type operation and should not be exposed to the user.
1942 # The error type can de used to denote things that are conflicting or inconsistent.
1943 #
1944 # Some methods on types can return a `MErrorType` to denote a broken or a conflicting result.
1945 # Use `is_ok` to check if a type is (or contains) a `MErrorType` .
1946 class MErrorType
1947 super MType
1948 redef var model
1949 redef fun to_s do return "error"
1950 redef fun full_name do return "error"
1951 redef fun c_name do return "error"
1952 redef fun need_anchor do return false
1953 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1954 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1955 redef fun is_ok do return false
1956
1957 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1958
1959 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1960
1961 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1962 end
1963
1964 # A signature of a method
1965 class MSignature
1966 super MType
1967
1968 # The each parameter (in order)
1969 var mparameters: Array[MParameter]
1970
1971 # Returns a parameter named `name`, if any.
1972 fun mparameter_by_name(name: String): nullable MParameter
1973 do
1974 for p in mparameters do
1975 if p.name == name then return p
1976 end
1977 return null
1978 end
1979
1980 # The return type (null for a procedure)
1981 var return_mtype: nullable MType
1982
1983 redef fun depth
1984 do
1985 var dmax = 0
1986 var t = self.return_mtype
1987 if t != null then dmax = t.depth
1988 for p in mparameters do
1989 var d = p.mtype.depth
1990 if d > dmax then dmax = d
1991 end
1992 return dmax + 1
1993 end
1994
1995 redef fun length
1996 do
1997 var res = 1
1998 var t = self.return_mtype
1999 if t != null then res += t.length
2000 for p in mparameters do
2001 res += p.mtype.length
2002 end
2003 return res
2004 end
2005
2006 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
2007 init
2008 do
2009 var vararg_rank = -1
2010 for i in [0..mparameters.length[ do
2011 var parameter = mparameters[i]
2012 if parameter.is_vararg then
2013 if vararg_rank >= 0 then
2014 # If there is more than one vararg,
2015 # consider that additional arguments cannot be mapped.
2016 vararg_rank = -1
2017 break
2018 end
2019 vararg_rank = i
2020 end
2021 end
2022 self.vararg_rank = vararg_rank
2023 end
2024
2025 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
2026 # value is -1 if there is no vararg.
2027 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
2028 #
2029 # From a model POV, a signature can contain more than one vararg parameter,
2030 # the `vararg_rank` just indicates the one that will receive the additional arguments.
2031 # However, currently, if there is more that one vararg parameter, no one will be the main one,
2032 # and additional arguments will be refused.
2033 var vararg_rank: Int is noinit
2034
2035 # The number of parameters
2036 fun arity: Int do return mparameters.length
2037
2038 redef fun to_s
2039 do
2040 var b = new FlatBuffer
2041 if not mparameters.is_empty then
2042 b.append("(")
2043 var last_mtype = null
2044 for i in [0..mparameters.length[ do
2045 var mparameter = mparameters[i]
2046
2047 # Group types that are common to contiguous parameters
2048 if mparameter.mtype != last_mtype and last_mtype != null then
2049 b.append(": ")
2050 b.append(last_mtype.to_s)
2051 end
2052
2053 if i > 0 then b.append(", ")
2054 b.append(mparameter.name)
2055
2056 if mparameter.is_vararg then
2057 b.append(": ")
2058 b.append(mparameter.mtype.to_s)
2059 b.append("...")
2060 last_mtype = null
2061 else
2062 last_mtype = mparameter.mtype
2063 end
2064 end
2065
2066 if last_mtype != null then
2067 b.append(": ")
2068 b.append(last_mtype.to_s)
2069 end
2070
2071 b.append(")")
2072 end
2073 var ret = self.return_mtype
2074 if ret != null then
2075 b.append(": ")
2076 b.append(ret.to_s)
2077 end
2078 return b.to_s
2079 end
2080
2081 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
2082 do
2083 var params = new Array[MParameter]
2084 for p in self.mparameters do
2085 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
2086 end
2087 var ret = self.return_mtype
2088 if ret != null then
2089 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2090 end
2091 var res = new MSignature(params, ret)
2092 return res
2093 end
2094 end
2095
2096 # A parameter in a signature
2097 class MParameter
2098 super MEntity
2099
2100 # The name of the parameter
2101 redef var name
2102
2103 # The static type of the parameter
2104 var mtype: MType
2105
2106 # Is the parameter a vararg?
2107 var is_vararg: Bool
2108
2109 redef fun to_s
2110 do
2111 if is_vararg then
2112 return "{name}: {mtype}..."
2113 else
2114 return "{name}: {mtype}"
2115 end
2116 end
2117
2118 # Returns a new parameter with the `mtype` resolved.
2119 # See `MType::resolve_for` for details.
2120 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
2121 do
2122 if not self.mtype.need_anchor then return self
2123 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
2124 var res = new MParameter(self.name, newtype, self.is_vararg)
2125 return res
2126 end
2127
2128 redef fun model do return mtype.model
2129 end
2130
2131 # A service (global property) that generalize method, attribute, etc.
2132 #
2133 # `MProperty` are global to the model; it means that a `MProperty` is not bound
2134 # to a specific `MModule` nor a specific `MClass`.
2135 #
2136 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
2137 # and the other in subclasses and in refinements.
2138 #
2139 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
2140 # of any dynamic type).
2141 # For instance, a call site "x.foo" is associated to a `MProperty`.
2142 abstract class MProperty
2143 super MEntity
2144
2145 # The associated MPropDef subclass.
2146 # The two specialization hierarchy are symmetric.
2147 type MPROPDEF: MPropDef
2148
2149 # The classdef that introduce the property
2150 # While a property is not bound to a specific module, or class,
2151 # the introducing mclassdef is used for naming and visibility
2152 var intro_mclassdef: MClassDef
2153
2154 # The (short) name of the property
2155 redef var name
2156
2157 redef var location
2158
2159 redef fun mdoc_or_fallback
2160 do
2161 # Don’t use `intro.mdoc_or_fallback` because it would create an infinite
2162 # recursion.
2163 return intro.mdoc
2164 end
2165
2166 # The canonical name of the property.
2167 #
2168 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
2169 # Example: "my_package::my_module::MyClass::my_method"
2170 #
2171 # The full-name of the module is needed because two distinct modules of the same package can
2172 # still refine the same class and introduce homonym properties.
2173 #
2174 # For public properties not introduced by refinement, the module name is not used.
2175 #
2176 # Example: `my_package::MyClass::My_method`
2177 redef var full_name is lazy do
2178 if intro_mclassdef.is_intro then
2179 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
2180 else
2181 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
2182 end
2183 end
2184
2185 redef var c_name is lazy do
2186 # FIXME use `namespace_for`
2187 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2188 end
2189
2190 # The visibility of the property
2191 redef var visibility
2192
2193 # Is the property usable as an initializer?
2194 var is_autoinit = false is writable
2195
2196 init
2197 do
2198 intro_mclassdef.intro_mproperties.add(self)
2199 var model = intro_mclassdef.mmodule.model
2200 model.mproperties_by_name.add_one(name, self)
2201 model.mproperties.add(self)
2202 end
2203
2204 # All definitions of the property.
2205 # The first is the introduction,
2206 # The other are redefinitions (in refinements and in subclasses)
2207 var mpropdefs = new Array[MPROPDEF]
2208
2209 # The definition that introduces the property.
2210 #
2211 # Warning: such a definition may not exist in the early life of the object.
2212 # In this case, the method will abort.
2213 var intro: MPROPDEF is noinit
2214
2215 redef fun model do return intro.model
2216
2217 # Alias for `name`
2218 redef fun to_s do return name
2219
2220 # Return the most specific property definitions defined or inherited by a type.
2221 # The selection knows that refinement is stronger than specialization;
2222 # however, in case of conflict more than one property are returned.
2223 # If mtype does not know mproperty then an empty array is returned.
2224 #
2225 # If you want the really most specific property, then look at `lookup_first_definition`
2226 #
2227 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2228 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2229 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2230 do
2231 assert not mtype.need_anchor
2232 mtype = mtype.undecorate
2233
2234 var cache = self.lookup_definitions_cache[mmodule, mtype]
2235 if cache != null then return cache
2236
2237 #print "select prop {mproperty} for {mtype} in {self}"
2238 # First, select all candidates
2239 var candidates = new Array[MPROPDEF]
2240
2241 # Here we have two strategies: iterate propdefs or iterate classdefs.
2242 var mpropdefs = self.mpropdefs
2243 if mpropdefs.length <= 1 or mpropdefs.length < mtype.collect_mclassdefs(mmodule).length then
2244 # Iterate on all definitions of `self`, keep only those inherited by `mtype` in `mmodule`
2245 for mpropdef in mpropdefs do
2246 # If the definition is not imported by the module, then skip
2247 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2248 # If the definition is not inherited by the type, then skip
2249 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2250 # Else, we keep it
2251 candidates.add(mpropdef)
2252 end
2253 else
2254 # Iterate on all super-classdefs of `mtype`, keep only the definitions of `self`, if any.
2255 for mclassdef in mtype.collect_mclassdefs(mmodule) do
2256 var p = mclassdef.mpropdefs_by_property.get_or_null(self)
2257 if p != null then candidates.add p
2258 end
2259 end
2260
2261 # Fast track for only one candidate
2262 if candidates.length <= 1 then
2263 self.lookup_definitions_cache[mmodule, mtype] = candidates
2264 return candidates
2265 end
2266
2267 # Second, filter the most specific ones
2268 return select_most_specific(mmodule, candidates)
2269 end
2270
2271 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2272
2273 # Return the most specific property definitions inherited by a type.
2274 # The selection knows that refinement is stronger than specialization;
2275 # however, in case of conflict more than one property are returned.
2276 # If mtype does not know mproperty then an empty array is returned.
2277 #
2278 # If you want the really most specific property, then look at `lookup_next_definition`
2279 #
2280 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2281 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2282 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2283 do
2284 assert not mtype.need_anchor
2285 mtype = mtype.undecorate
2286
2287 # First, select all candidates
2288 var candidates = new Array[MPROPDEF]
2289 for mpropdef in self.mpropdefs do
2290 # If the definition is not imported by the module, then skip
2291 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2292 # If the definition is not inherited by the type, then skip
2293 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2294 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2295 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2296 # Else, we keep it
2297 candidates.add(mpropdef)
2298 end
2299 # Fast track for only one candidate
2300 if candidates.length <= 1 then return candidates
2301
2302 # Second, filter the most specific ones
2303 return select_most_specific(mmodule, candidates)
2304 end
2305
2306 # Return an array containing olny the most specific property definitions
2307 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2308 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2309 do
2310 var res = new Array[MPROPDEF]
2311 for pd1 in candidates do
2312 var cd1 = pd1.mclassdef
2313 var c1 = cd1.mclass
2314 var keep = true
2315 for pd2 in candidates do
2316 if pd2 == pd1 then continue # do not compare with self!
2317 var cd2 = pd2.mclassdef
2318 var c2 = cd2.mclass
2319 if c2.mclass_type == c1.mclass_type then
2320 if cd2.mmodule.in_importation < cd1.mmodule then
2321 # cd2 refines cd1; therefore we skip pd1
2322 keep = false
2323 break
2324 end
2325 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2326 # cd2 < cd1; therefore we skip pd1
2327 keep = false
2328 break
2329 end
2330 end
2331 if keep then
2332 res.add(pd1)
2333 end
2334 end
2335 if res.is_empty then
2336 print_error "All lost! {candidates.join(", ")}"
2337 # FIXME: should be abort!
2338 end
2339 return res
2340 end
2341
2342 # Return the most specific definition in the linearization of `mtype`.
2343 #
2344 # If you want to know the next properties in the linearization,
2345 # look at `MPropDef::lookup_next_definition`.
2346 #
2347 # FIXME: the linearization is still unspecified
2348 #
2349 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2350 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2351 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2352 do
2353 return lookup_all_definitions(mmodule, mtype).first
2354 end
2355
2356 # Return all definitions in a linearization order
2357 # Most specific first, most general last
2358 #
2359 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2360 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2361 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2362 do
2363 mtype = mtype.undecorate
2364
2365 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2366 if cache != null then return cache
2367
2368 assert not mtype.need_anchor
2369 assert mtype.has_mproperty(mmodule, self)
2370
2371 #print "select prop {mproperty} for {mtype} in {self}"
2372 # First, select all candidates
2373 var candidates = new Array[MPROPDEF]
2374 for mpropdef in self.mpropdefs do
2375 # If the definition is not imported by the module, then skip
2376 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2377 # If the definition is not inherited by the type, then skip
2378 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2379 # Else, we keep it
2380 candidates.add(mpropdef)
2381 end
2382 # Fast track for only one candidate
2383 if candidates.length <= 1 then
2384 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2385 return candidates
2386 end
2387
2388 mmodule.linearize_mpropdefs(candidates)
2389 candidates = candidates.reversed
2390 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2391 return candidates
2392 end
2393
2394 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2395
2396 redef var is_test is lazy do return intro.is_test
2397
2398 # Does self have the `before` annotation?
2399 var is_before: Bool is lazy do return intro.is_before
2400
2401 # Does self have the `before_all` annotation?
2402 var is_before_all: Bool is lazy do return intro.is_before_all
2403
2404 # Does self have the `after` annotation?
2405 var is_after: Bool is lazy do return intro.is_after
2406
2407 # Does self have the `after_all` annotation?
2408 var is_after_all: Bool is lazy do return intro.is_after_all
2409 end
2410
2411 # A global method
2412 class MMethod
2413 super MProperty
2414
2415 redef type MPROPDEF: MMethodDef
2416
2417 # Is the property defined at the top_level of the module?
2418 # Currently such a property are stored in `Object`
2419 var is_toplevel: Bool = false is writable
2420
2421 # Is the property a constructor?
2422 # Warning, this property can be inherited by subclasses with or without being a constructor
2423 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2424 var is_init: Bool = false is writable
2425
2426 # The constructor is a (the) root init with empty signature but a set of initializers
2427 var is_root_init: Bool = false is writable
2428
2429 # Is the property a 'new' constructor?
2430 var is_new: Bool = false is writable
2431
2432 # Is the property a legal constructor for a given class?
2433 # As usual, visibility is not considered.
2434 # FIXME not implemented
2435 fun is_init_for(mclass: MClass): Bool
2436 do
2437 return self.is_init
2438 end
2439
2440 # A specific method that is safe to call on null.
2441 # Currently, only `==`, `!=` and `is_same_instance` are safe
2442 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2443
2444 # Is this method a getter (auto or not)?
2445 #
2446 # See `getter_for`.
2447 fun is_getter: Bool do return getter_for != null
2448
2449 # The attribute this getter is for
2450 #
2451 # Return `null` is this method is not a getter.
2452 var getter_for: nullable MAttribute = null is writable
2453
2454 # Is this method a setter (auto or not)?
2455 #
2456 # See `setter_for`.
2457 fun is_setter: Bool do return setter_for != null
2458
2459 # The attribute this setter is for
2460 #
2461 # Return `null` is this method is not a setter.
2462 var setter_for: nullable MAttribute = null is writable
2463
2464 # Is this method a getter or a setter?
2465 fun is_accessor: Bool do return is_getter or is_setter
2466 end
2467
2468 # A global attribute
2469 class MAttribute
2470 super MProperty
2471
2472 redef type MPROPDEF: MAttributeDef
2473
2474 # Does this attribute have a getter (auto or not)?
2475 #
2476 # See `getter`.
2477 fun has_getter: Bool do return getter != null
2478
2479 # The getter of this attribute (if any)
2480 var getter: nullable MProperty = null is writable
2481
2482 # Does this attribute have a setter (auto or not)?
2483 #
2484 # See `setter`.
2485 fun has_setter: Bool do return setter != null
2486
2487 # The setter of this attribute (if any)
2488 var setter: nullable MProperty = null is writable
2489 end
2490
2491 # A global virtual type
2492 class MVirtualTypeProp
2493 super MProperty
2494
2495 redef type MPROPDEF: MVirtualTypeDef
2496
2497 # The formal type associated to the virtual type property
2498 var mvirtualtype = new MVirtualType(self)
2499
2500 # Is `self` the special virtual type `SELF`?
2501 var is_selftype: Bool is lazy do return name == "SELF"
2502 end
2503
2504 # A definition of a property (local property)
2505 #
2506 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2507 # specific class definition (which belong to a specific module)
2508 abstract class MPropDef
2509 super MEntity
2510
2511 # The associated `MProperty` subclass.
2512 # the two specialization hierarchy are symmetric
2513 type MPROPERTY: MProperty
2514
2515 # Self class
2516 type MPROPDEF: MPropDef
2517
2518 # The class definition where the property definition is
2519 var mclassdef: MClassDef
2520
2521 # The associated global property
2522 var mproperty: MPROPERTY
2523
2524 redef var location
2525
2526 redef fun visibility do return mproperty.visibility
2527
2528 init
2529 do
2530 mclassdef.mpropdefs.add(self)
2531 mproperty.mpropdefs.add(self)
2532 mclassdef.mpropdefs_by_property[mproperty] = self
2533 if mproperty.intro_mclassdef == mclassdef then
2534 assert not isset mproperty._intro
2535 mproperty.intro = self
2536 end
2537 self.to_s = "{mclassdef}${mproperty}"
2538 end
2539
2540 # Actually the name of the `mproperty`
2541 redef fun name do return mproperty.name
2542
2543 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2544 #
2545 # Therefore the combination of identifiers is awful,
2546 # the worst case being
2547 #
2548 # * a property "p::m::A::x"
2549 # * redefined in a refinement of a class "q::n::B"
2550 # * in a module "r::o"
2551 # * so "r::o$q::n::B$p::m::A::x"
2552 #
2553 # Fortunately, the full-name is simplified when entities are repeated.
2554 # For the previous case, the simplest form is "p$A$x".
2555 redef var full_name is lazy do
2556 var res = new FlatBuffer
2557
2558 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2559 res.append mclassdef.full_name
2560
2561 res.append "$"
2562
2563 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2564 # intro are unambiguous in a class
2565 res.append name
2566 else
2567 # Just try to simplify each part
2568 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2569 # precise "p::m" only if "p" != "r"
2570 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2571 res.append "::"
2572 else if mproperty.visibility <= private_visibility then
2573 # Same package ("p"=="q"), but private visibility,
2574 # does the module part ("::m") need to be displayed
2575 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2576 res.append "::"
2577 res.append mproperty.intro_mclassdef.mmodule.name
2578 res.append "::"
2579 end
2580 end
2581 # precise "B" because it is not the same class than "A"
2582 res.append mproperty.intro_mclassdef.name
2583 res.append "::"
2584 # Always use the property name "x"
2585 res.append mproperty.name
2586 end
2587 return res.to_s
2588 end
2589
2590 redef var c_name is lazy do
2591 var res = new FlatBuffer
2592 res.append mclassdef.c_name
2593 res.append "___"
2594 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2595 res.append name.to_cmangle
2596 else
2597 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2598 res.append mproperty.intro_mclassdef.mmodule.c_name
2599 res.append "__"
2600 end
2601 res.append mproperty.intro_mclassdef.name.to_cmangle
2602 res.append "__"
2603 res.append mproperty.name.to_cmangle
2604 end
2605 return res.to_s
2606 end
2607
2608 redef fun model do return mclassdef.model
2609
2610 # Internal name combining the module, the class and the property
2611 # Example: "mymodule$MyClass$mymethod"
2612 redef var to_s is noinit
2613
2614 # Is self the definition that introduce the property?
2615 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2616
2617 # Return the next definition in linearization of `mtype`.
2618 #
2619 # This method is used to determine what method is called by a super.
2620 #
2621 # REQUIRE: `not mtype.need_anchor`
2622 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2623 do
2624 assert not mtype.need_anchor
2625
2626 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2627 var i = mpropdefs.iterator
2628 while i.is_ok and i.item != self do i.next
2629 assert has_property: i.is_ok
2630 i.next
2631 assert has_next_property: i.is_ok
2632 return i.item
2633 end
2634
2635 redef fun mdoc_or_fallback do return mdoc or else mproperty.mdoc_or_fallback
2636
2637 # Does self have the `before` annotation?
2638 var is_before = false is writable
2639
2640 # Does self have the `before_all` annotation?
2641 var is_before_all = false is writable
2642
2643 # Does self have the `after` annotation?
2644 var is_after = false is writable
2645
2646 # Does self have the `after_all` annotation?
2647 var is_after_all = false is writable
2648 end
2649
2650 # A local definition of a method
2651 class MMethodDef
2652 super MPropDef
2653
2654 redef type MPROPERTY: MMethod
2655 redef type MPROPDEF: MMethodDef
2656
2657 # The signature attached to the property definition
2658 var msignature: nullable MSignature = null is writable
2659
2660 # List of initialisers to call in root-inits
2661 #
2662 # They could be setters or attributes
2663 var initializers = new Array[MProperty]
2664
2665 # Does the method take the responsibility to call `init`?
2666 #
2667 # If the method is used as an initializer, then
2668 # using this information prevents to call `init` twice.
2669 var is_calling_init = false is writable
2670
2671 # Does the method is a old_style_init?
2672 #
2673 var is_old_style_init = false is writable
2674
2675 # Is the method definition abstract?
2676 var is_abstract: Bool = false is writable
2677
2678 # Is the method definition intern?
2679 var is_intern = false is writable
2680
2681 # Is the method definition extern?
2682 var is_extern = false is writable
2683
2684 # An optional constant value returned in functions.
2685 #
2686 # Only some specific primitife value are accepted by engines.
2687 # Is used when there is no better implementation available.
2688 #
2689 # Currently used only for the implementation of the `--define`
2690 # command-line option.
2691 # SEE: module `mixin`.
2692 var constant_value: nullable Object = null is writable
2693 end
2694
2695 # A local definition of an attribute
2696 class MAttributeDef
2697 super MPropDef
2698
2699 redef type MPROPERTY: MAttribute
2700 redef type MPROPDEF: MAttributeDef
2701
2702 # The static type of the attribute
2703 var static_mtype: nullable MType = null is writable
2704 end
2705
2706 # A local definition of a virtual type
2707 class MVirtualTypeDef
2708 super MPropDef
2709
2710 redef type MPROPERTY: MVirtualTypeProp
2711 redef type MPROPDEF: MVirtualTypeDef
2712
2713 # The bound of the virtual type
2714 var bound: nullable MType = null is writable
2715
2716 # Is the bound fixed?
2717 var is_fixed = false is writable
2718 end
2719
2720 # A kind of class.
2721 #
2722 # * `abstract_kind`
2723 # * `concrete_kind`
2724 # * `interface_kind`
2725 # * `enum_kind`
2726 # * `extern_kind`
2727 #
2728 # Note this class is basically an enum.
2729 # FIXME: use a real enum once user-defined enums are available
2730 class MClassKind
2731 redef var to_s
2732
2733 # Can a class of kind `self` define a membership predicate?
2734 var can_customize_isa: Bool
2735
2736 # Can a class of kind `self` define a constructor?
2737 var can_init: Bool
2738
2739 # Is a constructor required?
2740 var need_init: Bool
2741
2742 # TODO: private init because enumeration.
2743
2744 # Can a class of kind `self` specializes a class of kind `other`?
2745 fun can_specialize(other: MClassKind): Bool
2746 do
2747 if other == interface_kind then
2748 # everybody can specialize interfaces
2749 return true
2750 else if self == interface_kind or self == enum_kind then
2751 # no other case for interfaces and enums
2752 return false
2753 else if self == subset_kind then
2754 # A subset may specialize anything, except another subset.
2755 # TODO: Allow sub-subsets once we can handle them.
2756 return other != subset_kind
2757 else if self == extern_kind then
2758 # only compatible with themselves
2759 return self == other
2760 else
2761 # assert self == abstract_kind or self == concrete_kind
2762 return other == abstract_kind or other == concrete_kind
2763 end
2764 end
2765 end
2766
2767 # The class kind `abstract`
2768 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", false, true, true)
2769 # The class kind `concrete`
2770 fun concrete_kind: MClassKind do return once new MClassKind("class", false, true, true)
2771 # The class kind `interface`
2772 fun interface_kind: MClassKind do return once new MClassKind("interface", false, true, false)
2773 # The class kind `enum`
2774 fun enum_kind: MClassKind do return once new MClassKind("enum", false, true, false)
2775 # The class kind `extern`
2776 fun extern_kind: MClassKind do return once new MClassKind("extern class", false, true, false)
2777 # The class kind `subset`
2778 fun subset_kind: MClassKind do return once new MClassKind("subset", true, false, false)
2779
2780 # A standalone pre-constructed model used to test various model-related methods.
2781 #
2782 # When instantiated, a standalone model is already filled with entities that are exposed as attributes.
2783 class ModelStandalone
2784 super Model
2785
2786 redef var location = new Location.opaque_file("ModelStandalone")
2787
2788 # The first module
2789 var mmodule0 = new MModule(self, null, "module0", location)
2790
2791 # The root Object class
2792 var mclass_o = new MClass(mmodule0, "Object", location, null, interface_kind, public_visibility)
2793
2794 # The introduction of `mclass_o`
2795 var mclassdef_o = new MClassDef(mmodule0, mclass_o.mclass_type, location)
2796 end
2797
2798 # A standalone model with the common class diamond-hierarchy ABCD
2799 class ModelDiamond
2800 super ModelStandalone
2801
2802 # A, a simple subclass of Object
2803 var mclass_a = new MClass(mmodule0, "A", location, null, concrete_kind, public_visibility)
2804
2805 # The introduction of `mclass_a`
2806 var mclassdef_a: MClassDef do
2807 var res = new MClassDef(mmodule0, mclass_a.mclass_type, location)
2808 res.set_supertypes([mclass_o.mclass_type])
2809 res.add_in_hierarchy
2810 return res
2811 end
2812
2813 # B, a subclass of A (`mclass_a`)
2814 var mclass_b = new MClass(mmodule0, "B", location, null, concrete_kind, public_visibility)
2815
2816 # The introduction of `mclass_b`
2817 var mclassdef_b: MClassDef do
2818 var res = new MClassDef(mmodule0, mclass_b.mclass_type, location)
2819 res.set_supertypes([mclass_a.mclass_type])
2820 res.add_in_hierarchy
2821 return res
2822 end
2823
2824 # C, another subclass of A (`mclass_a`)
2825 var mclass_c = new MClass(mmodule0, "C", location, null, concrete_kind, public_visibility)
2826
2827 # The introduction of `mclass_c`
2828 var mclassdef_c: MClassDef do
2829 var res = new MClassDef(mmodule0, mclass_c.mclass_type, location)
2830 res.set_supertypes([mclass_a.mclass_type])
2831 res.add_in_hierarchy
2832 return res
2833 end
2834
2835 # D, a multiple subclass of B (`mclass_b`) and C (`mclass_c`)
2836 var mclass_d = new MClass(mmodule0, "D", location, null, concrete_kind, public_visibility)
2837
2838 # The introduction of `mclass_d`
2839 var mclassdef_d: MClassDef do
2840 var res = new MClassDef(mmodule0, mclass_d.mclass_type, location)
2841 res.set_supertypes([mclass_b.mclass_type, mclass_c.mclass_type])
2842 res.add_in_hierarchy
2843 return res
2844 end
2845 end