Merge: Added contributing guidelines and link from readme
[nit.git] / lib / core / collection / abstract_collection.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2004-2008 Jean Privat <jean@pryen.org>
4 #
5 # This file is free software, which comes along with NIT. This software is
6 # distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
7 # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
8 # PARTICULAR PURPOSE. You can modify it is you want, provided this header
9 # is kept unaltered, and a notification of the changes is added.
10 # You are allowed to redistribute it and sell it, alone or is a part of
11 # another product.
12
13 # Abstract collection classes and services.
14 #
15 # TODO specify the behavior on iterators when collections are modified.
16 module abstract_collection
17
18 import kernel
19
20 # The root of the collection hierarchy.
21 #
22 # Collections modelize finite groups of objects, called elements.
23 #
24 # The specific behavior and representation of collections is determined
25 # by the subclasses of the hierarchy.
26 #
27 # The main service of Collection is to provide a stable `iterator`
28 # method usable to retrieve all the elements of the collection.
29 #
30 # Additional services are provided.
31 # For an implementation point of view, Collection provide a basic
32 # implementation of these services using the `iterator` method.
33 # Subclasses often provide a more efficient implementation.
34 #
35 # Because of the `iterator` method, Collections instances can use
36 # the `for` control structure.
37 #
38 # ~~~nitish
39 # var x: Collection[U]
40 # # ...
41 # for u in x do
42 # # u is a U
43 # # ...
44 # end
45 # ~~~
46 #
47 # that is equivalent with the following:
48 #
49 # ~~~nitish
50 # var x: Collection[U]
51 # # ...
52 # var i = x.iterator
53 # while i.is_ok do
54 # var u = i.item # u is a U
55 # # ...
56 # i.next
57 # end
58 # ~~~
59 interface Collection[E]
60 # Get a new iterator on the collection.
61 fun iterator: Iterator[E] is abstract
62
63 # Is there no item in the collection?
64 #
65 # assert [1,2,3].is_empty == false
66 # assert [1..1[.is_empty == true
67 fun is_empty: Bool do return length == 0
68
69 # Alias for `not is_empty`.
70 #
71 # Some people prefer to have conditions grammatically easier to read.
72 #
73 # assert [1,2,3].not_empty == true
74 # assert [1..1[.not_empty == false
75 fun not_empty: Bool do return not self.is_empty
76
77 # Number of items in the collection.
78 #
79 # assert [10,20,30].length == 3
80 # assert [20..30[.length == 10
81 fun length: Int
82 do
83 var nb = 0
84 for i in self do nb += 1
85 return nb
86 end
87
88 # Is `item` in the collection ?
89 # Comparisons are done with ==
90 #
91 # assert [1,2,3].has(2) == true
92 # assert [1,2,3].has(9) == false
93 # assert [1..5[.has(2) == true
94 # assert [1..5[.has(9) == false
95 fun has(item: nullable Object): Bool
96 do
97 for i in self do if i == item then return true
98 return false
99 end
100
101 # Is the collection contain only `item`?
102 # Comparisons are done with ==
103 # Return true if the collection is empty.
104 #
105 # assert [1,1,1].has_only(1) == true
106 # assert [1,2,3].has_only(1) == false
107 # assert [1..1].has_only(1) == true
108 # assert [1..3].has_only(1) == false
109 # assert [3..3[.has_only(1) == true # empty collection
110 #
111 # ENSURE `is_empty implies result == true`
112 fun has_only(item: nullable Object): Bool
113 do
114 for i in self do if i != item then return false
115 return true
116 end
117
118 # How many occurrences of `item` are in the collection?
119 # Comparisons are done with ==
120 #
121 # assert [10,20,10].count(10) == 2
122 fun count(item: nullable Object): Int
123 do
124 var nb = 0
125 for i in self do if i == item then nb += 1
126 return nb
127 end
128
129 # Return the first item of the collection
130 #
131 # assert [1,2,3].first == 1
132 fun first: E
133 do
134 assert length > 0
135 return iterator.item
136 end
137
138 # Does the collection contain at least each element of `other`?
139 #
140 # assert [1,3,4,2].has_all([1..2]) == true
141 # assert [1,3,4,2].has_all([1..5]) == false
142 #
143 # Repeated elements in the collections are not considered.
144 #
145 # assert [1,1,1].has_all([1]) == true
146 # assert [1..5].has_all([1,1,1]) == true
147 #
148 # Note that the default implementation is general and correct for any lawful Collections.
149 # It is memory-efficient but relies on `has` so may be CPU-inefficient for some kind of collections.
150 fun has_all(other: Collection[nullable Object]): Bool
151 do
152 if is_same_instance(other) then return true
153 var ol = other.length
154 var l = length
155 if ol == 0 then return true
156 if l == 0 then return false
157 if ol == 1 then return has(other.first)
158 for x in other do if not has(x) then return false
159 return true
160 end
161
162 # Does the collection contain exactly all the elements of `other`?
163 #
164 # The same elements must be present in both `self` and `other`,
165 # but the order of the elements in the collections are not considered.
166 #
167 # assert [1..3].has_exactly([3,1,2]) == true # the same elements
168 # assert [1..3].has_exactly([3,1]) == false # 2 is not in the array
169 # assert [1..2].has_exactly([3,1,2]) == false # 3 is not in the range
170 #
171 # Repeated elements must be present in both collections in the same amount.
172 # So basically it is a multi-set comparison.
173 #
174 # assert [1,2,3,2].has_exactly([1,2,2,3]) == true # the same elements
175 # assert [1,2,3,2].has_exactly([1,2,3]) == false # more 2 in the first array
176 # assert [1,2,3].has_exactly([1,2,2,3]) == false # more 2 in the second array
177 #
178 # Note that the default implementation is general and correct for any lawful Collections.
179 # It is memory-efficient but relies on `count` so may be CPU-inefficient for some kind of collections.
180 fun has_exactly(other: Collection[nullable Object]): Bool
181 do
182 if length != other.length then return false
183 for e in self do if self.count(e) != other.count(e) then return false
184 return true
185 end
186
187 # Does the collection contain at least one element of `other`?
188 #
189 # assert [1,3,4,2].has_any([1..10]) == true
190 # assert [1,3,4,2].has_any([5..10]) == false
191 #
192 # Note that the default implementation is general and correct for any lawful Collections.
193 # It is memory-efficient but relies on `has` so may be CPU-inefficient for some kind of collections.
194 fun has_any(other: Collection[nullable Object]): Bool
195 do
196 for o in other do
197 if has(o) then return true
198 end
199 return false
200 end
201 end
202
203 # Iterators generate a series of elements, one at a time.
204 #
205 # They are mainly used with collections and obtained from `Collection::iterator`.
206 interface Iterator[E]
207 # The current item.
208 # Require `is_ok`.
209 fun item: E is abstract
210
211 # Jump to the next item.
212 # Require `is_ok`.
213 fun next is abstract
214
215 # Jump to the next item `step` times.
216 #
217 # ~~~
218 # var i = [11, 22, 33, 44].iterator
219 # assert i.item == 11
220 # i.next_by 2
221 # assert i.item == 33
222 # ~~~
223 #
224 # `next_by` should be used instead of looping on `next` because is takes care
225 # of stopping if the end of iteration is reached prematurely whereas a loop of
226 # `next` will abort because of the precondition on `is_ok`.
227 #
228 # ~~~
229 # i.next_by 100
230 # assert not i.is_ok
231 # ~~~
232 #
233 # If `step` is negative, this method aborts.
234 # But specific subclasses can change this and do something more meaningful instead.
235 #
236 # Require `is_ok`
237 fun next_by(step: Int)
238 do
239 assert step >= 0
240 while is_ok and step > 0 do
241 next
242 step -= 1
243 end
244 end
245
246 # Is there a current item ?
247 fun is_ok: Bool is abstract
248
249 # Iterate over `self`
250 fun iterator: Iterator[E] do return self
251
252 # Pre-iteration hook.
253 #
254 # Used to inform `self` that the iteration is starting.
255 # Specific iterators can use this to prepare some resources.
256 #
257 # Is automatically invoked at the beginning of `for` structures.
258 #
259 # Do nothing by default.
260 fun start do end
261
262 # Post-iteration hook.
263 #
264 # Used to inform `self` that the iteration is over.
265 # Specific iterators can use this to free some resources.
266 #
267 # Is automatically invoked at the end of `for` structures.
268 #
269 # Do nothing by default.
270 fun finish do end
271
272 # A decorator around `self` that advance self a given number of steps instead of one.
273 #
274 # ~~~
275 # var i = [11, 22, 33, 44, 55].iterator
276 # var i2 = i.to_step(2)
277 #
278 # assert i2.item == 11
279 # i2.next
280 # assert i2.item == 33
281 #
282 # assert i.item == 33
283 # ~~~
284 fun to_step(step: Int): Iterator[E] do return new StepIterator[E](self, step)
285 end
286
287 # A basic helper class to specialize specific Iterator decorators
288 abstract class IteratorDecorator[E]
289 super Iterator[E]
290
291 # The underling iterator
292 protected var real: Iterator[E]
293
294 redef fun is_ok do return real.is_ok
295 redef fun item do return real.item
296 redef fun finish do real.finish
297 redef fun next do real.next
298 redef fun next_by(step) do real.next_by(step)
299 end
300
301 # A decorator that advance a given number of steps
302 private class StepIterator[E]
303 super IteratorDecorator[E]
304 var step: Int
305
306 redef fun next do real.next_by(step)
307 redef fun next_by(step) do real.next_by(step * self.step)
308 end
309
310 # A collection that contains only one item.
311 #
312 # Used to pass arguments by reference.
313 #
314 # Also used when one want to give a single element when a full
315 # collection is expected
316 class Ref[E]
317 super Collection[E]
318
319 redef fun first do return item
320
321 redef fun is_empty do return false
322
323 redef fun length do return 1
324
325 redef fun has(an_item) do return item == an_item
326
327 redef fun has_only(an_item) do return item == an_item
328
329 redef fun count(an_item)
330 do
331 if item == an_item then
332 return 1
333 else
334 return 0
335 end
336 end
337
338 redef fun iterator do return new RefIterator[E](self)
339
340 # The stored item
341 var item: E is writable
342 end
343
344 # This iterator is quite stupid since it is used for only one item.
345 private class RefIterator[E]
346 super Iterator[E]
347 redef fun item do return _container.item
348
349 redef fun next do is_ok = false
350
351 redef var is_ok = true
352
353 var container: Ref[E]
354 end
355
356 # Items can be removed from this collection
357 interface RemovableCollection[E]
358 super Collection[E]
359
360 # Remove all items
361 #
362 # var a = [1,2,3]
363 # a.clear
364 # assert a.length == 0
365 #
366 # ENSURE `is_empty`
367 fun clear is abstract
368
369 # Remove an occurrence of `item`
370 #
371 # var a = [1,2,3,1,2,3]
372 # a.remove 2
373 # assert a == [1,3,1,2,3]
374 fun remove(item: nullable Object) is abstract
375
376 # Remove all occurrences of `item`
377 #
378 # var a = [1,2,3,1,2,3]
379 # a.remove_all 2
380 # assert a == [1,3,1,3]
381 fun remove_all(item: nullable Object) do while has(item) do remove(item)
382 end
383
384 # Items can be added to these collections.
385 interface SimpleCollection[E]
386 super RemovableCollection[E]
387
388 # Add an item in a collection.
389 #
390 # var a = [1,2]
391 # a.add 3
392 # assert a.has(3) == true
393 # assert a.has(10) == false
394 #
395 # Ensure col.has(item)
396 fun add(item: E) is abstract
397
398 # Add each item of `coll`.
399 # var a = [1,2]
400 # a.add_all([3..5])
401 # assert a.has(4) == true
402 # assert a.has(10) == false
403 fun add_all(coll: Collection[E]) do for i in coll do add(i)
404 end
405
406 # Abstract sets.
407 #
408 # Set is a collection without duplicates (according to `==`)
409 #
410 # var s: Set[String] = new ArraySet[String]
411 # var a = "Hello"
412 # var b = "Hel" + "lo"
413 # # ...
414 # s.add(a)
415 # assert s.has(b) == true
416 interface Set[E]
417 super SimpleCollection[E]
418 super Cloneable
419
420 redef fun has_only(item)
421 do
422 var l = length
423 if l == 1 then
424 return has(item)
425 else if l == 0 then
426 return true
427 else
428 return false
429 end
430 end
431
432 # Only 0 or 1
433 redef fun count(item)
434 do
435 if has(item) then
436 return 1
437 else
438 return 0
439 end
440 end
441
442 # Synonym of remove since there is only one item
443 redef fun remove_all(item) do remove(item)
444
445 # Equality is defined on set and means that each set contains the same elements
446 redef fun ==(other)
447 do
448 if not other isa Set[nullable Object] then return false
449 if other.length != length then return false
450 return has_all(other)
451 end
452
453 # Because of the law between `==` and `hash`, `hash` is redefined to be the sum of the hash of the elements
454 redef fun hash
455 do
456 # 23 is a magic number empirically determined to be not so bad.
457 var res = 23 + length
458 # Note: the order of the elements must not change the hash value.
459 # So, unlike usual hash functions, the accumulator is not combined with itself.
460 for e in self do
461 if e != null then res += e.hash
462 end
463 return res
464 end
465
466 # Returns the union of this set with the `other` set
467 fun union(other: Set[E]): Set[E]
468 do
469 var nhs = new_set
470 nhs.add_all self
471 nhs.add_all other
472 return nhs
473 end
474
475 # Returns the intersection of this set with the `other` set
476 fun intersection(other: Set[E]): Set[E]
477 do
478 var nhs = new_set
479 for v in self do if other.has(v) then nhs.add(v)
480 return nhs
481 end
482
483 redef fun clone do return union(self)
484
485 # Returns a new instance of `Set`.
486 #
487 # Depends on the subclass, mainly used for copy services
488 # like `union` or `intersection`.
489 protected fun new_set: Set[E] is abstract
490 end
491
492 # MapRead are abstract associative collections: `key` -> `item`.
493 interface MapRead[K, V]
494 # Get the item at `key`
495 #
496 # var x = new HashMap[String, Int]
497 # x["four"] = 4
498 # assert x["four"] == 4
499 # # assert x["five"] #=> abort
500 #
501 # If the key is not in the map, `provide_default_value` is called (that aborts by default)
502 # See `get_or_null` and `get_or_default` for safe variations.
503 fun [](key: nullable Object): V is abstract
504
505 # Get the item at `key` or null if `key` is not in the map.
506 #
507 # var x = new HashMap[String, Int]
508 # x["four"] = 4
509 # assert x.get_or_null("four") == 4
510 # assert x.get_or_null("five") == null
511 #
512 # Note: use `has_key` and `[]` if you need the distinction between a key associated with null, and no key.
513 fun get_or_null(key: nullable Object): nullable V
514 do
515 if has_key(key) then return self[key]
516 return null
517 end
518
519 # Get the item at `key` or return `default` if not in map
520 #
521 # var x = new HashMap[String, Int]
522 # x["four"] = 4
523 # assert x.get_or_default("four", 40) == 4
524 # assert x.get_or_default("five", 50) == 50
525 #
526 fun get_or_default(key: nullable Object, default: V): V
527 do
528 if has_key(key) then return self[key]
529 return default
530 end
531
532 # Is there an item associated with `key`?
533 #
534 # var x = new HashMap[String, Int]
535 # x["four"] = 4
536 # assert x.has_key("four") == true
537 # assert x.has_key("five") == false
538 #
539 # By default it is a synonymous to `keys.has` but could be redefined with a direct implementation.
540 fun has_key(key: nullable Object): Bool do return self.keys.has(key)
541
542 # Get a new iterator on the map.
543 fun iterator: MapIterator[K, V] is abstract
544
545 # Return the point of view of self on the values only.
546 # Note that `self` and `values` are views on the same data;
547 # therefore any modification of one is visible on the other.
548 #
549 # var x = new HashMap[String, Int]
550 # x["four"] = 4
551 # assert x.values.has(4) == true
552 # assert x.values.has(5) == false
553 fun values: Collection[V] is abstract
554
555 # Return the point of view of self on the keys only.
556 # Note that `self` and `keys` are views on the same data;
557 # therefore any modification of one is visible on the other.
558 #
559 # var x = new HashMap[String, Int]
560 # x["four"] = 4
561 # assert x.keys.has("four") == true
562 # assert x.keys.has("five") == false
563 fun keys: Collection[K] is abstract
564
565 # Is there no item in the collection?
566 #
567 # var x = new HashMap[String, Int]
568 # assert x.is_empty == true
569 # x["four"] = 4
570 # assert x.is_empty == false
571 fun is_empty: Bool is abstract
572
573 # Alias for `not is_empty`.
574 #
575 # Some people prefer to have conditions grammatically easier to read.
576 #
577 # var map = new HashMap[String, Int]
578 # assert map.not_empty == false
579 # map["one"] = 1
580 # assert map.not_empty == true
581 fun not_empty: Bool do return not self.is_empty
582
583 # Number of items in the collection.
584 #
585 # var x = new HashMap[String, Int]
586 # assert x.length == 0
587 # x["four"] = 4
588 # assert x.length == 1
589 # x["five"] = 5
590 # assert x.length == 2
591 fun length: Int is abstract
592
593 # Called by the underling implementation of `[]` to provide a default value when a `key` has no value
594 # By default the behavior is to abort.
595 #
596 # Note: the value is returned *as is*, implementations may want to store the value in the map before returning it
597 # @toimplement
598 protected fun provide_default_value(key: nullable Object): V do abort
599
600 # Does `self` and `other` have the same keys associated with the same values?
601 #
602 # ~~~
603 # var a = new HashMap[String, Int]
604 # var b = new ArrayMap[Object, Numeric]
605 # assert a == b
606 # a["one"] = 1
607 # assert a != b
608 # b["one"] = 1
609 # assert a == b
610 # b["one"] = 2
611 # assert a != b
612 # ~~~
613 redef fun ==(other)
614 do
615 if not other isa MapRead[nullable Object, nullable Object] then return false
616 if other.length != self.length then return false
617 for k, v in self do
618 if not other.has_key(k) then return false
619 if other[k] != v then return false
620 end
621 return true
622 end
623
624 # A hashcode based on the hashcode of the keys and the values.
625 #
626 # ~~~
627 # var a = new HashMap[String, Int]
628 # var b = new ArrayMap[Object, Numeric]
629 # a["one"] = 1
630 # b["one"] = 1
631 # assert a.hash == b.hash
632 # ~~~
633 redef fun hash
634 do
635 var res = length
636 for k, v in self do
637 if k != null then res += k.hash * 7
638 if v != null then res += v.hash * 11
639 end
640 return res
641 end
642 end
643
644 # Maps are associative collections: `key` -> `item`.
645 #
646 # The main operator over maps is [].
647 #
648 # var map: Map[String, Int] = new ArrayMap[String, Int]
649 # # ...
650 # map["one"] = 1 # Associate 'one' to '1'
651 # map["two"] = 2 # Associate 'two' to '2'
652 # assert map["one"] == 1
653 # assert map["two"] == 2
654 #
655 # Instances of maps can be used with the for structure
656 #
657 # for key, value in map do
658 # assert (key == "one" and value == 1) or (key == "two" and value == 2)
659 # end
660 #
661 # The keys and values in the map can also be manipulated directly with the `keys` and `values` methods.
662 #
663 # assert map.keys.has("one") == true
664 # assert map.keys.has("tree") == false
665 # assert map.values.has(1) == true
666 # assert map.values.has(3) == false
667 #
668 interface Map[K, V]
669 super MapRead[K, V]
670
671 # Set the `value` at `key`.
672 #
673 # Values can then get retrieved with `[]`.
674 #
675 # var x = new HashMap[String, Int]
676 # x["four"] = 4
677 # assert x["four"] == 4
678 #
679 # If the key was associated with a value, this old value is discarded
680 # and replaced with the new one.
681 #
682 # x["four"] = 40
683 # assert x["four"] == 40
684 # assert x.values.has(4) == false
685 #
686 fun []=(key: K, value: V) is abstract
687
688 # Add each (key,value) of `map` into `self`.
689 # If a same key exists in `map` and `self`, then the value in self is discarded.
690 #
691 # var x = new HashMap[String, Int]
692 # x["four"] = 4
693 # x["five"] = 5
694 # var y = new HashMap[String, Int]
695 # y["four"] = 40
696 # y["nine"] = 90
697 # x.add_all y
698 # assert x["four"] == 40
699 # assert x["five"] == 5
700 # assert x["nine"] == 90
701 fun add_all(map: MapRead[K, V])
702 do
703 var i = map.iterator
704 while i.is_ok do
705 self[i.key] = i.item
706 i.next
707 end
708 end
709
710 # Alias for `add_all`
711 fun recover_with(map: MapRead[K, V]) is deprecated do add_all(map)
712
713 # Remove all items
714 #
715 # var x = new HashMap[String, Int]
716 # x["four"] = 4
717 # x.clear
718 # assert x.keys.has("four") == false
719 #
720 # ENSURE `is_empty`
721 fun clear is abstract
722
723 redef fun values: RemovableCollection[V] is abstract
724
725 redef fun keys: RemovableCollection[K] is abstract
726 end
727
728 # Iterators for Map.
729 interface MapIterator[K, V]
730 # The current item.
731 # Require `is_ok`.
732 fun item: V is abstract
733
734 # The key of the current item.
735 # Require `is_ok`.
736 fun key: K is abstract
737
738 # Jump to the next item.
739 # Require `is_ok`.
740 fun next is abstract
741
742 # Is there a current item ?
743 fun is_ok: Bool is abstract
744
745 # Set a new `item` at `key`.
746 #fun item=(item: E) is abstract
747
748 # Pre-iteration hook.
749 #
750 # Used to inform `self` that the iteration is starting.
751 # Specific iterators can use this to prepare some resources.
752 #
753 # Is automatically invoked at the beginning of `for` structures.
754 #
755 # Do nothing by default.
756 fun start do end
757
758 # Post-iteration hook.
759 #
760 # Used to inform `self` that the iteration is over.
761 # Specific iterators can use this to free some resources.
762 #
763 # Is automatically invoked at the end of `for` structures.
764 #
765 # Do nothing by default.
766 fun finish do end
767 end
768
769 # Iterator on a 'keys' point of view of a map
770 class MapKeysIterator[K, V]
771 super Iterator[K]
772 # The original iterator
773 var original_iterator: MapIterator[K, V]
774
775 redef fun is_ok do return self.original_iterator.is_ok
776 redef fun next do self.original_iterator.next
777 redef fun item do return self.original_iterator.key
778 end
779
780 # Iterator on a 'values' point of view of a map
781 class MapValuesIterator[K, V]
782 super Iterator[V]
783 # The original iterator
784 var original_iterator: MapIterator[K, V]
785
786 redef fun is_ok do return self.original_iterator.is_ok
787 redef fun next do self.original_iterator.next
788 redef fun item do return self.original_iterator.item
789 end
790
791 # Sequences are indexed collections.
792 # The first item is 0. The last is `length-1`.
793 #
794 # The order is the main caracteristic of sequence
795 # and all concrete implementation of sequences are basically interchangeable.
796 interface SequenceRead[E]
797 super Collection[E]
798
799 # Get the first item.
800 # Is equivalent with `self[0]`.
801 #
802 # var a = [1,2,3]
803 # assert a.first == 1
804 #
805 # REQUIRE `not is_empty`
806 redef fun first
807 do
808 assert not_empty: not is_empty
809 return self[0]
810 end
811
812 # Return the index-th element of the sequence.
813 # The first element is 0 and the last is `length-1`
814 # If index is invalid, the program aborts
815 #
816 # var a = [10,20,30]
817 # assert a[0] == 10
818 # assert a[1] == 20
819 # assert a[2] == 30
820 #
821 # REQUIRE `index >= 0 and index < length`
822 fun [](index: Int): E is abstract
823
824 # Return the index-th element but wrap
825 #
826 # Whereas `self[]` requires the index to exists, the `modulo` accessor automatically
827 # wraps overbound and underbouds indexes.
828 #
829 # ~~~
830 # var a = [10,20,30]
831 # assert a.modulo(1) == 20
832 # assert a.modulo(3) == 10
833 # assert a.modulo(-1) == 30
834 # assert a.modulo(-10) == 30
835 # ~~~
836 #
837 # REQUIRE `not_empty`
838 # ENSURE `result == self[modulo_index(index)]`
839 fun modulo(index: Int): E do return self[modulo_index(index)]
840
841 # Returns the real index for a modulo index.
842 #
843 # ~~~
844 # var a = [10,20,30]
845 # assert a.modulo_index(1) == 1
846 # assert a.modulo_index(3) == 0
847 # assert a.modulo_index(-1) == 2
848 # assert a.modulo_index(-10) == 2
849 # ~~~
850 #
851 # REQUIRE `not_empty`
852 fun modulo_index(index: Int): Int
853 do
854 var length = self.length
855 if index >= 0 then
856 return index % length
857 else
858 return length - (-1 - index) % length - 1
859 end
860 end
861
862 # Get the last item.
863 # Is equivalent with `self[length-1]`.
864 #
865 # var a = [1,2,3]
866 # assert a.last == 3
867 #
868 # REQUIRE `not is_empty`
869 fun last: E
870 do
871 assert not_empty: not is_empty
872 return self[length-1]
873 end
874
875 # The index of the first occurrence of `item`.
876 # Return -1 if `item` is not found.
877 # Comparison is done with `==`.
878 #
879 # var a = [10,20,30,10,20,30]
880 # assert a.index_of(20) == 1
881 # assert a.index_of(40) == -1
882 fun index_of(item: nullable Object): Int do return index_of_from(item, 0)
883
884 # The index of the last occurrence of `item`.
885 # Return -1 if `item` is not found.
886 # Comparison is done with `==`.
887 #
888 # var a = [10,20,30,10,20,30]
889 # assert a.last_index_of(20) == 4
890 # assert a.last_index_of(40) == -1
891 fun last_index_of(item: nullable Object): Int do return last_index_of_from(item, length-1)
892
893 # The index of the first occurrence of `item`, starting from pos.
894 # Return -1 if `item` is not found.
895 # Comparison is done with `==`.
896 #
897 # var a = [10,20,30,10,20,30]
898 # assert a.index_of_from(20, 3) == 4
899 # assert a.index_of_from(20, 4) == 4
900 # assert a.index_of_from(20, 5) == -1
901 fun index_of_from(item: nullable Object, pos: Int): Int
902 do
903 var p = 0
904 var i = iterator
905 while i.is_ok do
906 if p>=pos and i.item == item then return i.index
907 i.next
908 p += 1
909 end
910 return -1
911 end
912
913 # The index of the last occurrence of `item` starting from `pos` and decrementing.
914 # Return -1 if `item` is not found.
915 # Comparison is done with `==`.
916 #
917 # var a = [10,20,30,10,20,30]
918 # assert a.last_index_of_from(20, 2) == 1
919 # assert a.last_index_of_from(20, 1) == 1
920 # assert a.last_index_of_from(20, 0) == -1
921 fun last_index_of_from(item: nullable Object, pos: Int): Int do
922 var i = pos
923 while i >= 0 do
924 if self[i] == item then return i
925 i -= 1
926 end
927 return -1
928 end
929
930 # Two sequences are equals if they have the same items in the same order.
931 #
932 # var a = new List[Int]
933 # a.add(1)
934 # a.add(2)
935 # a.add(3)
936 # assert a == [1,2,3]
937 # assert a != [1,3,2]
938 redef fun ==(o)
939 do
940 if not o isa SequenceRead[nullable Object] then return false
941 var l = length
942 if o.length != l then return false
943 var i = 0
944 while i < l do
945 if self[i] != o[i] then return false
946 i += 1
947 end
948 return true
949 end
950
951 # Because of the law between `==` and `hash`, `hash` is redefined to be the sum of the hash of the elements
952 redef fun hash
953 do
954 # The 17 and 2/3 magic numbers were determined empirically.
955 # Note: the standard hash functions djb2, sbdm and fnv1 were also
956 # tested but were comparable (or worse).
957 var res = 17 + length
958 for e in self do
959 res = res * 3 / 2
960 if e != null then res += e.hash
961 end
962 return res
963 end
964
965 redef fun iterator: IndexedIterator[E] is abstract
966
967 # Gets a new Iterator starting at position `pos`
968 #
969 # var iter = [10,20,30,40,50].iterator_from(2)
970 # assert iter.to_a == [30, 40, 50]
971 fun iterator_from(pos: Int): IndexedIterator[E]
972 do
973 var res = iterator
974 while pos > 0 and res.is_ok do
975 res.next
976 pos -= 1
977 end
978 return res
979 end
980
981 # Gets an iterator starting at the end and going backwards
982 #
983 # var reviter = [1,2,3].reverse_iterator
984 # assert reviter.to_a == [3,2,1]
985 fun reverse_iterator: IndexedIterator[E] is abstract
986
987 # Gets an iterator on the chars of self starting from `pos`
988 #
989 # var reviter = [10,20,30,40,50].reverse_iterator_from(2)
990 # assert reviter.to_a == [30,20,10]
991 fun reverse_iterator_from(pos: Int): IndexedIterator[E]
992 do
993 var res = reverse_iterator
994 while pos > 0 and res.is_ok do
995 res.next
996 pos -= 1
997 end
998 return res
999 end
1000 end
1001
1002 # Sequence are indexed collection.
1003 # The first item is 0. The last is `length-1`.
1004 interface Sequence[E]
1005 super SequenceRead[E]
1006 super SimpleCollection[E]
1007
1008 # Set the first item.
1009 # Is equivalent with `self[0] = item`.
1010 #
1011 # var a = [1,2,3]
1012 # a.first = 10
1013 # assert a == [10,2,3]
1014 fun first=(item: E)
1015 do self[0] = item end
1016
1017 # Set the last item.
1018 # Is equivalent with `self[length-1] = item`.
1019 #
1020 # var a = [1,2,3]
1021 # a.last = 10
1022 # assert a == [1,2,10]
1023 #
1024 # If the sequence is empty, `last=` is equivalent with `self[0]=` (thus with `first=`)
1025 #
1026 # var b = new Array[Int]
1027 # b.last = 10
1028 # assert b == [10]
1029 fun last=(item: E)
1030 do
1031 var l = length
1032 if l > 0 then
1033 self[l-1] = item
1034 else
1035 self[0] = item
1036 end
1037 end
1038
1039 # A synonym of `push`
1040 redef fun add(e) do push(e)
1041
1042 # Add an item after the last one.
1043 #
1044 # var a = [1,2,3]
1045 # a.push(10)
1046 # a.push(20)
1047 # assert a == [1,2,3,10,20]
1048 fun push(e: E) is abstract
1049
1050 # Add each item of `coll` after the last.
1051 #
1052 # var a = [1,2,3]
1053 # a.append([7..9])
1054 # assert a == [1,2,3,7,8,9]
1055 #
1056 # Alias of `add_all`
1057 fun append(coll: Collection[E]) do add_all(coll)
1058
1059 # Remove the last item.
1060 #
1061 # var a = [1,2,3]
1062 # assert a.pop == 3
1063 # assert a.pop == 2
1064 # assert a == [1]
1065 #
1066 # REQUIRE `not is_empty`
1067 fun pop: E is abstract
1068
1069 # Add an item before the first one.
1070 #
1071 # var a = [1,2,3]
1072 # a.unshift(10)
1073 # a.unshift(20)
1074 # assert a == [20,10,1,2,3]
1075 fun unshift(e: E) is abstract
1076
1077 # Add all items of `coll` before the first one.
1078 #
1079 # var a = [1,2,3]
1080 # a.prepend([7..9])
1081 # assert a == [7,8,9,1,2,3]
1082 #
1083 # Alias of `insert_at(coll, 0)`
1084 fun prepend(coll: Collection[E]) do insert_all(coll, 0)
1085
1086 # Remove the first item.
1087 # The second item thus become the first.
1088 #
1089 # var a = [1,2,3]
1090 # assert a.shift == 1
1091 # assert a.shift == 2
1092 # assert a == [3]
1093 #
1094 # REQUIRE `not is_empty`
1095 fun shift: E is abstract
1096
1097 # Set the `item` at `index`.
1098 #
1099 # var a = [10,20,30]
1100 # a[1] = 200
1101 # assert a == [10,200,30]
1102 #
1103 # like with `[]`, index should be between `0` and `length-1`
1104 # However, if `index==length`, `[]=` works like `push`.
1105 #
1106 # a[3] = 400
1107 # assert a == [10,200,30,400]
1108 #
1109 # REQUIRE `index >= 0 and index <= length`
1110 fun []=(index: Int, item: E) is abstract
1111
1112 # Set the index-th element but wrap
1113 #
1114 # Whereas `self[]=` requires the index to exists, the `modulo` accessor automatically
1115 # wraps overbound and underbouds indexes.
1116 #
1117 # ~~~
1118 # var a = [10,20,30]
1119 # a.modulo(1) = 200
1120 # a.modulo(3) = 100
1121 # a.modulo(-1) = 300
1122 # a.modulo(-10) = 301
1123 # assert a == [100, 200, 301]
1124 # ~~~
1125 #
1126 # REQUIRE `not_empty`
1127 # ENSURE `self[modulo_index(index)] == value`
1128 fun modulo=(index: Int, value: E) do self[modulo_index(index)] = value
1129
1130 # Insert an element at a given position, following elements are shifted.
1131 #
1132 # var a = [10, 20, 30, 40]
1133 # a.insert(100, 2)
1134 # assert a == [10, 20, 100, 30, 40]
1135 #
1136 # REQUIRE `index >= 0 and index <= length`
1137 # ENSURE `self[index] == item`
1138 fun insert(item: E, index: Int) is abstract
1139
1140 # Insert all elements at a given position, following elements are shifted.
1141 #
1142 # var a = [10, 20, 30, 40]
1143 # a.insert_all([100..102], 2)
1144 # assert a == [10, 20, 100, 101, 102, 30, 40]
1145 #
1146 # REQUIRE `index >= 0 and index <= length`
1147 # ENSURE `self[index] == coll.first`
1148 fun insert_all(coll: Collection[E], index: Int)
1149 do
1150 assert index >= 0 and index < length
1151 if index == length then
1152 add_all(coll)
1153 end
1154 for c in coll do
1155 insert(c, index)
1156 index += 1
1157 end
1158 end
1159
1160 # Remove the item at `index` and shift all following elements
1161 #
1162 # var a = [10,20,30]
1163 # a.remove_at(1)
1164 # assert a == [10,30]
1165 #
1166 # REQUIRE `index >= 0 and index < length`
1167 fun remove_at(index: Int) is abstract
1168
1169 # Rotates the elements of self once to the left
1170 #
1171 # ~~~nit
1172 # var a = [12, 23, 34, 45]
1173 # a.rotate_left
1174 # assert a == [23, 34, 45, 12]
1175 # ~~~
1176 fun rotate_left do
1177 var fst = shift
1178 push fst
1179 end
1180
1181 # Rotates the elements of self once to the right
1182 #
1183 # ~~~nit
1184 # var a = [12, 23, 34, 45]
1185 # a.rotate_right
1186 # assert a == [45, 12, 23, 34]
1187 # ~~~
1188 fun rotate_right do
1189 var lst = pop
1190 unshift lst
1191 end
1192 end
1193
1194 # Iterators on indexed collections.
1195 interface IndexedIterator[E]
1196 super Iterator[E]
1197 # The index of the current item.
1198 fun index: Int is abstract
1199 end
1200
1201 # Associative arrays that internally uses couples to represent each (key, value) pairs.
1202 # This is an helper class that some specific implementation of Map may implements.
1203 interface CoupleMap[K, V]
1204 super Map[K, V]
1205
1206 # Return the couple of the corresponding key
1207 # Return null if the key is no associated element
1208 protected fun couple_at(key: nullable Object): nullable Couple[K, V] is abstract
1209
1210 # Return a new iteralot on all couples
1211 # Used to provide `iterator` and others
1212 protected fun couple_iterator: Iterator[Couple[K,V]] is abstract
1213
1214 redef fun iterator do return new CoupleMapIterator[K,V](couple_iterator)
1215
1216 redef fun [](key)
1217 do
1218 var c = couple_at(key)
1219 if c == null then
1220 return provide_default_value(key)
1221 else
1222 return c.second
1223 end
1224 end
1225
1226 redef fun has_key(key) do return couple_at(key) != null
1227 end
1228
1229 # Iterator on CoupleMap
1230 #
1231 # Actually it is a wrapper around an iterator of the internal array of the map.
1232 private class CoupleMapIterator[K, V]
1233 super MapIterator[K, V]
1234 redef fun item do return _iter.item.second
1235
1236 #redef fun item=(e) do _iter.item.second = e
1237
1238 redef fun key do return _iter.item.first
1239
1240 redef fun is_ok do return _iter.is_ok
1241
1242 redef fun next
1243 do
1244 _iter.next
1245 end
1246
1247 var iter: Iterator[Couple[K,V]]
1248 end
1249
1250 # Some tools ###################################################################
1251
1252 # Two objects in a simple structure.
1253 class Couple[F, S]
1254
1255 # The first element of the couple.
1256 var first: F is writable
1257
1258 # The second element of the couple.
1259 var second: S is writable
1260 end