src: update most tools to new constructors
[nit.git] / src / compiler / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import coloring
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --inline-coloring-numbers
33 var opt_inline_coloring_numbers = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
34 # --inline-some-methods
35 var opt_inline_some_methods = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
36 # --direct-call-monomorph
37 var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph")
38 # --skip-dead-methods
39 var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods")
40 # --semi-global
41 var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global")
42 # --no-colo-dead-methods
43 var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods")
44 # --tables-metrics
45 var opt_tables_metrics = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
46
47 redef init
48 do
49 super
50 self.option_context.add_option(self.opt_separate)
51 self.option_context.add_option(self.opt_no_inline_intern)
52 self.option_context.add_option(self.opt_no_union_attribute)
53 self.option_context.add_option(self.opt_no_shortcut_equate)
54 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global)
55 self.option_context.add_option(self.opt_colo_dead_methods)
56 self.option_context.add_option(self.opt_tables_metrics)
57 end
58
59 redef fun process_options(args)
60 do
61 super
62
63 var tc = self
64 if tc.opt_semi_global.value then
65 tc.opt_inline_coloring_numbers.value = true
66 tc.opt_inline_some_methods.value = true
67 tc.opt_direct_call_monomorph.value = true
68 tc.opt_skip_dead_methods.value = true
69 end
70 end
71
72 var separate_compiler_phase = new SeparateCompilerPhase(self, null)
73 end
74
75 class SeparateCompilerPhase
76 super Phase
77 redef fun process_mainmodule(mainmodule, given_mmodules) do
78 if not toolcontext.opt_separate.value then return
79
80 var modelbuilder = toolcontext.modelbuilder
81 var analysis = modelbuilder.do_rapid_type_analysis(mainmodule)
82 modelbuilder.run_separate_compiler(mainmodule, analysis)
83 end
84 end
85
86 redef class ModelBuilder
87 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
88 do
89 var time0 = get_time
90 self.toolcontext.info("*** GENERATING C ***", 1)
91
92 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
93 compiler.compile_header
94
95 # compile class structures
96 self.toolcontext.info("Property coloring", 2)
97 compiler.new_file("{mainmodule.name}.classes")
98 compiler.do_property_coloring
99 for m in mainmodule.in_importation.greaters do
100 for mclass in m.intro_mclasses do
101 #if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
102 compiler.compile_class_to_c(mclass)
103 end
104 end
105
106 # The main function of the C
107 compiler.new_file("{mainmodule.name}.main")
108 compiler.compile_nitni_global_ref_functions
109 compiler.compile_main_function
110 compiler.compile_finalizer_function
111
112 # compile methods
113 for m in mainmodule.in_importation.greaters do
114 self.toolcontext.info("Generate C for module {m}", 2)
115 compiler.new_file("{m.name}.sep")
116 compiler.compile_module_to_c(m)
117 end
118
119 # compile live & cast type structures
120 self.toolcontext.info("Type coloring", 2)
121 compiler.new_file("{mainmodule.name}.types")
122 var mtypes = compiler.do_type_coloring
123 for t in mtypes do
124 compiler.compile_type_to_c(t)
125 end
126 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
127 for t in compiler.undead_types do
128 if mtypes.has(t) then continue
129 compiler.compile_type_to_c(t)
130 end
131
132 compiler.display_stats
133
134 var time1 = get_time
135 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
136 write_and_make(compiler)
137 end
138
139 # Count number of invocations by VFT
140 private var nb_invok_by_tables = 0
141 # Count number of invocations by direct call
142 private var nb_invok_by_direct = 0
143 # Count number of invocations by inlining
144 private var nb_invok_by_inline = 0
145 end
146
147 # Singleton that store the knowledge about the separate compilation process
148 class SeparateCompiler
149 super AbstractCompiler
150
151 redef type VISITOR: SeparateCompilerVisitor
152
153 # The result of the RTA (used to know live types and methods)
154 var runtime_type_analysis: nullable RapidTypeAnalysis
155
156 private var undead_types: Set[MType] = new HashSet[MType]
157 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
158
159 private var type_ids: Map[MType, Int] is noinit
160 private var type_colors: Map[MType, Int] is noinit
161 private var opentype_colors: Map[MType, Int] is noinit
162 protected var method_colors: Map[PropertyLayoutElement, Int] is noinit
163 protected var attr_colors: Map[MAttribute, Int] is noinit
164
165 init do
166 var file = new_file("nit.common")
167 self.header = new CodeWriter(file)
168 self.compile_box_kinds
169 end
170
171 redef fun compile_header_structs do
172 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
173 self.compile_header_attribute_structs
174 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
175
176 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
177 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
178 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
179 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
180 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
181 end
182
183 fun compile_header_attribute_structs
184 do
185 if modelbuilder.toolcontext.opt_no_union_attribute.value then
186 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
187 else
188 self.header.add_decl("typedef union \{")
189 self.header.add_decl("void* val;")
190 for c, v in self.box_kinds do
191 var t = c.mclass_type
192
193 # `Pointer` reuse the `val` field
194 if t.mclass.name == "Pointer" then continue
195
196 self.header.add_decl("{t.ctype_extern} {t.ctypename};")
197 end
198 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
199 end
200 end
201
202 fun compile_box_kinds
203 do
204 # Collect all bas box class
205 # FIXME: this is not completely fine with a separate compilation scheme
206 for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do
207 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
208 if classes == null then continue
209 assert classes.length == 1 else print classes.join(", ")
210 self.box_kinds[classes.first] = self.box_kinds.length + 1
211 end
212 end
213
214 var box_kinds = new HashMap[MClass, Int]
215
216 fun box_kind_of(mclass: MClass): Int
217 do
218 #var pointer_type = self.mainmodule.pointer_type
219 #if mclass.mclass_type.ctype == "val*" or mclass.mclass_type.is_subtype(self.mainmodule, mclass.mclass_type pointer_type) then
220 if mclass.mclass_type.ctype_extern == "val*" then
221 return 0
222 else if mclass.kind == extern_kind and mclass.name != "NativeString" then
223 return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")]
224 else
225 return self.box_kinds[mclass]
226 end
227
228 end
229
230 fun compile_color_consts(colors: Map[Object, Int]) do
231 var v = new_visitor
232 for m, c in colors do
233 compile_color_const(v, m, c)
234 end
235 end
236
237 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
238 if color_consts_done.has(m) then return
239 if m isa MProperty then
240 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
241 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
242 else
243 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
244 v.add("const int {m.const_color} = {color};")
245 end
246 else if m isa MPropDef then
247 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
248 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
249 else
250 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
251 v.add("const int {m.const_color} = {color};")
252 end
253 else if m isa MType then
254 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
255 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
256 else
257 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
258 v.add("const int {m.const_color} = {color};")
259 end
260 end
261 color_consts_done.add(m)
262 end
263
264 private var color_consts_done = new HashSet[Object]
265
266 # colorize classe properties
267 fun do_property_coloring do
268
269 var rta = runtime_type_analysis
270
271 # Layouts
272 var poset = mainmodule.flatten_mclass_hierarchy
273 var mclasses = new HashSet[MClass].from(poset)
274 var colorer = new POSetColorer[MClass]
275 colorer.colorize(poset)
276
277 # The dead methods, still need to provide a dead color symbol
278 var dead_methods = new Array[MMethod]
279
280 # lookup properties to build layout with
281 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
282 var mattributes = new HashMap[MClass, Set[MAttribute]]
283 for mclass in mclasses do
284 mmethods[mclass] = new HashSet[PropertyLayoutElement]
285 mattributes[mclass] = new HashSet[MAttribute]
286 for mprop in self.mainmodule.properties(mclass) do
287 if mprop isa MMethod then
288 if not modelbuilder.toolcontext.opt_colo_dead_methods.value and rta != null and not rta.live_methods.has(mprop) then
289 dead_methods.add(mprop)
290 continue
291 end
292 mmethods[mclass].add(mprop)
293 else if mprop isa MAttribute then
294 mattributes[mclass].add(mprop)
295 end
296 end
297 end
298
299 # Collect all super calls (dead or not)
300 var all_super_calls = new HashSet[MMethodDef]
301 for mmodule in self.mainmodule.in_importation.greaters do
302 for mclassdef in mmodule.mclassdefs do
303 for mpropdef in mclassdef.mpropdefs do
304 if not mpropdef isa MMethodDef then continue
305 if mpropdef.has_supercall then
306 all_super_calls.add(mpropdef)
307 end
308 end
309 end
310 end
311
312 # lookup super calls and add it to the list of mmethods to build layout with
313 var super_calls
314 if rta != null then
315 super_calls = rta.live_super_sends
316 else
317 super_calls = all_super_calls
318 end
319
320 for mmethoddef in super_calls do
321 var mclass = mmethoddef.mclassdef.mclass
322 mmethods[mclass].add(mmethoddef)
323 for descendant in mclass.in_hierarchy(self.mainmodule).smallers do
324 mmethods[descendant].add(mmethoddef)
325 end
326 end
327
328 # methods coloration
329 var meth_colorer = new POSetBucketsColorer[MClass, PropertyLayoutElement](poset, colorer.conflicts)
330 method_colors = meth_colorer.colorize(mmethods)
331 method_tables = build_method_tables(mclasses, super_calls)
332 compile_color_consts(method_colors)
333
334 # attribute null color to dead methods and supercalls
335 for mproperty in dead_methods do
336 compile_color_const(new_visitor, mproperty, -1)
337 end
338 for mpropdef in all_super_calls do
339 if super_calls.has(mpropdef) then continue
340 compile_color_const(new_visitor, mpropdef, -1)
341 end
342
343 # attributes coloration
344 var attr_colorer = new POSetBucketsColorer[MClass, MAttribute](poset, colorer.conflicts)
345 attr_colors = attr_colorer.colorize(mattributes)
346 attr_tables = build_attr_tables(mclasses)
347 compile_color_consts(attr_colors)
348 end
349
350 fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do
351 var tables = new HashMap[MClass, Array[nullable MPropDef]]
352 for mclass in mclasses do
353 var table = new Array[nullable MPropDef]
354 tables[mclass] = table
355
356 var mproperties = self.mainmodule.properties(mclass)
357 var mtype = mclass.intro.bound_mtype
358
359 for mproperty in mproperties do
360 if not mproperty isa MMethod then continue
361 if not method_colors.has_key(mproperty) then continue
362 var color = method_colors[mproperty]
363 if table.length <= color then
364 for i in [table.length .. color[ do
365 table[i] = null
366 end
367 end
368 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
369 end
370
371 for supercall in super_calls do
372 if not mtype.collect_mclassdefs(mainmodule).has(supercall.mclassdef) then continue
373
374 var color = method_colors[supercall]
375 if table.length <= color then
376 for i in [table.length .. color[ do
377 table[i] = null
378 end
379 end
380 var mmethoddef = supercall.lookup_next_definition(mainmodule, mtype)
381 table[color] = mmethoddef
382 end
383
384 end
385 return tables
386 end
387
388 fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do
389 var tables = new HashMap[MClass, Array[nullable MPropDef]]
390 for mclass in mclasses do
391 var table = new Array[nullable MPropDef]
392 tables[mclass] = table
393
394 var mproperties = self.mainmodule.properties(mclass)
395 var mtype = mclass.intro.bound_mtype
396
397 for mproperty in mproperties do
398 if not mproperty isa MAttribute then continue
399 if not attr_colors.has_key(mproperty) then continue
400 var color = attr_colors[mproperty]
401 if table.length <= color then
402 for i in [table.length .. color[ do
403 table[i] = null
404 end
405 end
406 table[color] = mproperty.lookup_first_definition(mainmodule, mtype)
407 end
408 end
409 return tables
410 end
411
412 # colorize live types of the program
413 private fun do_type_coloring: POSet[MType] do
414 # Collect types to colorize
415 var live_types = runtime_type_analysis.live_types
416 var live_cast_types = runtime_type_analysis.live_cast_types
417 var mtypes = new HashSet[MType]
418 mtypes.add_all(live_types)
419 mtypes.add_all(live_cast_types)
420 for c in self.box_kinds.keys do
421 mtypes.add(c.mclass_type)
422 end
423
424 # Compute colors
425 var poset = poset_from_mtypes(mtypes)
426 var colorer = new POSetColorer[MType]
427 colorer.colorize(poset)
428 type_ids = colorer.ids
429 type_colors = colorer.colors
430 type_tables = build_type_tables(poset)
431
432 # VT and FT are stored with other unresolved types in the big resolution_tables
433 self.compile_resolution_tables(mtypes)
434
435 return poset
436 end
437
438 private fun poset_from_mtypes(mtypes: Set[MType]): POSet[MType] do
439 var poset = new POSet[MType]
440 for e in mtypes do
441 poset.add_node(e)
442 for o in mtypes do
443 if e == o then continue
444 if e.is_subtype(mainmodule, null, o) then
445 poset.add_edge(e, o)
446 end
447 end
448 end
449 return poset
450 end
451
452 # Build type tables
453 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
454 var tables = new HashMap[MType, Array[nullable MType]]
455 for mtype in mtypes do
456 var table = new Array[nullable MType]
457 for sup in mtypes[mtype].greaters do
458 var color = type_colors[sup]
459 if table.length <= color then
460 for i in [table.length .. color[ do
461 table[i] = null
462 end
463 end
464 table[color] = sup
465 end
466 tables[mtype] = table
467 end
468 return tables
469 end
470
471 protected fun compile_resolution_tables(mtypes: Set[MType]) do
472 # resolution_tables is used to perform a type resolution at runtime in O(1)
473
474 # During the visit of the body of classes, live_unresolved_types are collected
475 # and associated to
476 # Collect all live_unresolved_types (visited in the body of classes)
477
478 # Determinate fo each livetype what are its possible requested anchored types
479 var mtype2unresolved = new HashMap[MClassType, Set[MType]]
480 for mtype in self.runtime_type_analysis.live_types do
481 var set = new HashSet[MType]
482 for cd in mtype.collect_mclassdefs(self.mainmodule) do
483 if self.live_unresolved_types.has_key(cd) then
484 set.add_all(self.live_unresolved_types[cd])
485 end
486 end
487 mtype2unresolved[mtype] = set
488 end
489
490 # Compute the table layout with the prefered method
491 var colorer = new BucketsColorer[MType, MType]
492 opentype_colors = colorer.colorize(mtype2unresolved)
493 resolution_tables = self.build_resolution_tables(mtype2unresolved)
494
495 # Compile a C constant for each collected unresolved type.
496 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
497 var all_unresolved = new HashSet[MType]
498 for t in self.live_unresolved_types.values do
499 all_unresolved.add_all(t)
500 end
501 var all_unresolved_types_colors = new HashMap[MType, Int]
502 for t in all_unresolved do
503 if opentype_colors.has_key(t) then
504 all_unresolved_types_colors[t] = opentype_colors[t]
505 else
506 all_unresolved_types_colors[t] = -1
507 end
508 end
509 self.compile_color_consts(all_unresolved_types_colors)
510
511 #print "tables"
512 #for k, v in unresolved_types_tables.as(not null) do
513 # print "{k}: {v.join(", ")}"
514 #end
515 #print ""
516 end
517
518 fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do
519 var tables = new HashMap[MClassType, Array[nullable MType]]
520 for mclasstype, mtypes in elements do
521 var table = new Array[nullable MType]
522 for mtype in mtypes do
523 var color = opentype_colors[mtype]
524 if table.length <= color then
525 for i in [table.length .. color[ do
526 table[i] = null
527 end
528 end
529 table[color] = mtype
530 end
531 tables[mclasstype] = table
532 end
533 return tables
534 end
535
536 # Separately compile all the method definitions of the module
537 fun compile_module_to_c(mmodule: MModule)
538 do
539 var old_module = self.mainmodule
540 self.mainmodule = mmodule
541 for cd in mmodule.mclassdefs do
542 for pd in cd.mpropdefs do
543 if not pd isa MMethodDef then continue
544 var rta = runtime_type_analysis
545 if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue
546 #print "compile {pd} @ {cd} @ {mmodule}"
547 var r = pd.separate_runtime_function
548 r.compile_to_c(self)
549 var r2 = pd.virtual_runtime_function
550 r2.compile_to_c(self)
551 end
552 end
553 self.mainmodule = old_module
554 end
555
556 # Globaly compile the type structure of a live type
557 fun compile_type_to_c(mtype: MType)
558 do
559 assert not mtype.need_anchor
560 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
561 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
562 var c_name = mtype.c_name
563 var v = new SeparateCompilerVisitor(self)
564 v.add_decl("/* runtime type {mtype} */")
565
566 # extern const struct type_X
567 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
568
569 # const struct type_X
570 v.add_decl("const struct type type_{c_name} = \{")
571
572 # type id (for cast target)
573 if is_cast_live then
574 v.add_decl("{type_ids[mtype]},")
575 else
576 v.add_decl("-1, /*CAST DEAD*/")
577 end
578
579 # type name
580 v.add_decl("\"{mtype}\", /* class_name_string */")
581
582 # type color (for cast target)
583 if is_cast_live then
584 v.add_decl("{type_colors[mtype]},")
585 else
586 v.add_decl("-1, /*CAST DEAD*/")
587 end
588
589 # is_nullable bit
590 if mtype isa MNullableType then
591 v.add_decl("1,")
592 else
593 v.add_decl("0,")
594 end
595
596 # resolution table (for receiver)
597 if is_live then
598 var mclass_type = mtype.as_notnullable
599 assert mclass_type isa MClassType
600 if resolution_tables[mclass_type].is_empty then
601 v.add_decl("NULL, /*NO RESOLUTIONS*/")
602 else
603 compile_type_resolution_table(mtype)
604 v.require_declaration("resolution_table_{c_name}")
605 v.add_decl("&resolution_table_{c_name},")
606 end
607 else
608 v.add_decl("NULL, /*DEAD*/")
609 end
610
611 # cast table (for receiver)
612 if is_live then
613 v.add_decl("{self.type_tables[mtype].length},")
614 v.add_decl("\{")
615 for stype in self.type_tables[mtype] do
616 if stype == null then
617 v.add_decl("-1, /* empty */")
618 else
619 v.add_decl("{type_ids[stype]}, /* {stype} */")
620 end
621 end
622 v.add_decl("\},")
623 else
624 v.add_decl("0, \{\}, /*DEAD TYPE*/")
625 end
626 v.add_decl("\};")
627 end
628
629 fun compile_type_resolution_table(mtype: MType) do
630
631 var mclass_type = mtype.as_notnullable.as(MClassType)
632
633 # extern const struct resolution_table_X resolution_table_X
634 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
635
636 # const struct fts_table_X fts_table_X
637 var v = new_visitor
638 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
639 v.add_decl("0, /* dummy */")
640 v.add_decl("\{")
641 for t in self.resolution_tables[mclass_type] do
642 if t == null then
643 v.add_decl("NULL, /* empty */")
644 else
645 # The table stores the result of the type resolution
646 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
647 # the value stored is tv.
648 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
649 # FIXME: What typeids means here? How can a tv not be live?
650 if type_ids.has_key(tv) then
651 v.require_declaration("type_{tv.c_name}")
652 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
653 else
654 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
655 end
656 end
657 end
658 v.add_decl("\}")
659 v.add_decl("\};")
660 end
661
662 # Globally compile the table of the class mclass
663 # In a link-time optimisation compiler, tables are globally computed
664 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
665 fun compile_class_to_c(mclass: MClass)
666 do
667 var mtype = mclass.intro.bound_mtype
668 var c_name = mclass.c_name
669
670 var vft = self.method_tables[mclass]
671 var attrs = self.attr_tables[mclass]
672 var v = new_visitor
673
674 var rta = runtime_type_analysis
675 var is_dead = rta != null and not rta.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray" and mclass.name != "Pointer"
676
677 v.add_decl("/* runtime class {c_name} */")
678
679 # Build class vft
680 if not is_dead then
681 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
682 v.add_decl("const struct class class_{c_name} = \{")
683 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
684 v.add_decl("\{")
685 for i in [0 .. vft.length[ do
686 var mpropdef = vft[i]
687 if mpropdef == null then
688 v.add_decl("NULL, /* empty */")
689 else
690 assert mpropdef isa MMethodDef
691 if rta != null and not rta.live_methoddefs.has(mpropdef) then
692 v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
693 continue
694 end
695 var rf = mpropdef.virtual_runtime_function
696 v.require_declaration(rf.c_name)
697 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
698 end
699 end
700 v.add_decl("\}")
701 v.add_decl("\};")
702 end
703
704 if mtype.ctype != "val*" or mtype.mclass.name == "Pointer" then
705 # Is a primitive type or the Pointer class, not any other extern class
706
707 #Build instance struct
708 self.header.add_decl("struct instance_{c_name} \{")
709 self.header.add_decl("const struct type *type;")
710 self.header.add_decl("const struct class *class;")
711 self.header.add_decl("{mtype.ctype_extern} value;")
712 self.header.add_decl("\};")
713
714 if not rta.live_types.has(mtype) and mtype.mclass.name != "Pointer" then return
715
716 #Build BOX
717 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype_extern});")
718 v.add_decl("/* allocate {mtype} */")
719 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype_extern} value) \{")
720 v.add("struct instance_{c_name}*res = nit_alloc(sizeof(struct instance_{c_name}));")
721 v.compiler.undead_types.add(mtype)
722 v.require_declaration("type_{c_name}")
723 v.add("res->type = &type_{c_name};")
724 v.require_declaration("class_{c_name}")
725 v.add("res->class = &class_{c_name};")
726 v.add("res->value = value;")
727 v.add("return (val*)res;")
728 v.add("\}")
729
730 if mtype.mclass.name != "Pointer" then return
731
732 v = new_visitor
733 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
734 v.add_decl("/* allocate {mtype} */")
735 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
736 if is_dead then
737 v.add_abort("{mclass} is DEAD")
738 else
739 var res = v.new_named_var(mtype, "self")
740 res.is_exact = true
741 v.add("{res} = nit_alloc(sizeof(struct instance_{mtype.c_name}));")
742 v.add("{res}->type = type;")
743 hardening_live_type(v, "type")
744 v.require_declaration("class_{c_name}")
745 v.add("{res}->class = &class_{c_name};")
746 v.add("((struct instance_{mtype.c_name}*){res})->value = NULL;")
747 v.add("return {res};")
748 end
749 v.add("\}")
750 return
751 else if mclass.name == "NativeArray" then
752 #Build instance struct
753 self.header.add_decl("struct instance_{c_name} \{")
754 self.header.add_decl("const struct type *type;")
755 self.header.add_decl("const struct class *class;")
756 # NativeArrays are just a instance header followed by a length and an array of values
757 self.header.add_decl("int length;")
758 self.header.add_decl("val* values[0];")
759 self.header.add_decl("\};")
760
761 #Build NEW
762 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
763 v.add_decl("/* allocate {mtype} */")
764 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
765 var res = v.get_name("self")
766 v.add_decl("struct instance_{c_name} *{res};")
767 var mtype_elt = mtype.arguments.first
768 v.add("{res} = nit_alloc(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));")
769 v.add("{res}->type = type;")
770 hardening_live_type(v, "type")
771 v.require_declaration("class_{c_name}")
772 v.add("{res}->class = &class_{c_name};")
773 v.add("{res}->length = length;")
774 v.add("return (val*){res};")
775 v.add("\}")
776 return
777 else if mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
778 # Is an extern class (other than Pointer and NativeString)
779 # Pointer is caught in a previous `if`, and NativeString is internal
780
781 var pointer_type = mainmodule.pointer_type
782
783 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
784 v.add_decl("/* allocate {mtype} */")
785 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
786 if is_dead then
787 v.add_abort("{mclass} is DEAD")
788 else
789 var res = v.new_named_var(mtype, "self")
790 res.is_exact = true
791 v.add("{res} = nit_alloc(sizeof(struct instance_{pointer_type.c_name}));")
792 v.add("{res}->type = type;")
793 hardening_live_type(v, "type")
794 v.require_declaration("class_{c_name}")
795 v.add("{res}->class = &class_{c_name};")
796 v.add("((struct instance_{pointer_type.c_name}*){res})->value = NULL;")
797 v.add("return {res};")
798 end
799 v.add("\}")
800 return
801 end
802
803 #Build NEW
804 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
805 v.add_decl("/* allocate {mtype} */")
806 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
807 if is_dead then
808 v.add_abort("{mclass} is DEAD")
809 else
810 var res = v.new_named_var(mtype, "self")
811 res.is_exact = true
812 v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));")
813 v.add("{res}->type = type;")
814 hardening_live_type(v, "type")
815 v.require_declaration("class_{c_name}")
816 v.add("{res}->class = &class_{c_name};")
817 self.generate_init_attr(v, res, mtype)
818 v.set_finalizer res
819 v.add("return {res};")
820 end
821 v.add("\}")
822 end
823
824 # Add a dynamic test to ensure that the type referenced by `t` is a live type
825 fun hardening_live_type(v: VISITOR, t: String)
826 do
827 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
828 v.add("if({t} == NULL) \{")
829 v.add_abort("type null")
830 v.add("\}")
831 v.add("if({t}->table_size == 0) \{")
832 v.add("PRINT_ERROR(\"Insantiation of a dead type: %s\\n\", {t}->name);")
833 v.add_abort("type dead")
834 v.add("\}")
835 end
836
837 redef fun new_visitor do return new SeparateCompilerVisitor(self)
838
839 # Stats
840
841 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
842 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
843 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
844 protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
845
846 redef fun display_stats
847 do
848 super
849 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
850 display_sizes
851 end
852 if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
853 display_isset_checks
854 end
855 var tc = self.modelbuilder.toolcontext
856 tc.info("# implementation of method invocation",2)
857 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
858 tc.info("total number of invocations: {nb_invok_total}",2)
859 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
860 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
861 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
862 end
863
864 fun display_sizes
865 do
866 print "# size of subtyping tables"
867 print "\ttotal \tholes"
868 var total = 0
869 var holes = 0
870 for t, table in type_tables do
871 total += table.length
872 for e in table do if e == null then holes += 1
873 end
874 print "\t{total}\t{holes}"
875
876 print "# size of resolution tables"
877 print "\ttotal \tholes"
878 total = 0
879 holes = 0
880 for t, table in resolution_tables do
881 total += table.length
882 for e in table do if e == null then holes += 1
883 end
884 print "\t{total}\t{holes}"
885
886 print "# size of methods tables"
887 print "\ttotal \tholes"
888 total = 0
889 holes = 0
890 for t, table in method_tables do
891 total += table.length
892 for e in table do if e == null then holes += 1
893 end
894 print "\t{total}\t{holes}"
895
896 print "# size of attributes tables"
897 print "\ttotal \tholes"
898 total = 0
899 holes = 0
900 for t, table in attr_tables do
901 total += table.length
902 for e in table do if e == null then holes += 1
903 end
904 print "\t{total}\t{holes}"
905 end
906
907 protected var isset_checks_count = 0
908 protected var attr_read_count = 0
909
910 fun display_isset_checks do
911 print "# total number of compiled attribute reads"
912 print "\t{attr_read_count}"
913 print "# total number of compiled isset-checks"
914 print "\t{isset_checks_count}"
915 end
916
917 redef fun compile_nitni_structs
918 do
919 self.header.add_decl """
920 struct nitni_instance \{
921 struct nitni_instance *next,
922 *prev; /* adjacent global references in global list */
923 int count; /* number of time this global reference has been marked */
924 struct instance *value;
925 \};
926 """
927 super
928 end
929
930 redef fun finalize_ffi_for_module(mmodule)
931 do
932 var old_module = self.mainmodule
933 self.mainmodule = mmodule
934 super
935 self.mainmodule = old_module
936 end
937 end
938
939 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
940 class SeparateCompilerVisitor
941 super AbstractCompilerVisitor
942
943 redef type COMPILER: SeparateCompiler
944
945 redef fun adapt_signature(m, args)
946 do
947 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
948 var recv = args.first
949 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
950 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
951 end
952 for i in [0..msignature.arity[ do
953 var t = msignature.mparameters[i].mtype
954 if i == msignature.vararg_rank then
955 t = args[i+1].mtype
956 end
957 args[i+1] = self.autobox(args[i+1], t)
958 end
959 end
960
961 redef fun unbox_signature_extern(m, args)
962 do
963 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
964 if not m.mproperty.is_init and m.is_extern then
965 args.first = self.unbox_extern(args.first, m.mclassdef.mclass.mclass_type)
966 end
967 for i in [0..msignature.arity[ do
968 var t = msignature.mparameters[i].mtype
969 if i == msignature.vararg_rank then
970 t = args[i+1].mtype
971 end
972 if m.is_extern then args[i+1] = self.unbox_extern(args[i+1], t)
973 end
974 end
975
976 redef fun autobox(value, mtype)
977 do
978 if value.mtype == mtype then
979 return value
980 else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then
981 return value
982 else if value.mtype.ctype == "val*" then
983 return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
984 else if mtype.ctype == "val*" then
985 var valtype = value.mtype.as(MClassType)
986 if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
987 valtype = compiler.mainmodule.pointer_type
988 end
989 var res = self.new_var(mtype)
990 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then
991 self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */")
992 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);")
993 return res
994 end
995 self.require_declaration("BOX_{valtype.c_name}")
996 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
997 return res
998 else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or
999 (value.mtype.ctype == "char*" and mtype.ctype == "void*") or
1000 (value.mtype.ctype == "void*" and mtype.ctype == "char*") then
1001 return value
1002 else
1003 # Bad things will appen!
1004 var res = self.new_var(mtype)
1005 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
1006 self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);")
1007 return res
1008 end
1009 end
1010
1011 redef fun unbox_extern(value, mtype)
1012 do
1013 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1014 mtype.mclass.name != "NativeString" then
1015 var pointer_type = compiler.mainmodule.pointer_type
1016 var res = self.new_var_extern(mtype)
1017 self.add "{res} = ((struct instance_{pointer_type.c_name}*){value})->value; /* unboxing {value.mtype} */"
1018 return res
1019 else
1020 return value
1021 end
1022 end
1023
1024 redef fun box_extern(value, mtype)
1025 do
1026 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1027 mtype.mclass.name != "NativeString" then
1028 var valtype = compiler.mainmodule.pointer_type
1029 var res = self.new_var(mtype)
1030 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(value.mtype.as(MClassType)) then
1031 self.add("/*no boxing of {value.mtype}: {value.mtype} is not live! */")
1032 self.add("PRINT_ERROR(\"Dead code executed!\\n\"); show_backtrace(1);")
1033 return res
1034 end
1035 self.require_declaration("BOX_{valtype.c_name}")
1036 self.add("{res} = BOX_{valtype.c_name}({value}); /* boxing {value.mtype} */")
1037 self.require_declaration("type_{mtype.c_name}")
1038 self.add("{res}->type = &type_{mtype.c_name};")
1039 self.require_declaration("class_{mtype.c_name}")
1040 self.add("{res}->class = &class_{mtype.c_name};")
1041 return res
1042 else
1043 return value
1044 end
1045 end
1046
1047 # Return a C expression returning the runtime type structure of the value
1048 # The point of the method is to works also with primitives types.
1049 fun type_info(value: RuntimeVariable): String
1050 do
1051 if value.mtype.ctype == "val*" then
1052 return "{value}->type"
1053 else
1054 compiler.undead_types.add(value.mtype)
1055 self.require_declaration("type_{value.mtype.c_name}")
1056 return "(&type_{value.mtype.c_name})"
1057 end
1058 end
1059
1060 redef fun compile_callsite(callsite, args)
1061 do
1062 var rta = compiler.runtime_type_analysis
1063 var mmethod = callsite.mproperty
1064 # TODO: Inlining of new-style constructors
1065 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and not mmethod.is_root_init then
1066 var tgs = rta.live_targets(callsite)
1067 if tgs.length == 1 then
1068 # DIRECT CALL
1069 var res0 = before_send(mmethod, args)
1070 var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args)
1071 if res0 != null then
1072 assert res != null
1073 self.assign(res0, res)
1074 res = res0
1075 end
1076 add("\}") # close the before_send
1077 return res
1078 end
1079 end
1080 return super
1081 end
1082 redef fun send(mmethod, arguments)
1083 do
1084 if arguments.first.mcasttype.ctype != "val*" then
1085 # In order to shortcut the primitive, we need to find the most specific method
1086 # Howverr, because of performance (no flattening), we always work on the realmainmodule
1087 var m = self.compiler.mainmodule
1088 self.compiler.mainmodule = self.compiler.realmainmodule
1089 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
1090 self.compiler.mainmodule = m
1091 return res
1092 end
1093
1094 return table_send(mmethod, arguments, mmethod.const_color)
1095 end
1096
1097 # Handle common special cases before doing the effective method invocation
1098 # This methods handle the `==` and `!=` methods and the case of the null receiver.
1099 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
1100 # Client must not forget to close the } after them.
1101 #
1102 # The value returned is the result of the common special cases.
1103 # If not null, client must compile it with the result of their own effective method invocation.
1104 #
1105 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1106 # is generated to cancel the effective method invocation that will follow
1107 # TODO: find a better approach
1108 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1109 do
1110 var res: nullable RuntimeVariable = null
1111 var recv = arguments.first
1112 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_null.value or mmethod.name == "==" or mmethod.name == "!="
1113 var maybenull = recv.mcasttype isa MNullableType and consider_null
1114 if maybenull then
1115 self.add("if ({recv} == NULL) \{")
1116 if mmethod.name == "==" then
1117 res = self.new_var(bool_type)
1118 var arg = arguments[1]
1119 if arg.mcasttype isa MNullableType then
1120 self.add("{res} = ({arg} == NULL);")
1121 else if arg.mcasttype isa MNullType then
1122 self.add("{res} = 1; /* is null */")
1123 else
1124 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1125 end
1126 else if mmethod.name == "!=" then
1127 res = self.new_var(bool_type)
1128 var arg = arguments[1]
1129 if arg.mcasttype isa MNullableType then
1130 self.add("{res} = ({arg} != NULL);")
1131 else if arg.mcasttype isa MNullType then
1132 self.add("{res} = 0; /* is null */")
1133 else
1134 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1135 end
1136 else
1137 self.add_abort("Receiver is null")
1138 end
1139 self.add("\} else \{")
1140 else
1141 self.add("\{")
1142 end
1143 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then
1144 if res == null then res = self.new_var(bool_type)
1145 # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants)
1146 var arg = arguments[1]
1147 if arg.mcasttype isa MNullType then
1148 if mmethod.name == "==" then
1149 self.add("{res} = 0; /* arg is null but recv is not */")
1150 else
1151 self.add("{res} = 1; /* arg is null and recv is not */")
1152 end
1153 self.add("\}") # closes the null case
1154 self.add("if (0) \{") # what follow is useless, CC will drop it
1155 end
1156 end
1157 return res
1158 end
1159
1160 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable
1161 do
1162 compiler.modelbuilder.nb_invok_by_tables += 1
1163 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1164
1165 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1166 var recv = arguments.first
1167
1168 var res0 = before_send(mmethod, arguments)
1169
1170 var res: nullable RuntimeVariable
1171 var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true)
1172 var ret = msignature.return_mtype
1173 if ret == null then
1174 res = null
1175 else
1176 res = self.new_var(ret)
1177 end
1178
1179 var s = new FlatBuffer
1180 var ss = new FlatBuffer
1181
1182 s.append("val*")
1183 ss.append("{recv}")
1184 for i in [0..msignature.arity[ do
1185 var a = arguments[i+1]
1186 var t = msignature.mparameters[i].mtype
1187 if i == msignature.vararg_rank then
1188 t = arguments[i+1].mcasttype
1189 end
1190 s.append(", {t.ctype}")
1191 a = self.autobox(a, t)
1192 ss.append(", {a}")
1193 end
1194
1195
1196 var r
1197 if ret == null then r = "void" else r = ret.ctype
1198 self.require_declaration(const_color)
1199 var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/"
1200
1201 if res != null then
1202 self.add("{res} = {call};")
1203 else
1204 self.add("{call};")
1205 end
1206
1207 if res0 != null then
1208 assert res != null
1209 assign(res0,res)
1210 res = res0
1211 end
1212
1213 self.add("\}") # closes the null case
1214
1215 return res
1216 end
1217
1218 redef fun call(mmethoddef, recvtype, arguments)
1219 do
1220 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1221
1222 var res: nullable RuntimeVariable
1223 var ret = mmethoddef.msignature.return_mtype
1224 if ret == null then
1225 res = null
1226 else
1227 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1228 res = self.new_var(ret)
1229 end
1230
1231 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1232 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1233 compiler.modelbuilder.nb_invok_by_inline += 1
1234 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1235 var frame = new Frame(self, mmethoddef, recvtype, arguments)
1236 frame.returnlabel = self.get_name("RET_LABEL")
1237 frame.returnvar = res
1238 var old_frame = self.frame
1239 self.frame = frame
1240 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1241 mmethoddef.compile_inside_to_c(self, arguments)
1242 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1243 self.add("\}")
1244 self.frame = old_frame
1245 return res
1246 end
1247 compiler.modelbuilder.nb_invok_by_direct += 1
1248 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1249
1250 # Autobox arguments
1251 self.adapt_signature(mmethoddef, arguments)
1252
1253 self.require_declaration(mmethoddef.c_name)
1254 if res == null then
1255 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1256 return null
1257 else
1258 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1259 end
1260
1261 return res
1262 end
1263
1264 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1265 do
1266 if arguments.first.mcasttype.ctype != "val*" then
1267 # In order to shortcut the primitive, we need to find the most specific method
1268 # However, because of performance (no flattening), we always work on the realmainmodule
1269 var main = self.compiler.mainmodule
1270 self.compiler.mainmodule = self.compiler.realmainmodule
1271 var res = self.monomorphic_super_send(m, recvtype, arguments)
1272 self.compiler.mainmodule = main
1273 return res
1274 end
1275 return table_send(m.mproperty, arguments, m.const_color)
1276 end
1277
1278 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1279 do
1280 # A vararg must be stored into an new array
1281 # The trick is that the dymaic type of the array may depends on the receiver
1282 # of the method (ie recv) if the static type is unresolved
1283 # This is more complex than usual because the unresolved type must not be resolved
1284 # with the current receiver (ie self).
1285 # Therefore to isolate the resolution from self, a local Frame is created.
1286 # One can see this implementation as an inlined method of the receiver whose only
1287 # job is to allocate the array
1288 var old_frame = self.frame
1289 var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1290 self.frame = frame
1291 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1292 var res = self.array_instance(varargs, elttype)
1293 self.frame = old_frame
1294 return res
1295 end
1296
1297 redef fun isset_attribute(a, recv)
1298 do
1299 self.check_recv_notnull(recv)
1300 var res = self.new_var(bool_type)
1301
1302 # What is the declared type of the attribute?
1303 var mtype = a.intro.static_mtype.as(not null)
1304 var intromclassdef = a.intro.mclassdef
1305 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1306
1307 if mtype isa MNullableType then
1308 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1309 return res
1310 end
1311
1312 self.require_declaration(a.const_color)
1313 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1314 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1315 else
1316
1317 if mtype.ctype == "val*" then
1318 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1319 else
1320 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1321 end
1322 end
1323 return res
1324 end
1325
1326 redef fun read_attribute(a, recv)
1327 do
1328 self.check_recv_notnull(recv)
1329
1330 # What is the declared type of the attribute?
1331 var ret = a.intro.static_mtype.as(not null)
1332 var intromclassdef = a.intro.mclassdef
1333 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1334
1335 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1336 self.compiler.attr_read_count += 1
1337 self.add("count_attr_reads++;")
1338 end
1339
1340 self.require_declaration(a.const_color)
1341 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1342 # Get the attribute or a box (ie. always a val*)
1343 var cret = self.object_type.as_nullable
1344 var res = self.new_var(cret)
1345 res.mcasttype = ret
1346
1347 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1348
1349 # Check for Uninitialized attribute
1350 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1351 self.add("if (unlikely({res} == NULL)) \{")
1352 self.add_abort("Uninitialized attribute {a.name}")
1353 self.add("\}")
1354
1355 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1356 self.compiler.isset_checks_count += 1
1357 self.add("count_isset_checks++;")
1358 end
1359 end
1360
1361 # Return the attribute or its unboxed version
1362 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1363 return self.autobox(res, ret)
1364 else
1365 var res = self.new_var(ret)
1366 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1367
1368 # Check for Uninitialized attribute
1369 if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1370 self.add("if (unlikely({res} == NULL)) \{")
1371 self.add_abort("Uninitialized attribute {a.name}")
1372 self.add("\}")
1373 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1374 self.compiler.isset_checks_count += 1
1375 self.add("count_isset_checks++;")
1376 end
1377 end
1378
1379 return res
1380 end
1381 end
1382
1383 redef fun write_attribute(a, recv, value)
1384 do
1385 self.check_recv_notnull(recv)
1386
1387 # What is the declared type of the attribute?
1388 var mtype = a.intro.static_mtype.as(not null)
1389 var intromclassdef = a.intro.mclassdef
1390 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1391
1392 # Adapt the value to the declared type
1393 value = self.autobox(value, mtype)
1394
1395 self.require_declaration(a.const_color)
1396 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1397 var attr = "{recv}->attrs[{a.const_color}]"
1398 if mtype.ctype != "val*" then
1399 assert mtype isa MClassType
1400 # The attribute is primitive, thus we store it in a box
1401 # The trick is to create the box the first time then resuse the box
1402 self.add("if ({attr} != NULL) \{")
1403 self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1404 self.add("\} else \{")
1405 value = self.autobox(value, self.object_type.as_nullable)
1406 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1407 self.add("\}")
1408 else
1409 # The attribute is not primitive, thus store it direclty
1410 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1411 end
1412 else
1413 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1414 end
1415 end
1416
1417 # Check that mtype is a live open type
1418 fun hardening_live_open_type(mtype: MType)
1419 do
1420 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1421 self.require_declaration(mtype.const_color)
1422 var col = mtype.const_color
1423 self.add("if({col} == -1) \{")
1424 self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1425 self.add_abort("open type dead")
1426 self.add("\}")
1427 end
1428
1429 # Check that mtype it a pointer to a live cast type
1430 fun hardening_cast_type(t: String)
1431 do
1432 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1433 add("if({t} == NULL) \{")
1434 add_abort("cast type null")
1435 add("\}")
1436 add("if({t}->id == -1 || {t}->color == -1) \{")
1437 add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1438 add_abort("cast type dead")
1439 add("\}")
1440 end
1441
1442 redef fun init_instance(mtype)
1443 do
1444 self.require_declaration("NEW_{mtype.mclass.c_name}")
1445 var compiler = self.compiler
1446 if mtype isa MGenericType and mtype.need_anchor then
1447 hardening_live_open_type(mtype)
1448 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1449 var recv = self.frame.arguments.first
1450 var recv_type_info = self.type_info(recv)
1451 self.require_declaration(mtype.const_color)
1452 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1453 end
1454 compiler.undead_types.add(mtype)
1455 self.require_declaration("type_{mtype.c_name}")
1456 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1457 end
1458
1459 redef fun type_test(value, mtype, tag)
1460 do
1461 self.add("/* {value.inspect} isa {mtype} */")
1462 var compiler = self.compiler
1463
1464 var recv = self.frame.arguments.first
1465 var recv_type_info = self.type_info(recv)
1466
1467 var res = self.new_var(bool_type)
1468
1469 var cltype = self.get_name("cltype")
1470 self.add_decl("int {cltype};")
1471 var idtype = self.get_name("idtype")
1472 self.add_decl("int {idtype};")
1473
1474 var maybe_null = self.maybe_null(value)
1475 var accept_null = "0"
1476 var ntype = mtype
1477 if ntype isa MNullableType then
1478 ntype = ntype.mtype
1479 accept_null = "1"
1480 end
1481
1482 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1483 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1484 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1485 self.compiler.count_type_test_skipped[tag] += 1
1486 self.add("count_type_test_skipped_{tag}++;")
1487 end
1488 return res
1489 end
1490
1491 if ntype.need_anchor then
1492 var type_struct = self.get_name("type_struct")
1493 self.add_decl("const struct type* {type_struct};")
1494
1495 # Either with resolution_table with a direct resolution
1496 hardening_live_open_type(mtype)
1497 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1498 self.require_declaration(mtype.const_color)
1499 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1500 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1501 self.compiler.count_type_test_unresolved[tag] += 1
1502 self.add("count_type_test_unresolved_{tag}++;")
1503 end
1504 hardening_cast_type(type_struct)
1505 self.add("{cltype} = {type_struct}->color;")
1506 self.add("{idtype} = {type_struct}->id;")
1507 if maybe_null and accept_null == "0" then
1508 var is_nullable = self.get_name("is_nullable")
1509 self.add_decl("short int {is_nullable};")
1510 self.add("{is_nullable} = {type_struct}->is_nullable;")
1511 accept_null = is_nullable.to_s
1512 end
1513 else if ntype isa MClassType then
1514 compiler.undead_types.add(mtype)
1515 self.require_declaration("type_{mtype.c_name}")
1516 hardening_cast_type("(&type_{mtype.c_name})")
1517 self.add("{cltype} = type_{mtype.c_name}.color;")
1518 self.add("{idtype} = type_{mtype.c_name}.id;")
1519 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1520 self.compiler.count_type_test_resolved[tag] += 1
1521 self.add("count_type_test_resolved_{tag}++;")
1522 end
1523 else
1524 self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);")
1525 end
1526
1527 # check color is in table
1528 if maybe_null then
1529 self.add("if({value} == NULL) \{")
1530 self.add("{res} = {accept_null};")
1531 self.add("\} else \{")
1532 end
1533 var value_type_info = self.type_info(value)
1534 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1535 self.add("{res} = 0;")
1536 self.add("\} else \{")
1537 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1538 self.add("\}")
1539 if maybe_null then
1540 self.add("\}")
1541 end
1542
1543 return res
1544 end
1545
1546 redef fun is_same_type_test(value1, value2)
1547 do
1548 var res = self.new_var(bool_type)
1549 # Swap values to be symetric
1550 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1551 var tmp = value1
1552 value1 = value2
1553 value2 = tmp
1554 end
1555 if value1.mtype.ctype != "val*" then
1556 if value2.mtype == value1.mtype then
1557 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1558 else if value2.mtype.ctype != "val*" then
1559 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1560 else
1561 var mtype1 = value1.mtype.as(MClassType)
1562 self.require_declaration("class_{mtype1.c_name}")
1563 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */")
1564 end
1565 else
1566 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */")
1567 end
1568 return res
1569 end
1570
1571 redef fun class_name_string(value)
1572 do
1573 var res = self.get_name("var_class_name")
1574 self.add_decl("const char* {res};")
1575 if value.mtype.ctype == "val*" then
1576 self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;"
1577 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind and
1578 value.mtype.as(MClassType).name != "NativeString" then
1579 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1580 else
1581 self.require_declaration("type_{value.mtype.c_name}")
1582 self.add "{res} = type_{value.mtype.c_name}.name;"
1583 end
1584 return res
1585 end
1586
1587 redef fun equal_test(value1, value2)
1588 do
1589 var res = self.new_var(bool_type)
1590 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1591 var tmp = value1
1592 value1 = value2
1593 value2 = tmp
1594 end
1595 if value1.mtype.ctype != "val*" then
1596 if value2.mtype == value1.mtype then
1597 self.add("{res} = {value1} == {value2};")
1598 else if value2.mtype.ctype != "val*" then
1599 self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/")
1600 else
1601 var mtype1 = value1.mtype.as(MClassType)
1602 self.require_declaration("class_{mtype1.c_name}")
1603 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});")
1604 self.add("if ({res}) \{")
1605 self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});")
1606 self.add("\}")
1607 end
1608 return res
1609 end
1610 var maybe_null = true
1611 var test = new Array[String]
1612 var t1 = value1.mcasttype
1613 if t1 isa MNullableType then
1614 test.add("{value1} != NULL")
1615 t1 = t1.mtype
1616 else
1617 maybe_null = false
1618 end
1619 var t2 = value2.mcasttype
1620 if t2 isa MNullableType then
1621 test.add("{value2} != NULL")
1622 t2 = t2.mtype
1623 else
1624 maybe_null = false
1625 end
1626
1627 var incompatible = false
1628 var primitive
1629 if t1.ctype != "val*" then
1630 primitive = t1
1631 if t1 == t2 then
1632 # No need to compare class
1633 else if t2.ctype != "val*" then
1634 incompatible = true
1635 else if can_be_primitive(value2) then
1636 test.add("{value1}->class == {value2}->class")
1637 else
1638 incompatible = true
1639 end
1640 else if t2.ctype != "val*" then
1641 primitive = t2
1642 if can_be_primitive(value1) then
1643 test.add("{value1}->class == {value2}->class")
1644 else
1645 incompatible = true
1646 end
1647 else
1648 primitive = null
1649 end
1650
1651 if incompatible then
1652 if maybe_null then
1653 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
1654 return res
1655 else
1656 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
1657 return res
1658 end
1659 end
1660 if primitive != null then
1661 test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value")
1662 else if can_be_primitive(value1) and can_be_primitive(value2) then
1663 test.add("{value1}->class == {value2}->class")
1664 var s = new Array[String]
1665 for t, v in self.compiler.box_kinds do
1666 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)"
1667 end
1668 test.add("({s.join(" || ")})")
1669 else
1670 self.add("{res} = {value1} == {value2};")
1671 return res
1672 end
1673 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
1674 return res
1675 end
1676
1677 fun can_be_primitive(value: RuntimeVariable): Bool
1678 do
1679 var t = value.mcasttype.as_notnullable
1680 if not t isa MClassType then return false
1681 var k = t.mclass.kind
1682 return k == interface_kind or t.ctype != "val*"
1683 end
1684
1685 fun maybe_null(value: RuntimeVariable): Bool
1686 do
1687 var t = value.mcasttype
1688 return t isa MNullableType or t isa MNullType
1689 end
1690
1691 redef fun array_instance(array, elttype)
1692 do
1693 var nclass = self.get_class("NativeArray")
1694 var arrayclass = self.get_class("Array")
1695 var arraytype = arrayclass.get_mtype([elttype])
1696 var res = self.init_instance(arraytype)
1697 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
1698 var length = self.int_instance(array.length)
1699 var nat = native_array_instance(elttype, length)
1700 for i in [0..array.length[ do
1701 var r = self.autobox(array[i], self.object_type)
1702 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
1703 end
1704 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
1705 self.add("\}")
1706 return res
1707 end
1708
1709 redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable
1710 do
1711 var mtype = self.get_class("NativeArray").get_mtype([elttype])
1712 self.require_declaration("NEW_{mtype.mclass.c_name}")
1713 assert mtype isa MGenericType
1714 var compiler = self.compiler
1715 if mtype.need_anchor then
1716 hardening_live_open_type(mtype)
1717 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1718 var recv = self.frame.arguments.first
1719 var recv_type_info = self.type_info(recv)
1720 self.require_declaration(mtype.const_color)
1721 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1722 end
1723 compiler.undead_types.add(mtype)
1724 self.require_declaration("type_{mtype.c_name}")
1725 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype)
1726 end
1727
1728 redef fun native_array_def(pname, ret_type, arguments)
1729 do
1730 var elttype = arguments.first.mtype
1731 var nclass = self.get_class("NativeArray")
1732 var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values"
1733 if pname == "[]" then
1734 self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null)))
1735 return
1736 else if pname == "[]=" then
1737 self.add("{recv}[{arguments[1]}]={arguments[2]};")
1738 return
1739 else if pname == "length" then
1740 self.ret(self.new_expr("((struct instance_{nclass.c_name}*){arguments[0]})->length", ret_type.as(not null)))
1741 return
1742 else if pname == "copy_to" then
1743 var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values"
1744 self.add("memmove({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
1745 return
1746 end
1747 end
1748
1749 redef fun calloc_array(ret_type, arguments)
1750 do
1751 var mclass = self.get_class("ArrayCapable")
1752 var ft = mclass.mparameters.first
1753 var res = self.native_array_instance(ft, arguments[1])
1754 self.ret(res)
1755 end
1756
1757 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
1758 assert mtype.need_anchor
1759 var compiler = self.compiler
1760 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
1761 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
1762 end
1763 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
1764 end
1765 end
1766
1767 redef class MMethodDef
1768 fun separate_runtime_function: AbstractRuntimeFunction
1769 do
1770 var res = self.separate_runtime_function_cache
1771 if res == null then
1772 res = new SeparateRuntimeFunction(self)
1773 self.separate_runtime_function_cache = res
1774 end
1775 return res
1776 end
1777 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
1778
1779 fun virtual_runtime_function: AbstractRuntimeFunction
1780 do
1781 var res = self.virtual_runtime_function_cache
1782 if res == null then
1783 res = new VirtualRuntimeFunction(self)
1784 self.virtual_runtime_function_cache = res
1785 end
1786 return res
1787 end
1788 private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction
1789 end
1790
1791 # The C function associated to a methoddef separately compiled
1792 class SeparateRuntimeFunction
1793 super AbstractRuntimeFunction
1794
1795 redef fun build_c_name: String do return "{mmethoddef.c_name}"
1796
1797 redef fun to_s do return self.mmethoddef.to_s
1798
1799 redef fun compile_to_c(compiler)
1800 do
1801 var mmethoddef = self.mmethoddef
1802
1803 var recv = self.mmethoddef.mclassdef.bound_mtype
1804 var v = compiler.new_visitor
1805 var selfvar = new RuntimeVariable("self", recv, recv)
1806 var arguments = new Array[RuntimeVariable]
1807 var frame = new Frame(v, mmethoddef, recv, arguments)
1808 v.frame = frame
1809
1810 var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1811
1812 var sig = new FlatBuffer
1813 var comment = new FlatBuffer
1814 var ret = msignature.return_mtype
1815 if ret != null then
1816 sig.append("{ret.ctype} ")
1817 else
1818 sig.append("void ")
1819 end
1820 sig.append(self.c_name)
1821 sig.append("({selfvar.mtype.ctype} {selfvar}")
1822 comment.append("({selfvar}: {selfvar.mtype}")
1823 arguments.add(selfvar)
1824 for i in [0..msignature.arity[ do
1825 var mtype = msignature.mparameters[i].mtype
1826 if i == msignature.vararg_rank then
1827 mtype = v.get_class("Array").get_mtype([mtype])
1828 end
1829 comment.append(", {mtype}")
1830 sig.append(", {mtype.ctype} p{i}")
1831 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1832 arguments.add(argvar)
1833 end
1834 sig.append(")")
1835 comment.append(")")
1836 if ret != null then
1837 comment.append(": {ret}")
1838 end
1839 compiler.provide_declaration(self.c_name, "{sig};")
1840
1841 v.add_decl("/* method {self} for {comment} */")
1842 v.add_decl("{sig} \{")
1843 if ret != null then
1844 frame.returnvar = v.new_var(ret)
1845 end
1846 frame.returnlabel = v.get_name("RET_LABEL")
1847
1848 if recv != arguments.first.mtype then
1849 #print "{self} {recv} {arguments.first}"
1850 end
1851 mmethoddef.compile_inside_to_c(v, arguments)
1852
1853 v.add("{frame.returnlabel.as(not null)}:;")
1854 if ret != null then
1855 v.add("return {frame.returnvar.as(not null)};")
1856 end
1857 v.add("\}")
1858 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
1859 end
1860 end
1861
1862 # The C function associated to a methoddef on a primitive type, stored into a VFT of a class
1863 # The first parameter (the reciever) is always typed by val* in order to accept an object value
1864 class VirtualRuntimeFunction
1865 super AbstractRuntimeFunction
1866
1867 redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}"
1868
1869 redef fun to_s do return self.mmethoddef.to_s
1870
1871 redef fun compile_to_c(compiler)
1872 do
1873 var mmethoddef = self.mmethoddef
1874
1875 var recv = self.mmethoddef.mclassdef.bound_mtype
1876 var v = compiler.new_visitor
1877 var selfvar = new RuntimeVariable("self", v.object_type, recv)
1878 var arguments = new Array[RuntimeVariable]
1879 var frame = new Frame(v, mmethoddef, recv, arguments)
1880 v.frame = frame
1881
1882 var sig = new FlatBuffer
1883 var comment = new FlatBuffer
1884
1885 # Because the function is virtual, the signature must match the one of the original class
1886 var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef
1887 var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1888 var ret = msignature.return_mtype
1889 if ret != null then
1890 sig.append("{ret.ctype} ")
1891 else
1892 sig.append("void ")
1893 end
1894 sig.append(self.c_name)
1895 sig.append("({selfvar.mtype.ctype} {selfvar}")
1896 comment.append("({selfvar}: {selfvar.mtype}")
1897 arguments.add(selfvar)
1898 for i in [0..msignature.arity[ do
1899 var mtype = msignature.mparameters[i].mtype
1900 if i == msignature.vararg_rank then
1901 mtype = v.get_class("Array").get_mtype([mtype])
1902 end
1903 comment.append(", {mtype}")
1904 sig.append(", {mtype.ctype} p{i}")
1905 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1906 arguments.add(argvar)
1907 end
1908 sig.append(")")
1909 comment.append(")")
1910 if ret != null then
1911 comment.append(": {ret}")
1912 end
1913 compiler.provide_declaration(self.c_name, "{sig};")
1914
1915 v.add_decl("/* method {self} for {comment} */")
1916 v.add_decl("{sig} \{")
1917 if ret != null then
1918 frame.returnvar = v.new_var(ret)
1919 end
1920 frame.returnlabel = v.get_name("RET_LABEL")
1921
1922 var subret = v.call(mmethoddef, recv, arguments)
1923 if ret != null then
1924 assert subret != null
1925 v.assign(frame.returnvar.as(not null), subret)
1926 end
1927
1928 v.add("{frame.returnlabel.as(not null)}:;")
1929 if ret != null then
1930 v.add("return {frame.returnvar.as(not null)};")
1931 end
1932 v.add("\}")
1933 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})"
1934 end
1935
1936 # TODO ?
1937 redef fun call(v, arguments) do abort
1938 end
1939
1940 redef class MType
1941 fun const_color: String do return "COLOR_{c_name}"
1942 end
1943
1944 interface PropertyLayoutElement end
1945
1946 redef class MProperty
1947 super PropertyLayoutElement
1948 fun const_color: String do return "COLOR_{c_name}"
1949 end
1950
1951 redef class MPropDef
1952 super PropertyLayoutElement
1953 fun const_color: String do return "COLOR_{c_name}"
1954 end
1955
1956 redef class AMethPropdef
1957 # The semi-global compilation does not support inlining calls to extern news
1958 redef fun can_inline
1959 do
1960 var m = mpropdef
1961 if m != null and m.mproperty.is_init and m.is_extern then return false
1962 return super
1963 end
1964 end