lib/core/collection: improve the default `has_all` for basic cases
[nit.git] / lib / core / collection / abstract_collection.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2004-2008 Jean Privat <jean@pryen.org>
4 #
5 # This file is free software, which comes along with NIT. This software is
6 # distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
7 # without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
8 # PARTICULAR PURPOSE. You can modify it is you want, provided this header
9 # is kept unaltered, and a notification of the changes is added.
10 # You are allowed to redistribute it and sell it, alone or is a part of
11 # another product.
12
13 # Abstract collection classes and services.
14 #
15 # TODO specify the behavior on iterators when collections are modified.
16 module abstract_collection
17
18 import kernel
19
20 # The root of the collection hierarchy.
21 #
22 # Collections modelize finite groups of objects, called elements.
23 #
24 # The specific behavior and representation of collections is determined
25 # by the subclasses of the hierarchy.
26 #
27 # The main service of Collection is to provide a stable `iterator`
28 # method usable to retrieve all the elements of the collection.
29 #
30 # Additional services are provided.
31 # For an implementation point of view, Collection provide a basic
32 # implementation of these services using the `iterator` method.
33 # Subclasses often provide a more efficient implementation.
34 #
35 # Because of the `iterator` method, Collections instances can use
36 # the `for` control structure.
37 #
38 # ~~~nitish
39 # var x: Collection[U]
40 # # ...
41 # for u in x do
42 # # u is a U
43 # # ...
44 # end
45 # ~~~
46 #
47 # that is equivalent with the following:
48 #
49 # ~~~nitish
50 # var x: Collection[U]
51 # # ...
52 # var i = x.iterator
53 # while i.is_ok do
54 # var u = i.item # u is a U
55 # # ...
56 # i.next
57 # end
58 # ~~~
59 interface Collection[E]
60 # Get a new iterator on the collection.
61 fun iterator: Iterator[E] is abstract
62
63 # Is there no item in the collection?
64 #
65 # assert [1,2,3].is_empty == false
66 # assert [1..1[.is_empty == true
67 fun is_empty: Bool do return length == 0
68
69 # Alias for `not is_empty`.
70 #
71 # Some people prefer to have conditions grammatically easier to read.
72 #
73 # assert [1,2,3].not_empty == true
74 # assert [1..1[.not_empty == false
75 fun not_empty: Bool do return not self.is_empty
76
77 # Number of items in the collection.
78 #
79 # assert [10,20,30].length == 3
80 # assert [20..30[.length == 10
81 fun length: Int
82 do
83 var nb = 0
84 for i in self do nb += 1
85 return nb
86 end
87
88 # Is `item` in the collection ?
89 # Comparisons are done with ==
90 #
91 # assert [1,2,3].has(2) == true
92 # assert [1,2,3].has(9) == false
93 # assert [1..5[.has(2) == true
94 # assert [1..5[.has(9) == false
95 fun has(item: nullable Object): Bool
96 do
97 for i in self do if i == item then return true
98 return false
99 end
100
101 # Is the collection contain only `item`?
102 # Comparisons are done with ==
103 # Return true if the collection is empty.
104 #
105 # assert [1,1,1].has_only(1) == true
106 # assert [1,2,3].has_only(1) == false
107 # assert [1..1].has_only(1) == true
108 # assert [1..3].has_only(1) == false
109 # assert [3..3[.has_only(1) == true # empty collection
110 #
111 # ENSURE `is_empty implies result == true`
112 fun has_only(item: nullable Object): Bool
113 do
114 for i in self do if i != item then return false
115 return true
116 end
117
118 # How many occurrences of `item` are in the collection?
119 # Comparisons are done with ==
120 #
121 # assert [10,20,10].count(10) == 2
122 fun count(item: nullable Object): Int
123 do
124 var nb = 0
125 for i in self do if i == item then nb += 1
126 return nb
127 end
128
129 # Return the first item of the collection
130 #
131 # assert [1,2,3].first == 1
132 fun first: E
133 do
134 assert length > 0
135 return iterator.item
136 end
137
138 # Does the collection contain at least each element of `other`?
139 #
140 # assert [1,3,4,2].has_all([1..2]) == true
141 # assert [1,3,4,2].has_all([1..5]) == false
142 #
143 # Repeated elements in the collections are not considered.
144 #
145 # assert [1,1,1].has_all([1]) == true
146 # assert [1..5].has_all([1,1,1]) == true
147 #
148 # Note that the default implementation is general and correct for any lawful Collections.
149 # It is memory-efficient but relies on `has` so may be CPU-inefficient for some kind of collections.
150 fun has_all(other: Collection[nullable Object]): Bool
151 do
152 if is_same_instance(other) then return true
153 var ol = other.length
154 var l = length
155 if ol == 0 then return true
156 if l == 0 then return false
157 if ol == 1 then return has(other.first)
158 for x in other do if not has(x) then return false
159 return true
160 end
161
162 # Does the collection contain exactly all the elements of `other`?
163 #
164 # The same elements must be present in both `self` and `other`,
165 # but the order of the elements in the collections are not considered.
166 #
167 # assert [1..3].has_exactly([3,1,2]) == true # the same elements
168 # assert [1..3].has_exactly([3,1]) == false # 2 is not in the array
169 # assert [1..2].has_exactly([3,1,2]) == false # 3 is not in the range
170 #
171 # Repeated elements must be present in both collections in the same amount.
172 # So basically it is a multi-set comparison.
173 #
174 # assert [1,2,3,2].has_exactly([1,2,2,3]) == true # the same elements
175 # assert [1,2,3,2].has_exactly([1,2,3]) == false # more 2 in the first array
176 # assert [1,2,3].has_exactly([1,2,2,3]) == false # more 2 in the second array
177 #
178 # Note that the default implementation is general and correct for any lawful Collections.
179 # It is memory-efficient but relies on `count` so may be CPU-inefficient for some kind of collections.
180 fun has_exactly(other: Collection[nullable Object]): Bool
181 do
182 if length != other.length then return false
183 for e in self do if self.count(e) != other.count(e) then return false
184 return true
185 end
186
187 # Does the collection contain at least one element of `other`?
188 #
189 # assert [1,3,4,2].has_any([1..10]) == true
190 # assert [1,3,4,2].has_any([5..10]) == false
191 #
192 # Note that the default implementation is general and correct for any lawful Collections.
193 # It is memory-efficient but relies on `has` so may be CPU-inefficient for some kind of collections.
194 fun has_any(other: Collection[nullable Object]): Bool
195 do
196 for o in other do
197 if has(o) then return true
198 end
199 return false
200 end
201 end
202
203 # Iterators generate a series of elements, one at a time.
204 #
205 # They are mainly used with collections and obtained from `Collection::iterator`.
206 interface Iterator[E]
207 # The current item.
208 # Require `is_ok`.
209 fun item: E is abstract
210
211 # Jump to the next item.
212 # Require `is_ok`.
213 fun next is abstract
214
215 # Jump to the next item `step` times.
216 #
217 # ~~~
218 # var i = [11, 22, 33, 44].iterator
219 # assert i.item == 11
220 # i.next_by 2
221 # assert i.item == 33
222 # ~~~
223 #
224 # `next_by` should be used instead of looping on `next` because is takes care
225 # of stopping if the end of iteration is reached prematurely whereas a loop of
226 # `next` will abort because of the precondition on `is_ok`.
227 #
228 # ~~~
229 # i.next_by 100
230 # assert not i.is_ok
231 # ~~~
232 #
233 # If `step` is negative, this method aborts.
234 # But specific subclasses can change this and do something more meaningful instead.
235 #
236 # Require `is_ok`
237 fun next_by(step: Int)
238 do
239 assert step >= 0
240 while is_ok and step > 0 do
241 next
242 step -= 1
243 end
244 end
245
246 # Is there a current item ?
247 fun is_ok: Bool is abstract
248
249 # Iterate over `self`
250 fun iterator: Iterator[E] do return self
251
252 # Pre-iteration hook.
253 #
254 # Used to inform `self` that the iteration is starting.
255 # Specific iterators can use this to prepare some resources.
256 #
257 # Is automatically invoked at the beginning of `for` structures.
258 #
259 # Do nothing by default.
260 fun start do end
261
262 # Post-iteration hook.
263 #
264 # Used to inform `self` that the iteration is over.
265 # Specific iterators can use this to free some resources.
266 #
267 # Is automatically invoked at the end of `for` structures.
268 #
269 # Do nothing by default.
270 fun finish do end
271
272 # A decorator around `self` that advance self a given number of steps instead of one.
273 #
274 # ~~~
275 # var i = [11, 22, 33, 44, 55].iterator
276 # var i2 = i.to_step(2)
277 #
278 # assert i2.item == 11
279 # i2.next
280 # assert i2.item == 33
281 #
282 # assert i.item == 33
283 # ~~~
284 fun to_step(step: Int): Iterator[E] do return new StepIterator[E](self, step)
285 end
286
287 # A basic helper class to specialize specific Iterator decorators
288 abstract class IteratorDecorator[E]
289 super Iterator[E]
290
291 # The underling iterator
292 protected var real: Iterator[E]
293
294 redef fun is_ok do return real.is_ok
295 redef fun item do return real.item
296 redef fun finish do real.finish
297 redef fun next do real.next
298 redef fun next_by(step) do real.next_by(step)
299 end
300
301 # A decorator that advance a given number of steps
302 private class StepIterator[E]
303 super IteratorDecorator[E]
304 var step: Int
305
306 redef fun next do real.next_by(step)
307 redef fun next_by(step) do real.next_by(step * self.step)
308 end
309
310 # A collection that contains only one item.
311 #
312 # Used to pass arguments by reference.
313 #
314 # Also used when one want to give a single element when a full
315 # collection is expected
316 class Ref[E]
317 super Collection[E]
318
319 redef fun first do return item
320
321 redef fun is_empty do return false
322
323 redef fun length do return 1
324
325 redef fun has(an_item) do return item == an_item
326
327 redef fun has_only(an_item) do return item == an_item
328
329 redef fun count(an_item)
330 do
331 if item == an_item then
332 return 1
333 else
334 return 0
335 end
336 end
337
338 redef fun iterator do return new RefIterator[E](self)
339
340 # The stored item
341 var item: E is writable
342 end
343
344 # This iterator is quite stupid since it is used for only one item.
345 private class RefIterator[E]
346 super Iterator[E]
347 redef fun item do return _container.item
348
349 redef fun next do is_ok = false
350
351 redef var is_ok = true
352
353 var container: Ref[E]
354 end
355
356 # Items can be removed from this collection
357 interface RemovableCollection[E]
358 super Collection[E]
359
360 # Remove all items
361 #
362 # var a = [1,2,3]
363 # a.clear
364 # assert a.length == 0
365 #
366 # ENSURE `is_empty`
367 fun clear is abstract
368
369 # Remove an occurrence of `item`
370 #
371 # var a = [1,2,3,1,2,3]
372 # a.remove 2
373 # assert a == [1,3,1,2,3]
374 fun remove(item: nullable Object) is abstract
375
376 # Remove all occurrences of `item`
377 #
378 # var a = [1,2,3,1,2,3]
379 # a.remove_all 2
380 # assert a == [1,3,1,3]
381 fun remove_all(item: nullable Object) do while has(item) do remove(item)
382 end
383
384 # Items can be added to these collections.
385 interface SimpleCollection[E]
386 super RemovableCollection[E]
387
388 # Add an item in a collection.
389 #
390 # var a = [1,2]
391 # a.add 3
392 # assert a.has(3) == true
393 # assert a.has(10) == false
394 #
395 # Ensure col.has(item)
396 fun add(item: E) is abstract
397
398 # Add each item of `coll`.
399 # var a = [1,2]
400 # a.add_all([3..5])
401 # assert a.has(4) == true
402 # assert a.has(10) == false
403 fun add_all(coll: Collection[E]) do for i in coll do add(i)
404 end
405
406 # Abstract sets.
407 #
408 # Set is a collection without duplicates (according to `==`)
409 #
410 # var s: Set[String] = new ArraySet[String]
411 # var a = "Hello"
412 # var b = "Hel" + "lo"
413 # # ...
414 # s.add(a)
415 # assert s.has(b) == true
416 interface Set[E]
417 super SimpleCollection[E]
418 super Cloneable
419
420 redef fun has_only(item)
421 do
422 var l = length
423 if l == 1 then
424 return has(item)
425 else if l == 0 then
426 return true
427 else
428 return false
429 end
430 end
431
432 # Only 0 or 1
433 redef fun count(item)
434 do
435 if has(item) then
436 return 1
437 else
438 return 0
439 end
440 end
441
442 # Synonym of remove since there is only one item
443 redef fun remove_all(item) do remove(item)
444
445 # Equality is defined on set and means that each set contains the same elements
446 redef fun ==(other)
447 do
448 if not other isa Set[nullable Object] then return false
449 if other.length != length then return false
450 return has_all(other)
451 end
452
453 # Because of the law between `==` and `hash`, `hash` is redefined to be the sum of the hash of the elements
454 redef fun hash
455 do
456 # 23 is a magic number empirically determined to be not so bad.
457 var res = 23 + length
458 # Note: the order of the elements must not change the hash value.
459 # So, unlike usual hash functions, the accumulator is not combined with itself.
460 for e in self do res += e.hash
461 return res
462 end
463
464 # Returns the union of this set with the `other` set
465 fun union(other: Set[E]): Set[E]
466 do
467 var nhs = new_set
468 nhs.add_all self
469 nhs.add_all other
470 return nhs
471 end
472
473 # Returns the intersection of this set with the `other` set
474 fun intersection(other: Set[E]): Set[E]
475 do
476 var nhs = new_set
477 for v in self do if other.has(v) then nhs.add(v)
478 return nhs
479 end
480
481 redef fun clone do return union(self)
482
483 # Returns a new instance of `Set`.
484 #
485 # Depends on the subclass, mainly used for copy services
486 # like `union` or `intersection`.
487 protected fun new_set: Set[E] is abstract
488 end
489
490 # MapRead are abstract associative collections: `key` -> `item`.
491 interface MapRead[K, V]
492 # Get the item at `key`
493 #
494 # var x = new HashMap[String, Int]
495 # x["four"] = 4
496 # assert x["four"] == 4
497 # # assert x["five"] #=> abort
498 #
499 # If the key is not in the map, `provide_default_value` is called (that aborts by default)
500 # See `get_or_null` and `get_or_default` for safe variations.
501 fun [](key: nullable Object): V is abstract
502
503 # Get the item at `key` or null if `key` is not in the map.
504 #
505 # var x = new HashMap[String, Int]
506 # x["four"] = 4
507 # assert x.get_or_null("four") == 4
508 # assert x.get_or_null("five") == null
509 #
510 # Note: use `has_key` and `[]` if you need the distinction between a key associated with null, and no key.
511 fun get_or_null(key: nullable Object): nullable V
512 do
513 if has_key(key) then return self[key]
514 return null
515 end
516
517 # Get the item at `key` or return `default` if not in map
518 #
519 # var x = new HashMap[String, Int]
520 # x["four"] = 4
521 # assert x.get_or_default("four", 40) == 4
522 # assert x.get_or_default("five", 50) == 50
523 #
524 fun get_or_default(key: nullable Object, default: V): V
525 do
526 if has_key(key) then return self[key]
527 return default
528 end
529
530 # Is there an item associated with `key`?
531 #
532 # var x = new HashMap[String, Int]
533 # x["four"] = 4
534 # assert x.has_key("four") == true
535 # assert x.has_key("five") == false
536 #
537 # By default it is a synonymous to `keys.has` but could be redefined with a direct implementation.
538 fun has_key(key: nullable Object): Bool do return self.keys.has(key)
539
540 # Get a new iterator on the map.
541 fun iterator: MapIterator[K, V] is abstract
542
543 # Return the point of view of self on the values only.
544 # Note that `self` and `values` are views on the same data;
545 # therefore any modification of one is visible on the other.
546 #
547 # var x = new HashMap[String, Int]
548 # x["four"] = 4
549 # assert x.values.has(4) == true
550 # assert x.values.has(5) == false
551 fun values: Collection[V] is abstract
552
553 # Return the point of view of self on the keys only.
554 # Note that `self` and `keys` are views on the same data;
555 # therefore any modification of one is visible on the other.
556 #
557 # var x = new HashMap[String, Int]
558 # x["four"] = 4
559 # assert x.keys.has("four") == true
560 # assert x.keys.has("five") == false
561 fun keys: Collection[K] is abstract
562
563 # Is there no item in the collection?
564 #
565 # var x = new HashMap[String, Int]
566 # assert x.is_empty == true
567 # x["four"] = 4
568 # assert x.is_empty == false
569 fun is_empty: Bool is abstract
570
571 # Alias for `not is_empty`.
572 #
573 # Some people prefer to have conditions grammatically easier to read.
574 #
575 # var map = new HashMap[String, Int]
576 # assert map.not_empty == false
577 # map["one"] = 1
578 # assert map.not_empty == true
579 fun not_empty: Bool do return not self.is_empty
580
581 # Number of items in the collection.
582 #
583 # var x = new HashMap[String, Int]
584 # assert x.length == 0
585 # x["four"] = 4
586 # assert x.length == 1
587 # x["five"] = 5
588 # assert x.length == 2
589 fun length: Int is abstract
590
591 # Called by the underling implementation of `[]` to provide a default value when a `key` has no value
592 # By default the behavior is to abort.
593 #
594 # Note: the value is returned *as is*, implementations may want to store the value in the map before returning it
595 # @toimplement
596 protected fun provide_default_value(key: nullable Object): V do abort
597
598 # Does `self` and `other` have the same keys associated with the same values?
599 #
600 # ~~~
601 # var a = new HashMap[String, Int]
602 # var b = new ArrayMap[Object, Numeric]
603 # assert a == b
604 # a["one"] = 1
605 # assert a != b
606 # b["one"] = 1
607 # assert a == b
608 # b["one"] = 2
609 # assert a != b
610 # ~~~
611 redef fun ==(other)
612 do
613 if not other isa MapRead[nullable Object, nullable Object] then return false
614 if other.length != self.length then return false
615 for k, v in self do
616 if not other.has_key(k) then return false
617 if other[k] != v then return false
618 end
619 return true
620 end
621
622 # A hashcode based on the hashcode of the keys and the values.
623 #
624 # ~~~
625 # var a = new HashMap[String, Int]
626 # var b = new ArrayMap[Object, Numeric]
627 # a["one"] = 1
628 # b["one"] = 1
629 # assert a.hash == b.hash
630 # ~~~
631 redef fun hash
632 do
633 var res = length
634 for k, v in self do
635 if k != null then res += k.hash * 7
636 if v != null then res += v.hash * 11
637 end
638 return res
639 end
640 end
641
642 # Maps are associative collections: `key` -> `item`.
643 #
644 # The main operator over maps is [].
645 #
646 # var map: Map[String, Int] = new ArrayMap[String, Int]
647 # # ...
648 # map["one"] = 1 # Associate 'one' to '1'
649 # map["two"] = 2 # Associate 'two' to '2'
650 # assert map["one"] == 1
651 # assert map["two"] == 2
652 #
653 # Instances of maps can be used with the for structure
654 #
655 # for key, value in map do
656 # assert (key == "one" and value == 1) or (key == "two" and value == 2)
657 # end
658 #
659 # The keys and values in the map can also be manipulated directly with the `keys` and `values` methods.
660 #
661 # assert map.keys.has("one") == true
662 # assert map.keys.has("tree") == false
663 # assert map.values.has(1) == true
664 # assert map.values.has(3) == false
665 #
666 interface Map[K, V]
667 super MapRead[K, V]
668
669 # Set the `value` at `key`.
670 #
671 # Values can then get retrieved with `[]`.
672 #
673 # var x = new HashMap[String, Int]
674 # x["four"] = 4
675 # assert x["four"] == 4
676 #
677 # If the key was associated with a value, this old value is discarded
678 # and replaced with the new one.
679 #
680 # x["four"] = 40
681 # assert x["four"] == 40
682 # assert x.values.has(4) == false
683 #
684 fun []=(key: K, value: V) is abstract
685
686 # Add each (key,value) of `map` into `self`.
687 # If a same key exists in `map` and `self`, then the value in self is discarded.
688 #
689 # It is the analogous of `SimpleCollection::add_all`
690 #
691 # var x = new HashMap[String, Int]
692 # x["four"] = 4
693 # x["five"] = 5
694 # var y = new HashMap[String, Int]
695 # y["four"] = 40
696 # y["nine"] = 90
697 # x.recover_with y
698 # assert x["four"] == 40
699 # assert x["five"] == 5
700 # assert x["nine"] == 90
701 fun recover_with(map: MapRead[K, V])
702 do
703 var i = map.iterator
704 while i.is_ok do
705 self[i.key] = i.item
706 i.next
707 end
708 end
709
710 # Remove all items
711 #
712 # var x = new HashMap[String, Int]
713 # x["four"] = 4
714 # x.clear
715 # assert x.keys.has("four") == false
716 #
717 # ENSURE `is_empty`
718 fun clear is abstract
719
720 redef fun values: RemovableCollection[V] is abstract
721
722 redef fun keys: RemovableCollection[K] is abstract
723 end
724
725 # Iterators for Map.
726 interface MapIterator[K, V]
727 # The current item.
728 # Require `is_ok`.
729 fun item: V is abstract
730
731 # The key of the current item.
732 # Require `is_ok`.
733 fun key: K is abstract
734
735 # Jump to the next item.
736 # Require `is_ok`.
737 fun next is abstract
738
739 # Is there a current item ?
740 fun is_ok: Bool is abstract
741
742 # Set a new `item` at `key`.
743 #fun item=(item: E) is abstract
744
745 # Pre-iteration hook.
746 #
747 # Used to inform `self` that the iteration is starting.
748 # Specific iterators can use this to prepare some resources.
749 #
750 # Is automatically invoked at the beginning of `for` structures.
751 #
752 # Do nothing by default.
753 fun start do end
754
755 # Post-iteration hook.
756 #
757 # Used to inform `self` that the iteration is over.
758 # Specific iterators can use this to free some resources.
759 #
760 # Is automatically invoked at the end of `for` structures.
761 #
762 # Do nothing by default.
763 fun finish do end
764 end
765
766 # Iterator on a 'keys' point of view of a map
767 class MapKeysIterator[K, V]
768 super Iterator[K]
769 # The original iterator
770 var original_iterator: MapIterator[K, V]
771
772 redef fun is_ok do return self.original_iterator.is_ok
773 redef fun next do self.original_iterator.next
774 redef fun item do return self.original_iterator.key
775 end
776
777 # Iterator on a 'values' point of view of a map
778 class MapValuesIterator[K, V]
779 super Iterator[V]
780 # The original iterator
781 var original_iterator: MapIterator[K, V]
782
783 redef fun is_ok do return self.original_iterator.is_ok
784 redef fun next do self.original_iterator.next
785 redef fun item do return self.original_iterator.item
786 end
787
788 # Sequences are indexed collections.
789 # The first item is 0. The last is `length-1`.
790 #
791 # The order is the main caracteristic of sequence
792 # and all concrete implementation of sequences are basically interchangeable.
793 interface SequenceRead[E]
794 super Collection[E]
795
796 # Get the first item.
797 # Is equivalent with `self[0]`.
798 #
799 # var a = [1,2,3]
800 # assert a.first == 1
801 #
802 # REQUIRE `not is_empty`
803 redef fun first
804 do
805 assert not_empty: not is_empty
806 return self[0]
807 end
808
809 # Return the index-th element of the sequence.
810 # The first element is 0 and the last is `length-1`
811 # If index is invalid, the program aborts
812 #
813 # var a = [10,20,30]
814 # assert a[0] == 10
815 # assert a[1] == 20
816 # assert a[2] == 30
817 #
818 # REQUIRE `index >= 0 and index < length`
819 fun [](index: Int): E is abstract
820
821 # Return the index-th element but wrap
822 #
823 # Whereas `self[]` requires the index to exists, the `modulo` accessor automatically
824 # wraps overbound and underbouds indexes.
825 #
826 # ~~~
827 # var a = [10,20,30]
828 # assert a.modulo(1) == 20
829 # assert a.modulo(3) == 10
830 # assert a.modulo(-1) == 30
831 # assert a.modulo(-10) == 30
832 # ~~~
833 #
834 # REQUIRE `not_empty`
835 # ENSURE `result == self[modulo_index(index)]`
836 fun modulo(index: Int): E do return self[modulo_index(index)]
837
838 # Returns the real index for a modulo index.
839 #
840 # ~~~
841 # var a = [10,20,30]
842 # assert a.modulo_index(1) == 1
843 # assert a.modulo_index(3) == 0
844 # assert a.modulo_index(-1) == 2
845 # assert a.modulo_index(-10) == 2
846 # ~~~
847 #
848 # REQUIRE `not_empty`
849 fun modulo_index(index: Int): Int
850 do
851 var length = self.length
852 if index >= 0 then
853 return index % length
854 else
855 return length - (-1 - index) % length - 1
856 end
857 end
858
859 # Get the last item.
860 # Is equivalent with `self[length-1]`.
861 #
862 # var a = [1,2,3]
863 # assert a.last == 3
864 #
865 # REQUIRE `not is_empty`
866 fun last: E
867 do
868 assert not_empty: not is_empty
869 return self[length-1]
870 end
871
872 # The index of the first occurrence of `item`.
873 # Return -1 if `item` is not found.
874 # Comparison is done with `==`.
875 #
876 # var a = [10,20,30,10,20,30]
877 # assert a.index_of(20) == 1
878 # assert a.index_of(40) == -1
879 fun index_of(item: nullable Object): Int do return index_of_from(item, 0)
880
881 # The index of the last occurrence of `item`.
882 # Return -1 if `item` is not found.
883 # Comparison is done with `==`.
884 #
885 # var a = [10,20,30,10,20,30]
886 # assert a.last_index_of(20) == 4
887 # assert a.last_index_of(40) == -1
888 fun last_index_of(item: nullable Object): Int do return last_index_of_from(item, length-1)
889
890 # The index of the first occurrence of `item`, starting from pos.
891 # Return -1 if `item` is not found.
892 # Comparison is done with `==`.
893 #
894 # var a = [10,20,30,10,20,30]
895 # assert a.index_of_from(20, 3) == 4
896 # assert a.index_of_from(20, 4) == 4
897 # assert a.index_of_from(20, 5) == -1
898 fun index_of_from(item: nullable Object, pos: Int): Int
899 do
900 var p = 0
901 var i = iterator
902 while i.is_ok do
903 if p>=pos and i.item == item then return i.index
904 i.next
905 p += 1
906 end
907 return -1
908 end
909
910 # The index of the last occurrence of `item` starting from `pos` and decrementing.
911 # Return -1 if `item` is not found.
912 # Comparison is done with `==`.
913 #
914 # var a = [10,20,30,10,20,30]
915 # assert a.last_index_of_from(20, 2) == 1
916 # assert a.last_index_of_from(20, 1) == 1
917 # assert a.last_index_of_from(20, 0) == -1
918 fun last_index_of_from(item: nullable Object, pos: Int): Int do
919 var i = pos
920 while i >= 0 do
921 if self[i] == item then return i
922 i -= 1
923 end
924 return -1
925 end
926
927 # Two sequences are equals if they have the same items in the same order.
928 #
929 # var a = new List[Int]
930 # a.add(1)
931 # a.add(2)
932 # a.add(3)
933 # assert a == [1,2,3]
934 # assert a != [1,3,2]
935 redef fun ==(o)
936 do
937 if not o isa SequenceRead[nullable Object] then return false
938 var l = length
939 if o.length != l then return false
940 var i = 0
941 while i < l do
942 if self[i] != o[i] then return false
943 i += 1
944 end
945 return true
946 end
947
948 # Because of the law between `==` and `hash`, `hash` is redefined to be the sum of the hash of the elements
949 redef fun hash
950 do
951 # The 17 and 2/3 magic numbers were determined empirically.
952 # Note: the standard hash functions djb2, sbdm and fnv1 were also
953 # tested but were comparable (or worse).
954 var res = 17 + length
955 for e in self do
956 res = res * 3 / 2
957 if e != null then res += e.hash
958 end
959 return res
960 end
961
962 redef fun iterator: IndexedIterator[E] is abstract
963
964 # Gets a new Iterator starting at position `pos`
965 #
966 # var iter = [10,20,30,40,50].iterator_from(2)
967 # assert iter.to_a == [30, 40, 50]
968 fun iterator_from(pos: Int): IndexedIterator[E]
969 do
970 var res = iterator
971 while pos > 0 and res.is_ok do
972 res.next
973 pos -= 1
974 end
975 return res
976 end
977
978 # Gets an iterator starting at the end and going backwards
979 #
980 # var reviter = [1,2,3].reverse_iterator
981 # assert reviter.to_a == [3,2,1]
982 fun reverse_iterator: IndexedIterator[E] is abstract
983
984 # Gets an iterator on the chars of self starting from `pos`
985 #
986 # var reviter = [10,20,30,40,50].reverse_iterator_from(2)
987 # assert reviter.to_a == [30,20,10]
988 fun reverse_iterator_from(pos: Int): IndexedIterator[E]
989 do
990 var res = reverse_iterator
991 while pos > 0 and res.is_ok do
992 res.next
993 pos -= 1
994 end
995 return res
996 end
997 end
998
999 # Sequence are indexed collection.
1000 # The first item is 0. The last is `length-1`.
1001 interface Sequence[E]
1002 super SequenceRead[E]
1003 super SimpleCollection[E]
1004
1005 # Set the first item.
1006 # Is equivalent with `self[0] = item`.
1007 #
1008 # var a = [1,2,3]
1009 # a.first = 10
1010 # assert a == [10,2,3]
1011 fun first=(item: E)
1012 do self[0] = item end
1013
1014 # Set the last item.
1015 # Is equivalent with `self[length-1] = item`.
1016 #
1017 # var a = [1,2,3]
1018 # a.last = 10
1019 # assert a == [1,2,10]
1020 #
1021 # If the sequence is empty, `last=` is equivalent with `self[0]=` (thus with `first=`)
1022 #
1023 # var b = new Array[Int]
1024 # b.last = 10
1025 # assert b == [10]
1026 fun last=(item: E)
1027 do
1028 var l = length
1029 if l > 0 then
1030 self[l-1] = item
1031 else
1032 self[0] = item
1033 end
1034 end
1035
1036 # A synonym of `push`
1037 redef fun add(e) do push(e)
1038
1039 # Add an item after the last one.
1040 #
1041 # var a = [1,2,3]
1042 # a.push(10)
1043 # a.push(20)
1044 # assert a == [1,2,3,10,20]
1045 fun push(e: E) is abstract
1046
1047 # Add each item of `coll` after the last.
1048 #
1049 # var a = [1,2,3]
1050 # a.append([7..9])
1051 # assert a == [1,2,3,7,8,9]
1052 #
1053 # Alias of `add_all`
1054 fun append(coll: Collection[E]) do add_all(coll)
1055
1056 # Remove the last item.
1057 #
1058 # var a = [1,2,3]
1059 # assert a.pop == 3
1060 # assert a.pop == 2
1061 # assert a == [1]
1062 #
1063 # REQUIRE `not is_empty`
1064 fun pop: E is abstract
1065
1066 # Add an item before the first one.
1067 #
1068 # var a = [1,2,3]
1069 # a.unshift(10)
1070 # a.unshift(20)
1071 # assert a == [20,10,1,2,3]
1072 fun unshift(e: E) is abstract
1073
1074 # Add all items of `coll` before the first one.
1075 #
1076 # var a = [1,2,3]
1077 # a.prepend([7..9])
1078 # assert a == [7,8,9,1,2,3]
1079 #
1080 # Alias of `insert_at(coll, 0)`
1081 fun prepend(coll: Collection[E]) do insert_all(coll, 0)
1082
1083 # Remove the first item.
1084 # The second item thus become the first.
1085 #
1086 # var a = [1,2,3]
1087 # assert a.shift == 1
1088 # assert a.shift == 2
1089 # assert a == [3]
1090 #
1091 # REQUIRE `not is_empty`
1092 fun shift: E is abstract
1093
1094 # Set the `item` at `index`.
1095 #
1096 # var a = [10,20,30]
1097 # a[1] = 200
1098 # assert a == [10,200,30]
1099 #
1100 # like with `[]`, index should be between `0` and `length-1`
1101 # However, if `index==length`, `[]=` works like `push`.
1102 #
1103 # a[3] = 400
1104 # assert a == [10,200,30,400]
1105 #
1106 # REQUIRE `index >= 0 and index <= length`
1107 fun []=(index: Int, item: E) is abstract
1108
1109 # Set the index-th element but wrap
1110 #
1111 # Whereas `self[]=` requires the index to exists, the `modulo` accessor automatically
1112 # wraps overbound and underbouds indexes.
1113 #
1114 # ~~~
1115 # var a = [10,20,30]
1116 # a.modulo(1) = 200
1117 # a.modulo(3) = 100
1118 # a.modulo(-1) = 300
1119 # a.modulo(-10) = 301
1120 # assert a == [100, 200, 301]
1121 # ~~~
1122 #
1123 # REQUIRE `not_empty`
1124 # ENSURE `self[modulo_index(index)] == value`
1125 fun modulo=(index: Int, value: E) do self[modulo_index(index)] = value
1126
1127 # Insert an element at a given position, following elements are shifted.
1128 #
1129 # var a = [10, 20, 30, 40]
1130 # a.insert(100, 2)
1131 # assert a == [10, 20, 100, 30, 40]
1132 #
1133 # REQUIRE `index >= 0 and index <= length`
1134 # ENSURE `self[index] == item`
1135 fun insert(item: E, index: Int) is abstract
1136
1137 # Insert all elements at a given position, following elements are shifted.
1138 #
1139 # var a = [10, 20, 30, 40]
1140 # a.insert_all([100..102], 2)
1141 # assert a == [10, 20, 100, 101, 102, 30, 40]
1142 #
1143 # REQUIRE `index >= 0 and index <= length`
1144 # ENSURE `self[index] == coll.first`
1145 fun insert_all(coll: Collection[E], index: Int)
1146 do
1147 assert index >= 0 and index < length
1148 if index == length then
1149 add_all(coll)
1150 end
1151 for c in coll do
1152 insert(c, index)
1153 index += 1
1154 end
1155 end
1156
1157 # Remove the item at `index` and shift all following elements
1158 #
1159 # var a = [10,20,30]
1160 # a.remove_at(1)
1161 # assert a == [10,30]
1162 #
1163 # REQUIRE `index >= 0 and index < length`
1164 fun remove_at(index: Int) is abstract
1165 end
1166
1167 # Iterators on indexed collections.
1168 interface IndexedIterator[E]
1169 super Iterator[E]
1170 # The index of the current item.
1171 fun index: Int is abstract
1172 end
1173
1174 # Associative arrays that internally uses couples to represent each (key, value) pairs.
1175 # This is an helper class that some specific implementation of Map may implements.
1176 interface CoupleMap[K, V]
1177 super Map[K, V]
1178
1179 # Return the couple of the corresponding key
1180 # Return null if the key is no associated element
1181 protected fun couple_at(key: nullable Object): nullable Couple[K, V] is abstract
1182
1183 # Return a new iteralot on all couples
1184 # Used to provide `iterator` and others
1185 protected fun couple_iterator: Iterator[Couple[K,V]] is abstract
1186
1187 redef fun iterator do return new CoupleMapIterator[K,V](couple_iterator)
1188
1189 redef fun [](key)
1190 do
1191 var c = couple_at(key)
1192 if c == null then
1193 return provide_default_value(key)
1194 else
1195 return c.second
1196 end
1197 end
1198
1199 redef fun has_key(key) do return couple_at(key) != null
1200 end
1201
1202 # Iterator on CoupleMap
1203 #
1204 # Actually it is a wrapper around an iterator of the internal array of the map.
1205 private class CoupleMapIterator[K, V]
1206 super MapIterator[K, V]
1207 redef fun item do return _iter.item.second
1208
1209 #redef fun item=(e) do _iter.item.second = e
1210
1211 redef fun key do return _iter.item.first
1212
1213 redef fun is_ok do return _iter.is_ok
1214
1215 redef fun next
1216 do
1217 _iter.next
1218 end
1219
1220 var iter: Iterator[Couple[K,V]]
1221 end
1222
1223 # Some tools ###################################################################
1224
1225 # Two objects in a simple structure.
1226 class Couple[F, S]
1227
1228 # The first element of the couple.
1229 var first: F is writable
1230
1231 # The second element of the couple.
1232 var second: S is writable
1233 end