compiler: intern methods on NativeArray can fallback instead of no-op
[nit.git] / src / compiler / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import coloring
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute = new OptionBool("Put primitive attributes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --no-tag-primitives
33 var opt_no_tag_primitives = new OptionBool("Use only boxes for primitive types", "--no-tag-primitives")
34
35 # --colors-are-symbols
36 var opt_colors_are_symbols = new OptionBool("Store colors as symbols instead of static data (link-boost)", "--colors-are-symbols")
37 # --trampoline-call
38 var opt_trampoline_call = new OptionBool("Use an indirection when calling", "--trampoline-call")
39 # --guard-call
40 var opt_guard_call = new OptionBool("Guard VFT calls with a direct call", "--guard-call")
41 # --substitute-monomorph
42 var opt_substitute_monomorph = new OptionBool("Replace monomorphic trampolines with direct calls (link-boost)", "--substitute-monomorph")
43 # --link-boost
44 var opt_link_boost = new OptionBool("Enable all link-boost optimizations", "--link-boost")
45
46 # --inline-coloring-numbers
47 var opt_inline_coloring_numbers = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
48 # --inline-some-methods
49 var opt_inline_some_methods = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
50 # --direct-call-monomorph
51 var opt_direct_call_monomorph = new OptionBool("Allow the separate compiler to direct call monomorphic sites (semi-global)", "--direct-call-monomorph")
52 # --direct-call-monomorph0
53 var opt_direct_call_monomorph0 = new OptionBool("Allow the separate compiler to direct call monomorphic sites (semi-global)", "--direct-call-monomorph0")
54 # --skip-dead-methods
55 var opt_skip_dead_methods = new OptionBool("Do not compile dead methods (semi-global)", "--skip-dead-methods")
56 # --semi-global
57 var opt_semi_global = new OptionBool("Enable all semi-global optimizations", "--semi-global")
58 # --no-colo-dead-methods
59 var opt_colo_dead_methods = new OptionBool("Force colorization of dead methods", "--colo-dead-methods")
60 # --tables-metrics
61 var opt_tables_metrics = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
62 # --type-poset
63 var opt_type_poset = new OptionBool("Build a poset of types to create more condensed tables", "--type-poset")
64
65 redef init
66 do
67 super
68 self.option_context.add_option(self.opt_separate)
69 self.option_context.add_option(self.opt_no_inline_intern)
70 self.option_context.add_option(self.opt_no_union_attribute)
71 self.option_context.add_option(self.opt_no_shortcut_equate)
72 self.option_context.add_option(self.opt_no_tag_primitives)
73 self.option_context.add_option(opt_colors_are_symbols, opt_trampoline_call, opt_guard_call, opt_direct_call_monomorph0, opt_substitute_monomorph, opt_link_boost)
74 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph, opt_skip_dead_methods, opt_semi_global)
75 self.option_context.add_option(self.opt_colo_dead_methods)
76 self.option_context.add_option(self.opt_tables_metrics)
77 self.option_context.add_option(self.opt_type_poset)
78 end
79
80 redef fun process_options(args)
81 do
82 super
83
84 var tc = self
85 if tc.opt_semi_global.value then
86 tc.opt_inline_coloring_numbers.value = true
87 tc.opt_inline_some_methods.value = true
88 tc.opt_direct_call_monomorph.value = true
89 tc.opt_skip_dead_methods.value = true
90 end
91 if tc.opt_link_boost.value then
92 tc.opt_colors_are_symbols.value = true
93 tc.opt_substitute_monomorph.value = true
94 end
95 if tc.opt_substitute_monomorph.value then
96 tc.opt_trampoline_call.value = true
97 end
98 end
99
100 var separate_compiler_phase = new SeparateCompilerPhase(self, null)
101 end
102
103 class SeparateCompilerPhase
104 super Phase
105 redef fun process_mainmodule(mainmodule, given_mmodules) do
106 if not toolcontext.opt_separate.value then return
107
108 var modelbuilder = toolcontext.modelbuilder
109 var analysis = modelbuilder.do_rapid_type_analysis(mainmodule)
110 modelbuilder.run_separate_compiler(mainmodule, analysis)
111 end
112 end
113
114 redef class ModelBuilder
115 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
116 do
117 var time0 = get_time
118 self.toolcontext.info("*** GENERATING C ***", 1)
119
120 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
121 compiler.do_compilation
122 compiler.display_stats
123
124 var time1 = get_time
125 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
126 write_and_make(compiler)
127 end
128
129 # Count number of invocations by VFT
130 private var nb_invok_by_tables = 0
131 # Count number of invocations by direct call
132 private var nb_invok_by_direct = 0
133 # Count number of invocations by inlining
134 private var nb_invok_by_inline = 0
135 end
136
137 # Singleton that store the knowledge about the separate compilation process
138 class SeparateCompiler
139 super AbstractCompiler
140
141 redef type VISITOR: SeparateCompilerVisitor
142
143 # The result of the RTA (used to know live types and methods)
144 var runtime_type_analysis: nullable RapidTypeAnalysis
145
146 private var undead_types: Set[MType] = new HashSet[MType]
147 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
148
149 private var type_ids: Map[MType, Int] is noinit
150 private var type_colors: Map[MType, Int] is noinit
151 private var opentype_colors: Map[MType, Int] is noinit
152
153 init do
154 var file = new_file("nit.common")
155 self.header = new CodeWriter(file)
156 self.compile_box_kinds
157 end
158
159 redef fun do_compilation
160 do
161 var compiler = self
162 compiler.compile_header
163
164 var c_name = mainmodule.c_name
165
166 # compile class structures
167 modelbuilder.toolcontext.info("Property coloring", 2)
168 compiler.new_file("{c_name}.classes")
169 compiler.do_property_coloring
170 compiler.compile_class_infos
171 for m in mainmodule.in_importation.greaters do
172 for mclass in m.intro_mclasses do
173 #if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
174 compiler.compile_class_to_c(mclass)
175 end
176 end
177
178 # The main function of the C
179 compiler.new_file("{c_name}.main")
180 compiler.compile_nitni_global_ref_functions
181 compiler.compile_main_function
182 compiler.compile_finalizer_function
183 compiler.link_mmethods
184
185 # compile methods
186 for m in mainmodule.in_importation.greaters do
187 modelbuilder.toolcontext.info("Generate C for module {m.full_name}", 2)
188 compiler.new_file("{m.c_name}.sep")
189 compiler.compile_module_to_c(m)
190 end
191
192 # compile live & cast type structures
193 modelbuilder.toolcontext.info("Type coloring", 2)
194 compiler.new_file("{c_name}.types")
195 compiler.compile_types
196 end
197
198 # Color and compile type structures and cast information
199 fun compile_types
200 do
201 var compiler = self
202
203 var mtypes = compiler.do_type_coloring
204 for t in mtypes do
205 compiler.compile_type_to_c(t)
206 end
207 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
208 for t in compiler.undead_types do
209 if mtypes.has(t) then continue
210 compiler.compile_type_to_c(t)
211 end
212
213 end
214
215 redef fun compile_header_structs do
216 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
217 self.compile_header_attribute_structs
218 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
219
220 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
221 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
222 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
223 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
224 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
225
226 if not modelbuilder.toolcontext.opt_no_tag_primitives.value then
227 self.header.add_decl("extern const struct class *class_info[];")
228 self.header.add_decl("extern const struct type *type_info[];")
229 end
230 end
231
232 fun compile_header_attribute_structs
233 do
234 if modelbuilder.toolcontext.opt_no_union_attribute.value then
235 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
236 else
237 self.header.add_decl("typedef union \{")
238 self.header.add_decl("void* val;")
239 for c, v in self.box_kinds do
240 var t = c.mclass_type
241
242 # `Pointer` reuse the `val` field
243 if t.mclass.name == "Pointer" then continue
244
245 self.header.add_decl("{t.ctype_extern} {t.ctypename};")
246 end
247 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
248 end
249 end
250
251 fun compile_box_kinds
252 do
253 # Collect all bas box class
254 # FIXME: this is not completely fine with a separate compilation scheme
255 for classname in ["Int", "Bool", "Byte", "Char", "Float", "NativeString",
256 "Pointer", "Int8", "Int16", "UInt16", "Int32", "UInt32"] do
257 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
258 if classes == null then continue
259 assert classes.length == 1 else print classes.join(", ")
260 self.box_kinds[classes.first] = self.box_kinds.length + 1
261 end
262 end
263
264 var box_kinds = new HashMap[MClass, Int]
265
266 fun box_kind_of(mclass: MClass): Int
267 do
268 #var pointer_type = self.mainmodule.pointer_type
269 #if mclass.mclass_type.ctype == "val*" or mclass.mclass_type.is_subtype(self.mainmodule, mclass.mclass_type pointer_type) then
270 if mclass.mclass_type.ctype_extern == "val*" then
271 return 0
272 else if mclass.kind == extern_kind and mclass.name != "NativeString" then
273 return self.box_kinds[self.mainmodule.pointer_type.mclass]
274 else
275 return self.box_kinds[mclass]
276 end
277
278 end
279
280 fun compile_color_consts(colors: Map[Object, Int]) do
281 var v = new_visitor
282 for m, c in colors do
283 compile_color_const(v, m, c)
284 end
285 end
286
287 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
288 if color_consts_done.has(m) then return
289 if m isa MEntity then
290 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
291 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
292 else if not modelbuilder.toolcontext.opt_colors_are_symbols.value or not v.compiler.target_platform.supports_linker_script then
293 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
294 v.add("const int {m.const_color} = {color};")
295 else
296 # The color 'C' is the ``address'' of a false static variable 'XC'
297 self.provide_declaration(m.const_color, "#define {m.const_color} ((long)&X{m.const_color})\nextern const void X{m.const_color};")
298 if color == -1 then color = 0 # Symbols cannot be negative, so just use 0 for dead things
299 # Teach the linker that the address of 'XC' is `color`.
300 linker_script.add("X{m.const_color} = {color};")
301 end
302 else
303 abort
304 end
305 color_consts_done.add(m)
306 end
307
308 private var color_consts_done = new HashSet[Object]
309
310 # The conflict graph of classes used for coloration
311 var class_conflict_graph: POSetConflictGraph[MClass] is noinit
312
313 # colorize classe properties
314 fun do_property_coloring do
315
316 var rta = runtime_type_analysis
317
318 # Class graph
319 var mclasses = mainmodule.flatten_mclass_hierarchy
320 class_conflict_graph = mclasses.to_conflict_graph
321
322 # Prepare to collect elements to color and build layout with
323 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
324 var mattributes = new HashMap[MClass, Set[MAttribute]]
325
326 # The dead methods and super-call, still need to provide a dead color symbol
327 var dead_methods = new Array[PropertyLayoutElement]
328
329 for mclass in mclasses do
330 mmethods[mclass] = new HashSet[PropertyLayoutElement]
331 mattributes[mclass] = new HashSet[MAttribute]
332 end
333
334 # Pre-collect known live things
335 if rta != null then
336 for m in rta.live_methods do
337 mmethods[m.intro_mclassdef.mclass].add m
338 end
339 for m in rta.live_super_sends do
340 var mclass = m.mclassdef.mclass
341 mmethods[mclass].add m
342 end
343 end
344
345 for m in mainmodule.in_importation.greaters do for cd in m.mclassdefs do
346 var mclass = cd.mclass
347 # Collect methods ad attributes
348 for p in cd.intro_mproperties do
349 if p isa MMethod then
350 if rta == null then
351 mmethods[mclass].add p
352 else if not rta.live_methods.has(p) then
353 dead_methods.add p
354 end
355 else if p isa MAttribute then
356 mattributes[mclass].add p
357 end
358 end
359
360 # Collect all super calls (dead or not)
361 for mpropdef in cd.mpropdefs do
362 if not mpropdef isa MMethodDef then continue
363 if mpropdef.has_supercall then
364 if rta == null then
365 mmethods[mclass].add mpropdef
366 else if not rta.live_super_sends.has(mpropdef) then
367 dead_methods.add mpropdef
368 end
369 end
370 end
371 end
372
373 # methods coloration
374 var meth_colorer = new POSetGroupColorer[MClass, PropertyLayoutElement](class_conflict_graph, mmethods)
375 var method_colors = meth_colorer.colors
376 compile_color_consts(method_colors)
377
378 # give null color to dead methods and supercalls
379 for mproperty in dead_methods do compile_color_const(new_visitor, mproperty, -1)
380
381 # attribute coloration
382 var attr_colorer = new POSetGroupColorer[MClass, MAttribute](class_conflict_graph, mattributes)
383 var attr_colors = attr_colorer.colors#ize(poset, mattributes)
384 compile_color_consts(attr_colors)
385
386 # Build method and attribute tables
387 method_tables = new HashMap[MClass, Array[nullable MPropDef]]
388 attr_tables = new HashMap[MClass, Array[nullable MProperty]]
389 for mclass in mclasses do
390 if not mclass.has_new_factory and (mclass.kind == abstract_kind or mclass.kind == interface_kind) then continue
391 if rta != null and not rta.live_classes.has(mclass) then continue
392
393 var mtype = mclass.intro.bound_mtype
394
395 # Resolve elements in the layout to get the final table
396 var meth_layout = meth_colorer.build_layout(mclass)
397 var meth_table = new Array[nullable MPropDef].with_capacity(meth_layout.length)
398 method_tables[mclass] = meth_table
399 for e in meth_layout do
400 if e == null then
401 meth_table.add null
402 else if e isa MMethod then
403 # Standard method call of `e`
404 meth_table.add e.lookup_first_definition(mainmodule, mtype)
405 else if e isa MMethodDef then
406 # Super-call in the methoddef `e`
407 meth_table.add e.lookup_next_definition(mainmodule, mtype)
408 else
409 abort
410 end
411 end
412
413 # Do not need to resolve attributes as only the position is used
414 attr_tables[mclass] = attr_colorer.build_layout(mclass)
415 end
416
417
418 end
419
420 # colorize live types of the program
421 private fun do_type_coloring: Collection[MType] do
422 # Collect types to colorize
423 var live_types = runtime_type_analysis.live_types
424 var live_cast_types = runtime_type_analysis.live_cast_types
425
426 var res = new HashSet[MType]
427 res.add_all live_types
428 res.add_all live_cast_types
429
430 if modelbuilder.toolcontext.opt_type_poset.value then
431 # Compute colors with a type poset
432 var poset = poset_from_mtypes(live_types, live_cast_types)
433 var colorer = new POSetColorer[MType]
434 colorer.colorize(poset)
435 type_ids = colorer.ids
436 type_colors = colorer.colors
437 type_tables = build_type_tables(poset)
438 else
439 # Compute colors using the class poset
440 # Faster to compute but the number of holes can degenerate
441 compute_type_test_layouts(live_types, live_cast_types)
442
443 type_ids = new HashMap[MType, Int]
444 for x in res do type_ids[x] = type_ids.length + 1
445 end
446
447 # VT and FT are stored with other unresolved types in the big resolution_tables
448 self.compute_resolution_tables(live_types)
449
450 return res
451 end
452
453 private fun poset_from_mtypes(mtypes, cast_types: Set[MType]): POSet[MType] do
454 var poset = new POSet[MType]
455
456 # Instead of doing the full matrix mtypes X cast_types,
457 # a grouping is done by the base classes of the type so
458 # that we compare only types whose base classes are in inheritance.
459
460 var mtypes_by_class = new MultiHashMap[MClass, MType]
461 for e in mtypes do
462 var c = e.undecorate.as(MClassType).mclass
463 mtypes_by_class[c].add(e)
464 poset.add_node(e)
465 end
466
467 var casttypes_by_class = new MultiHashMap[MClass, MType]
468 for e in cast_types do
469 var c = e.undecorate.as(MClassType).mclass
470 casttypes_by_class[c].add(e)
471 poset.add_node(e)
472 end
473
474 for c1, ts1 in mtypes_by_class do
475 for c2 in c1.in_hierarchy(mainmodule).greaters do
476 var ts2 = casttypes_by_class[c2]
477 for e in ts1 do
478 for o in ts2 do
479 if e == o then continue
480 if e.is_subtype(mainmodule, null, o) then
481 poset.add_edge(e, o)
482 end
483 end
484 end
485 end
486 end
487 return poset
488 end
489
490 # Build type tables
491 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
492 var tables = new HashMap[MType, Array[nullable MType]]
493 for mtype in mtypes do
494 var table = new Array[nullable MType]
495 for sup in mtypes[mtype].greaters do
496 var color = type_colors[sup]
497 if table.length <= color then
498 for i in [table.length .. color[ do
499 table[i] = null
500 end
501 end
502 table[color] = sup
503 end
504 tables[mtype] = table
505 end
506 return tables
507 end
508
509
510 private fun compute_type_test_layouts(mtypes: Set[MClassType], cast_types: Set[MType]) do
511 # Group cast_type by their classes
512 var bucklets = new HashMap[MClass, Set[MType]]
513 for e in cast_types do
514 var c = e.undecorate.as(MClassType).mclass
515 if not bucklets.has_key(c) then
516 bucklets[c] = new HashSet[MType]
517 end
518 bucklets[c].add(e)
519 end
520
521 # Colorize cast_types from the class hierarchy
522 var colorer = new POSetGroupColorer[MClass, MType](class_conflict_graph, bucklets)
523 type_colors = colorer.colors
524
525 var layouts = new HashMap[MClass, Array[nullable MType]]
526 for c in runtime_type_analysis.live_classes do
527 layouts[c] = colorer.build_layout(c)
528 end
529
530 # Build the table for each live type
531 for t in mtypes do
532 # A live type use the layout of its class
533 var c = t.mclass
534 var layout = layouts[c]
535 var table = new Array[nullable MType].with_capacity(layout.length)
536 type_tables[t] = table
537
538 # For each potential super-type in the layout
539 for sup in layout do
540 if sup == null then
541 table.add null
542 else if t.is_subtype(mainmodule, null, sup) then
543 table.add sup
544 else
545 table.add null
546 end
547 end
548 end
549 end
550
551 # resolution_tables is used to perform a type resolution at runtime in O(1)
552 private fun compute_resolution_tables(mtypes: Set[MType]) do
553 # During the visit of the body of classes, live_unresolved_types are collected
554 # and associated to
555 # Collect all live_unresolved_types (visited in the body of classes)
556
557 # Determinate fo each livetype what are its possible requested anchored types
558 var mtype2unresolved = new HashMap[MClass, Set[MType]]
559 for mtype in self.runtime_type_analysis.live_types do
560 var mclass = mtype.mclass
561 var set = mtype2unresolved.get_or_null(mclass)
562 if set == null then
563 set = new HashSet[MType]
564 mtype2unresolved[mclass] = set
565 end
566 for cd in mtype.collect_mclassdefs(self.mainmodule) do
567 if self.live_unresolved_types.has_key(cd) then
568 set.add_all(self.live_unresolved_types[cd])
569 end
570 end
571 end
572
573 # Compute the table layout with the prefered method
574 var colorer = new BucketsColorer[MClass, MType]
575
576 opentype_colors = colorer.colorize(mtype2unresolved)
577 resolution_tables = self.build_resolution_tables(self.runtime_type_analysis.live_types, mtype2unresolved)
578
579 # Compile a C constant for each collected unresolved type.
580 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
581 var all_unresolved = new HashSet[MType]
582 for t in self.live_unresolved_types.values do
583 all_unresolved.add_all(t)
584 end
585 var all_unresolved_types_colors = new HashMap[MType, Int]
586 for t in all_unresolved do
587 if opentype_colors.has_key(t) then
588 all_unresolved_types_colors[t] = opentype_colors[t]
589 else
590 all_unresolved_types_colors[t] = -1
591 end
592 end
593 self.compile_color_consts(all_unresolved_types_colors)
594
595 #print "tables"
596 #for k, v in unresolved_types_tables.as(not null) do
597 # print "{k}: {v.join(", ")}"
598 #end
599 #print ""
600 end
601
602 fun build_resolution_tables(elements: Set[MClassType], map: Map[MClass, Set[MType]]): Map[MClassType, Array[nullable MType]] do
603 var tables = new HashMap[MClassType, Array[nullable MType]]
604 for mclasstype in elements do
605 var mtypes = map[mclasstype.mclass]
606 var table = new Array[nullable MType]
607 for mtype in mtypes do
608 var color = opentype_colors[mtype]
609 if table.length <= color then
610 for i in [table.length .. color[ do
611 table[i] = null
612 end
613 end
614 table[color] = mtype
615 end
616 tables[mclasstype] = table
617 end
618 return tables
619 end
620
621 # Separately compile all the method definitions of the module
622 fun compile_module_to_c(mmodule: MModule)
623 do
624 var old_module = self.mainmodule
625 self.mainmodule = mmodule
626 for cd in mmodule.mclassdefs do
627 for pd in cd.mpropdefs do
628 if not pd isa MMethodDef then continue
629 if pd.mproperty.is_broken or pd.is_broken or pd.msignature == null then continue # Skip broken method
630 var rta = runtime_type_analysis
631 if modelbuilder.toolcontext.opt_skip_dead_methods.value and rta != null and not rta.live_methoddefs.has(pd) then continue
632 #print "compile {pd} @ {cd} @ {mmodule}"
633 var r = pd.separate_runtime_function
634 r.compile_to_c(self)
635 var r2 = pd.virtual_runtime_function
636 if r2 != r then r2.compile_to_c(self)
637
638 # Generate trampolines
639 if modelbuilder.toolcontext.opt_trampoline_call.value then
640 r2.compile_trampolines(self)
641 end
642 end
643 end
644 self.mainmodule = old_module
645 end
646
647 # Process all introduced methods and compile some linking information (if needed)
648 fun link_mmethods
649 do
650 if not modelbuilder.toolcontext.opt_substitute_monomorph.value and not modelbuilder.toolcontext.opt_guard_call.value then return
651
652 for mmodule in mainmodule.in_importation.greaters do
653 for cd in mmodule.mclassdefs do
654 for m in cd.intro_mproperties do
655 if not m isa MMethod then continue
656 link_mmethod(m)
657 end
658 end
659 end
660 end
661
662 # Compile some linking information (if needed)
663 fun link_mmethod(m: MMethod)
664 do
665 var n2 = "CALL_" + m.const_color
666
667 # Replace monomorphic call by a direct call to the virtual implementation
668 var md = is_monomorphic(m)
669 if md != null then
670 linker_script.add("{n2} = {md.virtual_runtime_function.c_name};")
671 end
672
673 # If opt_substitute_monomorph then a trampoline is used, else a weak symbol is used
674 if modelbuilder.toolcontext.opt_guard_call.value then
675 var r = m.intro.virtual_runtime_function
676 provide_declaration(n2, "{r.c_ret} {n2}{r.c_sig} __attribute__((weak));")
677 end
678 end
679
680 # The single mmethodef called in case of monomorphism.
681 # Returns nul if dead or polymorphic.
682 fun is_monomorphic(m: MMethod): nullable MMethodDef
683 do
684 var rta = runtime_type_analysis
685 if rta == null then
686 # Without RTA, monomorphic means alone (uniq name)
687 if m.mpropdefs.length == 1 then
688 return m.mpropdefs.first
689 else
690 return null
691 end
692 else
693 # With RTA, monomorphic means only live methoddef
694 var res: nullable MMethodDef = null
695 for md in m.mpropdefs do
696 if rta.live_methoddefs.has(md) then
697 if res != null then return null
698 res = md
699 end
700 end
701 return res
702 end
703 end
704
705 # Globaly compile the type structure of a live type
706 fun compile_type_to_c(mtype: MType)
707 do
708 assert not mtype.need_anchor
709 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
710 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
711 var c_name = mtype.c_name
712 var v = new SeparateCompilerVisitor(self)
713 v.add_decl("/* runtime type {mtype} */")
714
715 # extern const struct type_X
716 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
717
718 # const struct type_X
719 v.add_decl("const struct type type_{c_name} = \{")
720
721 # type id (for cast target)
722 if is_cast_live then
723 v.add_decl("{type_ids[mtype]},")
724 else
725 v.add_decl("-1, /*CAST DEAD*/")
726 end
727
728 # type name
729 v.add_decl("\"{mtype}\", /* class_name_string */")
730
731 # type color (for cast target)
732 if is_cast_live then
733 v.add_decl("{type_colors[mtype]},")
734 else
735 v.add_decl("-1, /*CAST DEAD*/")
736 end
737
738 # is_nullable bit
739 if mtype isa MNullableType then
740 v.add_decl("1,")
741 else
742 v.add_decl("0,")
743 end
744
745 # resolution table (for receiver)
746 if is_live then
747 var mclass_type = mtype.undecorate
748 assert mclass_type isa MClassType
749 if resolution_tables[mclass_type].is_empty then
750 v.add_decl("NULL, /*NO RESOLUTIONS*/")
751 else
752 compile_type_resolution_table(mtype)
753 v.require_declaration("resolution_table_{c_name}")
754 v.add_decl("&resolution_table_{c_name},")
755 end
756 else
757 v.add_decl("NULL, /*DEAD*/")
758 end
759
760 # cast table (for receiver)
761 if is_live then
762 v.add_decl("{self.type_tables[mtype].length},")
763 v.add_decl("\{")
764 for stype in self.type_tables[mtype] do
765 if stype == null then
766 v.add_decl("-1, /* empty */")
767 else
768 v.add_decl("{type_ids[stype]}, /* {stype} */")
769 end
770 end
771 v.add_decl("\},")
772 else
773 # Use -1 to indicate dead type, the info is used by --hardening
774 v.add_decl("-1, \{\}, /*DEAD TYPE*/")
775 end
776 v.add_decl("\};")
777 end
778
779 fun compile_type_resolution_table(mtype: MType) do
780
781 var mclass_type = mtype.undecorate.as(MClassType)
782
783 # extern const struct resolution_table_X resolution_table_X
784 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
785
786 # const struct fts_table_X fts_table_X
787 var v = new_visitor
788 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
789 v.add_decl("0, /* dummy */")
790 v.add_decl("\{")
791 for t in self.resolution_tables[mclass_type] do
792 if t == null then
793 v.add_decl("NULL, /* empty */")
794 else
795 # The table stores the result of the type resolution
796 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
797 # the value stored is tv.
798 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
799 # FIXME: What typeids means here? How can a tv not be live?
800 if type_ids.has_key(tv) then
801 v.require_declaration("type_{tv.c_name}")
802 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
803 else
804 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
805 end
806 end
807 end
808 v.add_decl("\}")
809 v.add_decl("\};")
810 end
811
812 # Globally compile the table of the class mclass
813 # In a link-time optimisation compiler, tables are globally computed
814 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
815 fun compile_class_to_c(mclass: MClass)
816 do
817 if mclass.is_broken then return
818
819 var mtype = mclass.intro.bound_mtype
820 var c_name = mclass.c_name
821
822 var v = new_visitor
823
824 var rta = runtime_type_analysis
825 var is_dead = rta != null and not rta.live_classes.has(mclass)
826 # While the class may be dead, some part of separately compiled code may use symbols associated to the class, so
827 # in order to compile and link correctly the C code, these symbols should be declared and defined.
828 var need_corpse = is_dead and mtype.is_c_primitive or mclass.kind == extern_kind or mclass.kind == enum_kind
829
830 v.add_decl("/* runtime class {c_name}: {mclass.full_name} (dead={is_dead}; need_corpse={need_corpse})*/")
831
832 # Build class vft
833 if not is_dead or need_corpse then
834 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
835 v.add_decl("const struct class class_{c_name} = \{")
836 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
837 v.add_decl("\{")
838 var vft = self.method_tables.get_or_null(mclass)
839 if vft != null then for i in [0 .. vft.length[ do
840 var mpropdef = vft[i]
841 if mpropdef == null then
842 v.add_decl("NULL, /* empty */")
843 else
844 assert mpropdef isa MMethodDef
845 if rta != null and not rta.live_methoddefs.has(mpropdef) then
846 v.add_decl("NULL, /* DEAD {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
847 continue
848 else if mpropdef.is_broken or mpropdef.msignature == null or mpropdef.mproperty.is_broken then
849 v.add_decl("NULL, /* DEAD (BROKEN) {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
850 continue
851 end
852 var rf = mpropdef.virtual_runtime_function
853 v.require_declaration(rf.c_name)
854 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
855 end
856 end
857 v.add_decl("\}")
858 v.add_decl("\};")
859 end
860
861 if mtype.is_c_primitive or mtype.mclass.name == "Pointer" then
862 # Is a primitive type or the Pointer class, not any other extern class
863
864 if mtype.is_tagged then return
865
866 #Build instance struct
867 self.header.add_decl("struct instance_{c_name} \{")
868 self.header.add_decl("const struct type *type;")
869 self.header.add_decl("const struct class *class;")
870 self.header.add_decl("{mtype.ctype_extern} value;")
871 self.header.add_decl("\};")
872
873 # Pointer is needed by extern types, live or not
874 if is_dead and mtype.mclass.name != "Pointer" then return
875
876 #Build BOX
877 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype_extern});")
878 v.add_decl("/* allocate {mtype} */")
879 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype_extern} value) \{")
880 v.add("struct instance_{c_name}*res = nit_alloc(sizeof(struct instance_{c_name}));")
881 v.compiler.undead_types.add(mtype)
882 v.require_declaration("type_{c_name}")
883 v.add("res->type = &type_{c_name};")
884 v.require_declaration("class_{c_name}")
885 v.add("res->class = &class_{c_name};")
886 v.add("res->value = value;")
887 v.add("return (val*)res;")
888 v.add("\}")
889
890 # A Pointer class also need its constructor
891 if mtype.mclass.name != "Pointer" then return
892
893 v = new_visitor
894 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
895 v.add_decl("/* allocate {mtype} */")
896 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
897 if is_dead then
898 v.add_abort("{mclass} is DEAD")
899 else
900 var res = v.new_named_var(mtype, "self")
901 res.is_exact = true
902 v.add("{res} = nit_alloc(sizeof(struct instance_{mtype.c_name}));")
903 v.add("{res}->type = type;")
904 hardening_live_type(v, "type")
905 v.require_declaration("class_{c_name}")
906 v.add("{res}->class = &class_{c_name};")
907 v.add("((struct instance_{mtype.c_name}*){res})->value = NULL;")
908 v.add("return {res};")
909 end
910 v.add("\}")
911 return
912 else if mclass.name == "NativeArray" then
913 #Build instance struct
914 self.header.add_decl("struct instance_{c_name} \{")
915 self.header.add_decl("const struct type *type;")
916 self.header.add_decl("const struct class *class;")
917 # NativeArrays are just a instance header followed by a length and an array of values
918 self.header.add_decl("int length;")
919 self.header.add_decl("val* values[0];")
920 self.header.add_decl("\};")
921
922 #Build NEW
923 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
924 v.add_decl("/* allocate {mtype} */")
925 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
926 var res = v.get_name("self")
927 v.add_decl("struct instance_{c_name} *{res};")
928 var mtype_elt = mtype.arguments.first
929 v.add("{res} = nit_alloc(sizeof(struct instance_{c_name}) + length*sizeof({mtype_elt.ctype}));")
930 v.add("{res}->type = type;")
931 hardening_live_type(v, "type")
932 v.require_declaration("class_{c_name}")
933 v.add("{res}->class = &class_{c_name};")
934 v.add("{res}->length = length;")
935 v.add("return (val*){res};")
936 v.add("\}")
937 return
938 else if mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
939 # Is an extern class (other than Pointer and NativeString)
940 # Pointer is caught in a previous `if`, and NativeString is internal
941
942 var pointer_type = mainmodule.pointer_type
943
944 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
945 v.add_decl("/* allocate extern {mtype} */")
946 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
947 if is_dead then
948 v.add_abort("{mclass} is DEAD")
949 else
950 var res = v.new_named_var(mtype, "self")
951 res.is_exact = true
952 v.add("{res} = nit_alloc(sizeof(struct instance_{pointer_type.c_name}));")
953 v.add("{res}->type = type;")
954 hardening_live_type(v, "type")
955 v.require_declaration("class_{c_name}")
956 v.add("{res}->class = &class_{c_name};")
957 v.add("((struct instance_{pointer_type.c_name}*){res})->value = NULL;")
958 v.add("return {res};")
959 end
960 v.add("\}")
961 return
962 end
963
964 #Build NEW
965 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
966 v.add_decl("/* allocate {mtype} */")
967 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
968 if is_dead then
969 v.add_abort("{mclass} is DEAD")
970 else
971 var res = v.new_named_var(mtype, "self")
972 res.is_exact = true
973 var attrs = self.attr_tables.get_or_null(mclass)
974 if attrs == null then
975 v.add("{res} = nit_alloc(sizeof(struct instance));")
976 else
977 v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));")
978 end
979 v.add("{res}->type = type;")
980 hardening_live_type(v, "type")
981 v.require_declaration("class_{c_name}")
982 v.add("{res}->class = &class_{c_name};")
983 if attrs != null then
984 self.generate_init_attr(v, res, mtype)
985 v.set_finalizer res
986 end
987 v.add("return {res};")
988 end
989 v.add("\}")
990 end
991
992 # Compile structures used to map tagged primitive values to their classes and types.
993 # This method also determines which class will be tagged.
994 fun compile_class_infos
995 do
996 if modelbuilder.toolcontext.opt_no_tag_primitives.value then return
997
998 # Note: if you change the tagging scheme, do not forget to update
999 # `autobox` and `extract_tag`
1000 var class_info = new Array[nullable MClass].filled_with(null, 4)
1001 for t in box_kinds.keys do
1002 # Note: a same class can be associated to multiple slots if one want to
1003 # use some Huffman coding.
1004 if t.name == "Int" then
1005 class_info[1] = t
1006 t.mclass_type.tag_value = 1
1007 else if t.name == "Char" then
1008 class_info[2] = t
1009 t.mclass_type.tag_value = 2
1010 else if t.name == "Bool" then
1011 class_info[3] = t
1012 t.mclass_type.tag_value = 3
1013 else
1014 continue
1015 end
1016 t.mclass_type.is_tagged = true
1017 end
1018
1019 # Compile the table for classes. The tag is used as an index
1020 var v = self.new_visitor
1021 v.add_decl "const struct class *class_info[4] = \{"
1022 for t in class_info do
1023 if t == null then
1024 v.add_decl("NULL,")
1025 else
1026 var s = "class_{t.c_name}"
1027 v.require_declaration(s)
1028 v.add_decl("&{s},")
1029 end
1030 end
1031 v.add_decl("\};")
1032
1033 # Compile the table for types. The tag is used as an index
1034 v.add_decl "const struct type *type_info[4] = \{"
1035 for t in class_info do
1036 if t == null then
1037 v.add_decl("NULL,")
1038 else
1039 var s = "type_{t.c_name}"
1040 undead_types.add(t.mclass_type)
1041 v.require_declaration(s)
1042 v.add_decl("&{s},")
1043 end
1044 end
1045 v.add_decl("\};")
1046 end
1047
1048 # Add a dynamic test to ensure that the type referenced by `t` is a live type
1049 fun hardening_live_type(v: VISITOR, t: String)
1050 do
1051 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
1052 v.add("if({t} == NULL) \{")
1053 v.add_abort("type null")
1054 v.add("\}")
1055 v.add("if({t}->table_size < 0) \{")
1056 v.add("PRINT_ERROR(\"Instantiation of a dead type: %s\\n\", {t}->name);")
1057 v.add_abort("type dead")
1058 v.add("\}")
1059 end
1060
1061 redef fun new_visitor do return new SeparateCompilerVisitor(self)
1062
1063 # Stats
1064
1065 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
1066 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
1067 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
1068 protected var attr_tables: Map[MClass, Array[nullable MProperty]] = new HashMap[MClass, Array[nullable MProperty]]
1069
1070 redef fun display_stats
1071 do
1072 super
1073 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
1074 display_sizes
1075 end
1076 if self.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1077 display_isset_checks
1078 end
1079 var tc = self.modelbuilder.toolcontext
1080 tc.info("# implementation of method invocation",2)
1081 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
1082 tc.info("total number of invocations: {nb_invok_total}",2)
1083 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
1084 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
1085 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
1086 end
1087
1088 fun display_sizes
1089 do
1090 print "# size of subtyping tables"
1091 print "\ttotal \tholes"
1092 var total = 0
1093 var holes = 0
1094 for t, table in type_tables do
1095 total += table.length
1096 for e in table do if e == null then holes += 1
1097 end
1098 print "\t{total}\t{holes}"
1099
1100 print "# size of resolution tables"
1101 print "\ttotal \tholes"
1102 total = 0
1103 holes = 0
1104 for t, table in resolution_tables do
1105 total += table.length
1106 for e in table do if e == null then holes += 1
1107 end
1108 print "\t{total}\t{holes}"
1109
1110 print "# size of methods tables"
1111 print "\ttotal \tholes"
1112 total = 0
1113 holes = 0
1114 for t, table in method_tables do
1115 total += table.length
1116 for e in table do if e == null then holes += 1
1117 end
1118 print "\t{total}\t{holes}"
1119
1120 print "# size of attributes tables"
1121 print "\ttotal \tholes"
1122 total = 0
1123 holes = 0
1124 for t, table in attr_tables do
1125 total += table.length
1126 for e in table do if e == null then holes += 1
1127 end
1128 print "\t{total}\t{holes}"
1129 end
1130
1131 protected var isset_checks_count = 0
1132 protected var attr_read_count = 0
1133
1134 fun display_isset_checks do
1135 print "# total number of compiled attribute reads"
1136 print "\t{attr_read_count}"
1137 print "# total number of compiled isset-checks"
1138 print "\t{isset_checks_count}"
1139 end
1140
1141 redef fun compile_nitni_structs
1142 do
1143 self.header.add_decl """
1144 struct nitni_instance \{
1145 struct nitni_instance *next,
1146 *prev; /* adjacent global references in global list */
1147 int count; /* number of time this global reference has been marked */
1148 struct instance *value;
1149 \};
1150 """
1151 super
1152 end
1153
1154 redef fun finalize_ffi_for_module(mmodule)
1155 do
1156 var old_module = self.mainmodule
1157 self.mainmodule = mmodule
1158 super
1159 self.mainmodule = old_module
1160 end
1161 end
1162
1163 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
1164 class SeparateCompilerVisitor
1165 super AbstractCompilerVisitor
1166
1167 redef type COMPILER: SeparateCompiler
1168
1169 redef fun adapt_signature(m, args)
1170 do
1171 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
1172 var recv = args.first
1173 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
1174 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
1175 end
1176 for i in [0..msignature.arity[ do
1177 var mp = msignature.mparameters[i]
1178 var t = mp.mtype
1179 if mp.is_vararg then
1180 t = args[i+1].mtype
1181 end
1182 args[i+1] = self.autobox(args[i+1], t)
1183 end
1184 end
1185
1186 redef fun unbox_signature_extern(m, args)
1187 do
1188 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
1189 if not m.mproperty.is_init and m.is_extern then
1190 args.first = self.unbox_extern(args.first, m.mclassdef.mclass.mclass_type)
1191 end
1192 for i in [0..msignature.arity[ do
1193 var mp = msignature.mparameters[i]
1194 var t = mp.mtype
1195 if mp.is_vararg then
1196 t = args[i+1].mtype
1197 end
1198 if m.is_extern then args[i+1] = self.unbox_extern(args[i+1], t)
1199 end
1200 end
1201
1202 redef fun autobox(value, mtype)
1203 do
1204 if value.mtype == mtype then
1205 return value
1206 else if not value.mtype.is_c_primitive and not mtype.is_c_primitive then
1207 return value
1208 else if not value.mtype.is_c_primitive then
1209 if mtype.is_tagged then
1210 if mtype.name == "Int" then
1211 return self.new_expr("(long)({value})>>2", mtype)
1212 else if mtype.name == "Char" then
1213 return self.new_expr("(uint32_t)((long)({value})>>2)", mtype)
1214 else if mtype.name == "Bool" then
1215 return self.new_expr("(short int)((long)({value})>>2)", mtype)
1216 else
1217 abort
1218 end
1219 end
1220 return self.new_expr("((struct instance_{mtype.c_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
1221 else if not mtype.is_c_primitive then
1222 assert value.mtype == value.mcasttype
1223 if value.mtype.is_tagged then
1224 var res
1225 if value.mtype.name == "Int" then
1226 res = self.new_expr("(val*)({value}<<2|1)", mtype)
1227 else if value.mtype.name == "Char" then
1228 res = self.new_expr("(val*)((long)({value})<<2|2)", mtype)
1229 else if value.mtype.name == "Bool" then
1230 res = self.new_expr("(val*)((long)({value})<<2|3)", mtype)
1231 else
1232 abort
1233 end
1234 # Do not loose type info
1235 res.mcasttype = value.mcasttype
1236 return res
1237 end
1238 var valtype = value.mtype.as(MClassType)
1239 if mtype isa MClassType and mtype.mclass.kind == extern_kind and mtype.mclass.name != "NativeString" then
1240 valtype = compiler.mainmodule.pointer_type
1241 end
1242 var res = self.new_var(mtype)
1243 # Do not loose type info
1244 res.mcasttype = value.mcasttype
1245 self.require_declaration("BOX_{valtype.c_name}")
1246 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
1247 return res
1248 else if (value.mtype.ctype == "void*" and mtype.ctype == "void*") or
1249 (value.mtype.ctype == "char*" and mtype.ctype == "void*") or
1250 (value.mtype.ctype == "void*" and mtype.ctype == "char*") then
1251 return value
1252 else
1253 # Bad things will appen!
1254 var res = self.new_var(mtype)
1255 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
1256 self.add("PRINT_ERROR(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); fatal_exit(1);")
1257 return res
1258 end
1259 end
1260
1261 redef fun unbox_extern(value, mtype)
1262 do
1263 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1264 mtype.mclass.name != "NativeString" then
1265 var pointer_type = compiler.mainmodule.pointer_type
1266 var res = self.new_var_extern(mtype)
1267 self.add "{res} = ((struct instance_{pointer_type.c_name}*){value})->value; /* unboxing {value.mtype} */"
1268 return res
1269 else
1270 return value
1271 end
1272 end
1273
1274 redef fun box_extern(value, mtype)
1275 do
1276 if mtype isa MClassType and mtype.mclass.kind == extern_kind and
1277 mtype.mclass.name != "NativeString" then
1278 var valtype = compiler.mainmodule.pointer_type
1279 var res = self.new_var(mtype)
1280 compiler.undead_types.add(mtype)
1281 self.require_declaration("BOX_{valtype.c_name}")
1282 self.add("{res} = BOX_{valtype.c_name}({value}); /* boxing {value.mtype} */")
1283 self.require_declaration("type_{mtype.c_name}")
1284 self.add("{res}->type = &type_{mtype.c_name};")
1285 self.require_declaration("class_{mtype.c_name}")
1286 self.add("{res}->class = &class_{mtype.c_name};")
1287 return res
1288 else
1289 return value
1290 end
1291 end
1292
1293 # Returns a C expression containing the tag of the value as a long.
1294 #
1295 # If the C expression is evaluated to 0, it means there is no tag.
1296 # Thus the expression can be used as a condition.
1297 fun extract_tag(value: RuntimeVariable): String
1298 do
1299 assert not value.mtype.is_c_primitive
1300 return "((long){value}&3)" # Get the two low bits
1301 end
1302
1303 # Returns a C expression of the runtime class structure of the value.
1304 # The point of the method is to work also with primitive types.
1305 fun class_info(value: RuntimeVariable): String
1306 do
1307 if not value.mtype.is_c_primitive then
1308 if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1309 var tag = extract_tag(value)
1310 return "({tag}?class_info[{tag}]:{value}->class)"
1311 end
1312 return "{value}->class"
1313 else
1314 compiler.undead_types.add(value.mtype)
1315 self.require_declaration("class_{value.mtype.c_name}")
1316 return "(&class_{value.mtype.c_name})"
1317 end
1318 end
1319
1320 # Returns a C expression of the runtime type structure of the value.
1321 # The point of the method is to work also with primitive types.
1322 fun type_info(value: RuntimeVariable): String
1323 do
1324 if not value.mtype.is_c_primitive then
1325 if can_be_primitive(value) and not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1326 var tag = extract_tag(value)
1327 return "({tag}?type_info[{tag}]:{value}->type)"
1328 end
1329 return "{value}->type"
1330 else
1331 compiler.undead_types.add(value.mtype)
1332 self.require_declaration("type_{value.mtype.c_name}")
1333 return "(&type_{value.mtype.c_name})"
1334 end
1335 end
1336
1337 redef fun compile_callsite(callsite, args)
1338 do
1339 var rta = compiler.runtime_type_analysis
1340 # TODO: Inlining of new-style constructors with initializers
1341 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null and callsite.mpropdef.initializers.is_empty then
1342 var tgs = rta.live_targets(callsite)
1343 if tgs.length == 1 then
1344 return direct_call(tgs.first, args)
1345 end
1346 end
1347 # Shortcut intern methods as they are not usually redefinable
1348 if callsite.mpropdef.is_intern and callsite.mproperty.name != "object_id" then
1349 # `object_id` is the only redefined intern method, so it can not be directly called.
1350 # TODO find a less ugly approach?
1351 return direct_call(callsite.mpropdef, args)
1352 end
1353 return super
1354 end
1355
1356 # Fully and directly call a mpropdef
1357 #
1358 # This method is used by `compile_callsite`
1359 private fun direct_call(mpropdef: MMethodDef, args: Array[RuntimeVariable]): nullable RuntimeVariable
1360 do
1361 var res0 = before_send(mpropdef.mproperty, args)
1362 var res = call(mpropdef, mpropdef.mclassdef.bound_mtype, args)
1363 if res0 != null then
1364 assert res != null
1365 self.assign(res0, res)
1366 res = res0
1367 end
1368 add("\}") # close the before_send
1369 return res
1370 end
1371 redef fun send(mmethod, arguments)
1372 do
1373 if arguments.first.mcasttype.is_c_primitive then
1374 # In order to shortcut the primitive, we need to find the most specific method
1375 # Howverr, because of performance (no flattening), we always work on the realmainmodule
1376 var m = self.compiler.mainmodule
1377 self.compiler.mainmodule = self.compiler.realmainmodule
1378 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
1379 self.compiler.mainmodule = m
1380 return res
1381 end
1382
1383 return table_send(mmethod, arguments, mmethod)
1384 end
1385
1386 # Handle common special cases before doing the effective method invocation
1387 # This methods handle the `==` and `!=` methods and the case of the null receiver.
1388 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
1389 # Client must not forget to close the } after them.
1390 #
1391 # The value returned is the result of the common special cases.
1392 # If not null, client must compile it with the result of their own effective method invocation.
1393 #
1394 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1395 # is generated to cancel the effective method invocation that will follow
1396 # TODO: find a better approach
1397 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1398 do
1399 var res: nullable RuntimeVariable = null
1400 var recv = arguments.first
1401 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_null.value or mmethod.name == "==" or mmethod.name == "!="
1402 var maybenull = (recv.mcasttype isa MNullableType or recv.mcasttype isa MNullType) and consider_null
1403 if maybenull then
1404 self.add("if ({recv} == NULL) \{")
1405 if mmethod.name == "==" or mmethod.name == "is_same_instance" then
1406 res = self.new_var(bool_type)
1407 var arg = arguments[1]
1408 if arg.mcasttype isa MNullableType then
1409 self.add("{res} = ({arg} == NULL);")
1410 else if arg.mcasttype isa MNullType then
1411 self.add("{res} = 1; /* is null */")
1412 else
1413 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1414 end
1415 else if mmethod.name == "!=" then
1416 res = self.new_var(bool_type)
1417 var arg = arguments[1]
1418 if arg.mcasttype isa MNullableType then
1419 self.add("{res} = ({arg} != NULL);")
1420 else if arg.mcasttype isa MNullType then
1421 self.add("{res} = 0; /* is null */")
1422 else
1423 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1424 end
1425 else
1426 self.add_abort("Receiver is null")
1427 end
1428 self.add("\} else \{")
1429 else
1430 self.add("\{")
1431 end
1432 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=" or mmethod.name == "is_same_instance") then
1433 # Recv is not null, thus if arg is, it is easy to conclude (and respect the invariants)
1434 var arg = arguments[1]
1435 if arg.mcasttype isa MNullType then
1436 if res == null then res = self.new_var(bool_type)
1437 if mmethod.name == "!=" then
1438 self.add("{res} = 1; /* arg is null and recv is not */")
1439 else # `==` and `is_same_instance`
1440 self.add("{res} = 0; /* arg is null but recv is not */")
1441 end
1442 self.add("\}") # closes the null case
1443 self.add("if (0) \{") # what follow is useless, CC will drop it
1444 end
1445 end
1446 return res
1447 end
1448
1449 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], mentity: MEntity): nullable RuntimeVariable
1450 do
1451 compiler.modelbuilder.nb_invok_by_tables += 1
1452 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1453
1454 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1455
1456 var res0 = before_send(mmethod, arguments)
1457
1458 var runtime_function = mmethod.intro.virtual_runtime_function
1459 var msignature = runtime_function.called_signature
1460
1461 adapt_signature(mmethod.intro, arguments)
1462
1463 var res: nullable RuntimeVariable
1464 var ret = msignature.return_mtype
1465 if ret == null then
1466 res = null
1467 else
1468 res = self.new_var(ret)
1469 end
1470
1471 var ss = arguments.join(", ")
1472
1473 var const_color = mentity.const_color
1474 var ress
1475 if res != null then
1476 ress = "{res} = "
1477 else
1478 ress = ""
1479 end
1480 if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_direct_call_monomorph0.value then
1481 # opt_direct_call_monomorph0 is used to compare the efficiency of the alternative lookup implementation, ceteris paribus.
1482 # The difference with the non-zero option is that the monomorphism is looked-at on the mmethod level and not at the callsite level.
1483 # TODO: remove this mess and use per callsite service to detect monomorphism in a single place.
1484 var md = compiler.is_monomorphic(mentity)
1485 if md != null then
1486 var callsym = md.virtual_runtime_function.c_name
1487 self.require_declaration(callsym)
1488 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1489 else
1490 self.require_declaration(const_color)
1491 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1492 end
1493 else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_guard_call.value then
1494 var callsym = "CALL_" + const_color
1495 self.require_declaration(callsym)
1496 self.add "if (!{callsym}) \{"
1497 self.require_declaration(const_color)
1498 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1499 self.add "\} else \{"
1500 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1501 self.add "\}"
1502 else if mentity isa MMethod and compiler.modelbuilder.toolcontext.opt_trampoline_call.value then
1503 var callsym = "CALL_" + const_color
1504 self.require_declaration(callsym)
1505 self.add "{ress}{callsym}({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1506 else
1507 self.require_declaration(const_color)
1508 self.add "{ress}(({runtime_function.c_funptrtype})({class_info(arguments.first)}->vft[{const_color}]))({ss}); /* {mmethod} on {arguments.first.inspect}*/"
1509 end
1510
1511 if res0 != null then
1512 assert res != null
1513 assign(res0,res)
1514 res = res0
1515 end
1516
1517 self.add("\}") # closes the null case
1518
1519 return res
1520 end
1521
1522 redef fun call(mmethoddef, recvtype, arguments)
1523 do
1524 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1525
1526 var res: nullable RuntimeVariable
1527 var ret = mmethoddef.msignature.return_mtype
1528 if ret == null then
1529 res = null
1530 else
1531 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1532 res = self.new_var(ret)
1533 end
1534
1535 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1536 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1537 compiler.modelbuilder.nb_invok_by_inline += 1
1538 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1539 var frame = new StaticFrame(self, mmethoddef, recvtype, arguments)
1540 frame.returnlabel = self.get_name("RET_LABEL")
1541 frame.returnvar = res
1542 var old_frame = self.frame
1543 self.frame = frame
1544 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1545 mmethoddef.compile_inside_to_c(self, arguments)
1546 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1547 self.add("\}")
1548 self.frame = old_frame
1549 return res
1550 end
1551 compiler.modelbuilder.nb_invok_by_direct += 1
1552 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1553
1554 # Autobox arguments
1555 self.adapt_signature(mmethoddef, arguments)
1556
1557 self.require_declaration(mmethoddef.c_name)
1558 if res == null then
1559 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1560 return null
1561 else
1562 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1563 end
1564
1565 return res
1566 end
1567
1568 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1569 do
1570 if arguments.first.mcasttype.is_c_primitive then
1571 # In order to shortcut the primitive, we need to find the most specific method
1572 # However, because of performance (no flattening), we always work on the realmainmodule
1573 var main = self.compiler.mainmodule
1574 self.compiler.mainmodule = self.compiler.realmainmodule
1575 var res = self.monomorphic_super_send(m, recvtype, arguments)
1576 self.compiler.mainmodule = main
1577 return res
1578 end
1579 return table_send(m.mproperty, arguments, m)
1580 end
1581
1582 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1583 do
1584 # A vararg must be stored into an new array
1585 # The trick is that the dymaic type of the array may depends on the receiver
1586 # of the method (ie recv) if the static type is unresolved
1587 # This is more complex than usual because the unresolved type must not be resolved
1588 # with the current receiver (ie self).
1589 # Therefore to isolate the resolution from self, a local StaticFrame is created.
1590 # One can see this implementation as an inlined method of the receiver whose only
1591 # job is to allocate the array
1592 var old_frame = self.frame
1593 var frame = new StaticFrame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1594 self.frame = frame
1595 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1596 var res = self.array_instance(varargs, elttype)
1597 self.frame = old_frame
1598 return res
1599 end
1600
1601 redef fun isset_attribute(a, recv)
1602 do
1603 self.check_recv_notnull(recv)
1604 var res = self.new_var(bool_type)
1605
1606 # What is the declared type of the attribute?
1607 var mtype = a.intro.static_mtype.as(not null)
1608 var intromclassdef = a.intro.mclassdef
1609 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1610
1611 if mtype isa MNullableType then
1612 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1613 return res
1614 end
1615
1616 self.require_declaration(a.const_color)
1617 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1618 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1619 else
1620
1621 if not mtype.is_c_primitive and not mtype.is_tagged then
1622 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1623 else
1624 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1625 end
1626 end
1627 return res
1628 end
1629
1630 redef fun read_attribute(a, recv)
1631 do
1632 self.check_recv_notnull(recv)
1633
1634 # What is the declared type of the attribute?
1635 var ret = a.intro.static_mtype.as(not null)
1636 var intromclassdef = a.intro.mclassdef
1637 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1638
1639 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1640 self.compiler.attr_read_count += 1
1641 self.add("count_attr_reads++;")
1642 end
1643
1644 self.require_declaration(a.const_color)
1645 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1646 # Get the attribute or a box (ie. always a val*)
1647 var cret = self.object_type.as_nullable
1648 var res = self.new_var(cret)
1649 res.mcasttype = ret
1650
1651 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1652
1653 # Check for Uninitialized attribute
1654 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1655 self.add("if (unlikely({res} == NULL)) \{")
1656 self.add_abort("Uninitialized attribute {a.name}")
1657 self.add("\}")
1658
1659 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1660 self.compiler.isset_checks_count += 1
1661 self.add("count_isset_checks++;")
1662 end
1663 end
1664
1665 # Return the attribute or its unboxed version
1666 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1667 return self.autobox(res, ret)
1668 else
1669 var res = self.new_var(ret)
1670 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1671
1672 # Check for Uninitialized attribute
1673 if not ret.is_c_primitive and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_attr_isset.value then
1674 self.add("if (unlikely({res} == NULL)) \{")
1675 self.add_abort("Uninitialized attribute {a.name}")
1676 self.add("\}")
1677 if self.compiler.modelbuilder.toolcontext.opt_isset_checks_metrics.value then
1678 self.compiler.isset_checks_count += 1
1679 self.add("count_isset_checks++;")
1680 end
1681 end
1682
1683 return res
1684 end
1685 end
1686
1687 redef fun write_attribute(a, recv, value)
1688 do
1689 self.check_recv_notnull(recv)
1690
1691 # What is the declared type of the attribute?
1692 var mtype = a.intro.static_mtype.as(not null)
1693 var intromclassdef = a.intro.mclassdef
1694 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1695
1696 # Adapt the value to the declared type
1697 value = self.autobox(value, mtype)
1698
1699 self.require_declaration(a.const_color)
1700 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1701 var attr = "{recv}->attrs[{a.const_color}]"
1702 if mtype.is_tagged then
1703 # The attribute is not primitive, thus store it as tagged
1704 var tv = autobox(value, compiler.mainmodule.object_type)
1705 self.add("{attr} = {tv}; /* {a} on {recv.inspect} */")
1706 else if mtype.is_c_primitive then
1707 assert mtype isa MClassType
1708 # The attribute is primitive, thus we store it in a box
1709 # The trick is to create the box the first time then resuse the box
1710 self.add("if ({attr} != NULL) \{")
1711 self.add("((struct instance_{mtype.c_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1712 self.add("\} else \{")
1713 value = self.autobox(value, self.object_type.as_nullable)
1714 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1715 self.add("\}")
1716 else
1717 # The attribute is not primitive, thus store it direclty
1718 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1719 end
1720 else
1721 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1722 end
1723 end
1724
1725 # Check that mtype is a live open type
1726 fun hardening_live_open_type(mtype: MType)
1727 do
1728 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1729 self.require_declaration(mtype.const_color)
1730 var col = mtype.const_color
1731 self.add("if({col} == -1) \{")
1732 self.add("PRINT_ERROR(\"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1733 self.add_abort("open type dead")
1734 self.add("\}")
1735 end
1736
1737 # Check that mtype it a pointer to a live cast type
1738 fun hardening_cast_type(t: String)
1739 do
1740 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1741 add("if({t} == NULL) \{")
1742 add_abort("cast type null")
1743 add("\}")
1744 add("if({t}->id == -1 || {t}->color == -1) \{")
1745 add("PRINT_ERROR(\"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1746 add_abort("cast type dead")
1747 add("\}")
1748 end
1749
1750 redef fun init_instance(mtype)
1751 do
1752 self.require_declaration("NEW_{mtype.mclass.c_name}")
1753 var compiler = self.compiler
1754 if mtype isa MGenericType and mtype.need_anchor then
1755 hardening_live_open_type(mtype)
1756 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1757 var recv = self.frame.arguments.first
1758 var recv_type_info = self.type_info(recv)
1759 self.require_declaration(mtype.const_color)
1760 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1761 end
1762 compiler.undead_types.add(mtype)
1763 self.require_declaration("type_{mtype.c_name}")
1764 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1765 end
1766
1767 redef fun type_test(value, mtype, tag)
1768 do
1769 self.add("/* {value.inspect} isa {mtype} */")
1770 var compiler = self.compiler
1771
1772 var recv = self.frame.arguments.first
1773 var recv_type_info = self.type_info(recv)
1774
1775 var res = self.new_var(bool_type)
1776
1777 var cltype = self.get_name("cltype")
1778 self.add_decl("int {cltype};")
1779 var idtype = self.get_name("idtype")
1780 self.add_decl("int {idtype};")
1781
1782 var maybe_null = self.maybe_null(value)
1783 var accept_null = "0"
1784 var ntype = mtype
1785 if ntype isa MNullableType then
1786 ntype = ntype.mtype
1787 accept_null = "1"
1788 end
1789
1790 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1791 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1792 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1793 self.compiler.count_type_test_skipped[tag] += 1
1794 self.add("count_type_test_skipped_{tag}++;")
1795 end
1796 return res
1797 end
1798
1799 if ntype.need_anchor then
1800 var type_struct = self.get_name("type_struct")
1801 self.add_decl("const struct type* {type_struct};")
1802
1803 # Either with resolution_table with a direct resolution
1804 hardening_live_open_type(mtype)
1805 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1806 self.require_declaration(mtype.const_color)
1807 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1808 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1809 self.compiler.count_type_test_unresolved[tag] += 1
1810 self.add("count_type_test_unresolved_{tag}++;")
1811 end
1812 hardening_cast_type(type_struct)
1813 self.add("{cltype} = {type_struct}->color;")
1814 self.add("{idtype} = {type_struct}->id;")
1815 if maybe_null and accept_null == "0" then
1816 var is_nullable = self.get_name("is_nullable")
1817 self.add_decl("short int {is_nullable};")
1818 self.add("{is_nullable} = {type_struct}->is_nullable;")
1819 accept_null = is_nullable.to_s
1820 end
1821 else if ntype isa MClassType then
1822 compiler.undead_types.add(mtype)
1823 self.require_declaration("type_{mtype.c_name}")
1824 hardening_cast_type("(&type_{mtype.c_name})")
1825 self.add("{cltype} = type_{mtype.c_name}.color;")
1826 self.add("{idtype} = type_{mtype.c_name}.id;")
1827 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1828 self.compiler.count_type_test_resolved[tag] += 1
1829 self.add("count_type_test_resolved_{tag}++;")
1830 end
1831 else
1832 self.add("PRINT_ERROR(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); fatal_exit(1);")
1833 end
1834
1835 # check color is in table
1836 if maybe_null then
1837 self.add("if({value} == NULL) \{")
1838 self.add("{res} = {accept_null};")
1839 self.add("\} else \{")
1840 end
1841 var value_type_info = self.type_info(value)
1842 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1843 self.add("{res} = 0;")
1844 self.add("\} else \{")
1845 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1846 self.add("\}")
1847 if maybe_null then
1848 self.add("\}")
1849 end
1850
1851 return res
1852 end
1853
1854 redef fun is_same_type_test(value1, value2)
1855 do
1856 var res = self.new_var(bool_type)
1857 # Swap values to be symetric
1858 if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then
1859 var tmp = value1
1860 value1 = value2
1861 value2 = tmp
1862 end
1863 if value1.mtype.is_c_primitive then
1864 if value2.mtype == value1.mtype then
1865 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1866 else if value2.mtype.is_c_primitive then
1867 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1868 else
1869 var mtype1 = value1.mtype.as(MClassType)
1870 self.require_declaration("class_{mtype1.c_name}")
1871 self.add("{res} = ({value2} != NULL) && ({class_info(value2)} == &class_{mtype1.c_name}); /* is_same_type_test */")
1872 end
1873 else
1874 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {class_info(value1)} == {class_info(value2)}); /* is_same_type_test */")
1875 end
1876 return res
1877 end
1878
1879 redef fun class_name_string(value)
1880 do
1881 var res = self.get_name("var_class_name")
1882 self.add_decl("const char* {res};")
1883 if not value.mtype.is_c_primitive then
1884 self.add "{res} = {value} == NULL ? \"null\" : {type_info(value)}->name;"
1885 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind and
1886 value.mtype.as(MClassType).name != "NativeString" then
1887 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1888 else
1889 self.require_declaration("type_{value.mtype.c_name}")
1890 self.add "{res} = type_{value.mtype.c_name}.name;"
1891 end
1892 return res
1893 end
1894
1895 redef fun equal_test(value1, value2)
1896 do
1897 var res = self.new_var(bool_type)
1898 if value2.mtype.is_c_primitive and not value1.mtype.is_c_primitive then
1899 var tmp = value1
1900 value1 = value2
1901 value2 = tmp
1902 end
1903 if value1.mtype.is_c_primitive then
1904 var t1 = value1.mtype
1905 assert t1 == value1.mcasttype
1906
1907 # Fast case: same C type.
1908 if value2.mtype == t1 then
1909 # Same exact C primitive representation.
1910 self.add("{res} = {value1} == {value2};")
1911 return res
1912 end
1913
1914 # Complex case: value2 has a different representation
1915 # Thus, it should be checked if `value2` is type-compatible with `value1`
1916 # This compatibility is done statically if possible and dynamically else
1917
1918 # Conjunction (ands) of dynamic tests according to the static knowledge
1919 var tests = new Array[String]
1920
1921 var t2 = value2.mcasttype
1922 if t2 isa MNullableType then
1923 # The destination type cannot be null
1924 tests.add("({value2} != NULL)")
1925 t2 = t2.mtype
1926 else if t2 isa MNullType then
1927 # `value2` is known to be null, thus incompatible with a primitive
1928 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}*/")
1929 return res
1930 end
1931
1932 if t2 == t1 then
1933 # Same type but different representation.
1934 else if t2.is_c_primitive then
1935 # Type of `value2` is a different primitive type, thus incompatible
1936 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}*/")
1937 return res
1938 else if t1.is_tagged then
1939 # To be equal, `value2` should also be correctly tagged
1940 tests.add("({extract_tag(value2)} == {t1.tag_value})")
1941 else
1942 # To be equal, `value2` should also be boxed with the same class
1943 self.require_declaration("class_{t1.c_name}")
1944 tests.add "({class_info(value2)} == &class_{t1.c_name})"
1945 end
1946
1947 # Compare the unboxed `value2` with `value1`
1948 if tests.not_empty then
1949 self.add "if ({tests.join(" && ")}) \{"
1950 end
1951 self.add "{res} = {self.autobox(value2, t1)} == {value1};"
1952 if tests.not_empty then
1953 self.add "\} else {res} = 0;"
1954 end
1955
1956 return res
1957 end
1958 var maybe_null = true
1959 var test = new Array[String]
1960 var t1 = value1.mcasttype
1961 if t1 isa MNullableType then
1962 test.add("{value1} != NULL")
1963 t1 = t1.mtype
1964 else
1965 maybe_null = false
1966 end
1967 var t2 = value2.mcasttype
1968 if t2 isa MNullableType then
1969 test.add("{value2} != NULL")
1970 t2 = t2.mtype
1971 else
1972 maybe_null = false
1973 end
1974
1975 var incompatible = false
1976 var primitive
1977 if t1.is_c_primitive then
1978 primitive = t1
1979 if t1 == t2 then
1980 # No need to compare class
1981 else if t2.is_c_primitive then
1982 incompatible = true
1983 else if can_be_primitive(value2) then
1984 if t1.is_tagged then
1985 self.add("{res} = {value1} == {value2};")
1986 return res
1987 end
1988 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
1989 test.add("(!{extract_tag(value2)})")
1990 end
1991 test.add("{value1}->class == {value2}->class")
1992 else
1993 incompatible = true
1994 end
1995 else if t2.is_c_primitive then
1996 primitive = t2
1997 if can_be_primitive(value1) then
1998 if t2.is_tagged then
1999 self.add("{res} = {value1} == {value2};")
2000 return res
2001 end
2002 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
2003 test.add("(!{extract_tag(value1)})")
2004 end
2005 test.add("{value1}->class == {value2}->class")
2006 else
2007 incompatible = true
2008 end
2009 else
2010 primitive = null
2011 end
2012
2013 if incompatible then
2014 if maybe_null then
2015 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
2016 return res
2017 else
2018 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
2019 return res
2020 end
2021 end
2022 if primitive != null then
2023 if primitive.is_tagged then
2024 self.add("{res} = {value1} == {value2};")
2025 return res
2026 end
2027 test.add("((struct instance_{primitive.c_name}*){value1})->value == ((struct instance_{primitive.c_name}*){value2})->value")
2028 else if can_be_primitive(value1) and can_be_primitive(value2) then
2029 if not compiler.modelbuilder.toolcontext.opt_no_tag_primitives.value then
2030 test.add("(!{extract_tag(value1)}) && (!{extract_tag(value2)})")
2031 end
2032 test.add("{value1}->class == {value2}->class")
2033 var s = new Array[String]
2034 for t, v in self.compiler.box_kinds do
2035 if t.mclass_type.is_tagged then continue
2036 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_name}*){value1})->value == ((struct instance_{t.c_name}*){value2})->value)"
2037 end
2038 if s.is_empty then
2039 self.add("{res} = {value1} == {value2};")
2040 return res
2041 end
2042 test.add("({s.join(" || ")})")
2043 else
2044 self.add("{res} = {value1} == {value2};")
2045 return res
2046 end
2047 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
2048 return res
2049 end
2050
2051 fun can_be_primitive(value: RuntimeVariable): Bool
2052 do
2053 var t = value.mcasttype.undecorate
2054 if not t isa MClassType then return false
2055 var k = t.mclass.kind
2056 return k == interface_kind or t.is_c_primitive
2057 end
2058
2059 fun maybe_null(value: RuntimeVariable): Bool
2060 do
2061 var t = value.mcasttype
2062 return t isa MNullableType or t isa MNullType
2063 end
2064
2065 redef fun array_instance(array, elttype)
2066 do
2067 var nclass = mmodule.native_array_class
2068 var arrayclass = mmodule.array_class
2069 var arraytype = arrayclass.get_mtype([elttype])
2070 var res = self.init_instance(arraytype)
2071 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
2072 var length = self.int_instance(array.length)
2073 var nat = native_array_instance(elttype, length)
2074 for i in [0..array.length[ do
2075 var r = self.autobox(array[i], self.object_type)
2076 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
2077 end
2078 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
2079 self.add("\}")
2080 return res
2081 end
2082
2083 redef fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable
2084 do
2085 var mtype = mmodule.native_array_type(elttype)
2086 self.require_declaration("NEW_{mtype.mclass.c_name}")
2087 assert mtype isa MGenericType
2088 var compiler = self.compiler
2089 length = autobox(length, compiler.mainmodule.int_type)
2090 if mtype.need_anchor then
2091 hardening_live_open_type(mtype)
2092 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
2093 var recv = self.frame.arguments.first
2094 var recv_type_info = self.type_info(recv)
2095 self.require_declaration(mtype.const_color)
2096 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
2097 end
2098 compiler.undead_types.add(mtype)
2099 self.require_declaration("type_{mtype.c_name}")
2100 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype)
2101 end
2102
2103 redef fun native_array_def(pname, ret_type, arguments)
2104 do
2105 var elttype = arguments.first.mtype
2106 var nclass = mmodule.native_array_class
2107 var recv = "((struct instance_{nclass.c_name}*){arguments[0]})->values"
2108 if pname == "[]" then
2109 # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing
2110 var res = self.new_expr("{recv}[{arguments[1]}]", compiler.mainmodule.object_type)
2111 res.mcasttype = ret_type.as(not null)
2112 self.ret(res)
2113 return true
2114 else if pname == "[]=" then
2115 self.add("{recv}[{arguments[1]}]={arguments[2]};")
2116 return true
2117 else if pname == "length" then
2118 self.ret(self.new_expr("((struct instance_{nclass.c_name}*){arguments[0]})->length", ret_type.as(not null)))
2119 return true
2120 else if pname == "copy_to" then
2121 var recv1 = "((struct instance_{nclass.c_name}*){arguments[1]})->values"
2122 self.add("memmove({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
2123 return true
2124 end
2125 return false
2126 end
2127
2128 redef fun native_array_get(nat, i)
2129 do
2130 var nclass = mmodule.native_array_class
2131 var recv = "((struct instance_{nclass.c_name}*){nat})->values"
2132 # Because the objects are boxed, return the box to avoid unnecessary (or broken) unboxing/reboxing
2133 var res = self.new_expr("{recv}[{i}]", compiler.mainmodule.object_type)
2134 return res
2135 end
2136
2137 redef fun native_array_set(nat, i, val)
2138 do
2139 var nclass = mmodule.native_array_class
2140 var recv = "((struct instance_{nclass.c_name}*){nat})->values"
2141 self.add("{recv}[{i}]={val};")
2142 end
2143
2144 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
2145 assert mtype.need_anchor
2146 var compiler = self.compiler
2147 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
2148 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
2149 end
2150 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
2151 end
2152 end
2153
2154 redef class MMethodDef
2155 # The C function associated to a mmethoddef
2156 fun separate_runtime_function: SeparateRuntimeFunction
2157 do
2158 var res = self.separate_runtime_function_cache
2159 if res == null then
2160 var recv = mclassdef.bound_mtype
2161 var msignature = msignature.resolve_for(recv, recv, mclassdef.mmodule, true)
2162 res = new SeparateRuntimeFunction(self, recv, msignature, c_name)
2163 self.separate_runtime_function_cache = res
2164 end
2165 return res
2166 end
2167 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
2168
2169 # The C function associated to a mmethoddef, that can be stored into a VFT of a class
2170 # The first parameter (the reciever) is always typed by val* in order to accept an object value
2171 # The C-signature is always compatible with the intro
2172 fun virtual_runtime_function: SeparateRuntimeFunction
2173 do
2174 var res = self.virtual_runtime_function_cache
2175 if res == null then
2176 # Because the function is virtual, the signature must match the one of the original class
2177 var intromclassdef = mproperty.intro.mclassdef
2178 var recv = intromclassdef.bound_mtype
2179
2180 res = separate_runtime_function
2181 if res.called_recv == recv then
2182 self.virtual_runtime_function_cache = res
2183 return res
2184 end
2185
2186 var msignature = mproperty.intro.msignature.resolve_for(recv, recv, intromclassdef.mmodule, true)
2187
2188 if recv.ctype == res.called_recv.ctype and msignature.c_equiv(res.called_signature) then
2189 self.virtual_runtime_function_cache = res
2190 return res
2191 end
2192
2193 res = new SeparateRuntimeFunction(self, recv, msignature, "VIRTUAL_{c_name}")
2194 self.virtual_runtime_function_cache = res
2195 res.is_thunk = true
2196 end
2197 return res
2198 end
2199 private var virtual_runtime_function_cache: nullable SeparateRuntimeFunction
2200 end
2201
2202 redef class MSignature
2203 # Does the C-version of `self` the same than the C-version of `other`?
2204 fun c_equiv(other: MSignature): Bool
2205 do
2206 if self == other then return true
2207 if arity != other.arity then return false
2208 for i in [0..arity[ do
2209 if mparameters[i].mtype.ctype != other.mparameters[i].mtype.ctype then return false
2210 end
2211 if return_mtype != other.return_mtype then
2212 if return_mtype == null or other.return_mtype == null then return false
2213 if return_mtype.ctype != other.return_mtype.ctype then return false
2214 end
2215 return true
2216 end
2217 end
2218
2219 # The C function associated to a methoddef separately compiled
2220 class SeparateRuntimeFunction
2221 super AbstractRuntimeFunction
2222
2223 # The call-side static receiver
2224 var called_recv: MType
2225
2226 # The call-side static signature
2227 var called_signature: MSignature
2228
2229 # The name on the compiled method
2230 redef var build_c_name: String
2231
2232 # Statically call the original body instead
2233 var is_thunk = false
2234
2235 redef fun to_s do return self.mmethoddef.to_s
2236
2237 # The C return type (something or `void`)
2238 var c_ret: String is lazy do
2239 var ret = called_signature.return_mtype
2240 if ret != null then
2241 return ret.ctype
2242 else
2243 return "void"
2244 end
2245 end
2246
2247 # The C signature (only the parmeter part)
2248 var c_sig: String is lazy do
2249 var sig = new FlatBuffer
2250 sig.append("({called_recv.ctype} self")
2251 for i in [0..called_signature.arity[ do
2252 var mp = called_signature.mparameters[i]
2253 var mtype = mp.mtype
2254 if mp.is_vararg then
2255 mtype = mmethoddef.mclassdef.mmodule.array_type(mtype)
2256 end
2257 sig.append(", {mtype.ctype} p{i}")
2258 end
2259 sig.append(")")
2260 return sig.to_s
2261 end
2262
2263 # The C type for the function pointer.
2264 var c_funptrtype: String is lazy do return "{c_ret}(*){c_sig}"
2265
2266 redef fun compile_to_c(compiler)
2267 do
2268 var mmethoddef = self.mmethoddef
2269
2270 var sig = "{c_ret} {c_name}{c_sig}"
2271 compiler.provide_declaration(self.c_name, "{sig};")
2272
2273 var rta = compiler.as(SeparateCompiler).runtime_type_analysis
2274
2275 var recv = self.mmethoddef.mclassdef.bound_mtype
2276 var v = compiler.new_visitor
2277 var selfvar = new RuntimeVariable("self", called_recv, recv)
2278 var arguments = new Array[RuntimeVariable]
2279 var frame = new StaticFrame(v, mmethoddef, recv, arguments)
2280 v.frame = frame
2281
2282 var msignature = called_signature
2283 var ret = called_signature.return_mtype
2284
2285 var comment = new FlatBuffer
2286 comment.append("({selfvar}: {selfvar.mtype}")
2287 arguments.add(selfvar)
2288 for i in [0..msignature.arity[ do
2289 var mp = msignature.mparameters[i]
2290 var mtype = mp.mtype
2291 if mp.is_vararg then
2292 mtype = v.mmodule.array_type(mtype)
2293 end
2294 comment.append(", {mtype}")
2295 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
2296 arguments.add(argvar)
2297 end
2298 comment.append(")")
2299 if ret != null then
2300 comment.append(": {ret}")
2301 end
2302
2303 v.add_decl("/* method {self} for {comment} */")
2304 v.add_decl("{sig} \{")
2305 if ret != null then
2306 frame.returnvar = v.new_var(ret)
2307 end
2308 frame.returnlabel = v.get_name("RET_LABEL")
2309
2310 if is_thunk then
2311 var subret = v.call(mmethoddef, recv, arguments)
2312 if ret != null then
2313 assert subret != null
2314 v.assign(frame.returnvar.as(not null), subret)
2315 end
2316 else if rta != null and not rta.live_mmodules.has(mmethoddef.mclassdef.mmodule) then
2317 v.add_abort("FATAL: Dead method executed.")
2318 else
2319 mmethoddef.compile_inside_to_c(v, arguments)
2320 end
2321
2322 v.add("{frame.returnlabel.as(not null)}:;")
2323 if ret != null then
2324 v.add("return {frame.returnvar.as(not null)};")
2325 end
2326 v.add("\}")
2327 compiler.names[self.c_name] = "{mmethoddef.full_name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
2328 end
2329
2330 # Compile the trampolines used to implement late-binding.
2331 #
2332 # See `opt_trampoline_call`.
2333 fun compile_trampolines(compiler: SeparateCompiler)
2334 do
2335 var recv = self.mmethoddef.mclassdef.bound_mtype
2336 var selfvar = new RuntimeVariable("self", called_recv, recv)
2337 var ret = called_signature.return_mtype
2338 var arguments = ["self"]
2339 for i in [0..called_signature.arity[ do arguments.add "p{i}"
2340
2341 if mmethoddef.is_intro and not recv.is_c_primitive then
2342 var m = mmethoddef.mproperty
2343 var n2 = "CALL_" + m.const_color
2344 compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};")
2345 var v2 = compiler.new_visitor
2346 v2.add "{c_ret} {n2}{c_sig} \{"
2347 v2.require_declaration(m.const_color)
2348 var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});"
2349 if ret != null then
2350 v2.add "return {call}"
2351 else
2352 v2.add call
2353 end
2354
2355 v2.add "\}"
2356
2357 end
2358 if mmethoddef.has_supercall and not recv.is_c_primitive then
2359 var m = mmethoddef
2360 var n2 = "CALL_" + m.const_color
2361 compiler.provide_declaration(n2, "{c_ret} {n2}{c_sig};")
2362 var v2 = compiler.new_visitor
2363 v2.add "{c_ret} {n2}{c_sig} \{"
2364 v2.require_declaration(m.const_color)
2365 var call = "(({c_funptrtype})({v2.class_info(selfvar)}->vft[{m.const_color}]))({arguments.join(", ")});"
2366 if ret != null then
2367 v2.add "return {call}"
2368 else
2369 v2.add call
2370 end
2371
2372 v2.add "\}"
2373 end
2374 end
2375 end
2376
2377 redef class MType
2378 # Are values of `self` tagged?
2379 # If false, it means that the type is not primitive, or is boxed.
2380 var is_tagged = false
2381
2382 # The tag value of the type
2383 #
2384 # ENSURE `is_tagged == (tag_value > 0)`
2385 # ENSURE `not is_tagged == (tag_value == 0)`
2386 var tag_value = 0
2387 end
2388
2389 redef class MEntity
2390 var const_color: String is lazy do return "COLOR_{c_name}"
2391 end
2392
2393 interface PropertyLayoutElement end
2394
2395 redef class MProperty
2396 super PropertyLayoutElement
2397 end
2398
2399 redef class MPropDef
2400 super PropertyLayoutElement
2401 end
2402
2403 redef class AMethPropdef
2404 # The semi-global compilation does not support inlining calls to extern news
2405 redef fun can_inline
2406 do
2407 var m = mpropdef
2408 if m != null and m.mproperty.is_init and m.is_extern then return false
2409 return super
2410 end
2411 end
2412
2413 redef class AAttrPropdef
2414 redef fun init_expr(v, recv)
2415 do
2416 super
2417 if is_lazy and v.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
2418 var guard = self.mlazypropdef.mproperty
2419 v.write_attribute(guard, recv, v.bool_instance(false))
2420 end
2421 end
2422 end