nitunit: updade usage of get_mmodule_by_name
[nit.git] / src / separate_compiler.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Licensed under the Apache License, Version 2.0 (the "License");
4 # you may not use this file except in compliance with the License.
5 # You may obtain a copy of the License at
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
10 # distributed under the License is distributed on an "AS IS" BASIS,
11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 # See the License for the specific language governing permissions and
13 # limitations under the License.
14
15 # Separate compilation of a Nit program
16 module separate_compiler
17
18 import abstract_compiler
19 import layout_builders
20 import rapid_type_analysis
21
22 # Add separate compiler specific options
23 redef class ToolContext
24 # --separate
25 var opt_separate: OptionBool = new OptionBool("Use separate compilation", "--separate")
26 # --no-inline-intern
27 var opt_no_inline_intern: OptionBool = new OptionBool("Do not inline call to intern methods", "--no-inline-intern")
28 # --no-union-attribute
29 var opt_no_union_attribute: OptionBool = new OptionBool("Put primitive attibutes in a box instead of an union", "--no-union-attribute")
30 # --no-shortcut-equate
31 var opt_no_shortcut_equate: OptionBool = new OptionBool("Always call == in a polymorphic way", "--no-shortcut-equal")
32 # --inline-coloring-numbers
33 var opt_inline_coloring_numbers: OptionBool = new OptionBool("Inline colors and ids (semi-global)", "--inline-coloring-numbers")
34 # --inline-some-methods
35 var opt_inline_some_methods: OptionBool = new OptionBool("Allow the separate compiler to inline some methods (semi-global)", "--inline-some-methods")
36 # --direct-call-monomorph
37 var opt_direct_call_monomorph: OptionBool = new OptionBool("Allow the separate compiler to direct call monomorph sites (semi-global)", "--direct-call-monomorph")
38 # --use-naive-coloring
39 var opt_bm_typing: OptionBool = new OptionBool("Colorize items incrementaly, used to simulate binary matrix typing", "--bm-typing")
40 # --use-mod-perfect-hashing
41 var opt_phmod_typing: OptionBool = new OptionBool("Replace coloration by perfect hashing (with mod operator)", "--phmod-typing")
42 # --use-and-perfect-hashing
43 var opt_phand_typing: OptionBool = new OptionBool("Replace coloration by perfect hashing (with and operator)", "--phand-typing")
44 # --tables-metrics
45 var opt_tables_metrics: OptionBool = new OptionBool("Enable static size measuring of tables used for vft, typing and resolution", "--tables-metrics")
46
47 redef init
48 do
49 super
50 self.option_context.add_option(self.opt_separate)
51 self.option_context.add_option(self.opt_no_inline_intern)
52 self.option_context.add_option(self.opt_no_union_attribute)
53 self.option_context.add_option(self.opt_no_shortcut_equate)
54 self.option_context.add_option(self.opt_inline_coloring_numbers, opt_inline_some_methods, opt_direct_call_monomorph)
55 self.option_context.add_option(self.opt_bm_typing)
56 self.option_context.add_option(self.opt_phmod_typing)
57 self.option_context.add_option(self.opt_phand_typing)
58 self.option_context.add_option(self.opt_tables_metrics)
59 end
60 end
61
62 redef class ModelBuilder
63 fun run_separate_compiler(mainmodule: MModule, runtime_type_analysis: nullable RapidTypeAnalysis)
64 do
65 var time0 = get_time
66 self.toolcontext.info("*** GENERATING C ***", 1)
67
68 var compiler = new SeparateCompiler(mainmodule, self, runtime_type_analysis)
69 compiler.compile_header
70
71 # compile class structures
72 self.toolcontext.info("Property coloring", 2)
73 compiler.new_file("{mainmodule.name}.classes")
74 compiler.do_property_coloring
75 for m in mainmodule.in_importation.greaters do
76 for mclass in m.intro_mclasses do
77 if mclass.kind == abstract_kind or mclass.kind == interface_kind then continue
78 compiler.compile_class_to_c(mclass)
79 end
80 end
81
82 # The main function of the C
83 compiler.new_file("{mainmodule.name}.main")
84 compiler.compile_main_function
85
86 # compile methods
87 for m in mainmodule.in_importation.greaters do
88 self.toolcontext.info("Generate C for module {m}", 2)
89 compiler.new_file("{m.name}.sep")
90 compiler.compile_module_to_c(m)
91 end
92
93 # compile live & cast type structures
94 self.toolcontext.info("Type coloring", 2)
95 compiler.new_file("{mainmodule.name}.types")
96 var mtypes = compiler.do_type_coloring
97 for t in mtypes do
98 compiler.compile_type_to_c(t)
99 end
100 # compile remaining types structures (useless but needed for the symbol resolution at link-time)
101 for t in compiler.undead_types do
102 if mtypes.has(t) then continue
103 compiler.compile_type_to_c(t)
104 end
105
106 compiler.display_stats
107
108 var time1 = get_time
109 self.toolcontext.info("*** END GENERATING C: {time1-time0} ***", 2)
110 write_and_make(compiler)
111 end
112
113 # Count number of invocations by VFT
114 private var nb_invok_by_tables = 0
115 # Count number of invocations by direct call
116 private var nb_invok_by_direct = 0
117 # Count number of invocations by inlining
118 private var nb_invok_by_inline = 0
119 end
120
121 # Singleton that store the knowledge about the separate compilation process
122 class SeparateCompiler
123 super AbstractCompiler
124
125 redef type VISITOR: SeparateCompilerVisitor
126
127 # The result of the RTA (used to know live types and methods)
128 var runtime_type_analysis: nullable RapidTypeAnalysis
129
130 private var undead_types: Set[MType] = new HashSet[MType]
131 private var live_unresolved_types: Map[MClassDef, Set[MType]] = new HashMap[MClassDef, HashSet[MType]]
132
133 private var type_layout: nullable Layout[MType]
134 private var resolution_layout: nullable Layout[MType]
135 protected var method_layout: nullable Layout[PropertyLayoutElement]
136 protected var attr_layout: nullable Layout[MAttribute]
137
138 init(mainmodule: MModule, mmbuilder: ModelBuilder, runtime_type_analysis: nullable RapidTypeAnalysis) do
139 super(mainmodule, mmbuilder)
140 var file = new_file("nit.common")
141 self.header = new CodeWriter(file)
142 self.runtime_type_analysis = runtime_type_analysis
143 self.compile_box_kinds
144 end
145
146 redef fun compile_header_structs do
147 self.header.add_decl("typedef void(*nitmethod_t)(void); /* general C type representing a Nit method. */")
148 self.compile_header_attribute_structs
149 self.header.add_decl("struct class \{ int box_kind; nitmethod_t vft[]; \}; /* general C type representing a Nit class. */")
150
151 # With resolution_table_table, all live type resolution are stored in a big table: resolution_table
152 self.header.add_decl("struct type \{ int id; const char *name; int color; short int is_nullable; const struct types *resolution_table; int table_size; int type_table[]; \}; /* general C type representing a Nit type. */")
153 self.header.add_decl("struct instance \{ const struct type *type; const struct class *class; nitattribute_t attrs[]; \}; /* general C type representing a Nit instance. */")
154
155 if modelbuilder.toolcontext.opt_phmod_typing.value or modelbuilder.toolcontext.opt_phand_typing.value then
156 self.header.add_decl("struct types \{ int mask; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
157 else
158 self.header.add_decl("struct types \{ int dummy; const struct type *types[]; \}; /* a list types (used for vts, fts and unresolved lists). */")
159 end
160
161 if modelbuilder.toolcontext.opt_phmod_typing.value then
162 self.header.add_decl("#define HASH(mask, id) ((mask)%(id))")
163 else if modelbuilder.toolcontext.opt_phand_typing.value then
164 self.header.add_decl("#define HASH(mask, id) ((mask)&(id))")
165 end
166
167 self.header.add_decl("typedef struct instance val; /* general C type representing a Nit instance. */")
168 end
169
170 fun compile_header_attribute_structs
171 do
172 if modelbuilder.toolcontext.opt_no_union_attribute.value then
173 self.header.add_decl("typedef void* nitattribute_t; /* general C type representing a Nit attribute. */")
174 else
175 self.header.add_decl("typedef union \{")
176 self.header.add_decl("void* val;")
177 for c, v in self.box_kinds do
178 var t = c.mclass_type
179 self.header.add_decl("{t.ctype} {t.ctypename};")
180 end
181 self.header.add_decl("\} nitattribute_t; /* general C type representing a Nit attribute. */")
182 end
183 end
184
185 fun compile_box_kinds
186 do
187 # Collect all bas box class
188 # FIXME: this is not completely fine with a separate compilation scheme
189 for classname in ["Int", "Bool", "Char", "Float", "NativeString", "Pointer"] do
190 var classes = self.mainmodule.model.get_mclasses_by_name(classname)
191 if classes == null then continue
192 assert classes.length == 1 else print classes.join(", ")
193 self.box_kinds[classes.first] = self.box_kinds.length + 1
194 end
195 end
196
197 var box_kinds = new HashMap[MClass, Int]
198
199 fun box_kind_of(mclass: MClass): Int
200 do
201 if mclass.mclass_type.ctype == "val*" then
202 return 0
203 else if mclass.kind == extern_kind then
204 return self.box_kinds[self.mainmodule.get_primitive_class("Pointer")]
205 else
206 return self.box_kinds[mclass]
207 end
208
209 end
210
211 fun compile_color_consts(colors: Map[Object, Int]) do
212 var v = new_visitor
213 for m, c in colors do
214 compile_color_const(v, m, c)
215 end
216 end
217
218 fun compile_color_const(v: SeparateCompilerVisitor, m: Object, color: Int) do
219 if color_consts_done.has(m) then return
220 if m isa MProperty then
221 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
222 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
223 else
224 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
225 v.add("const int {m.const_color} = {color};")
226 end
227 else if m isa MPropDef then
228 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
229 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
230 else
231 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
232 v.add("const int {m.const_color} = {color};")
233 end
234 else if m isa MType then
235 if modelbuilder.toolcontext.opt_inline_coloring_numbers.value then
236 self.provide_declaration(m.const_color, "#define {m.const_color} {color}")
237 else
238 self.provide_declaration(m.const_color, "extern const int {m.const_color};")
239 v.add("const int {m.const_color} = {color};")
240 end
241 end
242 color_consts_done.add(m)
243 end
244
245 private var color_consts_done = new HashSet[Object]
246
247 # colorize classe properties
248 fun do_property_coloring do
249 var mclasses = new HashSet[MClass].from(modelbuilder.model.mclasses)
250
251 # Layouts
252 var method_layout_builder: PropertyLayoutBuilder[PropertyLayoutElement]
253 var attribute_layout_builder: PropertyLayoutBuilder[MAttribute]
254 #FIXME PH and BM layouts too slow for large programs
255 #if modelbuilder.toolcontext.opt_bm_typing.value then
256 # method_layout_builder = new MMethodBMizer(self.mainmodule)
257 # attribute_layout_builder = new MAttributeBMizer(self.mainmodule)
258 #else if modelbuilder.toolcontext.opt_phmod_typing.value then
259 # method_layout_builder = new MMethodHasher(new PHModOperator, self.mainmodule)
260 # attribute_layout_builder = new MAttributeHasher(new PHModOperator, self.mainmodule)
261 #else if modelbuilder.toolcontext.opt_phand_typing.value then
262 # method_layout_builder = new MMethodHasher(new PHAndOperator, self.mainmodule)
263 # attribute_layout_builder = new MAttributeHasher(new PHAndOperator, self.mainmodule)
264 #else
265
266 var class_layout_builder = new MClassColorer(self.mainmodule)
267 class_layout_builder.build_layout(mclasses)
268 method_layout_builder = new MPropertyColorer[PropertyLayoutElement](self.mainmodule, class_layout_builder)
269 attribute_layout_builder = new MPropertyColorer[MAttribute](self.mainmodule, class_layout_builder)
270 #end
271
272 # lookup properties to build layout with
273 var mmethods = new HashMap[MClass, Set[PropertyLayoutElement]]
274 var mattributes = new HashMap[MClass, Set[MAttribute]]
275 for mclass in mclasses do
276 mmethods[mclass] = new HashSet[PropertyLayoutElement]
277 mattributes[mclass] = new HashSet[MAttribute]
278 for mprop in self.mainmodule.properties(mclass) do
279 if mprop isa MMethod then
280 mmethods[mclass].add(mprop)
281 else if mprop isa MAttribute then
282 mattributes[mclass].add(mprop)
283 end
284 end
285 end
286
287 # Collect all super calls (dead or not)
288 var all_super_calls = new HashSet[MMethodDef]
289 for mmodule in self.mainmodule.in_importation.greaters do
290 for mclassdef in mmodule.mclassdefs do
291 for mpropdef in mclassdef.mpropdefs do
292 if not mpropdef isa MMethodDef then continue
293 if mpropdef.has_supercall then
294 all_super_calls.add(mpropdef)
295 end
296 end
297 end
298 end
299
300 # lookup super calls and add it to the list of mmethods to build layout with
301 var super_calls
302 if runtime_type_analysis != null then
303 super_calls = runtime_type_analysis.live_super_sends
304 else
305 super_calls = all_super_calls
306 end
307
308 for mmethoddef in super_calls do
309 var mclass = mmethoddef.mclassdef.mclass
310 mmethods[mclass].add(mmethoddef)
311 for descendant in mclass.in_hierarchy(self.mainmodule).smallers do
312 mmethods[descendant].add(mmethoddef)
313 end
314 end
315
316 # methods coloration
317 self.method_layout = method_layout_builder.build_layout(mmethods)
318 self.method_tables = build_method_tables(mclasses, super_calls)
319 self.compile_color_consts(method_layout.pos)
320
321 # attribute null color to dead supercalls
322 for mpropdef in all_super_calls do
323 if super_calls.has(mpropdef) then continue
324 compile_color_const(new_visitor, mpropdef, -1)
325 end
326
327 # attributes coloration
328 self.attr_layout = attribute_layout_builder.build_layout(mattributes)
329 self.attr_tables = build_attr_tables(mclasses)
330 self.compile_color_consts(attr_layout.pos)
331 end
332
333 fun build_method_tables(mclasses: Set[MClass], super_calls: Set[MMethodDef]): Map[MClass, Array[nullable MPropDef]] do
334 var layout = self.method_layout
335 var tables = new HashMap[MClass, Array[nullable MPropDef]]
336 for mclass in mclasses do
337 var table = new Array[nullable MPropDef]
338 var supercalls = new List[MMethodDef]
339
340 # first, fill table from parents by reverse linearization order
341 var parents = new Array[MClass]
342 if mainmodule.flatten_mclass_hierarchy.has(mclass) then
343 parents = mclass.in_hierarchy(mainmodule).greaters.to_a
344 self.mainmodule.linearize_mclasses(parents)
345 end
346
347 for parent in parents do
348 if parent == mclass then continue
349 for mproperty in self.mainmodule.properties(parent) do
350 if not mproperty isa MMethod then continue
351 var color = layout.pos[mproperty]
352 if table.length <= color then
353 for i in [table.length .. color[ do
354 table[i] = null
355 end
356 end
357 for mpropdef in mproperty.mpropdefs do
358 if mpropdef.mclassdef.mclass == parent then
359 table[color] = mpropdef
360 end
361 end
362 end
363
364 # lookup for super calls in super classes
365 for mmethoddef in super_calls do
366 for mclassdef in parent.mclassdefs do
367 if mclassdef.mpropdefs.has(mmethoddef) then
368 supercalls.add(mmethoddef)
369 end
370 end
371 end
372 end
373
374 # then override with local properties
375 for mproperty in self.mainmodule.properties(mclass) do
376 if not mproperty isa MMethod then continue
377 var color = layout.pos[mproperty]
378 if table.length <= color then
379 for i in [table.length .. color[ do
380 table[i] = null
381 end
382 end
383 for mpropdef in mproperty.mpropdefs do
384 if mpropdef.mclassdef.mclass == mclass then
385 table[color] = mpropdef
386 end
387 end
388 end
389
390 # lookup for super calls in local class
391 for mmethoddef in super_calls do
392 for mclassdef in mclass.mclassdefs do
393 if mclassdef.mpropdefs.has(mmethoddef) then
394 supercalls.add(mmethoddef)
395 end
396 end
397 end
398 # insert super calls in table according to receiver
399 for supercall in supercalls do
400 var color = layout.pos[supercall]
401 if table.length <= color then
402 for i in [table.length .. color[ do
403 table[i] = null
404 end
405 end
406 var mmethoddef = supercall.lookup_next_definition(self.mainmodule, mclass.intro.bound_mtype)
407 table[color] = mmethoddef
408 end
409 tables[mclass] = table
410 end
411 return tables
412 end
413
414 fun build_attr_tables(mclasses: Set[MClass]): Map[MClass, Array[nullable MPropDef]] do
415 var layout = self.attr_layout
416 var tables = new HashMap[MClass, Array[nullable MPropDef]]
417 for mclass in mclasses do
418 var table = new Array[nullable MPropDef]
419 # first, fill table from parents by reverse linearization order
420 var parents = new Array[MClass]
421 if mainmodule.flatten_mclass_hierarchy.has(mclass) then
422 parents = mclass.in_hierarchy(mainmodule).greaters.to_a
423 self.mainmodule.linearize_mclasses(parents)
424 end
425 for parent in parents do
426 if parent == mclass then continue
427 for mproperty in self.mainmodule.properties(parent) do
428 if not mproperty isa MAttribute then continue
429 var color = layout.pos[mproperty]
430 if table.length <= color then
431 for i in [table.length .. color[ do
432 table[i] = null
433 end
434 end
435 for mpropdef in mproperty.mpropdefs do
436 if mpropdef.mclassdef.mclass == parent then
437 table[color] = mpropdef
438 end
439 end
440 end
441 end
442
443 # then override with local properties
444 for mproperty in self.mainmodule.properties(mclass) do
445 if not mproperty isa MAttribute then continue
446 var color = layout.pos[mproperty]
447 if table.length <= color then
448 for i in [table.length .. color[ do
449 table[i] = null
450 end
451 end
452 for mpropdef in mproperty.mpropdefs do
453 if mpropdef.mclassdef.mclass == mclass then
454 table[color] = mpropdef
455 end
456 end
457 end
458 tables[mclass] = table
459 end
460 return tables
461 end
462
463 # colorize live types of the program
464 private fun do_type_coloring: POSet[MType] do
465 var mtypes = new HashSet[MType]
466 mtypes.add_all(self.runtime_type_analysis.live_types)
467 mtypes.add_all(self.runtime_type_analysis.live_cast_types)
468 for c in self.box_kinds.keys do
469 mtypes.add(c.mclass_type)
470 end
471
472 # Typing Layout
473 var layout_builder: TypingLayoutBuilder[MType]
474 if modelbuilder.toolcontext.opt_bm_typing.value then
475 layout_builder = new MTypeBMizer(self.mainmodule)
476 else if modelbuilder.toolcontext.opt_phmod_typing.value then
477 layout_builder = new MTypeHasher(new PHModOperator, self.mainmodule)
478 else if modelbuilder.toolcontext.opt_phand_typing.value then
479 layout_builder = new MTypeHasher(new PHAndOperator, self.mainmodule)
480 else
481 layout_builder = new MTypeColorer(self.mainmodule)
482 end
483
484 # colorize types
485 self.type_layout = layout_builder.build_layout(mtypes)
486 var poset = layout_builder.poset.as(not null)
487 self.type_tables = self.build_type_tables(poset)
488
489 # VT and FT are stored with other unresolved types in the big resolution_tables
490 self.compile_resolution_tables(mtypes)
491
492 return poset
493 end
494
495 # Build type tables
496 fun build_type_tables(mtypes: POSet[MType]): Map[MType, Array[nullable MType]] do
497 var tables = new HashMap[MType, Array[nullable MType]]
498 var layout = self.type_layout
499 for mtype in mtypes do
500 var table = new Array[nullable MType]
501 for sup in mtypes[mtype].greaters do
502 var color: Int
503 if layout isa PHLayout[MType, MType] then
504 color = layout.hashes[mtype][sup]
505 else
506 color = layout.pos[sup]
507 end
508 if table.length <= color then
509 for i in [table.length .. color[ do
510 table[i] = null
511 end
512 end
513 table[color] = sup
514 end
515 tables[mtype] = table
516 end
517 return tables
518 end
519
520 protected fun compile_resolution_tables(mtypes: Set[MType]) do
521 # resolution_tables is used to perform a type resolution at runtime in O(1)
522
523 # During the visit of the body of classes, live_unresolved_types are collected
524 # and associated to
525 # Collect all live_unresolved_types (visited in the body of classes)
526
527 # Determinate fo each livetype what are its possible requested anchored types
528 var mtype2unresolved = new HashMap[MClassType, Set[MType]]
529 for mtype in self.runtime_type_analysis.live_types do
530 var set = new HashSet[MType]
531 for cd in mtype.collect_mclassdefs(self.mainmodule) do
532 if self.live_unresolved_types.has_key(cd) then
533 set.add_all(self.live_unresolved_types[cd])
534 end
535 end
536 mtype2unresolved[mtype] = set
537 end
538
539 # Compute the table layout with the prefered method
540 var resolution_builder: ResolutionLayoutBuilder
541 if modelbuilder.toolcontext.opt_bm_typing.value then
542 resolution_builder = new ResolutionBMizer
543 else if modelbuilder.toolcontext.opt_phmod_typing.value then
544 resolution_builder = new ResolutionHasher(new PHModOperator)
545 else if modelbuilder.toolcontext.opt_phand_typing.value then
546 resolution_builder = new ResolutionHasher(new PHAndOperator)
547 else
548 resolution_builder = new ResolutionColorer
549 end
550 self.resolution_layout = resolution_builder.build_layout(mtype2unresolved)
551 self.resolution_tables = self.build_resolution_tables(mtype2unresolved)
552
553 # Compile a C constant for each collected unresolved type.
554 # Either to a color, or to -1 if the unresolved type is dead (no live receiver can require it)
555 var all_unresolved = new HashSet[MType]
556 for t in self.live_unresolved_types.values do
557 all_unresolved.add_all(t)
558 end
559 var all_unresolved_types_colors = new HashMap[MType, Int]
560 for t in all_unresolved do
561 if self.resolution_layout.pos.has_key(t) then
562 all_unresolved_types_colors[t] = self.resolution_layout.pos[t]
563 else
564 all_unresolved_types_colors[t] = -1
565 end
566 end
567 self.compile_color_consts(all_unresolved_types_colors)
568
569 #print "tables"
570 #for k, v in unresolved_types_tables.as(not null) do
571 # print "{k}: {v.join(", ")}"
572 #end
573 #print ""
574 end
575
576 fun build_resolution_tables(elements: Map[MClassType, Set[MType]]): Map[MClassType, Array[nullable MType]] do
577 var tables = new HashMap[MClassType, Array[nullable MType]]
578 var layout = self.resolution_layout
579 for mclasstype, mtypes in elements do
580 var table = new Array[nullable MType]
581 for mtype in mtypes do
582 var color: Int
583 if layout isa PHLayout[MClassType, MType] then
584 color = layout.hashes[mclasstype][mtype]
585 else
586 color = layout.pos[mtype]
587 end
588 if table.length <= color then
589 for i in [table.length .. color[ do
590 table[i] = null
591 end
592 end
593 table[color] = mtype
594 end
595 tables[mclasstype] = table
596 end
597 return tables
598 end
599
600 # Separately compile all the method definitions of the module
601 fun compile_module_to_c(mmodule: MModule)
602 do
603 var old_module = self.mainmodule
604 self.mainmodule = mmodule
605 for cd in mmodule.mclassdefs do
606 for pd in cd.mpropdefs do
607 if not pd isa MMethodDef then continue
608 #print "compile {pd} @ {cd} @ {mmodule}"
609 var r = pd.separate_runtime_function
610 r.compile_to_c(self)
611 var r2 = pd.virtual_runtime_function
612 r2.compile_to_c(self)
613 end
614 end
615 self.mainmodule = old_module
616 end
617
618 # Globaly compile the type structure of a live type
619 fun compile_type_to_c(mtype: MType)
620 do
621 assert not mtype.need_anchor
622 var layout = self.type_layout
623 var is_live = mtype isa MClassType and runtime_type_analysis.live_types.has(mtype)
624 var is_cast_live = runtime_type_analysis.live_cast_types.has(mtype)
625 var c_name = mtype.c_name
626 var v = new SeparateCompilerVisitor(self)
627 v.add_decl("/* runtime type {mtype} */")
628
629 # extern const struct type_X
630 self.provide_declaration("type_{c_name}", "extern const struct type type_{c_name};")
631
632 # const struct type_X
633 v.add_decl("const struct type type_{c_name} = \{")
634
635 # type id (for cast target)
636 if is_cast_live then
637 v.add_decl("{layout.ids[mtype]},")
638 else
639 v.add_decl("-1, /*CAST DEAD*/")
640 end
641
642 # type name
643 v.add_decl("\"{mtype}\", /* class_name_string */")
644
645 # type color (for cast target)
646 if is_cast_live then
647 if layout isa PHLayout[MType, MType] then
648 v.add_decl("{layout.masks[mtype]},")
649 else
650 v.add_decl("{layout.pos[mtype]},")
651 end
652 else
653 v.add_decl("-1, /*CAST DEAD*/")
654 end
655
656 # is_nullable bit
657 if mtype isa MNullableType then
658 v.add_decl("1,")
659 else
660 v.add_decl("0,")
661 end
662
663 # resolution table (for receiver)
664 if is_live then
665 var mclass_type = mtype
666 if mclass_type isa MNullableType then mclass_type = mclass_type.mtype
667 assert mclass_type isa MClassType
668 if resolution_tables[mclass_type].is_empty then
669 v.add_decl("NULL, /*NO RESOLUTIONS*/")
670 else
671 compile_type_resolution_table(mtype)
672 v.require_declaration("resolution_table_{c_name}")
673 v.add_decl("&resolution_table_{c_name},")
674 end
675 else
676 v.add_decl("NULL, /*DEAD*/")
677 end
678
679 # cast table (for receiver)
680 if is_live then
681 v.add_decl("{self.type_tables[mtype].length},")
682 v.add_decl("\{")
683 for stype in self.type_tables[mtype] do
684 if stype == null then
685 v.add_decl("-1, /* empty */")
686 else
687 v.add_decl("{layout.ids[stype]}, /* {stype} */")
688 end
689 end
690 v.add_decl("\},")
691 else
692 v.add_decl("0, \{\}, /*DEAD TYPE*/")
693 end
694 v.add_decl("\};")
695 end
696
697 fun compile_type_resolution_table(mtype: MType) do
698
699 var mclass_type: MClassType
700 if mtype isa MNullableType then
701 mclass_type = mtype.mtype.as(MClassType)
702 else
703 mclass_type = mtype.as(MClassType)
704 end
705
706 var layout = self.resolution_layout
707
708 # extern const struct resolution_table_X resolution_table_X
709 self.provide_declaration("resolution_table_{mtype.c_name}", "extern const struct types resolution_table_{mtype.c_name};")
710
711 # const struct fts_table_X fts_table_X
712 var v = new_visitor
713 v.add_decl("const struct types resolution_table_{mtype.c_name} = \{")
714 if layout isa PHLayout[MClassType, MType] then
715 v.add_decl("{layout.masks[mclass_type]},")
716 else
717 v.add_decl("0, /* dummy */")
718 end
719 v.add_decl("\{")
720 for t in self.resolution_tables[mclass_type] do
721 if t == null then
722 v.add_decl("NULL, /* empty */")
723 else
724 # The table stores the result of the type resolution
725 # Therefore, for a receiver `mclass_type`, and a unresolved type `t`
726 # the value stored is tv.
727 var tv = t.resolve_for(mclass_type, mclass_type, self.mainmodule, true)
728 # FIXME: What typeids means here? How can a tv not be live?
729 if self.type_layout.ids.has_key(tv) then
730 v.require_declaration("type_{tv.c_name}")
731 v.add_decl("&type_{tv.c_name}, /* {t}: {tv} */")
732 else
733 v.add_decl("NULL, /* empty ({t}: {tv} not a live type) */")
734 end
735 end
736 end
737 v.add_decl("\}")
738 v.add_decl("\};")
739 end
740
741 # Globally compile the table of the class mclass
742 # In a link-time optimisation compiler, tables are globally computed
743 # In a true separate compiler (a with dynamic loading) you cannot do this unfortnally
744 fun compile_class_to_c(mclass: MClass)
745 do
746 var mtype = mclass.intro.bound_mtype
747 var c_name = mclass.c_name
748 var c_instance_name = mclass.c_instance_name
749
750 var vft = self.method_tables[mclass]
751 var attrs = self.attr_tables[mclass]
752 var v = new_visitor
753
754 var is_dead = runtime_type_analysis != null and not runtime_type_analysis.live_classes.has(mclass) and mtype.ctype == "val*" and mclass.name != "NativeArray"
755
756 v.add_decl("/* runtime class {c_name} */")
757
758 # Build class vft
759 if not is_dead then
760 self.provide_declaration("class_{c_name}", "extern const struct class class_{c_name};")
761 v.add_decl("const struct class class_{c_name} = \{")
762 v.add_decl("{self.box_kind_of(mclass)}, /* box_kind */")
763 v.add_decl("\{")
764 for i in [0 .. vft.length[ do
765 var mpropdef = vft[i]
766 if mpropdef == null then
767 v.add_decl("NULL, /* empty */")
768 else
769 assert mpropdef isa MMethodDef
770 var rf = mpropdef.virtual_runtime_function
771 v.require_declaration(rf.c_name)
772 v.add_decl("(nitmethod_t){rf.c_name}, /* pointer to {mclass.intro_mmodule}:{mclass}:{mpropdef} */")
773 end
774 end
775 v.add_decl("\}")
776 v.add_decl("\};")
777 end
778
779 if mtype.ctype != "val*" then
780 if mtype.mclass.name == "Pointer" or mtype.mclass.kind != extern_kind then
781 #Build instance struct
782 self.header.add_decl("struct instance_{c_instance_name} \{")
783 self.header.add_decl("const struct type *type;")
784 self.header.add_decl("const struct class *class;")
785 self.header.add_decl("{mtype.ctype} value;")
786 self.header.add_decl("\};")
787 end
788
789 if not self.runtime_type_analysis.live_types.has(mtype) then return
790
791 #Build BOX
792 self.provide_declaration("BOX_{c_name}", "val* BOX_{c_name}({mtype.ctype});")
793 v.add_decl("/* allocate {mtype} */")
794 v.add_decl("val* BOX_{mtype.c_name}({mtype.ctype} value) \{")
795 v.add("struct instance_{c_instance_name}*res = nit_alloc(sizeof(struct instance_{c_instance_name}));")
796 v.require_declaration("type_{c_name}")
797 v.add("res->type = &type_{c_name};")
798 v.require_declaration("class_{c_name}")
799 v.add("res->class = &class_{c_name};")
800 v.add("res->value = value;")
801 v.add("return (val*)res;")
802 v.add("\}")
803 return
804 else if mclass.name == "NativeArray" then
805 #Build instance struct
806 self.header.add_decl("struct instance_{c_instance_name} \{")
807 self.header.add_decl("const struct type *type;")
808 self.header.add_decl("const struct class *class;")
809 # NativeArrays are just a instance header followed by an array of values
810 self.header.add_decl("val* values[0];")
811 self.header.add_decl("\};")
812
813 #Build NEW
814 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(int length, const struct type* type);")
815 v.add_decl("/* allocate {mtype} */")
816 v.add_decl("{mtype.ctype} NEW_{c_name}(int length, const struct type* type) \{")
817 var res = v.new_named_var(mtype, "self")
818 res.is_exact = true
819 var mtype_elt = mtype.arguments.first
820 v.add("{res} = nit_alloc(sizeof(struct instance_{c_instance_name}) + length*sizeof({mtype_elt.ctype}));")
821 v.add("{res}->type = type;")
822 hardening_live_type(v, "type")
823 v.require_declaration("class_{c_name}")
824 v.add("{res}->class = &class_{c_name};")
825 v.add("return {res};")
826 v.add("\}")
827 return
828 end
829
830 #Build NEW
831 self.provide_declaration("NEW_{c_name}", "{mtype.ctype} NEW_{c_name}(const struct type* type);")
832 v.add_decl("/* allocate {mtype} */")
833 v.add_decl("{mtype.ctype} NEW_{c_name}(const struct type* type) \{")
834 if is_dead then
835 v.add_abort("{mclass} is DEAD")
836 else
837 var res = v.new_named_var(mtype, "self")
838 res.is_exact = true
839 v.add("{res} = nit_alloc(sizeof(struct instance) + {attrs.length}*sizeof(nitattribute_t));")
840 v.add("{res}->type = type;")
841 hardening_live_type(v, "type")
842 v.require_declaration("class_{c_name}")
843 v.add("{res}->class = &class_{c_name};")
844 self.generate_init_attr(v, res, mtype)
845 v.add("return {res};")
846 end
847 v.add("\}")
848 end
849
850 # Add a dynamic test to ensure that the type referenced by `t` is a live type
851 fun hardening_live_type(v: VISITOR, t: String)
852 do
853 if not v.compiler.modelbuilder.toolcontext.opt_hardening.value then return
854 v.add("if({t} == NULL) \{")
855 v.add_abort("type null")
856 v.add("\}")
857 v.add("if({t}->table_size == 0) \{")
858 v.add("fprintf(stderr, \"Insantiation of a dead type: %s\\n\", {t}->name);")
859 v.add_abort("type dead")
860 v.add("\}")
861 end
862
863 redef fun new_visitor do return new SeparateCompilerVisitor(self)
864
865 # Stats
866
867 private var type_tables: Map[MType, Array[nullable MType]] = new HashMap[MType, Array[nullable MType]]
868 private var resolution_tables: Map[MClassType, Array[nullable MType]] = new HashMap[MClassType, Array[nullable MType]]
869 protected var method_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
870 protected var attr_tables: Map[MClass, Array[nullable MPropDef]] = new HashMap[MClass, Array[nullable MPropDef]]
871
872 redef fun display_stats
873 do
874 super
875 if self.modelbuilder.toolcontext.opt_tables_metrics.value then
876 display_sizes
877 end
878
879 var tc = self.modelbuilder.toolcontext
880 tc.info("# implementation of method invocation",2)
881 var nb_invok_total = modelbuilder.nb_invok_by_tables + modelbuilder.nb_invok_by_direct + modelbuilder.nb_invok_by_inline
882 tc.info("total number of invocations: {nb_invok_total}",2)
883 tc.info("invocations by VFT send: {modelbuilder.nb_invok_by_tables} ({div(modelbuilder.nb_invok_by_tables,nb_invok_total)}%)",2)
884 tc.info("invocations by direct call: {modelbuilder.nb_invok_by_direct} ({div(modelbuilder.nb_invok_by_direct,nb_invok_total)}%)",2)
885 tc.info("invocations by inlining: {modelbuilder.nb_invok_by_inline} ({div(modelbuilder.nb_invok_by_inline,nb_invok_total)}%)",2)
886 end
887
888 fun display_sizes
889 do
890 print "# size of subtyping tables"
891 print "\ttotal \tholes"
892 var total = 0
893 var holes = 0
894 for t, table in type_tables do
895 total += table.length
896 for e in table do if e == null then holes += 1
897 end
898 print "\t{total}\t{holes}"
899
900 print "# size of resolution tables"
901 print "\ttotal \tholes"
902 total = 0
903 holes = 0
904 for t, table in resolution_tables do
905 total += table.length
906 for e in table do if e == null then holes += 1
907 end
908 print "\t{total}\t{holes}"
909
910 print "# size of methods tables"
911 print "\ttotal \tholes"
912 total = 0
913 holes = 0
914 for t, table in method_tables do
915 total += table.length
916 for e in table do if e == null then holes += 1
917 end
918 print "\t{total}\t{holes}"
919
920 print "# size of attributes tables"
921 print "\ttotal \tholes"
922 total = 0
923 holes = 0
924 for t, table in attr_tables do
925 total += table.length
926 for e in table do if e == null then holes += 1
927 end
928 print "\t{total}\t{holes}"
929 end
930
931 redef fun compile_nitni_structs
932 do
933 self.header.add_decl("struct nitni_instance \{struct instance *value;\};")
934 end
935
936 redef fun finalize_ffi_for_module(mmodule)
937 do
938 var old_module = self.mainmodule
939 self.mainmodule = mmodule
940 super
941 self.mainmodule = old_module
942 end
943 end
944
945 # A visitor on the AST of property definition that generate the C code of a separate compilation process.
946 class SeparateCompilerVisitor
947 super AbstractCompilerVisitor
948
949 redef type COMPILER: SeparateCompiler
950
951 redef fun adapt_signature(m, args)
952 do
953 var msignature = m.msignature.resolve_for(m.mclassdef.bound_mtype, m.mclassdef.bound_mtype, m.mclassdef.mmodule, true)
954 var recv = args.first
955 if recv.mtype.ctype != m.mclassdef.mclass.mclass_type.ctype then
956 args.first = self.autobox(args.first, m.mclassdef.mclass.mclass_type)
957 end
958 for i in [0..msignature.arity[ do
959 var t = msignature.mparameters[i].mtype
960 if i == msignature.vararg_rank then
961 t = args[i+1].mtype
962 end
963 args[i+1] = self.autobox(args[i+1], t)
964 end
965 end
966
967 redef fun autobox(value, mtype)
968 do
969 if value.mtype == mtype then
970 return value
971 else if value.mtype.ctype == "val*" and mtype.ctype == "val*" then
972 return value
973 else if value.mtype.ctype == "val*" then
974 return self.new_expr("((struct instance_{mtype.c_instance_name}*){value})->value; /* autounbox from {value.mtype} to {mtype} */", mtype)
975 else if mtype.ctype == "val*" then
976 var valtype = value.mtype.as(MClassType)
977 var res = self.new_var(mtype)
978 if compiler.runtime_type_analysis != null and not compiler.runtime_type_analysis.live_types.has(valtype) then
979 self.add("/*no autobox from {value.mtype} to {mtype}: {value.mtype} is not live! */")
980 self.add("printf(\"Dead code executed!\\n\"); show_backtrace(1);")
981 return res
982 end
983 self.require_declaration("BOX_{valtype.c_name}")
984 self.add("{res} = BOX_{valtype.c_name}({value}); /* autobox from {value.mtype} to {mtype} */")
985 return res
986 else if value.mtype.ctype == "void*" and mtype.ctype == "void*" then
987 return value
988 else
989 # Bad things will appen!
990 var res = self.new_var(mtype)
991 self.add("/* {res} left unintialized (cannot convert {value.mtype} to {mtype}) */")
992 self.add("printf(\"Cast error: Cannot cast %s to %s.\\n\", \"{value.mtype}\", \"{mtype}\"); show_backtrace(1);")
993 return res
994 end
995 end
996
997 # Return a C expression returning the runtime type structure of the value
998 # The point of the method is to works also with primitives types.
999 fun type_info(value: RuntimeVariable): String
1000 do
1001 if value.mtype.ctype == "val*" then
1002 return "{value}->type"
1003 else
1004 compiler.undead_types.add(value.mtype)
1005 self.require_declaration("type_{value.mtype.c_name}")
1006 return "(&type_{value.mtype.c_name})"
1007 end
1008 end
1009
1010 redef fun compile_callsite(callsite, args)
1011 do
1012 var rta = compiler.runtime_type_analysis
1013 var recv = args.first.mtype
1014 if compiler.modelbuilder.toolcontext.opt_direct_call_monomorph.value and rta != null then
1015 var tgs = rta.live_targets(callsite)
1016 if tgs.length == 1 then
1017 # DIRECT CALL
1018 var mmethod = callsite.mproperty
1019 self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), args)
1020 var res0 = before_send(mmethod, args)
1021 var res = call(tgs.first, tgs.first.mclassdef.bound_mtype, args)
1022 if res0 != null then
1023 assert res != null
1024 self.assign(res0, res)
1025 res = res0
1026 end
1027 add("\}") # close the before_send
1028 return res
1029 end
1030 end
1031 return super
1032 end
1033 redef fun send(mmethod, arguments)
1034 do
1035 self.varargize(mmethod.intro, mmethod.intro.msignature.as(not null), arguments)
1036
1037 if arguments.first.mcasttype.ctype != "val*" then
1038 # In order to shortcut the primitive, we need to find the most specific method
1039 # Howverr, because of performance (no flattening), we always work on the realmainmodule
1040 var m = self.compiler.mainmodule
1041 self.compiler.mainmodule = self.compiler.realmainmodule
1042 var res = self.monomorphic_send(mmethod, arguments.first.mcasttype, arguments)
1043 self.compiler.mainmodule = m
1044 return res
1045 end
1046
1047 return table_send(mmethod, arguments, mmethod.const_color)
1048 end
1049
1050 # Handel common special cases before doing the effective method invocation
1051 # This methods handle the `==` and `!=` methods and the case of the null receiver.
1052 # Note: a { is open in the generated C, that enclose and protect the effective method invocation.
1053 # Client must not forget to close the } after them.
1054 #
1055 # The value returned is the result of the common special cases.
1056 # If not null, client must compine it with the result of their own effective method invocation.
1057 #
1058 # If `before_send` can shortcut the whole message sending, a dummy `if(0){`
1059 # is generated to cancel the effective method invocation that will follow
1060 # TODO: find a better approach
1061 private fun before_send(mmethod: MMethod, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1062 do
1063 var res: nullable RuntimeVariable = null
1064 var recv = arguments.first
1065 var consider_null = not self.compiler.modelbuilder.toolcontext.opt_no_check_other.value or mmethod.name == "==" or mmethod.name == "!="
1066 var maybenull = recv.mcasttype isa MNullableType and consider_null
1067 if maybenull then
1068 self.add("if ({recv} == NULL) \{")
1069 if mmethod.name == "==" then
1070 res = self.new_var(bool_type)
1071 var arg = arguments[1]
1072 if arg.mcasttype isa MNullableType then
1073 self.add("{res} = ({arg} == NULL);")
1074 else if arg.mcasttype isa MNullType then
1075 self.add("{res} = 1; /* is null */")
1076 else
1077 self.add("{res} = 0; /* {arg.inspect} cannot be null */")
1078 end
1079 else if mmethod.name == "!=" then
1080 res = self.new_var(bool_type)
1081 var arg = arguments[1]
1082 if arg.mcasttype isa MNullableType then
1083 self.add("{res} = ({arg} != NULL);")
1084 else if arg.mcasttype isa MNullType then
1085 self.add("{res} = 0; /* is null */")
1086 else
1087 self.add("{res} = 1; /* {arg.inspect} cannot be null */")
1088 end
1089 else
1090 self.add_abort("Receiver is null")
1091 end
1092 self.add("\} else \{")
1093 else
1094 self.add("\{")
1095 end
1096 if not self.compiler.modelbuilder.toolcontext.opt_no_shortcut_equate.value and (mmethod.name == "==" or mmethod.name == "!=") then
1097 if res == null then res = self.new_var(bool_type)
1098 # Recv is not null, thus is arg is, it is easy to conclude (and respect the invariants)
1099 var arg = arguments[1]
1100 if arg.mcasttype isa MNullType then
1101 if mmethod.name == "==" then
1102 self.add("{res} = 0; /* arg is null but recv is not */")
1103 else
1104 self.add("{res} = 1; /* arg is null and recv is not */")
1105 end
1106 self.add("\}") # closes the null case
1107 self.add("if (0) \{") # what follow is useless, CC will drop it
1108 end
1109 end
1110 return res
1111 end
1112
1113 private fun table_send(mmethod: MMethod, arguments: Array[RuntimeVariable], const_color: String): nullable RuntimeVariable
1114 do
1115 compiler.modelbuilder.nb_invok_by_tables += 1
1116 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_tables++;")
1117
1118 assert arguments.length == mmethod.intro.msignature.arity + 1 else debug("Invalid arity for {mmethod}. {arguments.length} arguments given.")
1119 var recv = arguments.first
1120
1121 var res0 = before_send(mmethod, arguments)
1122
1123 var res: nullable RuntimeVariable
1124 var msignature = mmethod.intro.msignature.resolve_for(mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.bound_mtype, mmethod.intro.mclassdef.mmodule, true)
1125 var ret = msignature.return_mtype
1126 if mmethod.is_new then
1127 ret = arguments.first.mtype
1128 res = self.new_var(ret)
1129 else if ret == null then
1130 res = null
1131 else
1132 res = self.new_var(ret)
1133 end
1134
1135 var s = new FlatBuffer
1136 var ss = new FlatBuffer
1137
1138 s.append("val*")
1139 ss.append("{recv}")
1140 for i in [0..msignature.arity[ do
1141 var a = arguments[i+1]
1142 var t = msignature.mparameters[i].mtype
1143 if i == msignature.vararg_rank then
1144 t = arguments[i+1].mcasttype
1145 end
1146 s.append(", {t.ctype}")
1147 a = self.autobox(a, t)
1148 ss.append(", {a}")
1149 end
1150
1151
1152 var r
1153 if ret == null then r = "void" else r = ret.ctype
1154 self.require_declaration(const_color)
1155 var call = "(({r} (*)({s}))({arguments.first}->class->vft[{const_color}]))({ss}) /* {mmethod} on {arguments.first.inspect}*/"
1156
1157 if res != null then
1158 self.add("{res} = {call};")
1159 else
1160 self.add("{call};")
1161 end
1162
1163 if res0 != null then
1164 assert res != null
1165 assign(res0,res)
1166 res = res0
1167 end
1168
1169 self.add("\}") # closes the null case
1170
1171 return res
1172 end
1173
1174 redef fun call(mmethoddef, recvtype, arguments)
1175 do
1176 assert arguments.length == mmethoddef.msignature.arity + 1 else debug("Invalid arity for {mmethoddef}. {arguments.length} arguments given.")
1177
1178 var res: nullable RuntimeVariable
1179 var ret = mmethoddef.msignature.return_mtype
1180 if mmethoddef.mproperty.is_new then
1181 ret = arguments.first.mtype
1182 res = self.new_var(ret)
1183 else if ret == null then
1184 res = null
1185 else
1186 ret = ret.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1187 res = self.new_var(ret)
1188 end
1189
1190 if (mmethoddef.is_intern and not compiler.modelbuilder.toolcontext.opt_no_inline_intern.value) or
1191 (compiler.modelbuilder.toolcontext.opt_inline_some_methods.value and mmethoddef.can_inline(self)) then
1192 compiler.modelbuilder.nb_invok_by_inline += 1
1193 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_inline++;")
1194 var frame = new Frame(self, mmethoddef, recvtype, arguments)
1195 frame.returnlabel = self.get_name("RET_LABEL")
1196 frame.returnvar = res
1197 var old_frame = self.frame
1198 self.frame = frame
1199 self.add("\{ /* Inline {mmethoddef} ({arguments.join(",")}) on {arguments.first.inspect} */")
1200 mmethoddef.compile_inside_to_c(self, arguments)
1201 self.add("{frame.returnlabel.as(not null)}:(void)0;")
1202 self.add("\}")
1203 self.frame = old_frame
1204 return res
1205 end
1206 compiler.modelbuilder.nb_invok_by_direct += 1
1207 if compiler.modelbuilder.toolcontext.opt_invocation_metrics.value then add("count_invoke_by_direct++;")
1208
1209 # Autobox arguments
1210 self.adapt_signature(mmethoddef, arguments)
1211
1212 self.require_declaration(mmethoddef.c_name)
1213 if res == null then
1214 self.add("{mmethoddef.c_name}({arguments.join(", ")}); /* Direct call {mmethoddef} on {arguments.first.inspect}*/")
1215 return null
1216 else
1217 self.add("{res} = {mmethoddef.c_name}({arguments.join(", ")});")
1218 end
1219
1220 return res
1221 end
1222
1223 redef fun supercall(m: MMethodDef, recvtype: MClassType, arguments: Array[RuntimeVariable]): nullable RuntimeVariable
1224 do
1225 if arguments.first.mcasttype.ctype != "val*" then
1226 # In order to shortcut the primitive, we need to find the most specific method
1227 # However, because of performance (no flattening), we always work on the realmainmodule
1228 var main = self.compiler.mainmodule
1229 self.compiler.mainmodule = self.compiler.realmainmodule
1230 var res = self.monomorphic_super_send(m, recvtype, arguments)
1231 self.compiler.mainmodule = main
1232 return res
1233 end
1234 return table_send(m.mproperty, arguments, m.const_color)
1235 end
1236
1237 redef fun vararg_instance(mpropdef, recv, varargs, elttype)
1238 do
1239 # A vararg must be stored into an new array
1240 # The trick is that the dymaic type of the array may depends on the receiver
1241 # of the method (ie recv) if the static type is unresolved
1242 # This is more complex than usual because the unresolved type must not be resolved
1243 # with the current receiver (ie self).
1244 # Therefore to isolate the resolution from self, a local Frame is created.
1245 # One can see this implementation as an inlined method of the receiver whose only
1246 # job is to allocate the array
1247 var old_frame = self.frame
1248 var frame = new Frame(self, mpropdef, mpropdef.mclassdef.bound_mtype, [recv])
1249 self.frame = frame
1250 #print "required Array[{elttype}] for recv {recv.inspect}. bound=Array[{self.resolve_for(elttype, recv)}]. selfvar={frame.arguments.first.inspect}"
1251 var res = self.array_instance(varargs, elttype)
1252 self.frame = old_frame
1253 return res
1254 end
1255
1256 redef fun isset_attribute(a, recv)
1257 do
1258 self.check_recv_notnull(recv)
1259 var res = self.new_var(bool_type)
1260
1261 # What is the declared type of the attribute?
1262 var mtype = a.intro.static_mtype.as(not null)
1263 var intromclassdef = a.intro.mclassdef
1264 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1265
1266 if mtype isa MNullableType then
1267 self.add("{res} = 1; /* easy isset: {a} on {recv.inspect} */")
1268 return res
1269 end
1270
1271 self.require_declaration(a.const_color)
1272 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1273 self.add("{res} = {recv}->attrs[{a.const_color}] != NULL; /* {a} on {recv.inspect}*/")
1274 else
1275
1276 if mtype.ctype == "val*" then
1277 self.add("{res} = {recv}->attrs[{a.const_color}].val != NULL; /* {a} on {recv.inspect} */")
1278 else
1279 self.add("{res} = 1; /* NOT YET IMPLEMENTED: isset of primitives: {a} on {recv.inspect} */")
1280 end
1281 end
1282 return res
1283 end
1284
1285 redef fun read_attribute(a, recv)
1286 do
1287 self.check_recv_notnull(recv)
1288
1289 # What is the declared type of the attribute?
1290 var ret = a.intro.static_mtype.as(not null)
1291 var intromclassdef = a.intro.mclassdef
1292 ret = ret.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1293
1294 self.require_declaration(a.const_color)
1295 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1296 # Get the attribute or a box (ie. always a val*)
1297 var cret = self.object_type.as_nullable
1298 var res = self.new_var(cret)
1299 res.mcasttype = ret
1300
1301 self.add("{res} = {recv}->attrs[{a.const_color}]; /* {a} on {recv.inspect} */")
1302
1303 # Check for Uninitialized attribute
1304 if not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_initialization.value then
1305 self.add("if (unlikely({res} == NULL)) \{")
1306 self.add_abort("Uninitialized attribute {a.name}")
1307 self.add("\}")
1308 end
1309
1310 # Return the attribute or its unboxed version
1311 # Note: it is mandatory since we reuse the box on write, we do not whant that the box escapes
1312 return self.autobox(res, ret)
1313 else
1314 var res = self.new_var(ret)
1315 self.add("{res} = {recv}->attrs[{a.const_color}].{ret.ctypename}; /* {a} on {recv.inspect} */")
1316
1317 # Check for Uninitialized attribute
1318 if ret.ctype == "val*" and not ret isa MNullableType and not self.compiler.modelbuilder.toolcontext.opt_no_check_initialization.value then
1319 self.add("if (unlikely({res} == NULL)) \{")
1320 self.add_abort("Uninitialized attribute {a.name}")
1321 self.add("\}")
1322 end
1323
1324 return res
1325 end
1326 end
1327
1328 redef fun write_attribute(a, recv, value)
1329 do
1330 self.check_recv_notnull(recv)
1331
1332 # What is the declared type of the attribute?
1333 var mtype = a.intro.static_mtype.as(not null)
1334 var intromclassdef = a.intro.mclassdef
1335 mtype = mtype.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1336
1337 # Adapt the value to the declared type
1338 value = self.autobox(value, mtype)
1339
1340 self.require_declaration(a.const_color)
1341 if self.compiler.modelbuilder.toolcontext.opt_no_union_attribute.value then
1342 var attr = "{recv}->attrs[{a.const_color}]"
1343 if mtype.ctype != "val*" then
1344 assert mtype isa MClassType
1345 # The attribute is primitive, thus we store it in a box
1346 # The trick is to create the box the first time then resuse the box
1347 self.add("if ({attr} != NULL) \{")
1348 self.add("((struct instance_{mtype.c_instance_name}*){attr})->value = {value}; /* {a} on {recv.inspect} */")
1349 self.add("\} else \{")
1350 value = self.autobox(value, self.object_type.as_nullable)
1351 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1352 self.add("\}")
1353 else
1354 # The attribute is not primitive, thus store it direclty
1355 self.add("{attr} = {value}; /* {a} on {recv.inspect} */")
1356 end
1357 else
1358 self.add("{recv}->attrs[{a.const_color}].{mtype.ctypename} = {value}; /* {a} on {recv.inspect} */")
1359 end
1360 end
1361
1362 # Check that mtype is a live open type
1363 fun hardening_live_open_type(mtype: MType)
1364 do
1365 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1366 self.require_declaration(mtype.const_color)
1367 var col = mtype.const_color
1368 self.add("if({col} == -1) \{")
1369 self.add("fprintf(stderr, \"Resolution of a dead open type: %s\\n\", \"{mtype.to_s.escape_to_c}\");")
1370 self.add_abort("open type dead")
1371 self.add("\}")
1372 end
1373
1374 # Check that mtype it a pointer to a live cast type
1375 fun hardening_cast_type(t: String)
1376 do
1377 if not compiler.modelbuilder.toolcontext.opt_hardening.value then return
1378 add("if({t} == NULL) \{")
1379 add_abort("cast type null")
1380 add("\}")
1381 add("if({t}->id == -1 || {t}->color == -1) \{")
1382 add("fprintf(stderr, \"Try to cast on a dead cast type: %s\\n\", {t}->name);")
1383 add_abort("cast type dead")
1384 add("\}")
1385 end
1386
1387 redef fun init_instance(mtype)
1388 do
1389 self.require_declaration("NEW_{mtype.mclass.c_name}")
1390 var compiler = self.compiler
1391 if mtype isa MGenericType and mtype.need_anchor then
1392 hardening_live_open_type(mtype)
1393 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1394 var recv = self.frame.arguments.first
1395 var recv_type_info = self.type_info(recv)
1396 self.require_declaration(mtype.const_color)
1397 if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then
1398 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {mtype.const_color})])", mtype)
1399 else
1400 return self.new_expr("NEW_{mtype.mclass.c_name}({recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1401 end
1402 end
1403 compiler.undead_types.add(mtype)
1404 self.require_declaration("type_{mtype.c_name}")
1405 return self.new_expr("NEW_{mtype.mclass.c_name}(&type_{mtype.c_name})", mtype)
1406 end
1407
1408 redef fun type_test(value, mtype, tag)
1409 do
1410 self.add("/* {value.inspect} isa {mtype} */")
1411 var compiler = self.compiler
1412
1413 var recv = self.frame.arguments.first
1414 var recv_type_info = self.type_info(recv)
1415
1416 var res = self.new_var(bool_type)
1417
1418 var cltype = self.get_name("cltype")
1419 self.add_decl("int {cltype};")
1420 var idtype = self.get_name("idtype")
1421 self.add_decl("int {idtype};")
1422
1423 var maybe_null = self.maybe_null(value)
1424 var accept_null = "0"
1425 var ntype = mtype
1426 if ntype isa MNullableType then
1427 ntype = ntype.mtype
1428 accept_null = "1"
1429 end
1430
1431 if value.mcasttype.is_subtype(self.frame.mpropdef.mclassdef.mmodule, self.frame.mpropdef.mclassdef.bound_mtype, mtype) then
1432 self.add("{res} = 1; /* easy {value.inspect} isa {mtype}*/")
1433 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1434 self.compiler.count_type_test_skipped[tag] += 1
1435 self.add("count_type_test_skipped_{tag}++;")
1436 end
1437 return res
1438 end
1439
1440 if ntype.need_anchor then
1441 var type_struct = self.get_name("type_struct")
1442 self.add_decl("const struct type* {type_struct};")
1443
1444 # Either with resolution_table with a direct resolution
1445 hardening_live_open_type(mtype)
1446 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1447 self.require_declaration(mtype.const_color)
1448 if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then
1449 self.add("{type_struct} = {recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {mtype.const_color})];")
1450 else
1451 self.add("{type_struct} = {recv_type_info}->resolution_table->types[{mtype.const_color}];")
1452 end
1453 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1454 self.compiler.count_type_test_unresolved[tag] += 1
1455 self.add("count_type_test_unresolved_{tag}++;")
1456 end
1457 hardening_cast_type(type_struct)
1458 self.add("{cltype} = {type_struct}->color;")
1459 self.add("{idtype} = {type_struct}->id;")
1460 if maybe_null and accept_null == "0" then
1461 var is_nullable = self.get_name("is_nullable")
1462 self.add_decl("short int {is_nullable};")
1463 self.add("{is_nullable} = {type_struct}->is_nullable;")
1464 accept_null = is_nullable.to_s
1465 end
1466 else if ntype isa MClassType then
1467 compiler.undead_types.add(mtype)
1468 self.require_declaration("type_{mtype.c_name}")
1469 hardening_cast_type("(&type_{mtype.c_name})")
1470 self.add("{cltype} = type_{mtype.c_name}.color;")
1471 self.add("{idtype} = type_{mtype.c_name}.id;")
1472 if compiler.modelbuilder.toolcontext.opt_typing_test_metrics.value then
1473 self.compiler.count_type_test_resolved[tag] += 1
1474 self.add("count_type_test_resolved_{tag}++;")
1475 end
1476 else
1477 self.add("printf(\"NOT YET IMPLEMENTED: type_test(%s, {mtype}).\\n\", \"{value.inspect}\"); show_backtrace(1);")
1478 end
1479
1480 # check color is in table
1481 if maybe_null then
1482 self.add("if({value} == NULL) \{")
1483 self.add("{res} = {accept_null};")
1484 self.add("\} else \{")
1485 end
1486 var value_type_info = self.type_info(value)
1487 if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then
1488 self.add("{cltype} = HASH({value_type_info}->color, {idtype});")
1489 end
1490 self.add("if({cltype} >= {value_type_info}->table_size) \{")
1491 self.add("{res} = 0;")
1492 self.add("\} else \{")
1493 self.add("{res} = {value_type_info}->type_table[{cltype}] == {idtype};")
1494 self.add("\}")
1495 if maybe_null then
1496 self.add("\}")
1497 end
1498
1499 return res
1500 end
1501
1502 redef fun is_same_type_test(value1, value2)
1503 do
1504 var res = self.new_var(bool_type)
1505 # Swap values to be symetric
1506 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1507 var tmp = value1
1508 value1 = value2
1509 value2 = tmp
1510 end
1511 if value1.mtype.ctype != "val*" then
1512 if value2.mtype == value1.mtype then
1513 self.add("{res} = 1; /* is_same_type_test: compatible types {value1.mtype} vs. {value2.mtype} */")
1514 else if value2.mtype.ctype != "val*" then
1515 self.add("{res} = 0; /* is_same_type_test: incompatible types {value1.mtype} vs. {value2.mtype}*/")
1516 else
1517 var mtype1 = value1.mtype.as(MClassType)
1518 self.require_declaration("class_{mtype1.c_name}")
1519 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name}); /* is_same_type_test */")
1520 end
1521 else
1522 self.add("{res} = ({value1} == {value2}) || ({value1} != NULL && {value2} != NULL && {value1}->class == {value2}->class); /* is_same_type_test */")
1523 end
1524 return res
1525 end
1526
1527 redef fun class_name_string(value)
1528 do
1529 var res = self.get_name("var_class_name")
1530 self.add_decl("const char* {res};")
1531 if value.mtype.ctype == "val*" then
1532 self.add "{res} = {value} == NULL ? \"null\" : {value}->type->name;"
1533 else if value.mtype isa MClassType and value.mtype.as(MClassType).mclass.kind == extern_kind then
1534 self.add "{res} = \"{value.mtype.as(MClassType).mclass}\";"
1535 else
1536 self.require_declaration("type_{value.mtype.c_name}")
1537 self.add "{res} = type_{value.mtype.c_name}.name;"
1538 end
1539 return res
1540 end
1541
1542 redef fun equal_test(value1, value2)
1543 do
1544 var res = self.new_var(bool_type)
1545 if value2.mtype.ctype != "val*" and value1.mtype.ctype == "val*" then
1546 var tmp = value1
1547 value1 = value2
1548 value2 = tmp
1549 end
1550 if value1.mtype.ctype != "val*" then
1551 if value2.mtype == value1.mtype then
1552 self.add("{res} = {value1} == {value2};")
1553 else if value2.mtype.ctype != "val*" then
1554 self.add("{res} = 0; /* incompatible types {value1.mtype} vs. {value2.mtype}*/")
1555 else
1556 var mtype1 = value1.mtype.as(MClassType)
1557 self.require_declaration("class_{mtype1.c_name}")
1558 self.add("{res} = ({value2} != NULL) && ({value2}->class == &class_{mtype1.c_name});")
1559 self.add("if ({res}) \{")
1560 self.add("{res} = ({self.autobox(value2, value1.mtype)} == {value1});")
1561 self.add("\}")
1562 end
1563 return res
1564 end
1565 var maybe_null = true
1566 var test = new Array[String]
1567 var t1 = value1.mcasttype
1568 if t1 isa MNullableType then
1569 test.add("{value1} != NULL")
1570 t1 = t1.mtype
1571 else
1572 maybe_null = false
1573 end
1574 var t2 = value2.mcasttype
1575 if t2 isa MNullableType then
1576 test.add("{value2} != NULL")
1577 t2 = t2.mtype
1578 else
1579 maybe_null = false
1580 end
1581
1582 var incompatible = false
1583 var primitive
1584 if t1.ctype != "val*" then
1585 primitive = t1
1586 if t1 == t2 then
1587 # No need to compare class
1588 else if t2.ctype != "val*" then
1589 incompatible = true
1590 else if can_be_primitive(value2) then
1591 test.add("{value1}->class == {value2}->class")
1592 else
1593 incompatible = true
1594 end
1595 else if t2.ctype != "val*" then
1596 primitive = t2
1597 if can_be_primitive(value1) then
1598 test.add("{value1}->class == {value2}->class")
1599 else
1600 incompatible = true
1601 end
1602 else
1603 primitive = null
1604 end
1605
1606 if incompatible then
1607 if maybe_null then
1608 self.add("{res} = {value1} == {value2}; /* incompatible types {t1} vs. {t2}; but may be NULL*/")
1609 return res
1610 else
1611 self.add("{res} = 0; /* incompatible types {t1} vs. {t2}; cannot be NULL */")
1612 return res
1613 end
1614 end
1615 if primitive != null then
1616 test.add("((struct instance_{primitive.c_instance_name}*){value1})->value == ((struct instance_{primitive.c_instance_name}*){value2})->value")
1617 else if can_be_primitive(value1) and can_be_primitive(value2) then
1618 test.add("{value1}->class == {value2}->class")
1619 var s = new Array[String]
1620 for t, v in self.compiler.box_kinds do
1621 s.add "({value1}->class->box_kind == {v} && ((struct instance_{t.c_instance_name}*){value1})->value == ((struct instance_{t.c_instance_name}*){value2})->value)"
1622 end
1623 test.add("({s.join(" || ")})")
1624 else
1625 self.add("{res} = {value1} == {value2};")
1626 return res
1627 end
1628 self.add("{res} = {value1} == {value2} || ({test.join(" && ")});")
1629 return res
1630 end
1631
1632 fun can_be_primitive(value: RuntimeVariable): Bool
1633 do
1634 var t = value.mcasttype
1635 if t isa MNullableType then t = t.mtype
1636 if not t isa MClassType then return false
1637 var k = t.mclass.kind
1638 return k == interface_kind or t.ctype != "val*"
1639 end
1640
1641 fun maybe_null(value: RuntimeVariable): Bool
1642 do
1643 var t = value.mcasttype
1644 return t isa MNullableType or t isa MNullType
1645 end
1646
1647 redef fun array_instance(array, elttype)
1648 do
1649 var nclass = self.get_class("NativeArray")
1650 var arrayclass = self.get_class("Array")
1651 var arraytype = arrayclass.get_mtype([elttype])
1652 var res = self.init_instance(arraytype)
1653 self.add("\{ /* {res} = array_instance Array[{elttype}] */")
1654 var length = self.int_instance(array.length)
1655 var nat = native_array_instance(elttype, length)
1656 for i in [0..array.length[ do
1657 var r = self.autobox(array[i], self.object_type)
1658 self.add("((struct instance_{nclass.c_name}*){nat})->values[{i}] = (val*) {r};")
1659 end
1660 self.send(self.get_property("with_native", arrayclass.intro.bound_mtype), [res, nat, length])
1661 self.add("\}")
1662 return res
1663 end
1664
1665 fun native_array_instance(elttype: MType, length: RuntimeVariable): RuntimeVariable
1666 do
1667 var mtype = self.get_class("NativeArray").get_mtype([elttype])
1668 self.require_declaration("NEW_{mtype.mclass.c_name}")
1669 assert mtype isa MGenericType
1670 var compiler = self.compiler
1671 if mtype.need_anchor then
1672 hardening_live_open_type(mtype)
1673 link_unresolved_type(self.frame.mpropdef.mclassdef, mtype)
1674 var recv = self.frame.arguments.first
1675 var recv_type_info = self.type_info(recv)
1676 self.require_declaration(mtype.const_color)
1677 if compiler.modelbuilder.toolcontext.opt_phmod_typing.value or compiler.modelbuilder.toolcontext.opt_phand_typing.value then
1678 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[HASH({recv_type_info}->resolution_table->mask, {mtype.const_color})])", mtype)
1679 else
1680 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, {recv_type_info}->resolution_table->types[{mtype.const_color}])", mtype)
1681 end
1682 end
1683 compiler.undead_types.add(mtype)
1684 self.require_declaration("type_{mtype.c_name}")
1685 return self.new_expr("NEW_{mtype.mclass.c_name}({length}, &type_{mtype.c_name})", mtype)
1686 end
1687
1688 redef fun native_array_def(pname, ret_type, arguments)
1689 do
1690 var elttype = arguments.first.mtype
1691 var nclass = self.get_class("NativeArray")
1692 var recv = "((struct instance_{nclass.c_instance_name}*){arguments[0]})->values"
1693 if pname == "[]" then
1694 self.ret(self.new_expr("{recv}[{arguments[1]}]", ret_type.as(not null)))
1695 return
1696 else if pname == "[]=" then
1697 self.add("{recv}[{arguments[1]}]={arguments[2]};")
1698 return
1699 else if pname == "copy_to" then
1700 var recv1 = "((struct instance_{nclass.c_instance_name}*){arguments[1]})->values"
1701 self.add("memcpy({recv1}, {recv}, {arguments[2]}*sizeof({elttype.ctype}));")
1702 return
1703 end
1704 end
1705
1706 redef fun calloc_array(ret_type, arguments)
1707 do
1708 var mclass = self.get_class("ArrayCapable")
1709 var ft = mclass.mclass_type.arguments.first.as(MParameterType)
1710 var res = self.native_array_instance(ft, arguments[1])
1711 self.ret(res)
1712 end
1713
1714 fun link_unresolved_type(mclassdef: MClassDef, mtype: MType) do
1715 assert mtype.need_anchor
1716 var compiler = self.compiler
1717 if not compiler.live_unresolved_types.has_key(self.frame.mpropdef.mclassdef) then
1718 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef] = new HashSet[MType]
1719 end
1720 compiler.live_unresolved_types[self.frame.mpropdef.mclassdef].add(mtype)
1721 end
1722 end
1723
1724 redef class MMethodDef
1725 fun separate_runtime_function: AbstractRuntimeFunction
1726 do
1727 var res = self.separate_runtime_function_cache
1728 if res == null then
1729 res = new SeparateRuntimeFunction(self)
1730 self.separate_runtime_function_cache = res
1731 end
1732 return res
1733 end
1734 private var separate_runtime_function_cache: nullable SeparateRuntimeFunction
1735
1736 fun virtual_runtime_function: AbstractRuntimeFunction
1737 do
1738 var res = self.virtual_runtime_function_cache
1739 if res == null then
1740 res = new VirtualRuntimeFunction(self)
1741 self.virtual_runtime_function_cache = res
1742 end
1743 return res
1744 end
1745 private var virtual_runtime_function_cache: nullable VirtualRuntimeFunction
1746 end
1747
1748 # The C function associated to a methoddef separately compiled
1749 class SeparateRuntimeFunction
1750 super AbstractRuntimeFunction
1751
1752 redef fun build_c_name: String do return "{mmethoddef.c_name}"
1753
1754 redef fun to_s do return self.mmethoddef.to_s
1755
1756 redef fun compile_to_c(compiler)
1757 do
1758 var mmethoddef = self.mmethoddef
1759
1760 var recv = self.mmethoddef.mclassdef.bound_mtype
1761 var v = compiler.new_visitor
1762 var selfvar = new RuntimeVariable("self", recv, recv)
1763 var arguments = new Array[RuntimeVariable]
1764 var frame = new Frame(v, mmethoddef, recv, arguments)
1765 v.frame = frame
1766
1767 var msignature = mmethoddef.msignature.resolve_for(mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.bound_mtype, mmethoddef.mclassdef.mmodule, true)
1768
1769 var sig = new FlatBuffer
1770 var comment = new FlatBuffer
1771 var ret = msignature.return_mtype
1772 if ret != null then
1773 sig.append("{ret.ctype} ")
1774 else if mmethoddef.mproperty.is_new then
1775 ret = recv
1776 sig.append("{ret.ctype} ")
1777 else
1778 sig.append("void ")
1779 end
1780 sig.append(self.c_name)
1781 sig.append("({selfvar.mtype.ctype} {selfvar}")
1782 comment.append("({selfvar}: {selfvar.mtype}")
1783 arguments.add(selfvar)
1784 for i in [0..msignature.arity[ do
1785 var mtype = msignature.mparameters[i].mtype
1786 if i == msignature.vararg_rank then
1787 mtype = v.get_class("Array").get_mtype([mtype])
1788 end
1789 comment.append(", {mtype}")
1790 sig.append(", {mtype.ctype} p{i}")
1791 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1792 arguments.add(argvar)
1793 end
1794 sig.append(")")
1795 comment.append(")")
1796 if ret != null then
1797 comment.append(": {ret}")
1798 end
1799 compiler.provide_declaration(self.c_name, "{sig};")
1800
1801 v.add_decl("/* method {self} for {comment} */")
1802 v.add_decl("{sig} \{")
1803 if ret != null then
1804 frame.returnvar = v.new_var(ret)
1805 end
1806 frame.returnlabel = v.get_name("RET_LABEL")
1807
1808 if recv != arguments.first.mtype then
1809 #print "{self} {recv} {arguments.first}"
1810 end
1811 mmethoddef.compile_inside_to_c(v, arguments)
1812
1813 v.add("{frame.returnlabel.as(not null)}:;")
1814 if ret != null then
1815 v.add("return {frame.returnvar.as(not null)};")
1816 end
1817 v.add("\}")
1818 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}:{mmethoddef.location.line_start})"
1819 end
1820 end
1821
1822 # The C function associated to a methoddef on a primitive type, stored into a VFT of a class
1823 # The first parameter (the reciever) is always typed by val* in order to accept an object value
1824 class VirtualRuntimeFunction
1825 super AbstractRuntimeFunction
1826
1827 redef fun build_c_name: String do return "VIRTUAL_{mmethoddef.c_name}"
1828
1829 redef fun to_s do return self.mmethoddef.to_s
1830
1831 redef fun compile_to_c(compiler)
1832 do
1833 var mmethoddef = self.mmethoddef
1834
1835 var recv = self.mmethoddef.mclassdef.bound_mtype
1836 var v = compiler.new_visitor
1837 var selfvar = new RuntimeVariable("self", v.object_type, recv)
1838 var arguments = new Array[RuntimeVariable]
1839 var frame = new Frame(v, mmethoddef, recv, arguments)
1840 v.frame = frame
1841
1842 var sig = new FlatBuffer
1843 var comment = new FlatBuffer
1844
1845 # Because the function is virtual, the signature must match the one of the original class
1846 var intromclassdef = self.mmethoddef.mproperty.intro.mclassdef
1847 var msignature = mmethoddef.mproperty.intro.msignature.resolve_for(intromclassdef.bound_mtype, intromclassdef.bound_mtype, intromclassdef.mmodule, true)
1848 var ret = msignature.return_mtype
1849 if ret != null then
1850 sig.append("{ret.ctype} ")
1851 else if mmethoddef.mproperty.is_new then
1852 ret = recv
1853 sig.append("{ret.ctype} ")
1854 else
1855 sig.append("void ")
1856 end
1857 sig.append(self.c_name)
1858 sig.append("({selfvar.mtype.ctype} {selfvar}")
1859 comment.append("({selfvar}: {selfvar.mtype}")
1860 arguments.add(selfvar)
1861 for i in [0..msignature.arity[ do
1862 var mtype = msignature.mparameters[i].mtype
1863 if i == msignature.vararg_rank then
1864 mtype = v.get_class("Array").get_mtype([mtype])
1865 end
1866 comment.append(", {mtype}")
1867 sig.append(", {mtype.ctype} p{i}")
1868 var argvar = new RuntimeVariable("p{i}", mtype, mtype)
1869 arguments.add(argvar)
1870 end
1871 sig.append(")")
1872 comment.append(")")
1873 if ret != null then
1874 comment.append(": {ret}")
1875 end
1876 compiler.provide_declaration(self.c_name, "{sig};")
1877
1878 v.add_decl("/* method {self} for {comment} */")
1879 v.add_decl("{sig} \{")
1880 if ret != null then
1881 frame.returnvar = v.new_var(ret)
1882 end
1883 frame.returnlabel = v.get_name("RET_LABEL")
1884
1885 var subret = v.call(mmethoddef, recv, arguments)
1886 if ret != null then
1887 assert subret != null
1888 v.assign(frame.returnvar.as(not null), subret)
1889 end
1890
1891 v.add("{frame.returnlabel.as(not null)}:;")
1892 if ret != null then
1893 v.add("return {frame.returnvar.as(not null)};")
1894 end
1895 v.add("\}")
1896 if not self.c_name.has_substring("VIRTUAL", 0) then compiler.names[self.c_name] = "{mmethoddef.mclassdef.mmodule.name}::{mmethoddef.mclassdef.mclass.name}::{mmethoddef.mproperty.name} ({mmethoddef.location.file.filename}--{mmethoddef.location.line_start})"
1897 end
1898
1899 # TODO ?
1900 redef fun call(v, arguments) do abort
1901 end
1902
1903 redef class MType
1904 fun const_color: String do return "COLOR_{c_name}"
1905
1906 # C name of the instance type to use
1907 fun c_instance_name: String do return c_name
1908 end
1909
1910 redef class MClassType
1911 redef fun c_instance_name do return mclass.c_instance_name
1912 end
1913
1914 redef class MClass
1915 # Extern classes use the C instance of kernel::Pointer
1916 fun c_instance_name: String
1917 do
1918 if kind == extern_kind then
1919 return "kernel__Pointer"
1920 else return c_name
1921 end
1922 end
1923
1924 redef class MProperty
1925 fun const_color: String do return "COLOR_{c_name}"
1926 end
1927
1928 redef class MPropDef
1929 fun const_color: String do return "COLOR_{c_name}"
1930 end