Merge: src/model: fix mdoc_or_fallback for MClasses and MProperties
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class MEntity
34 # The visibility of the MEntity.
35 #
36 # MPackages, MGroups and MModules are always public.
37 # The visibility of `MClass` and `MProperty` is defined by the keyword used.
38 # `MClassDef` and `MPropDef` return the visibility of `MClass` and `MProperty`.
39 fun visibility: MVisibility do return public_visibility
40 end
41
42 redef class Model
43 # All known classes
44 var mclasses = new Array[MClass]
45
46 # All known properties
47 var mproperties = new Array[MProperty]
48
49 # Hierarchy of class definition.
50 #
51 # Each classdef is associated with its super-classdefs in regard to
52 # its module of definition.
53 var mclassdef_hierarchy = new POSet[MClassDef]
54
55 # Class-type hierarchy restricted to the introduction.
56 #
57 # The idea is that what is true on introduction is always true whatever
58 # the module considered.
59 # Therefore, this hierarchy is used for a fast positive subtype check.
60 #
61 # This poset will evolve in a monotonous way:
62 # * Two non connected nodes will remain unconnected
63 # * New nodes can appear with new edges
64 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Global overlapped class-type hierarchy.
67 # The hierarchy when all modules are combined.
68 # Therefore, this hierarchy is used for a fast negative subtype check.
69 #
70 # This poset will evolve in an anarchic way. Loops can even be created.
71 #
72 # FIXME decide what to do on loops
73 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
74
75 # Collections of classes grouped by their short name
76 private var mclasses_by_name = new MultiHashMap[String, MClass]
77
78 # Return all class named `name`.
79 #
80 # If such a class does not exist, null is returned
81 # (instead of an empty array)
82 #
83 # Visibility or modules are not considered
84 fun get_mclasses_by_name(name: String): nullable Array[MClass]
85 do
86 return mclasses_by_name.get_or_null(name)
87 end
88
89 # Collections of properties grouped by their short name
90 private var mproperties_by_name = new MultiHashMap[String, MProperty]
91
92 # Return all properties named `name`.
93 #
94 # If such a property does not exist, null is returned
95 # (instead of an empty array)
96 #
97 # Visibility or modules are not considered
98 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
99 do
100 return mproperties_by_name.get_or_null(name)
101 end
102
103 # The only null type
104 var null_type = new MNullType(self)
105
106 # Build an ordered tree with from `concerns`
107 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
108 var seen = new HashSet[MConcern]
109 var res = new ConcernsTree
110
111 var todo = new Array[MConcern]
112 todo.add_all mconcerns
113
114 while not todo.is_empty do
115 var c = todo.pop
116 if seen.has(c) then continue
117 var pc = c.parent_concern
118 if pc == null then
119 res.add(null, c)
120 else
121 res.add(pc, c)
122 todo.add(pc)
123 end
124 seen.add(c)
125 end
126
127 return res
128 end
129 end
130
131 # An OrderedTree bound to MEntity.
132 #
133 # We introduce a new class so it can be easily refined by tools working
134 # with a Model.
135 class MEntityTree
136 super OrderedTree[MEntity]
137 end
138
139 # A MEntityTree borned to MConcern.
140 #
141 # TODO remove when nitdoc is fully merged with model_collect
142 class ConcernsTree
143 super OrderedTree[MConcern]
144 end
145
146 redef class MModule
147 # All the classes introduced in the module
148 var intro_mclasses = new Array[MClass]
149
150 # All the class definitions of the module
151 # (introduction and refinement)
152 var mclassdefs = new Array[MClassDef]
153
154 # Does the current module has a given class `mclass`?
155 # Return true if the mmodule introduces, refines or imports a class.
156 # Visibility is not considered.
157 fun has_mclass(mclass: MClass): Bool
158 do
159 return self.in_importation <= mclass.intro_mmodule
160 end
161
162 # Full hierarchy of introduced ans imported classes.
163 #
164 # Create a new hierarchy got by flattening the classes for the module
165 # and its imported modules.
166 # Visibility is not considered.
167 #
168 # Note: this function is expensive and is usually used for the main
169 # module of a program only. Do not use it to do you own subtype
170 # functions.
171 fun flatten_mclass_hierarchy: POSet[MClass]
172 do
173 var res = self.flatten_mclass_hierarchy_cache
174 if res != null then return res
175 res = new POSet[MClass]
176 for m in self.in_importation.greaters do
177 for cd in m.mclassdefs do
178 var c = cd.mclass
179 res.add_node(c)
180 for s in cd.supertypes do
181 res.add_edge(c, s.mclass)
182 end
183 end
184 end
185 self.flatten_mclass_hierarchy_cache = res
186 return res
187 end
188
189 # Sort a given array of classes using the linearization order of the module
190 # The most general is first, the most specific is last
191 fun linearize_mclasses(mclasses: Array[MClass])
192 do
193 self.flatten_mclass_hierarchy.sort(mclasses)
194 end
195
196 # Sort a given array of class definitions using the linearization order of the module
197 # the refinement link is stronger than the specialisation link
198 # The most general is first, the most specific is last
199 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
200 do
201 var sorter = new MClassDefSorter(self)
202 sorter.sort(mclassdefs)
203 end
204
205 # Sort a given array of property definitions using the linearization order of the module
206 # the refinement link is stronger than the specialisation link
207 # The most general is first, the most specific is last
208 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
209 do
210 var sorter = new MPropDefSorter(self)
211 sorter.sort(mpropdefs)
212 end
213
214 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
215
216 # The primitive type `Object`, the root of the class hierarchy
217 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
218
219 # The type `Pointer`, super class to all extern classes
220 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
221
222 # The primitive type `Bool`
223 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
224
225 # The primitive type `Int`
226 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
227
228 # The primitive type `Byte`
229 var byte_type: MClassType = self.get_primitive_class("Byte").mclass_type is lazy
230
231 # The primitive type `Int8`
232 var int8_type: MClassType = self.get_primitive_class("Int8").mclass_type is lazy
233
234 # The primitive type `Int16`
235 var int16_type: MClassType = self.get_primitive_class("Int16").mclass_type is lazy
236
237 # The primitive type `UInt16`
238 var uint16_type: MClassType = self.get_primitive_class("UInt16").mclass_type is lazy
239
240 # The primitive type `Int32`
241 var int32_type: MClassType = self.get_primitive_class("Int32").mclass_type is lazy
242
243 # The primitive type `UInt32`
244 var uint32_type: MClassType = self.get_primitive_class("UInt32").mclass_type is lazy
245
246 # The primitive type `Char`
247 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
248
249 # The primitive type `Float`
250 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
251
252 # The primitive type `String`
253 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
254
255 # The primitive type `NativeString`
256 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
257
258 # A primitive type of `Array`
259 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
260
261 # The primitive class `Array`
262 var array_class: MClass = self.get_primitive_class("Array") is lazy
263
264 # A primitive type of `NativeArray`
265 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
266
267 # The primitive class `NativeArray`
268 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
269
270 # The primitive type `Sys`, the main type of the program, if any
271 fun sys_type: nullable MClassType
272 do
273 var clas = self.model.get_mclasses_by_name("Sys")
274 if clas == null then return null
275 return get_primitive_class("Sys").mclass_type
276 end
277
278 # The primitive type `Finalizable`
279 # Used to tag classes that need to be finalized.
280 fun finalizable_type: nullable MClassType
281 do
282 var clas = self.model.get_mclasses_by_name("Finalizable")
283 if clas == null then return null
284 return get_primitive_class("Finalizable").mclass_type
285 end
286
287 # Force to get the primitive class named `name` or abort
288 fun get_primitive_class(name: String): MClass
289 do
290 var cla = self.model.get_mclasses_by_name(name)
291 # Filter classes by introducing module
292 if cla != null then cla = [for c in cla do if self.in_importation <= c.intro_mmodule then c]
293 if cla == null or cla.is_empty then
294 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
295 # Bool is injected because it is needed by engine to code the result
296 # of the implicit casts.
297 var loc = model.no_location
298 var c = new MClass(self, name, loc, null, enum_kind, public_visibility)
299 var cladef = new MClassDef(self, c.mclass_type, loc)
300 cladef.set_supertypes([object_type])
301 cladef.add_in_hierarchy
302 return c
303 end
304 print("Fatal Error: no primitive class {name} in {self}")
305 exit(1)
306 abort
307 end
308 if cla.length != 1 then
309 var msg = "Fatal Error: more than one primitive class {name} in {self}:"
310 for c in cla do msg += " {c.full_name}"
311 print msg
312 #exit(1)
313 end
314 return cla.first
315 end
316
317 # Try to get the primitive method named `name` on the type `recv`
318 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
319 do
320 var props = self.model.get_mproperties_by_name(name)
321 if props == null then return null
322 var res: nullable MMethod = null
323 var recvtype = recv.intro.bound_mtype
324 for mprop in props do
325 assert mprop isa MMethod
326 if not recvtype.has_mproperty(self, mprop) then continue
327 if res == null then
328 res = mprop
329 else if res != mprop then
330 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
331 abort
332 end
333 end
334 return res
335 end
336 end
337
338 private class MClassDefSorter
339 super Comparator
340 redef type COMPARED: MClassDef
341 var mmodule: MModule
342 redef fun compare(a, b)
343 do
344 var ca = a.mclass
345 var cb = b.mclass
346 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
347 return mmodule.model.mclassdef_hierarchy.compare(a, b)
348 end
349 end
350
351 private class MPropDefSorter
352 super Comparator
353 redef type COMPARED: MPropDef
354 var mmodule: MModule
355 redef fun compare(pa, pb)
356 do
357 var a = pa.mclassdef
358 var b = pb.mclassdef
359 var ca = a.mclass
360 var cb = b.mclass
361 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
362 return mmodule.model.mclassdef_hierarchy.compare(a, b)
363 end
364 end
365
366 # A named class
367 #
368 # `MClass` are global to the model; it means that a `MClass` is not bound to a
369 # specific `MModule`.
370 #
371 # This characteristic helps the reasoning about classes in a program since a
372 # single `MClass` object always denote the same class.
373 #
374 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
375 # These do not really have properties nor belong to a hierarchy since the property and the
376 # hierarchy of a class depends of the refinement in the modules.
377 #
378 # Most services on classes require the precision of a module, and no one can asks what are
379 # the super-classes of a class nor what are properties of a class without precising what is
380 # the module considered.
381 #
382 # For instance, during the typing of a source-file, the module considered is the module of the file.
383 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
384 # *is the method `foo` exists in the class `Bar` in the current module?*
385 #
386 # During some global analysis, the module considered may be the main module of the program.
387 class MClass
388 super MEntity
389
390 # The module that introduce the class
391 # While classes are not bound to a specific module,
392 # the introducing module is used for naming an visibility
393 var intro_mmodule: MModule
394
395 # The short name of the class
396 # In Nit, the name of a class cannot evolve in refinements
397 redef var name
398
399 redef var location
400
401 # The canonical name of the class
402 #
403 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
404 # Example: `"owner::module::MyClass"`
405 redef var full_name is lazy do
406 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
407 end
408
409 redef var c_name is lazy do
410 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
411 end
412
413 # The number of generic formal parameters
414 # 0 if the class is not generic
415 var arity: Int is noinit
416
417 # Each generic formal parameters in order.
418 # is empty if the class is not generic
419 var mparameters = new Array[MParameterType]
420
421 # A string version of the signature a generic class.
422 #
423 # eg. `Map[K: nullable Object, V: nullable Object]`
424 #
425 # If the class in non generic the name is just given.
426 #
427 # eg. `Object`
428 fun signature_to_s: String
429 do
430 if arity == 0 then return name
431 var res = new FlatBuffer
432 res.append name
433 res.append "["
434 for i in [0..arity[ do
435 if i > 0 then res.append ", "
436 res.append mparameters[i].name
437 res.append ": "
438 res.append intro.bound_mtype.arguments[i].to_s
439 end
440 res.append "]"
441 return res.to_s
442 end
443
444 # Initialize `mparameters` from their names.
445 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
446 autoinit
447 do
448 if parameter_names == null then
449 self.arity = 0
450 else
451 self.arity = parameter_names.length
452 end
453
454 # Create the formal parameter types
455 if arity > 0 then
456 assert parameter_names != null
457 var mparametertypes = new Array[MParameterType]
458 for i in [0..arity[ do
459 var mparametertype = new MParameterType(self, i, parameter_names[i])
460 mparametertypes.add(mparametertype)
461 end
462 self.mparameters = mparametertypes
463 var mclass_type = new MGenericType(self, mparametertypes)
464 self.mclass_type = mclass_type
465 self.get_mtype_cache[mparametertypes] = mclass_type
466 else
467 self.mclass_type = new MClassType(self)
468 end
469 end
470
471 # The kind of the class (interface, abstract class, etc.)
472 # In Nit, the kind of a class cannot evolve in refinements
473 var kind: MClassKind
474
475 # The visibility of the class
476 # In Nit, the visibility of a class cannot evolve in refinements
477 redef var visibility
478
479 init
480 do
481 intro_mmodule.intro_mclasses.add(self)
482 var model = intro_mmodule.model
483 model.mclasses_by_name.add_one(name, self)
484 model.mclasses.add(self)
485 end
486
487 redef fun model do return intro_mmodule.model
488
489 # All class definitions (introduction and refinements)
490 var mclassdefs = new Array[MClassDef]
491
492 # Alias for `name`
493 redef fun to_s do return self.name
494
495 # The definition that introduces the class.
496 #
497 # Warning: such a definition may not exist in the early life of the object.
498 # In this case, the method will abort.
499 #
500 # Use `try_intro` instead
501 var intro: MClassDef is noinit
502
503 # The definition that introduces the class or null if not yet known.
504 #
505 # See `intro`
506 fun try_intro: nullable MClassDef do
507 if isset _intro then return _intro else return null
508 end
509
510 # Return the class `self` in the class hierarchy of the module `mmodule`.
511 #
512 # SEE: `MModule::flatten_mclass_hierarchy`
513 # REQUIRE: `mmodule.has_mclass(self)`
514 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
515 do
516 return mmodule.flatten_mclass_hierarchy[self]
517 end
518
519 # The principal static type of the class.
520 #
521 # For non-generic class, mclass_type is the only `MClassType` based
522 # on self.
523 #
524 # For a generic class, the arguments are the formal parameters.
525 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
526 # If you want Array[Object] the see `MClassDef::bound_mtype`
527 #
528 # For generic classes, the mclass_type is also the way to get a formal
529 # generic parameter type.
530 #
531 # To get other types based on a generic class, see `get_mtype`.
532 #
533 # ENSURE: `mclass_type.mclass == self`
534 var mclass_type: MClassType is noinit
535
536 # Return a generic type based on the class
537 # Is the class is not generic, then the result is `mclass_type`
538 #
539 # REQUIRE: `mtype_arguments.length == self.arity`
540 fun get_mtype(mtype_arguments: Array[MType]): MClassType
541 do
542 assert mtype_arguments.length == self.arity
543 if self.arity == 0 then return self.mclass_type
544 var res = get_mtype_cache.get_or_null(mtype_arguments)
545 if res != null then return res
546 res = new MGenericType(self, mtype_arguments)
547 self.get_mtype_cache[mtype_arguments.to_a] = res
548 return res
549 end
550
551 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
552
553 # Is there a `new` factory to allow the pseudo instantiation?
554 var has_new_factory = false is writable
555
556 # Is `self` a standard or abstract class kind?
557 var is_class: Bool is lazy do return kind == concrete_kind or kind == abstract_kind
558
559 # Is `self` an interface kind?
560 var is_interface: Bool is lazy do return kind == interface_kind
561
562 # Is `self` an enum kind?
563 var is_enum: Bool is lazy do return kind == enum_kind
564
565 # Is `self` and abstract class?
566 var is_abstract: Bool is lazy do return kind == abstract_kind
567
568 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
569 end
570
571
572 # A definition (an introduction or a refinement) of a class in a module
573 #
574 # A `MClassDef` is associated with an explicit (or almost) definition of a
575 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
576 # a specific class and a specific module, and contains declarations like super-classes
577 # or properties.
578 #
579 # It is the class definitions that are the backbone of most things in the model:
580 # ClassDefs are defined with regard with other classdefs.
581 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
582 #
583 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
584 class MClassDef
585 super MEntity
586
587 # The module where the definition is
588 var mmodule: MModule
589
590 # The associated `MClass`
591 var mclass: MClass is noinit
592
593 # The bounded type associated to the mclassdef
594 #
595 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
596 # are the same type.
597 #
598 # Example:
599 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
600 # If you want Array[E], then see `mclass.mclass_type`
601 #
602 # ENSURE: `bound_mtype.mclass == self.mclass`
603 var bound_mtype: MClassType
604
605 redef var location: Location
606
607 redef fun visibility do return mclass.visibility
608
609 # Internal name combining the module and the class
610 # Example: "mymodule$MyClass"
611 redef var to_s is noinit
612
613 init
614 do
615 self.mclass = bound_mtype.mclass
616 mmodule.mclassdefs.add(self)
617 mclass.mclassdefs.add(self)
618 if mclass.intro_mmodule == mmodule then
619 assert not isset mclass._intro
620 mclass.intro = self
621 end
622 self.to_s = "{mmodule}${mclass}"
623 end
624
625 # Actually the name of the `mclass`
626 redef fun name do return mclass.name
627
628 # The module and class name separated by a '$'.
629 #
630 # The short-name of the class is used for introduction.
631 # Example: "my_module$MyClass"
632 #
633 # The full-name of the class is used for refinement.
634 # Example: "my_module$intro_module::MyClass"
635 redef var full_name is lazy do
636 if is_intro then
637 # public gives 'p$A'
638 # private gives 'p::m$A'
639 return "{mmodule.namespace_for(mclass.visibility)}${mclass.name}"
640 else if mclass.intro_mmodule.mpackage != mmodule.mpackage then
641 # public gives 'q::n$p::A'
642 # private gives 'q::n$p::m::A'
643 return "{mmodule.full_name}${mclass.full_name}"
644 else if mclass.visibility > private_visibility then
645 # public gives 'p::n$A'
646 return "{mmodule.full_name}${mclass.name}"
647 else
648 # private gives 'p::n$::m::A' (redundant p is omitted)
649 return "{mmodule.full_name}$::{mclass.intro_mmodule.name}::{mclass.name}"
650 end
651 end
652
653 redef var c_name is lazy do
654 if is_intro then
655 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
656 else if mclass.intro_mmodule.mpackage == mmodule.mpackage and mclass.visibility > private_visibility then
657 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
658 else
659 return "{mmodule.c_name}___{mclass.c_name}"
660 end
661 end
662
663 redef fun model do return mmodule.model
664
665 # All declared super-types
666 # FIXME: quite ugly but not better idea yet
667 var supertypes = new Array[MClassType]
668
669 # Register some super-types for the class (ie "super SomeType")
670 #
671 # The hierarchy must not already be set
672 # REQUIRE: `self.in_hierarchy == null`
673 fun set_supertypes(supertypes: Array[MClassType])
674 do
675 assert unique_invocation: self.in_hierarchy == null
676 var mmodule = self.mmodule
677 var model = mmodule.model
678 var mtype = self.bound_mtype
679
680 for supertype in supertypes do
681 self.supertypes.add(supertype)
682
683 # Register in full_type_specialization_hierarchy
684 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
685 # Register in intro_type_specialization_hierarchy
686 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
687 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
688 end
689 end
690
691 end
692
693 # Collect the super-types (set by set_supertypes) to build the hierarchy
694 #
695 # This function can only invoked once by class
696 # REQUIRE: `self.in_hierarchy == null`
697 # ENSURE: `self.in_hierarchy != null`
698 fun add_in_hierarchy
699 do
700 assert unique_invocation: self.in_hierarchy == null
701 var model = mmodule.model
702 var res = model.mclassdef_hierarchy.add_node(self)
703 self.in_hierarchy = res
704 var mtype = self.bound_mtype
705
706 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
707 # The simpliest way is to attach it to collect_mclassdefs
708 for mclassdef in mtype.collect_mclassdefs(mmodule) do
709 res.poset.add_edge(self, mclassdef)
710 end
711 end
712
713 # The view of the class definition in `mclassdef_hierarchy`
714 var in_hierarchy: nullable POSetElement[MClassDef] = null
715
716 # Is the definition the one that introduced `mclass`?
717 fun is_intro: Bool do return isset mclass._intro and mclass.intro == self
718
719 # All properties introduced by the classdef
720 var intro_mproperties = new Array[MProperty]
721
722 # All property definitions in the class (introductions and redefinitions)
723 var mpropdefs = new Array[MPropDef]
724 end
725
726 # A global static type
727 #
728 # MType are global to the model; it means that a `MType` is not bound to a
729 # specific `MModule`.
730 # This characteristic helps the reasoning about static types in a program
731 # since a single `MType` object always denote the same type.
732 #
733 # However, because a `MType` is global, it does not really have properties
734 # nor have subtypes to a hierarchy since the property and the class hierarchy
735 # depends of a module.
736 # Moreover, virtual types an formal generic parameter types also depends on
737 # a receiver to have sense.
738 #
739 # Therefore, most method of the types require a module and an anchor.
740 # The module is used to know what are the classes and the specialization
741 # links.
742 # The anchor is used to know what is the bound of the virtual types and formal
743 # generic parameter types.
744 #
745 # MType are not directly usable to get properties. See the `anchor_to` method
746 # and the `MClassType` class.
747 #
748 # FIXME: the order of the parameters is not the best. We mus pick on from:
749 # * foo(mmodule, anchor, othertype)
750 # * foo(othertype, anchor, mmodule)
751 # * foo(anchor, mmodule, othertype)
752 # * foo(othertype, mmodule, anchor)
753 abstract class MType
754 super MEntity
755
756 redef fun name do return to_s
757
758 # Return true if `self` is an subtype of `sup`.
759 # The typing is done using the standard typing policy of Nit.
760 #
761 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
762 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
763 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
764 do
765 var sub = self
766 if sub == sup then return true
767
768 #print "1.is {sub} a {sup}? ===="
769
770 if anchor == null then
771 assert not sub.need_anchor
772 assert not sup.need_anchor
773 else
774 # First, resolve the formal types to the simplest equivalent forms in the receiver
775 assert sub.can_resolve_for(anchor, null, mmodule)
776 sub = sub.lookup_fixed(mmodule, anchor)
777 assert sup.can_resolve_for(anchor, null, mmodule)
778 sup = sup.lookup_fixed(mmodule, anchor)
779 end
780
781 # Does `sup` accept null or not?
782 # Discard the nullable marker if it exists
783 var sup_accept_null = false
784 if sup isa MNullableType then
785 sup_accept_null = true
786 sup = sup.mtype
787 else if sup isa MNotNullType then
788 sup = sup.mtype
789 else if sup isa MNullType then
790 sup_accept_null = true
791 end
792
793 # Can `sub` provide null or not?
794 # Thus we can match with `sup_accept_null`
795 # Also discard the nullable marker if it exists
796 var sub_reject_null = false
797 if sub isa MNullableType then
798 if not sup_accept_null then return false
799 sub = sub.mtype
800 else if sub isa MNotNullType then
801 sub_reject_null = true
802 sub = sub.mtype
803 else if sub isa MNullType then
804 return sup_accept_null
805 end
806 # Now the case of direct null and nullable is over.
807
808 # If `sub` is a formal type, then it is accepted if its bound is accepted
809 while sub isa MFormalType do
810 #print "3.is {sub} a {sup}?"
811
812 # A unfixed formal type can only accept itself
813 if sub == sup then return true
814
815 assert anchor != null
816 sub = sub.lookup_bound(mmodule, anchor)
817 if sub_reject_null then sub = sub.as_notnull
818
819 #print "3.is {sub} a {sup}?"
820
821 # Manage the second layer of null/nullable
822 if sub isa MNullableType then
823 if not sup_accept_null and not sub_reject_null then return false
824 sub = sub.mtype
825 else if sub isa MNotNullType then
826 sub_reject_null = true
827 sub = sub.mtype
828 else if sub isa MNullType then
829 return sup_accept_null
830 end
831 end
832 #print "4.is {sub} a {sup}? <- no more resolution"
833
834 if sub isa MBottomType then
835 return true
836 end
837
838 assert sub isa MClassType else print "{sub} <? {sub}" # It is the only remaining type
839
840 # Handle sup-type when the sub-type is class-based (other cases must have be identified before).
841 if sup isa MFormalType or sup isa MNullType or sup isa MBottomType then
842 # These types are not super-types of Class-based types.
843 return false
844 end
845
846 assert sup isa MClassType else print "got {sup} {sub.inspect}" # It is the only remaining type
847
848 # Now both are MClassType, we need to dig
849
850 if sub == sup then return true
851
852 if anchor == null then anchor = sub # UGLY: any anchor will work
853 var resolved_sub = sub.anchor_to(mmodule, anchor)
854 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
855 if res == false then return false
856 if not sup isa MGenericType then return true
857 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
858 assert sub2.mclass == sup.mclass
859 for i in [0..sup.mclass.arity[ do
860 var sub_arg = sub2.arguments[i]
861 var sup_arg = sup.arguments[i]
862 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
863 if res == false then return false
864 end
865 return true
866 end
867
868 # The base class type on which self is based
869 #
870 # This base type is used to get property (an internally to perform
871 # unsafe type comparison).
872 #
873 # Beware: some types (like null) are not based on a class thus this
874 # method will crash
875 #
876 # Basically, this function transform the virtual types and parameter
877 # types to their bounds.
878 #
879 # Example
880 #
881 # class A end
882 # class B super A end
883 # class X end
884 # class Y super X end
885 # class G[T: A]
886 # type U: X
887 # end
888 # class H
889 # super G[B]
890 # redef type U: Y
891 # end
892 #
893 # Map[T,U] anchor_to H #-> Map[B,Y]
894 #
895 # Explanation of the example:
896 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
897 # because "redef type U: Y". Therefore, Map[T, U] is bound to
898 # Map[B, Y]
899 #
900 # ENSURE: `not self.need_anchor implies result == self`
901 # ENSURE: `not result.need_anchor`
902 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
903 do
904 if not need_anchor then return self
905 assert not anchor.need_anchor
906 # Just resolve to the anchor and clear all the virtual types
907 var res = self.resolve_for(anchor, null, mmodule, true)
908 assert not res.need_anchor
909 return res
910 end
911
912 # Does `self` contain a virtual type or a formal generic parameter type?
913 # In order to remove those types, you usually want to use `anchor_to`.
914 fun need_anchor: Bool do return true
915
916 # Return the supertype when adapted to a class.
917 #
918 # In Nit, for each super-class of a type, there is a equivalent super-type.
919 #
920 # Example:
921 #
922 # ~~~nitish
923 # class G[T, U] end
924 # class H[V] super G[V, Bool] end
925 #
926 # H[Int] supertype_to G #-> G[Int, Bool]
927 # ~~~
928 #
929 # REQUIRE: `super_mclass` is a super-class of `self`
930 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
931 # ENSURE: `result.mclass = super_mclass`
932 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
933 do
934 if super_mclass.arity == 0 then return super_mclass.mclass_type
935 if self isa MClassType and self.mclass == super_mclass then return self
936 var resolved_self
937 if self.need_anchor then
938 assert anchor != null
939 resolved_self = self.anchor_to(mmodule, anchor)
940 else
941 resolved_self = self
942 end
943 var supertypes = resolved_self.collect_mtypes(mmodule)
944 for supertype in supertypes do
945 if supertype.mclass == super_mclass then
946 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
947 return supertype.resolve_for(self, anchor, mmodule, false)
948 end
949 end
950 abort
951 end
952
953 # Replace formals generic types in self with resolved values in `mtype`
954 # If `cleanup_virtual` is true, then virtual types are also replaced
955 # with their bounds.
956 #
957 # This function returns self if `need_anchor` is false.
958 #
959 # ## Example 1
960 #
961 # ~~~
962 # class G[E] end
963 # class H[F] super G[F] end
964 # class X[Z] end
965 # ~~~
966 #
967 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
968 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
969 #
970 # Explanation of the example:
971 # * Array[E].need_anchor is true because there is a formal generic parameter type E
972 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
973 # * Since "H[F] super G[F]", E is in fact F for H
974 # * More specifically, in H[Int], E is Int
975 # * So, in H[Int], Array[E] is Array[Int]
976 #
977 # This function is mainly used to inherit a signature.
978 # Because, unlike `anchor_to`, we do not want a full resolution of
979 # a type but only an adapted version of it.
980 #
981 # ## Example 2
982 #
983 # ~~~
984 # class A[E]
985 # fun foo(e:E):E is abstract
986 # end
987 # class B super A[Int] end
988 # ~~~
989 #
990 # The signature on foo is (e: E): E
991 # If we resolve the signature for B, we get (e:Int):Int
992 #
993 # ## Example 3
994 #
995 # ~~~nitish
996 # class A[E]
997 # fun foo(e:E):E is abstract
998 # end
999 # class C[F]
1000 # var a: A[Array[F]]
1001 # fun bar do a.foo(x) # <- x is here
1002 # end
1003 # ~~~
1004 #
1005 # The first question is: is foo available on `a`?
1006 #
1007 # The static type of a is `A[Array[F]]`, that is an open type.
1008 # in order to find a method `foo`, whe must look at a resolved type.
1009 #
1010 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
1011 #
1012 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
1013 #
1014 # The next question is: what is the accepted types for `x`?
1015 #
1016 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
1017 #
1018 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
1019 #
1020 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
1021 #
1022 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
1023 # two function instead of one seems also to be a bad idea.
1024 #
1025 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
1026 # ENSURE: `not self.need_anchor implies result == self`
1027 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
1028
1029 # Resolve formal type to its verbatim bound.
1030 # If the type is not formal, just return self
1031 #
1032 # The result is returned exactly as declared in the "type" property (verbatim).
1033 # So it could be another formal type.
1034 #
1035 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1036 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
1037
1038 # Resolve the formal type to its simplest equivalent form.
1039 #
1040 # Formal types are either free or fixed.
1041 # When it is fixed, it means that it is equivalent with a simpler type.
1042 # When a formal type is free, it means that it is only equivalent with itself.
1043 # This method return the most simple equivalent type of `self`.
1044 #
1045 # This method is mainly used for subtype test in order to sanely compare fixed.
1046 #
1047 # By default, return self.
1048 # See the redefinitions for specific behavior in each kind of type.
1049 #
1050 # In case of conflicts or inconsistencies in the model, the method returns a `MBottomType`.
1051 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
1052
1053 # Can the type be resolved?
1054 #
1055 # In order to resolve open types, the formal types must make sence.
1056 #
1057 # ## Example
1058 #
1059 # class A[E]
1060 # end
1061 # class B[F]
1062 # end
1063 #
1064 # ~~~nitish
1065 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
1066 #
1067 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
1068 #
1069 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
1070 # # B[E] is a red hearing only the E is important,
1071 # # E make sense in A
1072 # ~~~
1073 #
1074 # REQUIRE: `anchor != null implies not anchor.need_anchor`
1075 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
1076 # ENSURE: `not self.need_anchor implies result == true`
1077 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
1078
1079 # Return the nullable version of the type
1080 # If the type is already nullable then self is returned
1081 fun as_nullable: MType
1082 do
1083 var res = self.as_nullable_cache
1084 if res != null then return res
1085 res = new MNullableType(self)
1086 self.as_nullable_cache = res
1087 return res
1088 end
1089
1090 # Remove the base type of a decorated (proxy) type.
1091 # Is the type is not decorated, then self is returned.
1092 #
1093 # Most of the time it is used to return the not nullable version of a nullable type.
1094 # In this case, this just remove the `nullable` notation, but the result can still contains null.
1095 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
1096 # If you really want to exclude the `null` value, then use `as_notnull`
1097 fun undecorate: MType
1098 do
1099 return self
1100 end
1101
1102 # Returns the not null version of the type.
1103 # That is `self` minus the `null` value.
1104 #
1105 # For most types, this return `self`.
1106 # For formal types, this returns a special `MNotNullType`
1107 fun as_notnull: MType do return self
1108
1109 private var as_nullable_cache: nullable MType = null
1110
1111
1112 # The depth of the type seen as a tree.
1113 #
1114 # * A -> 1
1115 # * G[A] -> 2
1116 # * H[A, B] -> 2
1117 # * H[G[A], B] -> 3
1118 #
1119 # Formal types have a depth of 1.
1120 fun depth: Int
1121 do
1122 return 1
1123 end
1124
1125 # The length of the type seen as a tree.
1126 #
1127 # * A -> 1
1128 # * G[A] -> 2
1129 # * H[A, B] -> 3
1130 # * H[G[A], B] -> 4
1131 #
1132 # Formal types have a length of 1.
1133 fun length: Int
1134 do
1135 return 1
1136 end
1137
1138 # Compute all the classdefs inherited/imported.
1139 # The returned set contains:
1140 # * the class definitions from `mmodule` and its imported modules
1141 # * the class definitions of this type and its super-types
1142 #
1143 # This function is used mainly internally.
1144 #
1145 # REQUIRE: `not self.need_anchor`
1146 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1147
1148 # Compute all the super-classes.
1149 # This function is used mainly internally.
1150 #
1151 # REQUIRE: `not self.need_anchor`
1152 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1153
1154 # Compute all the declared super-types.
1155 # Super-types are returned as declared in the classdefs (verbatim).
1156 # This function is used mainly internally.
1157 #
1158 # REQUIRE: `not self.need_anchor`
1159 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1160
1161 # Is the property in self for a given module
1162 # This method does not filter visibility or whatever
1163 #
1164 # REQUIRE: `not self.need_anchor`
1165 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1166 do
1167 assert not self.need_anchor
1168 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1169 end
1170 end
1171
1172 # A type based on a class.
1173 #
1174 # `MClassType` have properties (see `has_mproperty`).
1175 class MClassType
1176 super MType
1177
1178 # The associated class
1179 var mclass: MClass
1180
1181 redef fun model do return self.mclass.intro_mmodule.model
1182
1183 redef fun location do return mclass.location
1184
1185 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1186
1187 # The formal arguments of the type
1188 # ENSURE: `result.length == self.mclass.arity`
1189 var arguments = new Array[MType]
1190
1191 redef fun to_s do return mclass.to_s
1192
1193 redef fun full_name do return mclass.full_name
1194
1195 redef fun c_name do return mclass.c_name
1196
1197 redef fun need_anchor do return false
1198
1199 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1200 do
1201 return super.as(MClassType)
1202 end
1203
1204 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1205
1206 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1207
1208 redef fun collect_mclassdefs(mmodule)
1209 do
1210 assert not self.need_anchor
1211 var cache = self.collect_mclassdefs_cache
1212 if not cache.has_key(mmodule) then
1213 self.collect_things(mmodule)
1214 end
1215 return cache[mmodule]
1216 end
1217
1218 redef fun collect_mclasses(mmodule)
1219 do
1220 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1221 assert not self.need_anchor
1222 var cache = self.collect_mclasses_cache
1223 if not cache.has_key(mmodule) then
1224 self.collect_things(mmodule)
1225 end
1226 var res = cache[mmodule]
1227 collect_mclasses_last_module = mmodule
1228 collect_mclasses_last_module_cache = res
1229 return res
1230 end
1231
1232 private var collect_mclasses_last_module: nullable MModule = null
1233 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1234
1235 redef fun collect_mtypes(mmodule)
1236 do
1237 assert not self.need_anchor
1238 var cache = self.collect_mtypes_cache
1239 if not cache.has_key(mmodule) then
1240 self.collect_things(mmodule)
1241 end
1242 return cache[mmodule]
1243 end
1244
1245 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1246 private fun collect_things(mmodule: MModule)
1247 do
1248 var res = new HashSet[MClassDef]
1249 var seen = new HashSet[MClass]
1250 var types = new HashSet[MClassType]
1251 seen.add(self.mclass)
1252 var todo = [self.mclass]
1253 while not todo.is_empty do
1254 var mclass = todo.pop
1255 #print "process {mclass}"
1256 for mclassdef in mclass.mclassdefs do
1257 if not mmodule.in_importation <= mclassdef.mmodule then continue
1258 #print " process {mclassdef}"
1259 res.add(mclassdef)
1260 for supertype in mclassdef.supertypes do
1261 types.add(supertype)
1262 var superclass = supertype.mclass
1263 if seen.has(superclass) then continue
1264 #print " add {superclass}"
1265 seen.add(superclass)
1266 todo.add(superclass)
1267 end
1268 end
1269 end
1270 collect_mclassdefs_cache[mmodule] = res
1271 collect_mclasses_cache[mmodule] = seen
1272 collect_mtypes_cache[mmodule] = types
1273 end
1274
1275 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1276 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1277 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1278
1279 end
1280
1281 # A type based on a generic class.
1282 # A generic type a just a class with additional formal generic arguments.
1283 class MGenericType
1284 super MClassType
1285
1286 redef var arguments
1287
1288 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1289
1290 init
1291 do
1292 assert self.mclass.arity == arguments.length
1293
1294 self.need_anchor = false
1295 for t in arguments do
1296 if t.need_anchor then
1297 self.need_anchor = true
1298 break
1299 end
1300 end
1301
1302 self.to_s = "{mclass}[{arguments.join(", ")}]"
1303 end
1304
1305 # The short-name of the class, then the full-name of each type arguments within brackets.
1306 # Example: `"Map[String, List[Int]]"`
1307 redef var to_s is noinit
1308
1309 # The full-name of the class, then the full-name of each type arguments within brackets.
1310 # Example: `"core::Map[core::String, core::List[core::Int]]"`
1311 redef var full_name is lazy do
1312 var args = new Array[String]
1313 for t in arguments do
1314 args.add t.full_name
1315 end
1316 return "{mclass.full_name}[{args.join(", ")}]"
1317 end
1318
1319 redef var c_name is lazy do
1320 var res = mclass.c_name
1321 # Note: because the arity is known, a prefix notation is enough
1322 for t in arguments do
1323 res += "__"
1324 res += t.c_name
1325 end
1326 return res.to_s
1327 end
1328
1329 redef var need_anchor is noinit
1330
1331 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1332 do
1333 if not need_anchor then return self
1334 assert can_resolve_for(mtype, anchor, mmodule)
1335 var types = new Array[MType]
1336 for t in arguments do
1337 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1338 end
1339 return mclass.get_mtype(types)
1340 end
1341
1342 redef fun can_resolve_for(mtype, anchor, mmodule)
1343 do
1344 if not need_anchor then return true
1345 for t in arguments do
1346 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1347 end
1348 return true
1349 end
1350
1351
1352 redef fun depth
1353 do
1354 var dmax = 0
1355 for a in self.arguments do
1356 var d = a.depth
1357 if d > dmax then dmax = d
1358 end
1359 return dmax + 1
1360 end
1361
1362 redef fun length
1363 do
1364 var res = 1
1365 for a in self.arguments do
1366 res += a.length
1367 end
1368 return res
1369 end
1370 end
1371
1372 # A formal type (either virtual of parametric).
1373 #
1374 # The main issue with formal types is that they offer very little information on their own
1375 # and need a context (anchor and mmodule) to be useful.
1376 abstract class MFormalType
1377 super MType
1378
1379 redef var as_notnull = new MNotNullType(self) is lazy
1380 end
1381
1382 # A virtual formal type.
1383 class MVirtualType
1384 super MFormalType
1385
1386 # The property associated with the type.
1387 # Its the definitions of this property that determine the bound or the virtual type.
1388 var mproperty: MVirtualTypeProp
1389
1390 redef fun location do return mproperty.location
1391
1392 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1393
1394 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1395 do
1396 return lookup_single_definition(mmodule, resolved_receiver).bound or else new MBottomType(model)
1397 end
1398
1399 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1400 do
1401 assert not resolved_receiver.need_anchor
1402 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1403 if props.is_empty then
1404 abort
1405 else if props.length == 1 then
1406 return props.first
1407 end
1408 var types = new ArraySet[MType]
1409 var res = props.first
1410 for p in props do
1411 types.add(p.bound.as(not null))
1412 if not res.is_fixed then res = p
1413 end
1414 if types.length == 1 then
1415 return res
1416 end
1417 abort
1418 end
1419
1420 # A VT is fixed when:
1421 # * the VT is (re-)defined with the annotation `is fixed`
1422 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1423 # * the receiver is an enum class since there is no subtype possible
1424 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1425 do
1426 assert not resolved_receiver.need_anchor
1427 resolved_receiver = resolved_receiver.undecorate
1428 assert resolved_receiver isa MClassType # It is the only remaining type
1429
1430 var prop = lookup_single_definition(mmodule, resolved_receiver)
1431 var res = prop.bound
1432 if res == null then return new MBottomType(model)
1433
1434 # Recursively lookup the fixed result
1435 res = res.lookup_fixed(mmodule, resolved_receiver)
1436
1437 # 1. For a fixed VT, return the resolved bound
1438 if prop.is_fixed then return res
1439
1440 # 2. For a enum boud, return the bound
1441 if res isa MClassType and res.mclass.kind == enum_kind then return res
1442
1443 # 3. for a enum receiver return the bound
1444 if resolved_receiver.mclass.kind == enum_kind then return res
1445
1446 return self
1447 end
1448
1449 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1450 do
1451 if not cleanup_virtual then return self
1452 assert can_resolve_for(mtype, anchor, mmodule)
1453 # self is a virtual type declared (or inherited) in mtype
1454 # The point of the function it to get the bound of the virtual type that make sense for mtype
1455 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1456 #print "{class_name}: {self}/{mtype}/{anchor}?"
1457 var resolved_receiver
1458 if mtype.need_anchor then
1459 assert anchor != null
1460 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1461 else
1462 resolved_receiver = mtype
1463 end
1464 # Now, we can get the bound
1465 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1466 # The bound is exactly as declared in the "type" property, so we must resolve it again
1467 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1468
1469 return res
1470 end
1471
1472 redef fun can_resolve_for(mtype, anchor, mmodule)
1473 do
1474 if mtype.need_anchor then
1475 assert anchor != null
1476 mtype = mtype.anchor_to(mmodule, anchor)
1477 end
1478 return mtype.has_mproperty(mmodule, mproperty)
1479 end
1480
1481 redef fun to_s do return self.mproperty.to_s
1482
1483 redef fun full_name do return self.mproperty.full_name
1484
1485 redef fun c_name do return self.mproperty.c_name
1486 end
1487
1488 # The type associated to a formal parameter generic type of a class
1489 #
1490 # Each parameter type is associated to a specific class.
1491 # It means that all refinements of a same class "share" the parameter type,
1492 # but that a generic subclass has its own parameter types.
1493 #
1494 # However, in the sense of the meta-model, a parameter type of a class is
1495 # a valid type in a subclass. The "in the sense of the meta-model" is
1496 # important because, in the Nit language, the programmer cannot refers
1497 # directly to the parameter types of the super-classes.
1498 #
1499 # Example:
1500 #
1501 # class A[E]
1502 # fun e: E is abstract
1503 # end
1504 # class B[F]
1505 # super A[Array[F]]
1506 # end
1507 #
1508 # In the class definition B[F], `F` is a valid type but `E` is not.
1509 # However, `self.e` is a valid method call, and the signature of `e` is
1510 # declared `e: E`.
1511 #
1512 # Note that parameter types are shared among class refinements.
1513 # Therefore parameter only have an internal name (see `to_s` for details).
1514 class MParameterType
1515 super MFormalType
1516
1517 # The generic class where the parameter belong
1518 var mclass: MClass
1519
1520 redef fun model do return self.mclass.intro_mmodule.model
1521
1522 redef fun location do return mclass.location
1523
1524 # The position of the parameter (0 for the first parameter)
1525 # FIXME: is `position` a better name?
1526 var rank: Int
1527
1528 redef var name
1529
1530 redef fun to_s do return name
1531
1532 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1533
1534 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1535
1536 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1537 do
1538 assert not resolved_receiver.need_anchor
1539 resolved_receiver = resolved_receiver.undecorate
1540 assert resolved_receiver isa MClassType # It is the only remaining type
1541 var goalclass = self.mclass
1542 if resolved_receiver.mclass == goalclass then
1543 return resolved_receiver.arguments[self.rank]
1544 end
1545 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1546 for t in supertypes do
1547 if t.mclass == goalclass then
1548 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1549 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1550 var res = t.arguments[self.rank]
1551 return res
1552 end
1553 end
1554 abort
1555 end
1556
1557 # A PT is fixed when:
1558 # * Its bound is a enum class (see `enum_kind`).
1559 # The PT is just useless, but it is still a case.
1560 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1561 # so it is necessarily fixed in a `super` clause, either with a normal type
1562 # or with another PT.
1563 # See `resolve_for` for examples about related issues.
1564 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1565 do
1566 assert not resolved_receiver.need_anchor
1567 resolved_receiver = resolved_receiver.undecorate
1568 assert resolved_receiver isa MClassType # It is the only remaining type
1569 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1570 return res
1571 end
1572
1573 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1574 do
1575 assert can_resolve_for(mtype, anchor, mmodule)
1576 #print "{class_name}: {self}/{mtype}/{anchor}?"
1577
1578 if mtype isa MGenericType and mtype.mclass == self.mclass then
1579 var res = mtype.arguments[self.rank]
1580 if anchor != null and res.need_anchor then
1581 # Maybe the result can be resolved more if are bound to a final class
1582 var r2 = res.anchor_to(mmodule, anchor)
1583 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1584 end
1585 return res
1586 end
1587
1588 # self is a parameter type of mtype (or of a super-class of mtype)
1589 # The point of the function it to get the bound of the virtual type that make sense for mtype
1590 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1591 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1592 var resolved_receiver
1593 if mtype.need_anchor then
1594 assert anchor != null
1595 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1596 else
1597 resolved_receiver = mtype
1598 end
1599 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1600 if resolved_receiver isa MParameterType then
1601 assert anchor != null
1602 assert resolved_receiver.mclass == anchor.mclass
1603 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1604 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1605 end
1606 assert resolved_receiver isa MClassType # It is the only remaining type
1607
1608 # Eh! The parameter is in the current class.
1609 # So we return the corresponding argument, no mater what!
1610 if resolved_receiver.mclass == self.mclass then
1611 var res = resolved_receiver.arguments[self.rank]
1612 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1613 return res
1614 end
1615
1616 if resolved_receiver.need_anchor then
1617 assert anchor != null
1618 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1619 end
1620 # Now, we can get the bound
1621 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1622 # The bound is exactly as declared in the "type" property, so we must resolve it again
1623 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1624
1625 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1626
1627 return res
1628 end
1629
1630 redef fun can_resolve_for(mtype, anchor, mmodule)
1631 do
1632 if mtype.need_anchor then
1633 assert anchor != null
1634 mtype = mtype.anchor_to(mmodule, anchor)
1635 end
1636 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1637 end
1638 end
1639
1640 # A type that decorates another type.
1641 #
1642 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1643 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1644 abstract class MProxyType
1645 super MType
1646 # The base type
1647 var mtype: MType
1648
1649 redef fun location do return mtype.location
1650
1651 redef fun model do return self.mtype.model
1652 redef fun need_anchor do return mtype.need_anchor
1653 redef fun as_nullable do return mtype.as_nullable
1654 redef fun as_notnull do return mtype.as_notnull
1655 redef fun undecorate do return mtype.undecorate
1656 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1657 do
1658 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1659 return res
1660 end
1661
1662 redef fun can_resolve_for(mtype, anchor, mmodule)
1663 do
1664 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1665 end
1666
1667 redef fun lookup_fixed(mmodule, resolved_receiver)
1668 do
1669 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1670 return t
1671 end
1672
1673 redef fun depth do return self.mtype.depth
1674
1675 redef fun length do return self.mtype.length
1676
1677 redef fun collect_mclassdefs(mmodule)
1678 do
1679 assert not self.need_anchor
1680 return self.mtype.collect_mclassdefs(mmodule)
1681 end
1682
1683 redef fun collect_mclasses(mmodule)
1684 do
1685 assert not self.need_anchor
1686 return self.mtype.collect_mclasses(mmodule)
1687 end
1688
1689 redef fun collect_mtypes(mmodule)
1690 do
1691 assert not self.need_anchor
1692 return self.mtype.collect_mtypes(mmodule)
1693 end
1694 end
1695
1696 # A type prefixed with "nullable"
1697 class MNullableType
1698 super MProxyType
1699
1700 init
1701 do
1702 self.to_s = "nullable {mtype}"
1703 end
1704
1705 redef var to_s is noinit
1706
1707 redef var full_name is lazy do return "nullable {mtype.full_name}"
1708
1709 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1710
1711 redef fun as_nullable do return self
1712 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1713 do
1714 var res = super
1715 return res.as_nullable
1716 end
1717
1718 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1719 redef fun lookup_fixed(mmodule, resolved_receiver)
1720 do
1721 var t = super
1722 if t == mtype then return self
1723 return t.as_nullable
1724 end
1725 end
1726
1727 # A non-null version of a formal type.
1728 #
1729 # When a formal type in bounded to a nullable type, this is the type of the not null version of it.
1730 class MNotNullType
1731 super MProxyType
1732
1733 redef fun to_s do return "not null {mtype}"
1734 redef var full_name is lazy do return "not null {mtype.full_name}"
1735 redef var c_name is lazy do return "notnull__{mtype.c_name}"
1736
1737 redef fun as_notnull do return self
1738
1739 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1740 do
1741 var res = super
1742 return res.as_notnull
1743 end
1744
1745 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_notnull`
1746 redef fun lookup_fixed(mmodule, resolved_receiver)
1747 do
1748 var t = super
1749 if t == mtype then return self
1750 return t.as_notnull
1751 end
1752 end
1753
1754 # The type of the only value null
1755 #
1756 # The is only one null type per model, see `MModel::null_type`.
1757 class MNullType
1758 super MType
1759 redef var model
1760 redef fun to_s do return "null"
1761 redef fun full_name do return "null"
1762 redef fun c_name do return "null"
1763 redef fun as_nullable do return self
1764
1765 redef var as_notnull = new MBottomType(model) is lazy
1766 redef fun need_anchor do return false
1767 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1768 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1769
1770 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1771
1772 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1773
1774 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1775 end
1776
1777 # The special universal most specific type.
1778 #
1779 # This type is intended to be only used internally for type computation or analysis and should not be exposed to the user.
1780 # The bottom type can de used to denote things that are absurd, dead, or the absence of knowledge.
1781 #
1782 # Semantically it is the singleton `null.as_notnull`.
1783 class MBottomType
1784 super MType
1785 redef var model
1786 redef fun to_s do return "bottom"
1787 redef fun full_name do return "bottom"
1788 redef fun c_name do return "bottom"
1789 redef fun as_nullable do return model.null_type
1790 redef fun as_notnull do return self
1791 redef fun need_anchor do return false
1792 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1793 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1794
1795 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1796
1797 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1798
1799 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1800 end
1801
1802 # A signature of a method
1803 class MSignature
1804 super MType
1805
1806 # The each parameter (in order)
1807 var mparameters: Array[MParameter]
1808
1809 # Returns a parameter named `name`, if any.
1810 fun mparameter_by_name(name: String): nullable MParameter
1811 do
1812 for p in mparameters do
1813 if p.name == name then return p
1814 end
1815 return null
1816 end
1817
1818 # The return type (null for a procedure)
1819 var return_mtype: nullable MType
1820
1821 redef fun depth
1822 do
1823 var dmax = 0
1824 var t = self.return_mtype
1825 if t != null then dmax = t.depth
1826 for p in mparameters do
1827 var d = p.mtype.depth
1828 if d > dmax then dmax = d
1829 end
1830 return dmax + 1
1831 end
1832
1833 redef fun length
1834 do
1835 var res = 1
1836 var t = self.return_mtype
1837 if t != null then res += t.length
1838 for p in mparameters do
1839 res += p.mtype.length
1840 end
1841 return res
1842 end
1843
1844 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1845 init
1846 do
1847 var vararg_rank = -1
1848 for i in [0..mparameters.length[ do
1849 var parameter = mparameters[i]
1850 if parameter.is_vararg then
1851 if vararg_rank >= 0 then
1852 # If there is more than one vararg,
1853 # consider that additional arguments cannot be mapped.
1854 vararg_rank = -1
1855 break
1856 end
1857 vararg_rank = i
1858 end
1859 end
1860 self.vararg_rank = vararg_rank
1861 end
1862
1863 # The rank of the main ellipsis (`...`) for vararg (starting from 0).
1864 # value is -1 if there is no vararg.
1865 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1866 #
1867 # From a model POV, a signature can contain more than one vararg parameter,
1868 # the `vararg_rank` just indicates the one that will receive the additional arguments.
1869 # However, currently, if there is more that one vararg parameter, no one will be the main one,
1870 # and additional arguments will be refused.
1871 var vararg_rank: Int is noinit
1872
1873 # The number of parameters
1874 fun arity: Int do return mparameters.length
1875
1876 redef fun to_s
1877 do
1878 var b = new FlatBuffer
1879 if not mparameters.is_empty then
1880 b.append("(")
1881 for i in [0..mparameters.length[ do
1882 var mparameter = mparameters[i]
1883 if i > 0 then b.append(", ")
1884 b.append(mparameter.name)
1885 b.append(": ")
1886 b.append(mparameter.mtype.to_s)
1887 if mparameter.is_vararg then
1888 b.append("...")
1889 end
1890 end
1891 b.append(")")
1892 end
1893 var ret = self.return_mtype
1894 if ret != null then
1895 b.append(": ")
1896 b.append(ret.to_s)
1897 end
1898 return b.to_s
1899 end
1900
1901 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1902 do
1903 var params = new Array[MParameter]
1904 for p in self.mparameters do
1905 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1906 end
1907 var ret = self.return_mtype
1908 if ret != null then
1909 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1910 end
1911 var res = new MSignature(params, ret)
1912 return res
1913 end
1914 end
1915
1916 # A parameter in a signature
1917 class MParameter
1918 super MEntity
1919
1920 # The name of the parameter
1921 redef var name
1922
1923 # The static type of the parameter
1924 var mtype: MType
1925
1926 # Is the parameter a vararg?
1927 var is_vararg: Bool
1928
1929 redef fun to_s
1930 do
1931 if is_vararg then
1932 return "{name}: {mtype}..."
1933 else
1934 return "{name}: {mtype}"
1935 end
1936 end
1937
1938 # Returns a new parameter with the `mtype` resolved.
1939 # See `MType::resolve_for` for details.
1940 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1941 do
1942 if not self.mtype.need_anchor then return self
1943 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1944 var res = new MParameter(self.name, newtype, self.is_vararg)
1945 return res
1946 end
1947
1948 redef fun model do return mtype.model
1949 end
1950
1951 # A service (global property) that generalize method, attribute, etc.
1952 #
1953 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1954 # to a specific `MModule` nor a specific `MClass`.
1955 #
1956 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1957 # and the other in subclasses and in refinements.
1958 #
1959 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1960 # of any dynamic type).
1961 # For instance, a call site "x.foo" is associated to a `MProperty`.
1962 abstract class MProperty
1963 super MEntity
1964
1965 # The associated MPropDef subclass.
1966 # The two specialization hierarchy are symmetric.
1967 type MPROPDEF: MPropDef
1968
1969 # The classdef that introduce the property
1970 # While a property is not bound to a specific module, or class,
1971 # the introducing mclassdef is used for naming and visibility
1972 var intro_mclassdef: MClassDef
1973
1974 # The (short) name of the property
1975 redef var name
1976
1977 redef var location
1978
1979 redef fun mdoc_or_fallback do return intro.mdoc_or_fallback
1980
1981 # The canonical name of the property.
1982 #
1983 # It is currently the short-`name` prefixed by the short-name of the class and the full-name of the module.
1984 # Example: "my_package::my_module::MyClass::my_method"
1985 #
1986 # The full-name of the module is needed because two distinct modules of the same package can
1987 # still refine the same class and introduce homonym properties.
1988 #
1989 # For public properties not introduced by refinement, the module name is not used.
1990 #
1991 # Example: `my_package::MyClass::My_method`
1992 redef var full_name is lazy do
1993 if intro_mclassdef.is_intro then
1994 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1995 else
1996 return "{intro_mclassdef.mmodule.full_name}::{intro_mclassdef.mclass.name}::{name}"
1997 end
1998 end
1999
2000 redef var c_name is lazy do
2001 # FIXME use `namespace_for`
2002 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
2003 end
2004
2005 # The visibility of the property
2006 redef var visibility
2007
2008 # Is the property usable as an initializer?
2009 var is_autoinit = false is writable
2010
2011 init
2012 do
2013 intro_mclassdef.intro_mproperties.add(self)
2014 var model = intro_mclassdef.mmodule.model
2015 model.mproperties_by_name.add_one(name, self)
2016 model.mproperties.add(self)
2017 end
2018
2019 # All definitions of the property.
2020 # The first is the introduction,
2021 # The other are redefinitions (in refinements and in subclasses)
2022 var mpropdefs = new Array[MPROPDEF]
2023
2024 # The definition that introduces the property.
2025 #
2026 # Warning: such a definition may not exist in the early life of the object.
2027 # In this case, the method will abort.
2028 var intro: MPROPDEF is noinit
2029
2030 redef fun model do return intro.model
2031
2032 # Alias for `name`
2033 redef fun to_s do return name
2034
2035 # Return the most specific property definitions defined or inherited by a type.
2036 # The selection knows that refinement is stronger than specialization;
2037 # however, in case of conflict more than one property are returned.
2038 # If mtype does not know mproperty then an empty array is returned.
2039 #
2040 # If you want the really most specific property, then look at `lookup_first_definition`
2041 #
2042 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2043 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
2044 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2045 do
2046 assert not mtype.need_anchor
2047 mtype = mtype.undecorate
2048
2049 var cache = self.lookup_definitions_cache[mmodule, mtype]
2050 if cache != null then return cache
2051
2052 #print "select prop {mproperty} for {mtype} in {self}"
2053 # First, select all candidates
2054 var candidates = new Array[MPROPDEF]
2055 for mpropdef in self.mpropdefs do
2056 # If the definition is not imported by the module, then skip
2057 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2058 # If the definition is not inherited by the type, then skip
2059 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2060 # Else, we keep it
2061 candidates.add(mpropdef)
2062 end
2063 # Fast track for only one candidate
2064 if candidates.length <= 1 then
2065 self.lookup_definitions_cache[mmodule, mtype] = candidates
2066 return candidates
2067 end
2068
2069 # Second, filter the most specific ones
2070 return select_most_specific(mmodule, candidates)
2071 end
2072
2073 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2074
2075 # Return the most specific property definitions inherited by a type.
2076 # The selection knows that refinement is stronger than specialization;
2077 # however, in case of conflict more than one property are returned.
2078 # If mtype does not know mproperty then an empty array is returned.
2079 #
2080 # If you want the really most specific property, then look at `lookup_next_definition`
2081 #
2082 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2083 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
2084 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2085 do
2086 assert not mtype.need_anchor
2087 mtype = mtype.undecorate
2088
2089 # First, select all candidates
2090 var candidates = new Array[MPROPDEF]
2091 for mpropdef in self.mpropdefs do
2092 # If the definition is not imported by the module, then skip
2093 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2094 # If the definition is not inherited by the type, then skip
2095 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2096 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
2097 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
2098 # Else, we keep it
2099 candidates.add(mpropdef)
2100 end
2101 # Fast track for only one candidate
2102 if candidates.length <= 1 then return candidates
2103
2104 # Second, filter the most specific ones
2105 return select_most_specific(mmodule, candidates)
2106 end
2107
2108 # Return an array containing olny the most specific property definitions
2109 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
2110 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
2111 do
2112 var res = new Array[MPROPDEF]
2113 for pd1 in candidates do
2114 var cd1 = pd1.mclassdef
2115 var c1 = cd1.mclass
2116 var keep = true
2117 for pd2 in candidates do
2118 if pd2 == pd1 then continue # do not compare with self!
2119 var cd2 = pd2.mclassdef
2120 var c2 = cd2.mclass
2121 if c2.mclass_type == c1.mclass_type then
2122 if cd2.mmodule.in_importation < cd1.mmodule then
2123 # cd2 refines cd1; therefore we skip pd1
2124 keep = false
2125 break
2126 end
2127 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
2128 # cd2 < cd1; therefore we skip pd1
2129 keep = false
2130 break
2131 end
2132 end
2133 if keep then
2134 res.add(pd1)
2135 end
2136 end
2137 if res.is_empty then
2138 print "All lost! {candidates.join(", ")}"
2139 # FIXME: should be abort!
2140 end
2141 return res
2142 end
2143
2144 # Return the most specific definition in the linearization of `mtype`.
2145 #
2146 # If you want to know the next properties in the linearization,
2147 # look at `MPropDef::lookup_next_definition`.
2148 #
2149 # FIXME: the linearization is still unspecified
2150 #
2151 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2152 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2153 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
2154 do
2155 return lookup_all_definitions(mmodule, mtype).first
2156 end
2157
2158 # Return all definitions in a linearization order
2159 # Most specific first, most general last
2160 #
2161 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
2162 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
2163 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
2164 do
2165 mtype = mtype.undecorate
2166
2167 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
2168 if cache != null then return cache
2169
2170 assert not mtype.need_anchor
2171 assert mtype.has_mproperty(mmodule, self)
2172
2173 #print "select prop {mproperty} for {mtype} in {self}"
2174 # First, select all candidates
2175 var candidates = new Array[MPROPDEF]
2176 for mpropdef in self.mpropdefs do
2177 # If the definition is not imported by the module, then skip
2178 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
2179 # If the definition is not inherited by the type, then skip
2180 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
2181 # Else, we keep it
2182 candidates.add(mpropdef)
2183 end
2184 # Fast track for only one candidate
2185 if candidates.length <= 1 then
2186 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2187 return candidates
2188 end
2189
2190 mmodule.linearize_mpropdefs(candidates)
2191 candidates = candidates.reversed
2192 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
2193 return candidates
2194 end
2195
2196 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
2197 end
2198
2199 # A global method
2200 class MMethod
2201 super MProperty
2202
2203 redef type MPROPDEF: MMethodDef
2204
2205 # Is the property defined at the top_level of the module?
2206 # Currently such a property are stored in `Object`
2207 var is_toplevel: Bool = false is writable
2208
2209 # Is the property a constructor?
2210 # Warning, this property can be inherited by subclasses with or without being a constructor
2211 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2212 var is_init: Bool = false is writable
2213
2214 # The constructor is a (the) root init with empty signature but a set of initializers
2215 var is_root_init: Bool = false is writable
2216
2217 # Is the property a 'new' constructor?
2218 var is_new: Bool = false is writable
2219
2220 # Is the property a legal constructor for a given class?
2221 # As usual, visibility is not considered.
2222 # FIXME not implemented
2223 fun is_init_for(mclass: MClass): Bool
2224 do
2225 return self.is_init
2226 end
2227
2228 # A specific method that is safe to call on null.
2229 # Currently, only `==`, `!=` and `is_same_instance` are safe
2230 fun is_null_safe: Bool do return name == "==" or name == "!=" or name == "is_same_instance"
2231 end
2232
2233 # A global attribute
2234 class MAttribute
2235 super MProperty
2236
2237 redef type MPROPDEF: MAttributeDef
2238
2239 end
2240
2241 # A global virtual type
2242 class MVirtualTypeProp
2243 super MProperty
2244
2245 redef type MPROPDEF: MVirtualTypeDef
2246
2247 # The formal type associated to the virtual type property
2248 var mvirtualtype = new MVirtualType(self)
2249 end
2250
2251 # A definition of a property (local property)
2252 #
2253 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2254 # specific class definition (which belong to a specific module)
2255 abstract class MPropDef
2256 super MEntity
2257
2258 # The associated `MProperty` subclass.
2259 # the two specialization hierarchy are symmetric
2260 type MPROPERTY: MProperty
2261
2262 # Self class
2263 type MPROPDEF: MPropDef
2264
2265 # The class definition where the property definition is
2266 var mclassdef: MClassDef
2267
2268 # The associated global property
2269 var mproperty: MPROPERTY
2270
2271 redef var location: Location
2272
2273 redef fun visibility do return mproperty.visibility
2274
2275 init
2276 do
2277 mclassdef.mpropdefs.add(self)
2278 mproperty.mpropdefs.add(self)
2279 if mproperty.intro_mclassdef == mclassdef then
2280 assert not isset mproperty._intro
2281 mproperty.intro = self
2282 end
2283 self.to_s = "{mclassdef}${mproperty}"
2284 end
2285
2286 # Actually the name of the `mproperty`
2287 redef fun name do return mproperty.name
2288
2289 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2290 #
2291 # Therefore the combination of identifiers is awful,
2292 # the worst case being
2293 #
2294 # * a property "p::m::A::x"
2295 # * redefined in a refinement of a class "q::n::B"
2296 # * in a module "r::o"
2297 # * so "r::o$q::n::B$p::m::A::x"
2298 #
2299 # Fortunately, the full-name is simplified when entities are repeated.
2300 # For the previous case, the simplest form is "p$A$x".
2301 redef var full_name is lazy do
2302 var res = new FlatBuffer
2303
2304 # The first part is the mclassdef. Worst case is "r::o$q::n::B"
2305 res.append mclassdef.full_name
2306
2307 res.append "$"
2308
2309 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2310 # intro are unambiguous in a class
2311 res.append name
2312 else
2313 # Just try to simplify each part
2314 if mclassdef.mmodule.mpackage != mproperty.intro_mclassdef.mmodule.mpackage then
2315 # precise "p::m" only if "p" != "r"
2316 res.append mproperty.intro_mclassdef.mmodule.namespace_for(mproperty.visibility)
2317 res.append "::"
2318 else if mproperty.visibility <= private_visibility then
2319 # Same package ("p"=="q"), but private visibility,
2320 # does the module part ("::m") need to be displayed
2321 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mpackage then
2322 res.append "::"
2323 res.append mproperty.intro_mclassdef.mmodule.name
2324 res.append "::"
2325 end
2326 end
2327 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2328 # precise "B" only if not the same class than "A"
2329 res.append mproperty.intro_mclassdef.name
2330 res.append "::"
2331 end
2332 # Always use the property name "x"
2333 res.append mproperty.name
2334 end
2335 return res.to_s
2336 end
2337
2338 redef var c_name is lazy do
2339 var res = new FlatBuffer
2340 res.append mclassdef.c_name
2341 res.append "___"
2342 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2343 res.append name.to_cmangle
2344 else
2345 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2346 res.append mproperty.intro_mclassdef.mmodule.c_name
2347 res.append "__"
2348 end
2349 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2350 res.append mproperty.intro_mclassdef.name.to_cmangle
2351 res.append "__"
2352 end
2353 res.append mproperty.name.to_cmangle
2354 end
2355 return res.to_s
2356 end
2357
2358 redef fun model do return mclassdef.model
2359
2360 # Internal name combining the module, the class and the property
2361 # Example: "mymodule$MyClass$mymethod"
2362 redef var to_s is noinit
2363
2364 # Is self the definition that introduce the property?
2365 fun is_intro: Bool do return isset mproperty._intro and mproperty.intro == self
2366
2367 # Return the next definition in linearization of `mtype`.
2368 #
2369 # This method is used to determine what method is called by a super.
2370 #
2371 # REQUIRE: `not mtype.need_anchor`
2372 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2373 do
2374 assert not mtype.need_anchor
2375
2376 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2377 var i = mpropdefs.iterator
2378 while i.is_ok and i.item != self do i.next
2379 assert has_property: i.is_ok
2380 i.next
2381 assert has_next_property: i.is_ok
2382 return i.item
2383 end
2384 end
2385
2386 # A local definition of a method
2387 class MMethodDef
2388 super MPropDef
2389
2390 redef type MPROPERTY: MMethod
2391 redef type MPROPDEF: MMethodDef
2392
2393 # The signature attached to the property definition
2394 var msignature: nullable MSignature = null is writable
2395
2396 # The signature attached to the `new` call on a root-init
2397 # This is a concatenation of the signatures of the initializers
2398 #
2399 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2400 var new_msignature: nullable MSignature = null is writable
2401
2402 # List of initialisers to call in root-inits
2403 #
2404 # They could be setters or attributes
2405 #
2406 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2407 var initializers = new Array[MProperty]
2408
2409 # Is the method definition abstract?
2410 var is_abstract: Bool = false is writable
2411
2412 # Is the method definition intern?
2413 var is_intern = false is writable
2414
2415 # Is the method definition extern?
2416 var is_extern = false is writable
2417
2418 # An optional constant value returned in functions.
2419 #
2420 # Only some specific primitife value are accepted by engines.
2421 # Is used when there is no better implementation available.
2422 #
2423 # Currently used only for the implementation of the `--define`
2424 # command-line option.
2425 # SEE: module `mixin`.
2426 var constant_value: nullable Object = null is writable
2427 end
2428
2429 # A local definition of an attribute
2430 class MAttributeDef
2431 super MPropDef
2432
2433 redef type MPROPERTY: MAttribute
2434 redef type MPROPDEF: MAttributeDef
2435
2436 # The static type of the attribute
2437 var static_mtype: nullable MType = null is writable
2438 end
2439
2440 # A local definition of a virtual type
2441 class MVirtualTypeDef
2442 super MPropDef
2443
2444 redef type MPROPERTY: MVirtualTypeProp
2445 redef type MPROPDEF: MVirtualTypeDef
2446
2447 # The bound of the virtual type
2448 var bound: nullable MType = null is writable
2449
2450 # Is the bound fixed?
2451 var is_fixed = false is writable
2452 end
2453
2454 # A kind of class.
2455 #
2456 # * `abstract_kind`
2457 # * `concrete_kind`
2458 # * `interface_kind`
2459 # * `enum_kind`
2460 # * `extern_kind`
2461 #
2462 # Note this class is basically an enum.
2463 # FIXME: use a real enum once user-defined enums are available
2464 class MClassKind
2465 redef var to_s
2466
2467 # Is a constructor required?
2468 var need_init: Bool
2469
2470 # TODO: private init because enumeration.
2471
2472 # Can a class of kind `self` specializes a class of kine `other`?
2473 fun can_specialize(other: MClassKind): Bool
2474 do
2475 if other == interface_kind then return true # everybody can specialize interfaces
2476 if self == interface_kind or self == enum_kind then
2477 # no other case for interfaces
2478 return false
2479 else if self == extern_kind then
2480 # only compatible with themselves
2481 return self == other
2482 else if other == enum_kind or other == extern_kind then
2483 # abstract_kind and concrete_kind are incompatible
2484 return false
2485 end
2486 # remain only abstract_kind and concrete_kind
2487 return true
2488 end
2489 end
2490
2491 # The class kind `abstract`
2492 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2493 # The class kind `concrete`
2494 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2495 # The class kind `interface`
2496 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2497 # The class kind `enum`
2498 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2499 # The class kind `extern`
2500 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)