model: extract a common proxy from MNullableType
[nit.git] / src / model / model.nit
1 # This file is part of NIT ( http://www.nitlanguage.org ).
2 #
3 # Copyright 2012 Jean Privat <jean@pryen.org>
4 #
5 # Licensed under the Apache License, Version 2.0 (the "License");
6 # you may not use this file except in compliance with the License.
7 # You may obtain a copy of the License at
8 #
9 # http://www.apache.org/licenses/LICENSE-2.0
10 #
11 # Unless required by applicable law or agreed to in writing, software
12 # distributed under the License is distributed on an "AS IS" BASIS,
13 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 # See the License for the specific language governing permissions and
15 # limitations under the License.
16
17 # Classes, types and properties
18 #
19 # All three concepts are defined in this same module because these are strongly connected:
20 # * types are based on classes
21 # * classes contains properties
22 # * some properties are types (virtual types)
23 #
24 # TODO: liearization, extern stuff
25 # FIXME: better handling of the types
26 module model
27
28 import mmodule
29 import mdoc
30 import ordered_tree
31 private import more_collections
32
33 redef class Model
34 # All known classes
35 var mclasses = new Array[MClass]
36
37 # All known properties
38 var mproperties = new Array[MProperty]
39
40 # Hierarchy of class definition.
41 #
42 # Each classdef is associated with its super-classdefs in regard to
43 # its module of definition.
44 var mclassdef_hierarchy = new POSet[MClassDef]
45
46 # Class-type hierarchy restricted to the introduction.
47 #
48 # The idea is that what is true on introduction is always true whatever
49 # the module considered.
50 # Therefore, this hierarchy is used for a fast positive subtype check.
51 #
52 # This poset will evolve in a monotonous way:
53 # * Two non connected nodes will remain unconnected
54 # * New nodes can appear with new edges
55 private var intro_mtype_specialization_hierarchy = new POSet[MClassType]
56
57 # Global overlapped class-type hierarchy.
58 # The hierarchy when all modules are combined.
59 # Therefore, this hierarchy is used for a fast negative subtype check.
60 #
61 # This poset will evolve in an anarchic way. Loops can even be created.
62 #
63 # FIXME decide what to do on loops
64 private var full_mtype_specialization_hierarchy = new POSet[MClassType]
65
66 # Collections of classes grouped by their short name
67 private var mclasses_by_name = new MultiHashMap[String, MClass]
68
69 # Return all class named `name`.
70 #
71 # If such a class does not exist, null is returned
72 # (instead of an empty array)
73 #
74 # Visibility or modules are not considered
75 fun get_mclasses_by_name(name: String): nullable Array[MClass]
76 do
77 return mclasses_by_name.get_or_null(name)
78 end
79
80 # Collections of properties grouped by their short name
81 private var mproperties_by_name = new MultiHashMap[String, MProperty]
82
83 # Return all properties named `name`.
84 #
85 # If such a property does not exist, null is returned
86 # (instead of an empty array)
87 #
88 # Visibility or modules are not considered
89 fun get_mproperties_by_name(name: String): nullable Array[MProperty]
90 do
91 return mproperties_by_name.get_or_null(name)
92 end
93
94 # The only null type
95 var null_type = new MNullType(self)
96
97 # Build an ordered tree with from `concerns`
98 fun concerns_tree(mconcerns: Collection[MConcern]): ConcernsTree do
99 var seen = new HashSet[MConcern]
100 var res = new ConcernsTree
101
102 var todo = new Array[MConcern]
103 todo.add_all mconcerns
104
105 while not todo.is_empty do
106 var c = todo.pop
107 if seen.has(c) then continue
108 var pc = c.parent_concern
109 if pc == null then
110 res.add(null, c)
111 else
112 res.add(pc, c)
113 todo.add(pc)
114 end
115 seen.add(c)
116 end
117
118 return res
119 end
120 end
121
122 # An OrderedTree that can be easily refined for display purposes
123 class ConcernsTree
124 super OrderedTree[MConcern]
125 end
126
127 redef class MModule
128 # All the classes introduced in the module
129 var intro_mclasses = new Array[MClass]
130
131 # All the class definitions of the module
132 # (introduction and refinement)
133 var mclassdefs = new Array[MClassDef]
134
135 # Does the current module has a given class `mclass`?
136 # Return true if the mmodule introduces, refines or imports a class.
137 # Visibility is not considered.
138 fun has_mclass(mclass: MClass): Bool
139 do
140 return self.in_importation <= mclass.intro_mmodule
141 end
142
143 # Full hierarchy of introduced ans imported classes.
144 #
145 # Create a new hierarchy got by flattening the classes for the module
146 # and its imported modules.
147 # Visibility is not considered.
148 #
149 # Note: this function is expensive and is usually used for the main
150 # module of a program only. Do not use it to do you own subtype
151 # functions.
152 fun flatten_mclass_hierarchy: POSet[MClass]
153 do
154 var res = self.flatten_mclass_hierarchy_cache
155 if res != null then return res
156 res = new POSet[MClass]
157 for m in self.in_importation.greaters do
158 for cd in m.mclassdefs do
159 var c = cd.mclass
160 res.add_node(c)
161 for s in cd.supertypes do
162 res.add_edge(c, s.mclass)
163 end
164 end
165 end
166 self.flatten_mclass_hierarchy_cache = res
167 return res
168 end
169
170 # Sort a given array of classes using the linearization order of the module
171 # The most general is first, the most specific is last
172 fun linearize_mclasses(mclasses: Array[MClass])
173 do
174 self.flatten_mclass_hierarchy.sort(mclasses)
175 end
176
177 # Sort a given array of class definitions using the linearization order of the module
178 # the refinement link is stronger than the specialisation link
179 # The most general is first, the most specific is last
180 fun linearize_mclassdefs(mclassdefs: Array[MClassDef])
181 do
182 var sorter = new MClassDefSorter(self)
183 sorter.sort(mclassdefs)
184 end
185
186 # Sort a given array of property definitions using the linearization order of the module
187 # the refinement link is stronger than the specialisation link
188 # The most general is first, the most specific is last
189 fun linearize_mpropdefs(mpropdefs: Array[MPropDef])
190 do
191 var sorter = new MPropDefSorter(self)
192 sorter.sort(mpropdefs)
193 end
194
195 private var flatten_mclass_hierarchy_cache: nullable POSet[MClass] = null
196
197 # The primitive type `Object`, the root of the class hierarchy
198 var object_type: MClassType = self.get_primitive_class("Object").mclass_type is lazy
199
200 # The type `Pointer`, super class to all extern classes
201 var pointer_type: MClassType = self.get_primitive_class("Pointer").mclass_type is lazy
202
203 # The primitive type `Bool`
204 var bool_type: MClassType = self.get_primitive_class("Bool").mclass_type is lazy
205
206 # The primitive type `Int`
207 var int_type: MClassType = self.get_primitive_class("Int").mclass_type is lazy
208
209 # The primitive type `Char`
210 var char_type: MClassType = self.get_primitive_class("Char").mclass_type is lazy
211
212 # The primitive type `Float`
213 var float_type: MClassType = self.get_primitive_class("Float").mclass_type is lazy
214
215 # The primitive type `String`
216 var string_type: MClassType = self.get_primitive_class("String").mclass_type is lazy
217
218 # The primitive type `NativeString`
219 var native_string_type: MClassType = self.get_primitive_class("NativeString").mclass_type is lazy
220
221 # A primitive type of `Array`
222 fun array_type(elt_type: MType): MClassType do return array_class.get_mtype([elt_type])
223
224 # The primitive class `Array`
225 var array_class: MClass = self.get_primitive_class("Array") is lazy
226
227 # A primitive type of `NativeArray`
228 fun native_array_type(elt_type: MType): MClassType do return native_array_class.get_mtype([elt_type])
229
230 # The primitive class `NativeArray`
231 var native_array_class: MClass = self.get_primitive_class("NativeArray") is lazy
232
233 # The primitive type `Sys`, the main type of the program, if any
234 fun sys_type: nullable MClassType
235 do
236 var clas = self.model.get_mclasses_by_name("Sys")
237 if clas == null then return null
238 return get_primitive_class("Sys").mclass_type
239 end
240
241 # The primitive type `Finalizable`
242 # Used to tag classes that need to be finalized.
243 fun finalizable_type: nullable MClassType
244 do
245 var clas = self.model.get_mclasses_by_name("Finalizable")
246 if clas == null then return null
247 return get_primitive_class("Finalizable").mclass_type
248 end
249
250 # Force to get the primitive class named `name` or abort
251 fun get_primitive_class(name: String): MClass
252 do
253 var cla = self.model.get_mclasses_by_name(name)
254 if cla == null then
255 if name == "Bool" and self.model.get_mclasses_by_name("Object") != null then
256 # Bool is injected because it is needed by engine to code the result
257 # of the implicit casts.
258 var c = new MClass(self, name, null, enum_kind, public_visibility)
259 var cladef = new MClassDef(self, c.mclass_type, new Location(null, 0,0,0,0))
260 cladef.set_supertypes([object_type])
261 cladef.add_in_hierarchy
262 return c
263 end
264 print("Fatal Error: no primitive class {name}")
265 exit(1)
266 end
267 if cla.length != 1 then
268 var msg = "Fatal Error: more than one primitive class {name}:"
269 for c in cla do msg += " {c.full_name}"
270 print msg
271 #exit(1)
272 end
273 return cla.first
274 end
275
276 # Try to get the primitive method named `name` on the type `recv`
277 fun try_get_primitive_method(name: String, recv: MClass): nullable MMethod
278 do
279 var props = self.model.get_mproperties_by_name(name)
280 if props == null then return null
281 var res: nullable MMethod = null
282 for mprop in props do
283 assert mprop isa MMethod
284 var intro = mprop.intro_mclassdef
285 for mclassdef in recv.mclassdefs do
286 if not self.in_importation.greaters.has(mclassdef.mmodule) then continue
287 if not mclassdef.in_hierarchy.greaters.has(intro) then continue
288 if res == null then
289 res = mprop
290 else if res != mprop then
291 print("Fatal Error: ambigous property name '{name}'; conflict between {mprop.full_name} and {res.full_name}")
292 abort
293 end
294 end
295 end
296 return res
297 end
298 end
299
300 private class MClassDefSorter
301 super Comparator
302 redef type COMPARED: MClassDef
303 var mmodule: MModule
304 redef fun compare(a, b)
305 do
306 var ca = a.mclass
307 var cb = b.mclass
308 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
309 return mmodule.model.mclassdef_hierarchy.compare(a, b)
310 end
311 end
312
313 private class MPropDefSorter
314 super Comparator
315 redef type COMPARED: MPropDef
316 var mmodule: MModule
317 redef fun compare(pa, pb)
318 do
319 var a = pa.mclassdef
320 var b = pb.mclassdef
321 var ca = a.mclass
322 var cb = b.mclass
323 if ca != cb then return mmodule.flatten_mclass_hierarchy.compare(ca, cb)
324 return mmodule.model.mclassdef_hierarchy.compare(a, b)
325 end
326 end
327
328 # A named class
329 #
330 # `MClass` are global to the model; it means that a `MClass` is not bound to a
331 # specific `MModule`.
332 #
333 # This characteristic helps the reasoning about classes in a program since a
334 # single `MClass` object always denote the same class.
335 #
336 # The drawback is that classes (`MClass`) contain almost nothing by themselves.
337 # These do not really have properties nor belong to a hierarchy since the property and the
338 # hierarchy of a class depends of the refinement in the modules.
339 #
340 # Most services on classes require the precision of a module, and no one can asks what are
341 # the super-classes of a class nor what are properties of a class without precising what is
342 # the module considered.
343 #
344 # For instance, during the typing of a source-file, the module considered is the module of the file.
345 # eg. the question *is the method `foo` exists in the class `Bar`?* must be reformulated into
346 # *is the method `foo` exists in the class `Bar` in the current module?*
347 #
348 # During some global analysis, the module considered may be the main module of the program.
349 class MClass
350 super MEntity
351
352 # The module that introduce the class
353 # While classes are not bound to a specific module,
354 # the introducing module is used for naming an visibility
355 var intro_mmodule: MModule
356
357 # The short name of the class
358 # In Nit, the name of a class cannot evolve in refinements
359 redef var name: String
360
361 # The canonical name of the class
362 #
363 # It is the name of the class prefixed by the full_name of the `intro_mmodule`
364 # Example: `"owner::module::MyClass"`
365 redef var full_name is lazy do
366 return "{self.intro_mmodule.namespace_for(visibility)}::{name}"
367 end
368
369 redef var c_name is lazy do
370 return "{intro_mmodule.c_namespace_for(visibility)}__{name.to_cmangle}"
371 end
372
373 # The number of generic formal parameters
374 # 0 if the class is not generic
375 var arity: Int is noinit
376
377 # Each generic formal parameters in order.
378 # is empty if the class is not generic
379 var mparameters = new Array[MParameterType]
380
381 # Initialize `mparameters` from their names.
382 protected fun setup_parameter_names(parameter_names: nullable Array[String]) is
383 autoinit
384 do
385 if parameter_names == null then
386 self.arity = 0
387 else
388 self.arity = parameter_names.length
389 end
390
391 # Create the formal parameter types
392 if arity > 0 then
393 assert parameter_names != null
394 var mparametertypes = new Array[MParameterType]
395 for i in [0..arity[ do
396 var mparametertype = new MParameterType(self, i, parameter_names[i])
397 mparametertypes.add(mparametertype)
398 end
399 self.mparameters = mparametertypes
400 var mclass_type = new MGenericType(self, mparametertypes)
401 self.mclass_type = mclass_type
402 self.get_mtype_cache[mparametertypes] = mclass_type
403 else
404 self.mclass_type = new MClassType(self)
405 end
406 end
407
408 # The kind of the class (interface, abstract class, etc.)
409 # In Nit, the kind of a class cannot evolve in refinements
410 var kind: MClassKind
411
412 # The visibility of the class
413 # In Nit, the visibility of a class cannot evolve in refinements
414 var visibility: MVisibility
415
416 init
417 do
418 intro_mmodule.intro_mclasses.add(self)
419 var model = intro_mmodule.model
420 model.mclasses_by_name.add_one(name, self)
421 model.mclasses.add(self)
422 end
423
424 redef fun model do return intro_mmodule.model
425
426 # All class definitions (introduction and refinements)
427 var mclassdefs = new Array[MClassDef]
428
429 # Alias for `name`
430 redef fun to_s do return self.name
431
432 # The definition that introduces the class.
433 #
434 # Warning: such a definition may not exist in the early life of the object.
435 # In this case, the method will abort.
436 var intro: MClassDef is noinit
437
438 # Return the class `self` in the class hierarchy of the module `mmodule`.
439 #
440 # SEE: `MModule::flatten_mclass_hierarchy`
441 # REQUIRE: `mmodule.has_mclass(self)`
442 fun in_hierarchy(mmodule: MModule): POSetElement[MClass]
443 do
444 return mmodule.flatten_mclass_hierarchy[self]
445 end
446
447 # The principal static type of the class.
448 #
449 # For non-generic class, mclass_type is the only `MClassType` based
450 # on self.
451 #
452 # For a generic class, the arguments are the formal parameters.
453 # i.e.: for the class Array[E:Object], the `mclass_type` is Array[E].
454 # If you want Array[Object] the see `MClassDef::bound_mtype`
455 #
456 # For generic classes, the mclass_type is also the way to get a formal
457 # generic parameter type.
458 #
459 # To get other types based on a generic class, see `get_mtype`.
460 #
461 # ENSURE: `mclass_type.mclass == self`
462 var mclass_type: MClassType is noinit
463
464 # Return a generic type based on the class
465 # Is the class is not generic, then the result is `mclass_type`
466 #
467 # REQUIRE: `mtype_arguments.length == self.arity`
468 fun get_mtype(mtype_arguments: Array[MType]): MClassType
469 do
470 assert mtype_arguments.length == self.arity
471 if self.arity == 0 then return self.mclass_type
472 var res = get_mtype_cache.get_or_null(mtype_arguments)
473 if res != null then return res
474 res = new MGenericType(self, mtype_arguments)
475 self.get_mtype_cache[mtype_arguments.to_a] = res
476 return res
477 end
478
479 private var get_mtype_cache = new HashMap[Array[MType], MGenericType]
480
481 # Is there a `new` factory to allow the pseudo instantiation?
482 var has_new_factory = false is writable
483 end
484
485
486 # A definition (an introduction or a refinement) of a class in a module
487 #
488 # A `MClassDef` is associated with an explicit (or almost) definition of a
489 # class. Unlike `MClass`, a `MClassDef` is a local definition that belong to
490 # a specific class and a specific module, and contains declarations like super-classes
491 # or properties.
492 #
493 # It is the class definitions that are the backbone of most things in the model:
494 # ClassDefs are defined with regard with other classdefs.
495 # Refinement and specialization are combined to produce a big poset called the `Model::mclassdef_hierarchy`.
496 #
497 # Moreover, the extension and the intention of types is defined by looking at the MClassDefs.
498 class MClassDef
499 super MEntity
500
501 # The module where the definition is
502 var mmodule: MModule
503
504 # The associated `MClass`
505 var mclass: MClass is noinit
506
507 # The bounded type associated to the mclassdef
508 #
509 # For a non-generic class, `bound_mtype` and `mclass.mclass_type`
510 # are the same type.
511 #
512 # Example:
513 # For the classdef Array[E: Object], the bound_mtype is Array[Object].
514 # If you want Array[E], then see `mclass.mclass_type`
515 #
516 # ENSURE: `bound_mtype.mclass == self.mclass`
517 var bound_mtype: MClassType
518
519 # The origin of the definition
520 var location: Location
521
522 # Internal name combining the module and the class
523 # Example: "mymodule#MyClass"
524 redef var to_s: String is noinit
525
526 init
527 do
528 self.mclass = bound_mtype.mclass
529 mmodule.mclassdefs.add(self)
530 mclass.mclassdefs.add(self)
531 if mclass.intro_mmodule == mmodule then
532 assert not isset mclass._intro
533 mclass.intro = self
534 end
535 self.to_s = "{mmodule}#{mclass}"
536 end
537
538 # Actually the name of the `mclass`
539 redef fun name do return mclass.name
540
541 # The module and class name separated by a '#'.
542 #
543 # The short-name of the class is used for introduction.
544 # Example: "my_module#MyClass"
545 #
546 # The full-name of the class is used for refinement.
547 # Example: "my_module#intro_module::MyClass"
548 redef var full_name is lazy do
549 if is_intro then
550 # public gives 'p#A'
551 # private gives 'p::m#A'
552 return "{mmodule.namespace_for(mclass.visibility)}#{mclass.name}"
553 else if mclass.intro_mmodule.mproject != mmodule.mproject then
554 # public gives 'q::n#p::A'
555 # private gives 'q::n#p::m::A'
556 return "{mmodule.full_name}#{mclass.full_name}"
557 else if mclass.visibility > private_visibility then
558 # public gives 'p::n#A'
559 return "{mmodule.full_name}#{mclass.name}"
560 else
561 # private gives 'p::n#::m::A' (redundant p is omitted)
562 return "{mmodule.full_name}#::{mclass.intro_mmodule.name}::{mclass.name}"
563 end
564 end
565
566 redef var c_name is lazy do
567 if is_intro then
568 return "{mmodule.c_namespace_for(mclass.visibility)}___{mclass.c_name}"
569 else if mclass.intro_mmodule.mproject == mmodule.mproject and mclass.visibility > private_visibility then
570 return "{mmodule.c_name}___{mclass.name.to_cmangle}"
571 else
572 return "{mmodule.c_name}___{mclass.c_name}"
573 end
574 end
575
576 redef fun model do return mmodule.model
577
578 # All declared super-types
579 # FIXME: quite ugly but not better idea yet
580 var supertypes = new Array[MClassType]
581
582 # Register some super-types for the class (ie "super SomeType")
583 #
584 # The hierarchy must not already be set
585 # REQUIRE: `self.in_hierarchy == null`
586 fun set_supertypes(supertypes: Array[MClassType])
587 do
588 assert unique_invocation: self.in_hierarchy == null
589 var mmodule = self.mmodule
590 var model = mmodule.model
591 var mtype = self.bound_mtype
592
593 for supertype in supertypes do
594 self.supertypes.add(supertype)
595
596 # Register in full_type_specialization_hierarchy
597 model.full_mtype_specialization_hierarchy.add_edge(mtype, supertype)
598 # Register in intro_type_specialization_hierarchy
599 if mclass.intro_mmodule == mmodule and supertype.mclass.intro_mmodule == mmodule then
600 model.intro_mtype_specialization_hierarchy.add_edge(mtype, supertype)
601 end
602 end
603
604 end
605
606 # Collect the super-types (set by set_supertypes) to build the hierarchy
607 #
608 # This function can only invoked once by class
609 # REQUIRE: `self.in_hierarchy == null`
610 # ENSURE: `self.in_hierarchy != null`
611 fun add_in_hierarchy
612 do
613 assert unique_invocation: self.in_hierarchy == null
614 var model = mmodule.model
615 var res = model.mclassdef_hierarchy.add_node(self)
616 self.in_hierarchy = res
617 var mtype = self.bound_mtype
618
619 # Here we need to connect the mclassdef to its pairs in the mclassdef_hierarchy
620 # The simpliest way is to attach it to collect_mclassdefs
621 for mclassdef in mtype.collect_mclassdefs(mmodule) do
622 res.poset.add_edge(self, mclassdef)
623 end
624 end
625
626 # The view of the class definition in `mclassdef_hierarchy`
627 var in_hierarchy: nullable POSetElement[MClassDef] = null
628
629 # Is the definition the one that introduced `mclass`?
630 fun is_intro: Bool do return mclass.intro == self
631
632 # All properties introduced by the classdef
633 var intro_mproperties = new Array[MProperty]
634
635 # All property definitions in the class (introductions and redefinitions)
636 var mpropdefs = new Array[MPropDef]
637 end
638
639 # A global static type
640 #
641 # MType are global to the model; it means that a `MType` is not bound to a
642 # specific `MModule`.
643 # This characteristic helps the reasoning about static types in a program
644 # since a single `MType` object always denote the same type.
645 #
646 # However, because a `MType` is global, it does not really have properties
647 # nor have subtypes to a hierarchy since the property and the class hierarchy
648 # depends of a module.
649 # Moreover, virtual types an formal generic parameter types also depends on
650 # a receiver to have sense.
651 #
652 # Therefore, most method of the types require a module and an anchor.
653 # The module is used to know what are the classes and the specialization
654 # links.
655 # The anchor is used to know what is the bound of the virtual types and formal
656 # generic parameter types.
657 #
658 # MType are not directly usable to get properties. See the `anchor_to` method
659 # and the `MClassType` class.
660 #
661 # FIXME: the order of the parameters is not the best. We mus pick on from:
662 # * foo(mmodule, anchor, othertype)
663 # * foo(othertype, anchor, mmodule)
664 # * foo(anchor, mmodule, othertype)
665 # * foo(othertype, mmodule, anchor)
666 abstract class MType
667 super MEntity
668
669 redef fun name do return to_s
670
671 # Return true if `self` is an subtype of `sup`.
672 # The typing is done using the standard typing policy of Nit.
673 #
674 # REQUIRE: `anchor == null implies not self.need_anchor and not sup.need_anchor`
675 # REQUIRE: `anchor != null implies self.can_resolve_for(anchor, null, mmodule) and sup.can_resolve_for(anchor, null, mmodule)`
676 fun is_subtype(mmodule: MModule, anchor: nullable MClassType, sup: MType): Bool
677 do
678 var sub = self
679 if sub == sup then return true
680
681 #print "1.is {sub} a {sup}? ===="
682
683 if anchor == null then
684 assert not sub.need_anchor
685 assert not sup.need_anchor
686 else
687 # First, resolve the formal types to the simplest equivalent forms in the receiver
688 assert sub.can_resolve_for(anchor, null, mmodule)
689 sub = sub.lookup_fixed(mmodule, anchor)
690 assert sup.can_resolve_for(anchor, null, mmodule)
691 sup = sup.lookup_fixed(mmodule, anchor)
692 end
693
694 # Does `sup` accept null or not?
695 # Discard the nullable marker if it exists
696 var sup_accept_null = false
697 if sup isa MNullableType then
698 sup_accept_null = true
699 sup = sup.mtype
700 else if sup isa MNullType then
701 sup_accept_null = true
702 end
703
704 # Can `sub` provide null or not?
705 # Thus we can match with `sup_accept_null`
706 # Also discard the nullable marker if it exists
707 if sub isa MNullableType then
708 if not sup_accept_null then return false
709 sub = sub.mtype
710 else if sub isa MNullType then
711 return sup_accept_null
712 end
713 # Now the case of direct null and nullable is over.
714
715 # If `sub` is a formal type, then it is accepted if its bound is accepted
716 while sub isa MFormalType do
717 #print "3.is {sub} a {sup}?"
718
719 # A unfixed formal type can only accept itself
720 if sub == sup then return true
721
722 assert anchor != null
723 sub = sub.lookup_bound(mmodule, anchor)
724
725 #print "3.is {sub} a {sup}?"
726
727 # Manage the second layer of null/nullable
728 if sub isa MNullableType then
729 if not sup_accept_null then return false
730 sub = sub.mtype
731 else if sub isa MNullType then
732 return sup_accept_null
733 end
734 end
735 #print "4.is {sub} a {sup}? <- no more resolution"
736
737 assert sub isa MClassType # It is the only remaining type
738
739 # A unfixed formal type can only accept itself
740 if sup isa MFormalType then
741 return false
742 end
743
744 if sup isa MNullType then
745 # `sup` accepts only null
746 return false
747 end
748
749 assert sup isa MClassType # It is the only remaining type
750
751 # Now both are MClassType, we need to dig
752
753 if sub == sup then return true
754
755 if anchor == null then anchor = sub # UGLY: any anchor will work
756 var resolved_sub = sub.anchor_to(mmodule, anchor)
757 var res = resolved_sub.collect_mclasses(mmodule).has(sup.mclass)
758 if res == false then return false
759 if not sup isa MGenericType then return true
760 var sub2 = sub.supertype_to(mmodule, anchor, sup.mclass)
761 assert sub2.mclass == sup.mclass
762 for i in [0..sup.mclass.arity[ do
763 var sub_arg = sub2.arguments[i]
764 var sup_arg = sup.arguments[i]
765 res = sub_arg.is_subtype(mmodule, anchor, sup_arg)
766 if res == false then return false
767 end
768 return true
769 end
770
771 # The base class type on which self is based
772 #
773 # This base type is used to get property (an internally to perform
774 # unsafe type comparison).
775 #
776 # Beware: some types (like null) are not based on a class thus this
777 # method will crash
778 #
779 # Basically, this function transform the virtual types and parameter
780 # types to their bounds.
781 #
782 # Example
783 #
784 # class A end
785 # class B super A end
786 # class X end
787 # class Y super X end
788 # class G[T: A]
789 # type U: X
790 # end
791 # class H
792 # super G[B]
793 # redef type U: Y
794 # end
795 #
796 # Map[T,U] anchor_to H #-> Map[B,Y]
797 #
798 # Explanation of the example:
799 # In H, T is set to B, because "H super G[B]", and U is bound to Y,
800 # because "redef type U: Y". Therefore, Map[T, U] is bound to
801 # Map[B, Y]
802 #
803 # ENSURE: `not self.need_anchor implies result == self`
804 # ENSURE: `not result.need_anchor`
805 fun anchor_to(mmodule: MModule, anchor: MClassType): MType
806 do
807 if not need_anchor then return self
808 assert not anchor.need_anchor
809 # Just resolve to the anchor and clear all the virtual types
810 var res = self.resolve_for(anchor, null, mmodule, true)
811 assert not res.need_anchor
812 return res
813 end
814
815 # Does `self` contain a virtual type or a formal generic parameter type?
816 # In order to remove those types, you usually want to use `anchor_to`.
817 fun need_anchor: Bool do return true
818
819 # Return the supertype when adapted to a class.
820 #
821 # In Nit, for each super-class of a type, there is a equivalent super-type.
822 #
823 # Example:
824 #
825 # ~~~nitish
826 # class G[T, U] end
827 # class H[V] super G[V, Bool] end
828 #
829 # H[Int] supertype_to G #-> G[Int, Bool]
830 # ~~~
831 #
832 # REQUIRE: `super_mclass` is a super-class of `self`
833 # REQUIRE: `self.need_anchor implies anchor != null and self.can_resolve_for(anchor, null, mmodule)`
834 # ENSURE: `result.mclass = super_mclass`
835 fun supertype_to(mmodule: MModule, anchor: nullable MClassType, super_mclass: MClass): MClassType
836 do
837 if super_mclass.arity == 0 then return super_mclass.mclass_type
838 if self isa MClassType and self.mclass == super_mclass then return self
839 var resolved_self
840 if self.need_anchor then
841 assert anchor != null
842 resolved_self = self.anchor_to(mmodule, anchor)
843 else
844 resolved_self = self
845 end
846 var supertypes = resolved_self.collect_mtypes(mmodule)
847 for supertype in supertypes do
848 if supertype.mclass == super_mclass then
849 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
850 return supertype.resolve_for(self, anchor, mmodule, false)
851 end
852 end
853 abort
854 end
855
856 # Replace formals generic types in self with resolved values in `mtype`
857 # If `cleanup_virtual` is true, then virtual types are also replaced
858 # with their bounds.
859 #
860 # This function returns self if `need_anchor` is false.
861 #
862 # ## Example 1
863 #
864 # ~~~
865 # class G[E] end
866 # class H[F] super G[F] end
867 # class X[Z] end
868 # ~~~
869 #
870 # * Array[E].resolve_for(H[Int]) #-> Array[Int]
871 # * Array[E].resolve_for(G[Z], X[Int]) #-> Array[Z]
872 #
873 # Explanation of the example:
874 # * Array[E].need_anchor is true because there is a formal generic parameter type E
875 # * E makes sense for H[Int] because E is a formal parameter of G and H specialize G
876 # * Since "H[F] super G[F]", E is in fact F for H
877 # * More specifically, in H[Int], E is Int
878 # * So, in H[Int], Array[E] is Array[Int]
879 #
880 # This function is mainly used to inherit a signature.
881 # Because, unlike `anchor_to`, we do not want a full resolution of
882 # a type but only an adapted version of it.
883 #
884 # ## Example 2
885 #
886 # ~~~
887 # class A[E]
888 # fun foo(e:E):E is abstract
889 # end
890 # class B super A[Int] end
891 # ~~~
892 #
893 # The signature on foo is (e: E): E
894 # If we resolve the signature for B, we get (e:Int):Int
895 #
896 # ## Example 3
897 #
898 # ~~~nitish
899 # class A[E]
900 # fun foo(e:E):E is abstract
901 # end
902 # class C[F]
903 # var a: A[Array[F]]
904 # fun bar do a.foo(x) # <- x is here
905 # end
906 # ~~~
907 #
908 # The first question is: is foo available on `a`?
909 #
910 # The static type of a is `A[Array[F]]`, that is an open type.
911 # in order to find a method `foo`, whe must look at a resolved type.
912 #
913 # A[Array[F]].anchor_to(C[nullable Object]) #-> A[Array[nullable Object]]
914 #
915 # the method `foo` exists in `A[Array[nullable Object]]`, therefore `foo` exists for `a`.
916 #
917 # The next question is: what is the accepted types for `x`?
918 #
919 # the signature of `foo` is `foo(e:E)`, thus we must resolve the type E
920 #
921 # E.resolve_for(A[Array[F]],C[nullable Object]) #-> Array[F]
922 #
923 # The resolution can be done because `E` make sense for the class A (see `can_resolve_for`)
924 #
925 # FIXME: the parameter `cleanup_virtual` is just a bad idea, but having
926 # two function instead of one seems also to be a bad idea.
927 #
928 # REQUIRE: `can_resolve_for(mtype, anchor, mmodule)`
929 # ENSURE: `not self.need_anchor implies result == self`
930 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MType is abstract
931
932 # Resolve formal type to its verbatim bound.
933 # If the type is not formal, just return self
934 #
935 # The result is returned exactly as declared in the "type" property (verbatim).
936 # So it could be another formal type.
937 #
938 # In case of conflict, the method aborts.
939 fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType do return self
940
941 # Resolve the formal type to its simplest equivalent form.
942 #
943 # Formal types are either free or fixed.
944 # When it is fixed, it means that it is equivalent with a simpler type.
945 # When a formal type is free, it means that it is only equivalent with itself.
946 # This method return the most simple equivalent type of `self`.
947 #
948 # This method is mainly used for subtype test in order to sanely compare fixed.
949 #
950 # By default, return self.
951 # See the redefinitions for specific behavior in each kind of type.
952 fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType do return self
953
954 # Can the type be resolved?
955 #
956 # In order to resolve open types, the formal types must make sence.
957 #
958 # ## Example
959 #
960 # class A[E]
961 # end
962 # class B[F]
963 # end
964 #
965 # ~~~nitish
966 # E.can_resolve_for(A[Int]) #-> true, E make sense in A
967 #
968 # E.can_resolve_for(B[Int]) #-> false, E does not make sense in B
969 #
970 # B[E].can_resolve_for(A[F], B[Object]) #-> true,
971 # # B[E] is a red hearing only the E is important,
972 # # E make sense in A
973 # ~~~
974 #
975 # REQUIRE: `anchor != null implies not anchor.need_anchor`
976 # REQUIRE: `mtype.need_anchor implies anchor != null and mtype.can_resolve_for(anchor, null, mmodule)`
977 # ENSURE: `not self.need_anchor implies result == true`
978 fun can_resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule): Bool is abstract
979
980 # Return the nullable version of the type
981 # If the type is already nullable then self is returned
982 fun as_nullable: MType
983 do
984 var res = self.as_nullable_cache
985 if res != null then return res
986 res = new MNullableType(self)
987 self.as_nullable_cache = res
988 return res
989 end
990
991 # Return the not nullable version of the type
992 # Is the type is already not nullable, then self is returned.
993 #
994 # Note: this just remove the `nullable` notation, but the result can still contains null.
995 # For instance if `self isa MNullType` or self is a formal type bounded by a nullable type.
996 fun as_notnullable: MType
997 do
998 return self
999 end
1000
1001 private var as_nullable_cache: nullable MType = null
1002
1003
1004 # The depth of the type seen as a tree.
1005 #
1006 # * A -> 1
1007 # * G[A] -> 2
1008 # * H[A, B] -> 2
1009 # * H[G[A], B] -> 3
1010 #
1011 # Formal types have a depth of 1.
1012 fun depth: Int
1013 do
1014 return 1
1015 end
1016
1017 # The length of the type seen as a tree.
1018 #
1019 # * A -> 1
1020 # * G[A] -> 2
1021 # * H[A, B] -> 3
1022 # * H[G[A], B] -> 4
1023 #
1024 # Formal types have a length of 1.
1025 fun length: Int
1026 do
1027 return 1
1028 end
1029
1030 # Compute all the classdefs inherited/imported.
1031 # The returned set contains:
1032 # * the class definitions from `mmodule` and its imported modules
1033 # * the class definitions of this type and its super-types
1034 #
1035 # This function is used mainly internally.
1036 #
1037 # REQUIRE: `not self.need_anchor`
1038 fun collect_mclassdefs(mmodule: MModule): Set[MClassDef] is abstract
1039
1040 # Compute all the super-classes.
1041 # This function is used mainly internally.
1042 #
1043 # REQUIRE: `not self.need_anchor`
1044 fun collect_mclasses(mmodule: MModule): Set[MClass] is abstract
1045
1046 # Compute all the declared super-types.
1047 # Super-types are returned as declared in the classdefs (verbatim).
1048 # This function is used mainly internally.
1049 #
1050 # REQUIRE: `not self.need_anchor`
1051 fun collect_mtypes(mmodule: MModule): Set[MClassType] is abstract
1052
1053 # Is the property in self for a given module
1054 # This method does not filter visibility or whatever
1055 #
1056 # REQUIRE: `not self.need_anchor`
1057 fun has_mproperty(mmodule: MModule, mproperty: MProperty): Bool
1058 do
1059 assert not self.need_anchor
1060 return self.collect_mclassdefs(mmodule).has(mproperty.intro_mclassdef)
1061 end
1062 end
1063
1064 # A type based on a class.
1065 #
1066 # `MClassType` have properties (see `has_mproperty`).
1067 class MClassType
1068 super MType
1069
1070 # The associated class
1071 var mclass: MClass
1072
1073 redef fun model do return self.mclass.intro_mmodule.model
1074
1075 # TODO: private init because strongly bounded to its mclass. see `mclass.mclass_type`
1076
1077 # The formal arguments of the type
1078 # ENSURE: `result.length == self.mclass.arity`
1079 var arguments = new Array[MType]
1080
1081 redef fun to_s do return mclass.to_s
1082
1083 redef fun full_name do return mclass.full_name
1084
1085 redef fun c_name do return mclass.c_name
1086
1087 redef fun need_anchor do return false
1088
1089 redef fun anchor_to(mmodule: MModule, anchor: MClassType): MClassType
1090 do
1091 return super.as(MClassType)
1092 end
1093
1094 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MClassType do return self
1095
1096 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1097
1098 redef fun collect_mclassdefs(mmodule)
1099 do
1100 assert not self.need_anchor
1101 var cache = self.collect_mclassdefs_cache
1102 if not cache.has_key(mmodule) then
1103 self.collect_things(mmodule)
1104 end
1105 return cache[mmodule]
1106 end
1107
1108 redef fun collect_mclasses(mmodule)
1109 do
1110 if collect_mclasses_last_module == mmodule then return collect_mclasses_last_module_cache
1111 assert not self.need_anchor
1112 var cache = self.collect_mclasses_cache
1113 if not cache.has_key(mmodule) then
1114 self.collect_things(mmodule)
1115 end
1116 var res = cache[mmodule]
1117 collect_mclasses_last_module = mmodule
1118 collect_mclasses_last_module_cache = res
1119 return res
1120 end
1121
1122 private var collect_mclasses_last_module: nullable MModule = null
1123 private var collect_mclasses_last_module_cache: Set[MClass] is noinit
1124
1125 redef fun collect_mtypes(mmodule)
1126 do
1127 assert not self.need_anchor
1128 var cache = self.collect_mtypes_cache
1129 if not cache.has_key(mmodule) then
1130 self.collect_things(mmodule)
1131 end
1132 return cache[mmodule]
1133 end
1134
1135 # common implementation for `collect_mclassdefs`, `collect_mclasses`, and `collect_mtypes`.
1136 private fun collect_things(mmodule: MModule)
1137 do
1138 var res = new HashSet[MClassDef]
1139 var seen = new HashSet[MClass]
1140 var types = new HashSet[MClassType]
1141 seen.add(self.mclass)
1142 var todo = [self.mclass]
1143 while not todo.is_empty do
1144 var mclass = todo.pop
1145 #print "process {mclass}"
1146 for mclassdef in mclass.mclassdefs do
1147 if not mmodule.in_importation <= mclassdef.mmodule then continue
1148 #print " process {mclassdef}"
1149 res.add(mclassdef)
1150 for supertype in mclassdef.supertypes do
1151 types.add(supertype)
1152 var superclass = supertype.mclass
1153 if seen.has(superclass) then continue
1154 #print " add {superclass}"
1155 seen.add(superclass)
1156 todo.add(superclass)
1157 end
1158 end
1159 end
1160 collect_mclassdefs_cache[mmodule] = res
1161 collect_mclasses_cache[mmodule] = seen
1162 collect_mtypes_cache[mmodule] = types
1163 end
1164
1165 private var collect_mclassdefs_cache = new HashMap[MModule, Set[MClassDef]]
1166 private var collect_mclasses_cache = new HashMap[MModule, Set[MClass]]
1167 private var collect_mtypes_cache = new HashMap[MModule, Set[MClassType]]
1168
1169 end
1170
1171 # A type based on a generic class.
1172 # A generic type a just a class with additional formal generic arguments.
1173 class MGenericType
1174 super MClassType
1175
1176 redef var arguments
1177
1178 # TODO: private init because strongly bounded to its mclass. see `mclass.get_mtype`
1179
1180 init
1181 do
1182 assert self.mclass.arity == arguments.length
1183
1184 self.need_anchor = false
1185 for t in arguments do
1186 if t.need_anchor then
1187 self.need_anchor = true
1188 break
1189 end
1190 end
1191
1192 self.to_s = "{mclass}[{arguments.join(", ")}]"
1193 end
1194
1195 # The short-name of the class, then the full-name of each type arguments within brackets.
1196 # Example: `"Map[String, List[Int]]"`
1197 redef var to_s: String is noinit
1198
1199 # The full-name of the class, then the full-name of each type arguments within brackets.
1200 # Example: `"standard::Map[standard::String, standard::List[standard::Int]]"`
1201 redef var full_name is lazy do
1202 var args = new Array[String]
1203 for t in arguments do
1204 args.add t.full_name
1205 end
1206 return "{mclass.full_name}[{args.join(", ")}]"
1207 end
1208
1209 redef var c_name is lazy do
1210 var res = mclass.c_name
1211 # Note: because the arity is known, a prefix notation is enough
1212 for t in arguments do
1213 res += "__"
1214 res += t.c_name
1215 end
1216 return res.to_s
1217 end
1218
1219 redef var need_anchor: Bool is noinit
1220
1221 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1222 do
1223 if not need_anchor then return self
1224 assert can_resolve_for(mtype, anchor, mmodule)
1225 var types = new Array[MType]
1226 for t in arguments do
1227 types.add(t.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1228 end
1229 return mclass.get_mtype(types)
1230 end
1231
1232 redef fun can_resolve_for(mtype, anchor, mmodule)
1233 do
1234 if not need_anchor then return true
1235 for t in arguments do
1236 if not t.can_resolve_for(mtype, anchor, mmodule) then return false
1237 end
1238 return true
1239 end
1240
1241
1242 redef fun depth
1243 do
1244 var dmax = 0
1245 for a in self.arguments do
1246 var d = a.depth
1247 if d > dmax then dmax = d
1248 end
1249 return dmax + 1
1250 end
1251
1252 redef fun length
1253 do
1254 var res = 1
1255 for a in self.arguments do
1256 res += a.length
1257 end
1258 return res
1259 end
1260 end
1261
1262 # A formal type (either virtual of parametric).
1263 #
1264 # The main issue with formal types is that they offer very little information on their own
1265 # and need a context (anchor and mmodule) to be useful.
1266 abstract class MFormalType
1267 super MType
1268 end
1269
1270 # A virtual formal type.
1271 class MVirtualType
1272 super MFormalType
1273
1274 # The property associated with the type.
1275 # Its the definitions of this property that determine the bound or the virtual type.
1276 var mproperty: MVirtualTypeProp
1277
1278 redef fun model do return self.mproperty.intro_mclassdef.mmodule.model
1279
1280 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1281 do
1282 return lookup_single_definition(mmodule, resolved_receiver).bound.as(not null)
1283 end
1284
1285 private fun lookup_single_definition(mmodule: MModule, resolved_receiver: MType): MVirtualTypeDef
1286 do
1287 assert not resolved_receiver.need_anchor
1288 var props = self.mproperty.lookup_definitions(mmodule, resolved_receiver)
1289 if props.is_empty then
1290 abort
1291 else if props.length == 1 then
1292 return props.first
1293 end
1294 var types = new ArraySet[MType]
1295 var res = props.first
1296 for p in props do
1297 types.add(p.bound.as(not null))
1298 if not res.is_fixed then res = p
1299 end
1300 if types.length == 1 then
1301 return res
1302 end
1303 abort
1304 end
1305
1306 # A VT is fixed when:
1307 # * the VT is (re-)defined with the annotation `is fixed`
1308 # * the VT is (indirectly) bound to an enum class (see `enum_kind`) since there is no subtype possible
1309 # * the receiver is an enum class since there is no subtype possible
1310 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1311 do
1312 assert not resolved_receiver.need_anchor
1313 resolved_receiver = resolved_receiver.as_notnullable
1314 assert resolved_receiver isa MClassType # It is the only remaining type
1315
1316 var prop = lookup_single_definition(mmodule, resolved_receiver)
1317 var res = prop.bound.as(not null)
1318
1319 # Recursively lookup the fixed result
1320 res = res.lookup_fixed(mmodule, resolved_receiver)
1321
1322 # 1. For a fixed VT, return the resolved bound
1323 if prop.is_fixed then return res
1324
1325 # 2. For a enum boud, return the bound
1326 if res isa MClassType and res.mclass.kind == enum_kind then return res
1327
1328 # 3. for a enum receiver return the bound
1329 if resolved_receiver.mclass.kind == enum_kind then return res
1330
1331 return self
1332 end
1333
1334 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1335 do
1336 if not cleanup_virtual then return self
1337 assert can_resolve_for(mtype, anchor, mmodule)
1338 # self is a virtual type declared (or inherited) in mtype
1339 # The point of the function it to get the bound of the virtual type that make sense for mtype
1340 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1341 #print "{class_name}: {self}/{mtype}/{anchor}?"
1342 var resolved_receiver
1343 if mtype.need_anchor then
1344 assert anchor != null
1345 resolved_receiver = mtype.resolve_for(anchor, null, mmodule, true)
1346 else
1347 resolved_receiver = mtype
1348 end
1349 # Now, we can get the bound
1350 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1351 # The bound is exactly as declared in the "type" property, so we must resolve it again
1352 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1353
1354 return res
1355 end
1356
1357 redef fun can_resolve_for(mtype, anchor, mmodule)
1358 do
1359 if mtype.need_anchor then
1360 assert anchor != null
1361 mtype = mtype.anchor_to(mmodule, anchor)
1362 end
1363 return mtype.has_mproperty(mmodule, mproperty)
1364 end
1365
1366 redef fun to_s do return self.mproperty.to_s
1367
1368 redef fun full_name do return self.mproperty.full_name
1369
1370 redef fun c_name do return self.mproperty.c_name
1371 end
1372
1373 # The type associated to a formal parameter generic type of a class
1374 #
1375 # Each parameter type is associated to a specific class.
1376 # It means that all refinements of a same class "share" the parameter type,
1377 # but that a generic subclass has its own parameter types.
1378 #
1379 # However, in the sense of the meta-model, a parameter type of a class is
1380 # a valid type in a subclass. The "in the sense of the meta-model" is
1381 # important because, in the Nit language, the programmer cannot refers
1382 # directly to the parameter types of the super-classes.
1383 #
1384 # Example:
1385 #
1386 # class A[E]
1387 # fun e: E is abstract
1388 # end
1389 # class B[F]
1390 # super A[Array[F]]
1391 # end
1392 #
1393 # In the class definition B[F], `F` is a valid type but `E` is not.
1394 # However, `self.e` is a valid method call, and the signature of `e` is
1395 # declared `e: E`.
1396 #
1397 # Note that parameter types are shared among class refinements.
1398 # Therefore parameter only have an internal name (see `to_s` for details).
1399 class MParameterType
1400 super MFormalType
1401
1402 # The generic class where the parameter belong
1403 var mclass: MClass
1404
1405 redef fun model do return self.mclass.intro_mmodule.model
1406
1407 # The position of the parameter (0 for the first parameter)
1408 # FIXME: is `position` a better name?
1409 var rank: Int
1410
1411 redef var name
1412
1413 redef fun to_s do return name
1414
1415 redef var full_name is lazy do return "{mclass.full_name}::{name}"
1416
1417 redef var c_name is lazy do return mclass.c_name + "__" + "#{name}".to_cmangle
1418
1419 redef fun lookup_bound(mmodule: MModule, resolved_receiver: MType): MType
1420 do
1421 assert not resolved_receiver.need_anchor
1422 resolved_receiver = resolved_receiver.as_notnullable
1423 assert resolved_receiver isa MClassType # It is the only remaining type
1424 var goalclass = self.mclass
1425 if resolved_receiver.mclass == goalclass then
1426 return resolved_receiver.arguments[self.rank]
1427 end
1428 var supertypes = resolved_receiver.collect_mtypes(mmodule)
1429 for t in supertypes do
1430 if t.mclass == goalclass then
1431 # Yeah! c specialize goalclass with a "super `t'". So the question is what is the argument of f
1432 # FIXME: Here, we stop on the first goal. Should we check others and detect inconsistencies?
1433 var res = t.arguments[self.rank]
1434 return res
1435 end
1436 end
1437 abort
1438 end
1439
1440 # A PT is fixed when:
1441 # * Its bound is a enum class (see `enum_kind`).
1442 # The PT is just useless, but it is still a case.
1443 # * More usually, the `resolved_receiver` is a subclass of `self.mclass`,
1444 # so it is necessarily fixed in a `super` clause, either with a normal type
1445 # or with another PT.
1446 # See `resolve_for` for examples about related issues.
1447 redef fun lookup_fixed(mmodule: MModule, resolved_receiver: MType): MType
1448 do
1449 assert not resolved_receiver.need_anchor
1450 resolved_receiver = resolved_receiver.as_notnullable
1451 assert resolved_receiver isa MClassType # It is the only remaining type
1452 var res = self.resolve_for(resolved_receiver.mclass.mclass_type, resolved_receiver, mmodule, false)
1453 return res
1454 end
1455
1456 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1457 do
1458 assert can_resolve_for(mtype, anchor, mmodule)
1459 #print "{class_name}: {self}/{mtype}/{anchor}?"
1460
1461 if mtype isa MGenericType and mtype.mclass == self.mclass then
1462 var res = mtype.arguments[self.rank]
1463 if anchor != null and res.need_anchor then
1464 # Maybe the result can be resolved more if are bound to a final class
1465 var r2 = res.anchor_to(mmodule, anchor)
1466 if r2 isa MClassType and r2.mclass.kind == enum_kind then return r2
1467 end
1468 return res
1469 end
1470
1471 # self is a parameter type of mtype (or of a super-class of mtype)
1472 # The point of the function it to get the bound of the virtual type that make sense for mtype
1473 # But because mtype is maybe a virtual/formal type, we need to get a real receiver first
1474 # FIXME: What happens here is far from clear. Thus this part must be validated and clarified
1475 var resolved_receiver
1476 if mtype.need_anchor then
1477 assert anchor != null
1478 resolved_receiver = mtype.resolve_for(anchor.mclass.mclass_type, anchor, mmodule, true)
1479 else
1480 resolved_receiver = mtype
1481 end
1482 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1483 if resolved_receiver isa MParameterType then
1484 assert resolved_receiver.mclass == anchor.mclass
1485 resolved_receiver = anchor.arguments[resolved_receiver.rank]
1486 if resolved_receiver isa MNullableType then resolved_receiver = resolved_receiver.mtype
1487 end
1488 assert resolved_receiver isa MClassType # It is the only remaining type
1489
1490 # Eh! The parameter is in the current class.
1491 # So we return the corresponding argument, no mater what!
1492 if resolved_receiver.mclass == self.mclass then
1493 var res = resolved_receiver.arguments[self.rank]
1494 #print "{class_name}: {self}/{mtype}/{anchor} -> direct {res}"
1495 return res
1496 end
1497
1498 if resolved_receiver.need_anchor then
1499 assert anchor != null
1500 resolved_receiver = resolved_receiver.resolve_for(anchor, null, mmodule, false)
1501 end
1502 # Now, we can get the bound
1503 var verbatim_bound = lookup_bound(mmodule, resolved_receiver)
1504 # The bound is exactly as declared in the "type" property, so we must resolve it again
1505 var res = verbatim_bound.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1506
1507 #print "{class_name}: {self}/{mtype}/{anchor} -> indirect {res}"
1508
1509 return res
1510 end
1511
1512 redef fun can_resolve_for(mtype, anchor, mmodule)
1513 do
1514 if mtype.need_anchor then
1515 assert anchor != null
1516 mtype = mtype.anchor_to(mmodule, anchor)
1517 end
1518 return mtype.collect_mclassdefs(mmodule).has(mclass.intro)
1519 end
1520 end
1521
1522 # A type that decorate an other type.
1523 #
1524 # The point of this class is to provide a common implementation of sevices that just forward to the original type.
1525 # Specific decorator are expected to redefine (or to extend) the default implementation as this suit them.
1526 abstract class MProxyType
1527 super MType
1528 # The base type
1529 var mtype: MType
1530
1531 redef fun model do return self.mtype.model
1532 redef fun need_anchor do return mtype.need_anchor
1533 redef fun as_nullable do return mtype.as_nullable
1534 redef fun as_notnullable do return mtype.as_notnullable
1535 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1536 do
1537 var res = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1538 return res
1539 end
1540
1541 redef fun can_resolve_for(mtype, anchor, mmodule)
1542 do
1543 return self.mtype.can_resolve_for(mtype, anchor, mmodule)
1544 end
1545
1546 redef fun lookup_fixed(mmodule, resolved_receiver)
1547 do
1548 var t = mtype.lookup_fixed(mmodule, resolved_receiver)
1549 return t
1550 end
1551
1552 redef fun depth do return self.mtype.depth
1553
1554 redef fun length do return self.mtype.length
1555
1556 redef fun collect_mclassdefs(mmodule)
1557 do
1558 assert not self.need_anchor
1559 return self.mtype.collect_mclassdefs(mmodule)
1560 end
1561
1562 redef fun collect_mclasses(mmodule)
1563 do
1564 assert not self.need_anchor
1565 return self.mtype.collect_mclasses(mmodule)
1566 end
1567
1568 redef fun collect_mtypes(mmodule)
1569 do
1570 assert not self.need_anchor
1571 return self.mtype.collect_mtypes(mmodule)
1572 end
1573 end
1574
1575 # A type prefixed with "nullable"
1576 class MNullableType
1577 super MProxyType
1578
1579 init
1580 do
1581 self.to_s = "nullable {mtype}"
1582 end
1583
1584 redef var to_s: String is noinit
1585
1586 redef var full_name is lazy do return "nullable {mtype.full_name}"
1587
1588 redef var c_name is lazy do return "nullable__{mtype.c_name}"
1589
1590 redef fun as_nullable do return self
1591 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1592 do
1593 var res = super
1594 return res.as_nullable
1595 end
1596
1597 # Efficiently returns `mtype.lookup_fixed(mmodule, resolved_receiver).as_nullable`
1598 redef fun lookup_fixed(mmodule, resolved_receiver)
1599 do
1600 var t = super
1601 if t == mtype then return self
1602 return t.as_nullable
1603 end
1604 end
1605
1606 # The type of the only value null
1607 #
1608 # The is only one null type per model, see `MModel::null_type`.
1609 class MNullType
1610 super MType
1611 redef var model: Model
1612 redef fun to_s do return "null"
1613 redef fun full_name do return "null"
1614 redef fun c_name do return "null"
1615 redef fun as_nullable do return self
1616 redef fun need_anchor do return false
1617 redef fun resolve_for(mtype, anchor, mmodule, cleanup_virtual) do return self
1618 redef fun can_resolve_for(mtype, anchor, mmodule) do return true
1619
1620 redef fun collect_mclassdefs(mmodule) do return new HashSet[MClassDef]
1621
1622 redef fun collect_mclasses(mmodule) do return new HashSet[MClass]
1623
1624 redef fun collect_mtypes(mmodule) do return new HashSet[MClassType]
1625 end
1626
1627 # A signature of a method
1628 class MSignature
1629 super MType
1630
1631 # The each parameter (in order)
1632 var mparameters: Array[MParameter]
1633
1634 # The return type (null for a procedure)
1635 var return_mtype: nullable MType
1636
1637 redef fun depth
1638 do
1639 var dmax = 0
1640 var t = self.return_mtype
1641 if t != null then dmax = t.depth
1642 for p in mparameters do
1643 var d = p.mtype.depth
1644 if d > dmax then dmax = d
1645 end
1646 return dmax + 1
1647 end
1648
1649 redef fun length
1650 do
1651 var res = 1
1652 var t = self.return_mtype
1653 if t != null then res += t.length
1654 for p in mparameters do
1655 res += p.mtype.length
1656 end
1657 return res
1658 end
1659
1660 # REQUIRE: 1 <= mparameters.count p -> p.is_vararg
1661 init
1662 do
1663 var vararg_rank = -1
1664 for i in [0..mparameters.length[ do
1665 var parameter = mparameters[i]
1666 if parameter.is_vararg then
1667 assert vararg_rank == -1
1668 vararg_rank = i
1669 end
1670 end
1671 self.vararg_rank = vararg_rank
1672 end
1673
1674 # The rank of the ellipsis (`...`) for vararg (starting from 0).
1675 # value is -1 if there is no vararg.
1676 # Example: for "(a: Int, b: Bool..., c: Char)" #-> vararg_rank=1
1677 var vararg_rank: Int is noinit
1678
1679 # The number or parameters
1680 fun arity: Int do return mparameters.length
1681
1682 redef fun to_s
1683 do
1684 var b = new FlatBuffer
1685 if not mparameters.is_empty then
1686 b.append("(")
1687 for i in [0..mparameters.length[ do
1688 var mparameter = mparameters[i]
1689 if i > 0 then b.append(", ")
1690 b.append(mparameter.name)
1691 b.append(": ")
1692 b.append(mparameter.mtype.to_s)
1693 if mparameter.is_vararg then
1694 b.append("...")
1695 end
1696 end
1697 b.append(")")
1698 end
1699 var ret = self.return_mtype
1700 if ret != null then
1701 b.append(": ")
1702 b.append(ret.to_s)
1703 end
1704 return b.to_s
1705 end
1706
1707 redef fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MSignature
1708 do
1709 var params = new Array[MParameter]
1710 for p in self.mparameters do
1711 params.add(p.resolve_for(mtype, anchor, mmodule, cleanup_virtual))
1712 end
1713 var ret = self.return_mtype
1714 if ret != null then
1715 ret = ret.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1716 end
1717 var res = new MSignature(params, ret)
1718 return res
1719 end
1720 end
1721
1722 # A parameter in a signature
1723 class MParameter
1724 super MEntity
1725
1726 # The name of the parameter
1727 redef var name: String
1728
1729 # The static type of the parameter
1730 var mtype: MType
1731
1732 # Is the parameter a vararg?
1733 var is_vararg: Bool
1734
1735 redef fun to_s
1736 do
1737 if is_vararg then
1738 return "{name}: {mtype}..."
1739 else
1740 return "{name}: {mtype}"
1741 end
1742 end
1743
1744 # Returns a new parameter with the `mtype` resolved.
1745 # See `MType::resolve_for` for details.
1746 fun resolve_for(mtype: MType, anchor: nullable MClassType, mmodule: MModule, cleanup_virtual: Bool): MParameter
1747 do
1748 if not self.mtype.need_anchor then return self
1749 var newtype = self.mtype.resolve_for(mtype, anchor, mmodule, cleanup_virtual)
1750 var res = new MParameter(self.name, newtype, self.is_vararg)
1751 return res
1752 end
1753
1754 redef fun model do return mtype.model
1755 end
1756
1757 # A service (global property) that generalize method, attribute, etc.
1758 #
1759 # `MProperty` are global to the model; it means that a `MProperty` is not bound
1760 # to a specific `MModule` nor a specific `MClass`.
1761 #
1762 # A MProperty gather definitions (see `mpropdefs`) ; one for the introduction
1763 # and the other in subclasses and in refinements.
1764 #
1765 # A `MProperty` is used to denotes services in polymorphic way (ie. independent
1766 # of any dynamic type).
1767 # For instance, a call site "x.foo" is associated to a `MProperty`.
1768 abstract class MProperty
1769 super MEntity
1770
1771 # The associated MPropDef subclass.
1772 # The two specialization hierarchy are symmetric.
1773 type MPROPDEF: MPropDef
1774
1775 # The classdef that introduce the property
1776 # While a property is not bound to a specific module, or class,
1777 # the introducing mclassdef is used for naming and visibility
1778 var intro_mclassdef: MClassDef
1779
1780 # The (short) name of the property
1781 redef var name: String
1782
1783 # The canonical name of the property.
1784 #
1785 # It is the short-`name` prefixed by the short-name of the class and the full-name of the module.
1786 # Example: "my_project::my_module::MyClass::my_method"
1787 redef var full_name is lazy do
1788 return "{intro_mclassdef.mmodule.namespace_for(visibility)}::{intro_mclassdef.mclass.name}::{name}"
1789 end
1790
1791 redef var c_name is lazy do
1792 # FIXME use `namespace_for`
1793 return "{intro_mclassdef.mmodule.c_name}__{intro_mclassdef.mclass.name.to_cmangle}__{name.to_cmangle}"
1794 end
1795
1796 # The visibility of the property
1797 var visibility: MVisibility
1798
1799 # Is the property usable as an initializer?
1800 var is_autoinit = false is writable
1801
1802 init
1803 do
1804 intro_mclassdef.intro_mproperties.add(self)
1805 var model = intro_mclassdef.mmodule.model
1806 model.mproperties_by_name.add_one(name, self)
1807 model.mproperties.add(self)
1808 end
1809
1810 # All definitions of the property.
1811 # The first is the introduction,
1812 # The other are redefinitions (in refinements and in subclasses)
1813 var mpropdefs = new Array[MPROPDEF]
1814
1815 # The definition that introduces the property.
1816 #
1817 # Warning: such a definition may not exist in the early life of the object.
1818 # In this case, the method will abort.
1819 var intro: MPROPDEF is noinit
1820
1821 redef fun model do return intro.model
1822
1823 # Alias for `name`
1824 redef fun to_s do return name
1825
1826 # Return the most specific property definitions defined or inherited by a type.
1827 # The selection knows that refinement is stronger than specialization;
1828 # however, in case of conflict more than one property are returned.
1829 # If mtype does not know mproperty then an empty array is returned.
1830 #
1831 # If you want the really most specific property, then look at `lookup_first_definition`
1832 #
1833 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1834 # ENSURE: `not mtype.has_mproperty(mmodule, self) == result.is_empty`
1835 fun lookup_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1836 do
1837 assert not mtype.need_anchor
1838 mtype = mtype.as_notnullable
1839
1840 var cache = self.lookup_definitions_cache[mmodule, mtype]
1841 if cache != null then return cache
1842
1843 #print "select prop {mproperty} for {mtype} in {self}"
1844 # First, select all candidates
1845 var candidates = new Array[MPROPDEF]
1846 for mpropdef in self.mpropdefs do
1847 # If the definition is not imported by the module, then skip
1848 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1849 # If the definition is not inherited by the type, then skip
1850 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1851 # Else, we keep it
1852 candidates.add(mpropdef)
1853 end
1854 # Fast track for only one candidate
1855 if candidates.length <= 1 then
1856 self.lookup_definitions_cache[mmodule, mtype] = candidates
1857 return candidates
1858 end
1859
1860 # Second, filter the most specific ones
1861 return select_most_specific(mmodule, candidates)
1862 end
1863
1864 private var lookup_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1865
1866 # Return the most specific property definitions inherited by a type.
1867 # The selection knows that refinement is stronger than specialization;
1868 # however, in case of conflict more than one property are returned.
1869 # If mtype does not know mproperty then an empty array is returned.
1870 #
1871 # If you want the really most specific property, then look at `lookup_next_definition`
1872 #
1873 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1874 # ENSURE: `not mtype.has_mproperty(mmodule, self) implies result.is_empty`
1875 fun lookup_super_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1876 do
1877 assert not mtype.need_anchor
1878 mtype = mtype.as_notnullable
1879
1880 # First, select all candidates
1881 var candidates = new Array[MPROPDEF]
1882 for mpropdef in self.mpropdefs do
1883 # If the definition is not imported by the module, then skip
1884 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1885 # If the definition is not inherited by the type, then skip
1886 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1887 # If the definition is defined by the type, then skip (we want the super, so e skip the current)
1888 if mtype == mpropdef.mclassdef.bound_mtype and mmodule == mpropdef.mclassdef.mmodule then continue
1889 # Else, we keep it
1890 candidates.add(mpropdef)
1891 end
1892 # Fast track for only one candidate
1893 if candidates.length <= 1 then return candidates
1894
1895 # Second, filter the most specific ones
1896 return select_most_specific(mmodule, candidates)
1897 end
1898
1899 # Return an array containing olny the most specific property definitions
1900 # This is an helper function for `lookup_definitions` and `lookup_super_definitions`
1901 private fun select_most_specific(mmodule: MModule, candidates: Array[MPROPDEF]): Array[MPROPDEF]
1902 do
1903 var res = new Array[MPROPDEF]
1904 for pd1 in candidates do
1905 var cd1 = pd1.mclassdef
1906 var c1 = cd1.mclass
1907 var keep = true
1908 for pd2 in candidates do
1909 if pd2 == pd1 then continue # do not compare with self!
1910 var cd2 = pd2.mclassdef
1911 var c2 = cd2.mclass
1912 if c2.mclass_type == c1.mclass_type then
1913 if cd2.mmodule.in_importation < cd1.mmodule then
1914 # cd2 refines cd1; therefore we skip pd1
1915 keep = false
1916 break
1917 end
1918 else if cd2.bound_mtype.is_subtype(mmodule, null, cd1.bound_mtype) and cd2.bound_mtype != cd1.bound_mtype then
1919 # cd2 < cd1; therefore we skip pd1
1920 keep = false
1921 break
1922 end
1923 end
1924 if keep then
1925 res.add(pd1)
1926 end
1927 end
1928 if res.is_empty then
1929 print "All lost! {candidates.join(", ")}"
1930 # FIXME: should be abort!
1931 end
1932 return res
1933 end
1934
1935 # Return the most specific definition in the linearization of `mtype`.
1936 #
1937 # If you want to know the next properties in the linearization,
1938 # look at `MPropDef::lookup_next_definition`.
1939 #
1940 # FIXME: the linearization is still unspecified
1941 #
1942 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1943 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1944 fun lookup_first_definition(mmodule: MModule, mtype: MType): MPROPDEF
1945 do
1946 return lookup_all_definitions(mmodule, mtype).first
1947 end
1948
1949 # Return all definitions in a linearization order
1950 # Most specific first, most general last
1951 #
1952 # REQUIRE: `not mtype.need_anchor` to simplify the API (no `anchor` parameter)
1953 # REQUIRE: `mtype.has_mproperty(mmodule, self)`
1954 fun lookup_all_definitions(mmodule: MModule, mtype: MType): Array[MPROPDEF]
1955 do
1956 mtype = mtype.as_notnullable
1957
1958 var cache = self.lookup_all_definitions_cache[mmodule, mtype]
1959 if cache != null then return cache
1960
1961 assert not mtype.need_anchor
1962 assert mtype.has_mproperty(mmodule, self)
1963
1964 #print "select prop {mproperty} for {mtype} in {self}"
1965 # First, select all candidates
1966 var candidates = new Array[MPROPDEF]
1967 for mpropdef in self.mpropdefs do
1968 # If the definition is not imported by the module, then skip
1969 if not mmodule.in_importation <= mpropdef.mclassdef.mmodule then continue
1970 # If the definition is not inherited by the type, then skip
1971 if not mtype.is_subtype(mmodule, null, mpropdef.mclassdef.bound_mtype) then continue
1972 # Else, we keep it
1973 candidates.add(mpropdef)
1974 end
1975 # Fast track for only one candidate
1976 if candidates.length <= 1 then
1977 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1978 return candidates
1979 end
1980
1981 mmodule.linearize_mpropdefs(candidates)
1982 candidates = candidates.reversed
1983 self.lookup_all_definitions_cache[mmodule, mtype] = candidates
1984 return candidates
1985 end
1986
1987 private var lookup_all_definitions_cache = new HashMap2[MModule, MType, Array[MPROPDEF]]
1988 end
1989
1990 # A global method
1991 class MMethod
1992 super MProperty
1993
1994 redef type MPROPDEF: MMethodDef
1995
1996 # Is the property defined at the top_level of the module?
1997 # Currently such a property are stored in `Object`
1998 var is_toplevel: Bool = false is writable
1999
2000 # Is the property a constructor?
2001 # Warning, this property can be inherited by subclasses with or without being a constructor
2002 # therefore, you should use `is_init_for` the verify if the property is a legal constructor for a given class
2003 var is_init: Bool = false is writable
2004
2005 # The constructor is a (the) root init with empty signature but a set of initializers
2006 var is_root_init: Bool = false is writable
2007
2008 # Is the property a 'new' constructor?
2009 var is_new: Bool = false is writable
2010
2011 # Is the property a legal constructor for a given class?
2012 # As usual, visibility is not considered.
2013 # FIXME not implemented
2014 fun is_init_for(mclass: MClass): Bool
2015 do
2016 return self.is_init
2017 end
2018 end
2019
2020 # A global attribute
2021 class MAttribute
2022 super MProperty
2023
2024 redef type MPROPDEF: MAttributeDef
2025
2026 end
2027
2028 # A global virtual type
2029 class MVirtualTypeProp
2030 super MProperty
2031
2032 redef type MPROPDEF: MVirtualTypeDef
2033
2034 # The formal type associated to the virtual type property
2035 var mvirtualtype = new MVirtualType(self)
2036 end
2037
2038 # A definition of a property (local property)
2039 #
2040 # Unlike `MProperty`, a `MPropDef` is a local definition that belong to a
2041 # specific class definition (which belong to a specific module)
2042 abstract class MPropDef
2043 super MEntity
2044
2045 # The associated `MProperty` subclass.
2046 # the two specialization hierarchy are symmetric
2047 type MPROPERTY: MProperty
2048
2049 # Self class
2050 type MPROPDEF: MPropDef
2051
2052 # The class definition where the property definition is
2053 var mclassdef: MClassDef
2054
2055 # The associated global property
2056 var mproperty: MPROPERTY
2057
2058 # The origin of the definition
2059 var location: Location
2060
2061 init
2062 do
2063 mclassdef.mpropdefs.add(self)
2064 mproperty.mpropdefs.add(self)
2065 if mproperty.intro_mclassdef == mclassdef then
2066 assert not isset mproperty._intro
2067 mproperty.intro = self
2068 end
2069 self.to_s = "{mclassdef}#{mproperty}"
2070 end
2071
2072 # Actually the name of the `mproperty`
2073 redef fun name do return mproperty.name
2074
2075 # The full-name of mpropdefs combine the information about the `classdef` and the `mproperty`.
2076 #
2077 # Therefore the combination of identifiers is awful,
2078 # the worst case being
2079 #
2080 # * a property "p::m::A::x"
2081 # * redefined in a refinement of a class "q::n::B"
2082 # * in a module "r::o"
2083 # * so "r::o#q::n::B#p::m::A::x"
2084 #
2085 # Fortunately, the full-name is simplified when entities are repeated.
2086 # For the previous case, the simplest form is "p#A#x".
2087 redef var full_name is lazy do
2088 var res = new FlatBuffer
2089
2090 # The first part is the mclassdef. Worst case is "r::o#q::n::B"
2091 res.append mclassdef.full_name
2092
2093 res.append "#"
2094
2095 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2096 # intro are unambiguous in a class
2097 res.append name
2098 else
2099 # Just try to simplify each part
2100 if mclassdef.mmodule.mproject != mproperty.intro_mclassdef.mmodule.mproject then
2101 # precise "p::m" only if "p" != "r"
2102 res.append mproperty.intro_mclassdef.mmodule.full_name
2103 res.append "::"
2104 else if mproperty.visibility <= private_visibility then
2105 # Same project ("p"=="q"), but private visibility,
2106 # does the module part ("::m") need to be displayed
2107 if mclassdef.mmodule.namespace_for(mclassdef.mclass.visibility) != mproperty.intro_mclassdef.mmodule.mproject then
2108 res.append "::"
2109 res.append mproperty.intro_mclassdef.mmodule.name
2110 res.append "::"
2111 end
2112 end
2113 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2114 # precise "B" only if not the same class than "A"
2115 res.append mproperty.intro_mclassdef.name
2116 res.append "::"
2117 end
2118 # Always use the property name "x"
2119 res.append mproperty.name
2120 end
2121 return res.to_s
2122 end
2123
2124 redef var c_name is lazy do
2125 var res = new FlatBuffer
2126 res.append mclassdef.c_name
2127 res.append "___"
2128 if mclassdef.mclass == mproperty.intro_mclassdef.mclass then
2129 res.append name.to_cmangle
2130 else
2131 if mclassdef.mmodule != mproperty.intro_mclassdef.mmodule then
2132 res.append mproperty.intro_mclassdef.mmodule.c_name
2133 res.append "__"
2134 end
2135 if mclassdef.mclass != mproperty.intro_mclassdef.mclass then
2136 res.append mproperty.intro_mclassdef.name.to_cmangle
2137 res.append "__"
2138 end
2139 res.append mproperty.name.to_cmangle
2140 end
2141 return res.to_s
2142 end
2143
2144 redef fun model do return mclassdef.model
2145
2146 # Internal name combining the module, the class and the property
2147 # Example: "mymodule#MyClass#mymethod"
2148 redef var to_s: String is noinit
2149
2150 # Is self the definition that introduce the property?
2151 fun is_intro: Bool do return mproperty.intro == self
2152
2153 # Return the next definition in linearization of `mtype`.
2154 #
2155 # This method is used to determine what method is called by a super.
2156 #
2157 # REQUIRE: `not mtype.need_anchor`
2158 fun lookup_next_definition(mmodule: MModule, mtype: MType): MPROPDEF
2159 do
2160 assert not mtype.need_anchor
2161
2162 var mpropdefs = self.mproperty.lookup_all_definitions(mmodule, mtype)
2163 var i = mpropdefs.iterator
2164 while i.is_ok and i.item != self do i.next
2165 assert has_property: i.is_ok
2166 i.next
2167 assert has_next_property: i.is_ok
2168 return i.item
2169 end
2170 end
2171
2172 # A local definition of a method
2173 class MMethodDef
2174 super MPropDef
2175
2176 redef type MPROPERTY: MMethod
2177 redef type MPROPDEF: MMethodDef
2178
2179 # The signature attached to the property definition
2180 var msignature: nullable MSignature = null is writable
2181
2182 # The signature attached to the `new` call on a root-init
2183 # This is a concatenation of the signatures of the initializers
2184 #
2185 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2186 var new_msignature: nullable MSignature = null is writable
2187
2188 # List of initialisers to call in root-inits
2189 #
2190 # They could be setters or attributes
2191 #
2192 # REQUIRE `mproperty.is_root_init == (new_msignature != null)`
2193 var initializers = new Array[MProperty]
2194
2195 # Is the method definition abstract?
2196 var is_abstract: Bool = false is writable
2197
2198 # Is the method definition intern?
2199 var is_intern = false is writable
2200
2201 # Is the method definition extern?
2202 var is_extern = false is writable
2203
2204 # An optional constant value returned in functions.
2205 #
2206 # Only some specific primitife value are accepted by engines.
2207 # Is used when there is no better implementation available.
2208 #
2209 # Currently used only for the implementation of the `--define`
2210 # command-line option.
2211 # SEE: module `mixin`.
2212 var constant_value: nullable Object = null is writable
2213 end
2214
2215 # A local definition of an attribute
2216 class MAttributeDef
2217 super MPropDef
2218
2219 redef type MPROPERTY: MAttribute
2220 redef type MPROPDEF: MAttributeDef
2221
2222 # The static type of the attribute
2223 var static_mtype: nullable MType = null is writable
2224 end
2225
2226 # A local definition of a virtual type
2227 class MVirtualTypeDef
2228 super MPropDef
2229
2230 redef type MPROPERTY: MVirtualTypeProp
2231 redef type MPROPDEF: MVirtualTypeDef
2232
2233 # The bound of the virtual type
2234 var bound: nullable MType = null is writable
2235
2236 # Is the bound fixed?
2237 var is_fixed = false is writable
2238 end
2239
2240 # A kind of class.
2241 #
2242 # * `abstract_kind`
2243 # * `concrete_kind`
2244 # * `interface_kind`
2245 # * `enum_kind`
2246 # * `extern_kind`
2247 #
2248 # Note this class is basically an enum.
2249 # FIXME: use a real enum once user-defined enums are available
2250 class MClassKind
2251 redef var to_s: String
2252
2253 # Is a constructor required?
2254 var need_init: Bool
2255
2256 # TODO: private init because enumeration.
2257
2258 # Can a class of kind `self` specializes a class of kine `other`?
2259 fun can_specialize(other: MClassKind): Bool
2260 do
2261 if other == interface_kind then return true # everybody can specialize interfaces
2262 if self == interface_kind or self == enum_kind then
2263 # no other case for interfaces
2264 return false
2265 else if self == extern_kind then
2266 # only compatible with themselves
2267 return self == other
2268 else if other == enum_kind or other == extern_kind then
2269 # abstract_kind and concrete_kind are incompatible
2270 return false
2271 end
2272 # remain only abstract_kind and concrete_kind
2273 return true
2274 end
2275 end
2276
2277 # The class kind `abstract`
2278 fun abstract_kind: MClassKind do return once new MClassKind("abstract class", true)
2279 # The class kind `concrete`
2280 fun concrete_kind: MClassKind do return once new MClassKind("class", true)
2281 # The class kind `interface`
2282 fun interface_kind: MClassKind do return once new MClassKind("interface", false)
2283 # The class kind `enum`
2284 fun enum_kind: MClassKind do return once new MClassKind("enum", false)
2285 # The class kind `extern`
2286 fun extern_kind: MClassKind do return once new MClassKind("extern class", false)